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Abstract We consider a queueing model where documents are simultane-
ously transferred over a communication network. The bandwidth allocated to
each document transfer is assumed to be the solution of a utility optimiza-
tion problem. Under a natural stability condition and under the assumption
that document arrivals are Poisson and that document sizes are independent
exponential distributions, such queueing models have been proven to be pos-
itive recurrent. It has been conjectured for a decade that the assumption of
exponentially distributed documents can be removed. There exist numerous
generalizations without this exponential assumption, but a general proof re-
mains elusive.

Keywords utility optimization · bandwidth sharing · Internet congestion
control · stability · open problem

1 Introduction

In the Internet, documents are divided into a number a packets, which are then
sent sequentially across the network from sender to receiver. The Internet could
be unstable in two senses: the number of packets within the network could be
diverge or the number of documents in transfer could be diverge.

Internet routers have a fixed buffer size, and so, the number of packets
in flight, however large, is always finite. In this sense, the Internet is stable
and the question of how to send packets across the Internet is more concerned
with providing desirable transfer rates or bandwidth. This task, of finding good
transfer rates, is implemented by a sender and receiver with the Transmission
Control Protocol (TCP). At one conceptual level, TCP can be thought of as
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optimizing the aggregate utility of the bandwidth received by different docu-
ment transfers on the Internet, Kelly et al (1998). Given such a utility opti-
mizing bandwidth allocation policy, can a network process all the document
transfers in progress? More precisely, we will ask if a specific stochastic model
of document transfer is positive Harris recurrent. Through out this paper, the
term stable refers to the positive Harris recurrence of a Markov process and
unstable refers to transience of a Markov process.

Suppose documents arrive on each route r at rate νr and each of these
documents has expected size μ−1

r . The amount of work arriving per unit time
is then ρr = νr

μr
. If the rate of work arriving at a network resource, j, is strictly

above the resources capacity to process this work, Cj , then certainly instability
will arise. So, the condition that the rate of work arriving is less than capacity
provides a natural necessary condition for stability

∑

r:j∈r

ρr < Cj , j ∈ J . (1.1)

Even so, with this condition is place, one could imagine a traffic regime where
a network is unable to process a document transfer before a new transfer
arrives. Such instability, for example, is known to occur in models of radio
packets switch networks, see Aldous (1987).

Given that users receive a bandwidth allocation that optimizes a utility
function, is the condition (1.1) sufficient to guarantee stability of the Markov
process describing the document transfers in progress?When documents arrive
from independent Poisson process and documents sizes are independent expo-
nentially distributed, then it has been shown that condition (1.1) is sufficient
for stability, see Bonald and Massoulié (2001). Document sizes for Internet
transfers are known to follow a heavy tailed distribution and thus the as-
sumption that document transfers are exponentially distributed is not entirely
satisfactory. In this article, we discuss the conjecture that condition (1.1) is
sufficient for stability for general document size distributions.

If such a conjecture holds then this would suggest that congestion con-
trollers provide a viable mechanism to provide the maximum level of stability.
As we will review shortly, the resolution of this conjecture has spurred a great
deal of interesting research literature; none the less, the conjecture remains
open.

We now concentrate on describing the Markov chain model which we wish
to study and reviewing the progress made by different authors. The conjecture
which we discuss is presented in Section 2.4.

2 Model, conjecture and literature review

We now build the various components of our model of document transfer over
a communication network. First, we define the structure of a communication
network. Second, we define the utility optimizing bandwidth allocations that
might be achieved by a congestion controller. We, then, define a stochastic
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model of document transfer when documents are exponentially distributed and
then finally when documents are of a general size. Throughout this section,
we introduce and discuss literature relevant to our conjecture. The conjecture
itself is presented in Section 2.4.

2.1 Network structure

We let J index the set of resources of a communication network. With each
resource j ∈ J , we associate a capacity Cj > 0. A route through the network,
r, is a (non-empty) set of resources. We let R ⊂ 2J index the set of routes.
We let nr give the number of document transfers in progress on route r. As
a function of n = (nr : r ∈ R), route r document transfers are allocated an
amount of bandwidth Λr(n) ∈ R+. This bandwidth is then shared equally
amongst all the transfers present on route r. In other words, within each route
a processor sharing discipline is used. This important feature of our model will
be discussed later. The bandwidth available to each route is constrained by
the available capacity at each resource. So,

∑

r:j∈r

Λr(n) ≤ Cj , j ∈ J . (2.1)

We call any such function Λ(·) a bandwidth allocation policy. In a communica-
tion network, each document transfer receives a rate which may vary depending
on the number of transfers present on each route. Here a bandwidth allocation
policy is used in order to define this transfer rate.

