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We consider a queueing model where documents are simultaneously transferred over a communication network. The bandwidth allocated to each document transfer is assumed to be the solution of a utility optimization problem. Under a natural stability condition and under the assumption that document arrivals are Poisson and that document sizes are independent exponential distributions, such queueing models have been proven to be positive recurrent. It has been conjectured for a decade that the assumption of exponentially distributed documents can be removed. There exist numerous generalizations without this exponential assumption, but a general proof remains elusive.

Introduction

In the Internet, documents are divided into a number a packets, which are then sent sequentially across the network from sender to receiver. The Internet could be unstable in two senses: the number of packets within the network could be diverge or the number of documents in transfer could be diverge.

Internet routers have a fixed buffer size, and so, the number of packets in flight, however large, is always finite. In this sense, the Internet is stable and the question of how to send packets across the Internet is more concerned with providing desirable transfer rates or bandwidth. This task, of finding good transfer rates, is implemented by a sender and receiver with the Transmission Control Protocol (TCP). At one conceptual level, TCP can be thought of as optimizing the aggregate utility of the bandwidth received by different document transfers on the Internet, [START_REF] Kelly | Rate control in communication networks: shadow prices, proportional fairness and stability[END_REF]. Given such a utility optimizing bandwidth allocation policy, can a network process all the document transfers in progress? More precisely, we will ask if a specific stochastic model of document transfer is positive Harris recurrent. Through out this paper, the term stable refers to the positive Harris recurrence of a