2.2 Network utility maximization and fairness

Congestion control within the Internet is chiefly governed by the Transmission
Control Protocol (TCP). It has been suggested that TCP implicitly attempts
to maximize the utility of the transfer rate received by its users, see Kelly
et al (1998). With this in mind, with each route r ∈ R, we associate a utility
function Ur(·): a real valued increasing, strictly concave function of the band-
width allocated to each route r user. A congestion controller then allocates
bandwidth in order to optimize the following objective

maximize
∑

r∈R
nrUr

(
Λr

nr

)
(2.2a)

subject to
∑

r:j∈r

Λr ≤ Cj , j ∈ J (2.2b)

over Λr ≥ 0, r ∈ R. (2.2c)

In addition, if nr = 0 we assume that Λr(n) = 0. The solution to the above
optimization represents the equilibrium rate of packet transfer in a communi-
cations network given the number of documents in transfer on each route. Over
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different values of n = (nr : r ∈ R) ∈ Z
R
+ , the solutions to this optimization

problem, Λ(n), define a bandwidth allocation policy achieved by a congestion
control mechanism.

We think of a utility function Ur(xr) as summarizing an Internet connec-
tions benefit from receiving bandwidth xr . We then think of the optimization
problem (2.2) as allocating the available bandwidth in order to maximize the
total benefit its users. Because a bandwidth allocation policy may attempt
to allocate some amount of bandwidth to all transfers, one often thinks of a
bandwidth allocation being fair.

2.2.1 Literature on network utility maximization

In general, a bandwidth allocation policy need not be particularly fair. For
example, it could attempt to maximize the total bandwidth within the net-
work. This maximization leads to some transfers receiving zero bandwidth.
As we shall see, this maximum throughout allocation can lead to bad stabil-
ity properties. A bandwidth allocation can be very fair. For example, subject
to network capacity constraints, one could attempt to maximize the transfer
rate of the document with the smallest bandwidth and then maximize the
second smallest and so forth... Such a policy would achieve max-min fairness.
In the context of communication networks, this was the first fairness criteria
to be considered, see Bertsekas and Gallager (1987). The utility optimization
framework considered here was first introduced by Kelly (1997), and in partic-
ular, proportional fairness where Ur(xr) = log(xr) has proved a particularly
tractable criteria for analysis.

A popular class of utility functions introduced by Mo and Walrand (2000)
are the set of weighted α-fair utility functions. For this class of utility functions
Ur takes the form

Ur(xr) =

{
wr

x1−α
r

1−α for α > 0,

wr log(xr) for α = 1.

Here the class of utility functions are parameterized by weights w = (wr : r ∈
R) ∈ R+ and fairness parameter α > 0.

The weighted α-fair class has proved popular as it contains a number of
popular fairness criteria: proportional fairness (α = wr = 1); TCP fairness
(α = 2, wr = 1

T 2
r
), and also it converges to maximum throughput (α →

0, wr = 1) and max-min fairness (α → ∞, wr = 1). Although certainly
other fairness criteria exist, the weighted α-fair family parameterizes the set
of fairness criteria of interest. For this reason, weighted α-fairness often acts
as a convenient starting point for results on fair bandwidth sharing.

Although it is not the central objective of this article, good introductions
to the relationship between utility optimization and congestion control are the
short article of Kelly (2008) and the book by Srikant (2004).
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2.3 A stochastic model with exponentially distributed document sizes

Until now, we discussed an equilibrium that might be achieved by packets in
transfer across a communication network. We, now, define a model that incor-
porates the stochastic arrival and departure of documents and also allocates
service with an allocation policy. We ask if this stochastic model has an equi-
librium. This model can be thought of as a model of document transfer across
the Internet. We introduce our stochastic model for a bandwidth allocation
policy Λ(·).

Documents to be transferred arrive as a Poisson process. Route r ∈ R
documents arrive as an independent Poisson process of rate νr > 0. Each
document has a size that is independent exponentially distributed with mean
μ−1
r . We, thus, define the traffic intensity of work arriving at route r by ρr =

νr
μr

. When there are n = (nr : r ∈ R) documents in transfer on each route,

each route r documents is served at rate Λr(n)
nr

. Documents are then processed
at this rate until the number of documents in transfer changes either by a
document departure or arrival.

Here n = (nr : r ∈ R) the number of documents in transfer gives the state
of a Markov chain with non-zero transition rates

q(n, n+ er) = νr, (2.3a)

q(n, x− er) = μrΛr(n) if nr > 0. (2.3b)

This model Markov chain model was introduced by Massoulié and Roberts
(1998). We now discuss the stability of this stochastic model.

2.3.1 An example of instability

We note here that seemingly sensible bandwidth allocation policies need not
be stable. The following example is taken from Bonald and Massoulié (2001).

Consider a network that consists of two resources, J = {A,B} each with
capacity 1, and three routes: r0 = {A,B}, r1 = {A} and r2 = {B}. This
network is called a two-node linear network. This is because our network forms
a line, r0, with two types of cross traffic, r1, r2.

Suppose, we use a policy that maximizes the total bandwidth allocated.
In this case, it is preferred to allocate bandwidth to routes r1 and r2 over
r0 because route r0 uses capacity at both resources A and B, whilst r1 and
r2 only use one resource. So we use a bandwidth allocation policy that gives
all available bandwidth to routes r1 and r2 whenever there is a document in
transfer on either route. Only when there are no documents in transfer on
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route r1, r2 do we allocate capacity to route r0, i.e.

(Λr0(n), Λr1(n), Λr2(n)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0, 1, 1) if nr1 > 0 and nr2 > 0,

(0, 1, 0) if nr1 > 0 and nr2 = 0,

(0, 0, 1) if nr1 = 0 and nr2 > 0,

(1, 0, 0) if nr0 > 0, nr1 = 0 and nr2 = 0,

(0, 0, 0) if nr0 = 0, nr1 = 0 and nr2 = 0.

This policy maximizes the total amount of bandwidth allocated and therefore
places the maximum amount of effort towards processing documents. But is
this allocation policy stable under condition (1.1)? Unfortunately, it is not
stable.

Suppose the condition (1.1) holds. We note that route r1, and similarly r2,
has priority over route r0 and so route r1 behaves as a single server queue with
server capacity 1. Also, as they do not interact, one can see that the number
of documents transfers on route r2 is independent of route r1. So for routes 1
and 2, the stability condition (1.1) is sufficient for routes 1 and 2 to be positive
recurrent. If we look at route r0, we notice that it can only process documents
when both routes r1 and r2 have no documents in transfer. The long run
proportion of time that this occurs is given by the stationary probability that
no documents are in transfer on routes r1 and r2, which is (1 − ρ1)(1 − ρ2).
For the stability of class r0, the long run proportion of capacity devoted to r0
documents must be strictly larger than the rate at which work arrives, and
thus we derive the stability condition

ρ0 < (1− ρ1) (1− ρ2) .

This condition more restrictive than the condition (1.1), and so, condition
(1.1) is not sufficient for stability in this example.

2.3.2 Literature on stability with exponentially distributed documents

As we have mentioned the stochastic model considered above with exponen-
tially distributed documents sizes is first considered by Massoulié and Roberts
(1998). Massoulié and Roberts (1998) prove that condition (1.1) is sufficient
for stability for the proportionally fair allocation policy on a linear network.
Massoulié and Roberts (1998) do this by explicitly calculating the stationary
distribution of the proportionally fair model on this network topology.

Subsequently, De Veciana and Konstantopoulos (1999) prove that (1.1) is
sufficient for stability for both proportionally fair and max-min fair allocation
policies under a general network topology. De Veciana and Konstantopoulos
(1999) proved stability by the construction of an appropriate Lyapunov func-
tion and then by applying Foster’s Lemma.

The generalization of these results to the rest of the weighted α-fair fam-
ily was proven by Bonald and Massoulié (2001). Once again, their arguments
consisted of constructing an appropriate Lyapunov function. Instead of apply-
ing their Lyapunov function directly to their Markov processes, the Lyapunov
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function is applied to the ‘fluid model’ associated with the Markov process
(2.3). A fluid model is a deterministic processes associated with the Markov
processes (2.3).In the case of a weighted α-fair bandwidth allocation policy
Λ(·), the appropriate fluid model is a positive solution to the differential equa-
tion

dnr(t)

dt
= νr − μrΛr(n), nr > 0, r ∈ R. (2.4)

Intuitively, this differential equation makes sense: it relates the rate that doc-
uments arrive and depart to changes in the number of documents present.

To derive (2.4), one must prove a ‘fluid limit’, a formal law of large num-
bers argument that proves the convergence of the Markov chain model (2.3)
to a solution of the differential equation (2.4). For weighted α-fair allocation
policies, this fluid limit result is proven in Kelly and Williams (2004). For gen-
eral discussions on proving fluid limits, please see Darling (2002) and Darling
and Norris (2008).

Given the fluid model (2.4) is related to the Markov process (2.3), the
stability of the differential equation (2.4) may perhaps relate to the positive
recurrent of the Markov process (2.3). A result, proven by Dai (1995a), shows
that if any fluid limit model eventually reaches zero and stays there, regardless
of the initial system configuration, then the underlying queueing process is pos-
itive Harris recurrent. Bonald and Massoulié prove stability of the associated
fluid model with the Lyapunov function

F (n) :=
∑

r∈R
wrμ

−1
r ρ−α

r

n1+α
r

α+ 1

To give some feeling as to how such Lyapunov functions are applied, we present
and discuss the proof of Bonald and Massoulié (2001) in the Appendix.

The Lyapunov function of Bonald and Massoulié (2001) was next gener-
alized to apply to a general utility function by Ye (2003). Aside form a few
technical conditions bounding derivatives, this result demonstrated that con-
dition (1.1) was sufficient for network stability when utility functions where
general and when documents had exponentially distributed sizes.

Finally, we note that there are some Markov chain generalizations beyond
the model presented. Liu et al (2007) present and prove stability of a model
where the capacity region (2.1) may be a non-convex and may vary in time.
Also, in practice congestion controllers may take some time to converge to a
utility optimizing bandwidth allocation. The paper Lin and Shroff (2004) dis-
cusses and proves the stability when a utility optimizing bandwidth allocation
is not achieved instantaneously.

2.3.3 A further note on fluid limits and positive recurrence

A key component of the proof of Bonald and Massoulié (2001) was the stability
result presented in Dai (1995a) and Dai (1995b). The work of Dai applies to
queueing network where customers have general service requirements but the
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result of Dai comes with the caveat that if a queueing model processes jobs in
different classes/routes, the service discipline must be head-of-the-line, mean-
ing that within each class documents are processed with a first-in-first-out
service discipline. As we described in Section 2.1, service within a route is pro-
cessor sharing not head-of-the-line. Due to the memoryless property, processor
sharing and head-of-the-line service disciplines are equivalent when documents
have an exponentially distributed size. So the results of Dai do apply to the
case where documents are exponentially distributed, but unfortunately they
do not directly apply to document sizes that are not exponentially distributed.
To deal with this issue new theory must be developed.

2.4 A stochastic model with generally distributed document sizes

The assumption of exponentially distributed document sizes is somewhat ide-
alistic and so it is desirable to model the transfer of documents of a generally
distributed size. The description of such a Markov process is a natural exten-
sion of our previous Markov chain model.

Documents to be transferred arrive as a Poisson process. Route r ∈ R
documents arrive as an independent Poisson processes of rate νr > 0. Each
document on route r has a size that is independent identically distributed
according to some random variable Xr. A route r document’s distribution
has support on (0,∞) and has mean μ−1

r . Once again we define the traffic
insensitivity of route r by ρr = νr/μr. Between document arrival and departure

events, on each route r, a document is processed linearly at rate Λr(n)
nr

.
In order to give an Markov process description of our communication net-

work, we must record the residual sizes of documents. That is, the amount
of each document which remains to be transferred. Given that there are nr

documents to be transfer on route r, for k = 1, ..., nr, we let yrk > 0 be the
residual size of the k-th document in transfer on route r. We index elements
yrk so that yr1 ≤ yr2 ≤ ... ≤ yrnr . The state of the documents in transfer on
route r is then given by the vector

yr = (yrk : k = 1, ..., nr),

and the state of the documents in transfer is given by

y = (yr : r ∈ R).

The variable yrk decreases linearly at rate Λr(n)
nr

until a document departure

or arrival occurs. I.e. given the Markov process takes state y0 at time t0

yr(t) = y0r − (t− t0)
Λr(n

0)

n0
r

, for t > t0

while yr1(t) > 0 (before a document departure) and while (t− t0) < minr{Sr}
(before a document arrival). Here each Sr is an independent exponential ran-
dom variable with parameter νr. We let y(t−) give the state of our Markov
process instantaneously before time t.
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If a document departure occurs at time t, that is yr1(t
−) = 0 and (t− t0) <

minr{Sr} then nr(t) is updated to equal nr(t
−) − 1 and yr(t) is updated so

that
y(t) = (yrk(t

−) : k = 2, ..., nr).

The random variables Sr represent the Poisson arrival of documents. If a
document arrival occurs on route r i.e. t−t0 = Sr = minr̃ Sr̃ and yr̃1(t) > 0 for
all r̃ ∈ R, then a independent random variable Xr is drawn according to the
distribution of route r documents. This gives the size of the arriving document.
Accordingly nr(t) is updated to equal nr(t

−)− 1 and yr(t) is updated to give

yr(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Xr, yr1(t
−), ..., yrnr(t

−))

for Xr ≤ yr1(t
−)

(yr1(t
−), ..., yrk(t

−), Xr, yrk+1(t
−), ..., yrnr(t

−))

for yrk(t
−) ≤ Xr ≤ yrk+1(t

−),

(yr1(t
−), ..., yrnr(t

−), Xr)

for yrnr(t
−) ≤ Xr.

A new exponential parameter νr random variable S′
r is then drawn to replace

Sr.
The process we describe here is a piecewise linear cádlág Markov processes.

We could also describe the state of each route yr as a measure with a Dirac
mass at yrk, this measure valued description is used by Gromoll and Williams
(2009) and Bramson (2010).

Remark 1 We remark that this model could be generalized so that inter-arrival
times are independent identically distributed rather than exponentially dis-
tributed. Residual inter-arrival time could then be incorporated to give a
Markov state description. We do not include this extension, firstly, because
a Poisson process is justifiable arrival process, it is the aggregation of a large
number of rare events, and secondly, because allowing general document sizes
is our primary modeling objective.

We are interested to know when our Markov process has a stationary dis-
tribution. We cannot use the theory of countable state space Markov chains
and so, in this setting, a slightly different notion of recurrence and positive
recurrence is used. In particular, the corresponding notions of recurrence and
positive recurrence are Harris recurrence and positive Harris recurrence. We
will shortly give pointers to precise definitions and literature on this topic, but
first we state our conjecture.

The principle conjecture of interest is the following

Conjecture 1 The Markov process described above: a bandwidth sharing net-
work operating under a bandwidth allocation which optimizes (2.2) and with
general document sizes, is positive Harris recurrent under the condition

∑

r:j∈r

ρr < Cj , j ∈ J .

QUES9233_source [06/09 10:34]     SmallExtended , MathPhysSci , Numbered 9/15



10

This conjecture is widely expected to hold for weighted α-fair utility func-
tions. Like the result of Ye (2003), for general utility functions, some additional
restrictions may be required.

2.4.1 Discussion on positive Harris recurrence and queueing

The theory of Harris recurrence was firstly developed by its namesake Harris
(1956). A processes is said to be Harris recurrent, if there exists a σ-finite
measure, φ, defined on the state space of our Markov process, S, such that

φ(A) > 0 implies Py(τA < ∞), x ∈ S,

where Py is the law of our Markov process started at y, A is a Borel measurable
subset of our Markov process’s state space, τA is the hitting time of the Markov
process on set A.

Like in the countable state space theory, it has been shown that Harris
recurrence is sufficient for a Markov process to have a stationary measure, see
Getoor (1980). If this measure is a finite measure then a stationary distribution
exists and our process is said to be positive Harris recurrent.

A crucial role in proving Positive Harris recurrence is the existence of a
petite set. In words, a petite set is a set of states from which there is some
measure determined lower bound on the probability of reaching any other set
of states. The existence of a petite set that has finite expected hitting time
after leaving itself is equivalent to a Markov process being positive Harris
recurrent. Thus to prove positive Harris recurrence, one must find a petite
set and prove its expected return time is finite. An excellent account of this
approach for discrete time Markov processes is given by Meyn and Tweedie
(1993b). A continuous time treatment is given by the same authors in the
papers Meyn and Tweedie (1993a,c,d).

So, in the context of our queueing applications and in the approach of
Dai (1995a,b), one needs to characterize a petite set and then show it has
a finite expected return time. To characterize a petite set some technical as-
sumptions must be made on document inter-arrival times. These assumption
are presented in Meyn and Down (1994) and further in (Bramson, 2008, Sec-
tion 4.2). These assumptions are satisfied for an independent Poisson arrival
process. To prove that expected return times are finite one can apply Foster’s
Lemma. Proposition 4.6 of Bramson (2008) presents a form of Foster’s Lemma,
the multiplicative Foster’s Criterion. This version of Foster’s Lemma is used
to execute the stability proof in Dai (1995a,b). The book of Bramson (2008)
provides a superb account of the theory relevant to proving the stability of
queueing networks and should be the first place to start on this topic.

2.4.2 Literature on stability with generally distributed documents

For general document sizes, initial results on the stability of utility optimizing
bandwidth allocations were proven by Bonald and Proutière (2003). Bonald
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and Proutière (2003) studied the behavior of insensitive bandwidth allocations.
Bonald and Proutière (2003) showed that the proportionally fair allocation
policy coincided with an insensitive policy for line, grid and hypercube network
topologies. They thus proved that (1.1) gave stability for the proportionally fair
policy with phase-type document sizes for these specific networks. For lines and
the special case of a 2× 2 grid, this result is also observed by Lakshmikantha
et al (2005).

By further developing the link between proportional fairness and insensi-
tivity, Massoulié (2007) proves stability of proportionally fair bandwidth allo-
cation policies with the assumption that documents sizes are from phase-type.
Massoulié (2007) proves results for any network topology.

Under a relatively mild second moment condition, Bramson (2010) proves
stability for networks operating under a max-min fair allocations policy with
generally distributed document sizes.

With the aim of establishing a fluid limit proof of stability, as given by Dai
(1995a) for head-of-the-line disciplines, a number of authors have established
fluid limits for bandwidth sharing networks with general document sizes. In
particular, Chiang et al (2006) prove fluid limit results for weighted α-fair
bandwidth allocations with α sufficiently close to zero. Chiang et al (2006)
use this result to place probabilistic bounds on their queueing network’s state.
Similarly, Gromoll and Williams (2009) provide a formal fluid limit argument
for bandwidth networks with general document sizes. Gromoll and Williams
(2008) show fluid limit stability for tree network and line network topologies.
Further, a fluid model of weighted α-fair bandwidth sharing is stated in the
paper Paganini et al (2009). Here the authors prove stability of their partial
differential equation model. As it stands there is no proof that fluid model
stability implies positive Harris recurrence and so theory must be developed
so that these papers imply stability of the underlying Markov process.

A Appendix: Fluid limit and Stability

The paper Bonald and Massoulié (2001) considers the Markov chain (2.3) for a weight α-
fair bandwidth allocations. The paper proves that a necessary and sufficient condition for
positive recurrence of the Markov chain is that

∑
r:j∈r ρr < Cj for each j ∈ J . We will

state one result needed for the proof, introduce some notation, and then give their proof.

Theorem 1 (Dai (1995a)) If any fluid model n satisfying (2.4) is such that ∃ T >
0 s.t. ∀ t > T, n(t) = 0 then the Markov chain (2.3) is positive recurrent.

Consider the objective function of the weighted α-fair optimization problem

Gn(Λ) =

⎧
⎨

⎩

∑
r∈R wrnr

1
1−α

(
Λr(n)
nr

)1−α
, for α �= 1,

∑
r∈R wrnr logΛr , for α = 1.

From Gn(Λ), we can heuristically construct a Lyapunov function. Assuming the condition
(1.1), the weighted α-fair bandwidth allocation Λ(n) and traffic intensity ρ both satisfy the
networks capacity constraints. Because Λ(n) is optimal, Gn(Λ(n)) > Gn(ρ). In this sense,
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the processing rate Λ(n) is out performing the work arrival rate ρ. We now ask what the
long run effect of this is. By applying a Taylor expansion

∫ T

0

[
Gn(t)(Λ(n(t))) −Gn(t)(ρ)

]
dt

=

∫ T

0
(Λ(n(t)) − ρ) · ∇Gn(t)(ρ) + o(|Λ(n(t)) − ρ|)dt

= −
∫ T

0

∑

r

(ρr − Λr(n(t)))wr

(
nr(t)

ρr

)α

dt + o

(∫ T

0
|Λ(n(t)) − ρ|dt

)

= −
∫ T

0

1

μr

dnr(t)

dt
wr

(
nr(t)

ρr

)α

dt + o

(∫ T

0
|Λ(n(t)) − ρ|dt

)

= F (n(0)) − F (n(t)) + o

(∫ T

0
|Λ(n(t)) − ρ|dt

)

,

where we define the non-negative function

F (n) :=
∑

r∈I
wrμ

−1
r ρ−α

r

n1+α
r

α+ 1
.

Thus

F (n(t)) = F (n(0)) −
∫ T

0

[
Gn(t)(Λ(n(t))) −Gn(t)(ρ)

]
dt+ o

(∫ T

0
|Λ(n(t)) − ρ|dt

)

.

F (n) determines the cumulative benefit of Λ(n) out performing ρ. If the network is stable,
in the long run Λ(n) is approximately ρ. So, the little o term above should have a small
effect on the evolution of F (n(t)).

Now we can give the theorem:

Theorem 2 (Bonald and Massoulié (2001)) .
The Markov chain given by (2.3) is positive recurrent iff

∑
r:j∈r ρr < Cj for each j ∈ J

Proof

We first prove the if direction of the result. As we observed above

dF (n(t))

dt
= ∇Gn(ρ) · (ρ− Λ(n(t))) ,

Gn(Λ(n)) ≥ Gn(u), for any u ∈ R
R
+ satisfy the networks capacity constraints

∑
r:j∈r ur ≤

Cj . Thus, the partial derivate of the convex function Gn(·) in the direction Λ(n) − u is
positive, i.e.

∇Gn(u) · (Λ(n(t)) − u) ≥ 0.

In particular, we take u = (ρr(1 + ε) : r ∈ R) where ε > 0 is sufficiently small so u satisfies
the network capacity constraints. So,

0 ≥ ∇Gn(u) · (ρ(1 + ε)− Λ(n)) × (1 + ε)α =
∑

r∈R
wr

(
nr

ρr

)α

(ρr(1 + ε)− Λr).

Thus, for n(t) �= 0,

−ε
∑

r∈R
wrρr

(
nr

ρr

)α

≥
∑

r∈R
wr

(
nr

ρr

)α

(ρr − Λr) = ∇Gn(ρ) · (Λ(n(t)) − ρ) =
dF (n(t))

dt
.
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Notice ‖n‖1 :=
(∑

r wrρ
1−α
r nα

r

)1/α
and ‖n‖2 := (F (n))1/α+1 both define norms on R

R.

Since all finite dimensional norms are equivalent there is a constant β s.t. ‖n‖1 ≥ β‖n‖2
and so we have

dF (n)

dt
≤ −εβαF (n(t))α/(α+1) . (A.1)

If F (n(t)) = 0 then (A.1) implies that dF (n(t))
dt

= 0 and so F (n(t′)) = 0 ∀ t′ > t and
hence n(t′) = 0 ∀ t′ > t. Hence all we need now is to check that F (n(T )) = 0 for some
T ≥ 0. Integrating (A.1) yields,

F (n(T ))
1

α+1 − F (n(0))
1

α+1 =

∫ T

0
F (n(s))

−α
1+α dF (n(s)) ≤ −ε

∫ t

0
βαds = −εβαT

⇒ F (n(T )) ≤
(

F (n(0))1/(1+α) − εβα

1 + α
T

) 1
1+α

+

We can find T > 0 such that the left hand side of the above equation is 0 and hence making
F (n(T )) = 0.

We now show the only if direction of the Theorem. Suppose this result is not so i.e.

∃ a link j s.t.
∑

r:j∈r ρr ≥ Cj . Set W̃ such that, for our Markov chain (2.3), every time
a document arrives on a route r with j ∈ r an amount of work equal to the size of that
document is added to W̃ . Let work at W̃ be processed at constant rate C̃ = Cj . Hence

C̃ ≥
∑

r:j∈r Λr(Nr(t)) for all t and so in this coupling the amount of work W̃ is greater

than the amount of work on all routes associated with queue j. W̃ is the workload process
of a multi-class single server queue with different input flows for each r such that j ∈ r. It is
known that such a multi-class single server queues is positive recurrent iff

∑
r:j∈r

ρr
Cj

< 1.

But by assumption this is not, so the expected time for W̃ to reach zero is infinite. As the
expected time for this workload process to reach zero is infinite the same must be true for
our bandwidth model. Hence the Markov chain (2.3) is not positive recurrent and so we
have a contradiction.

�
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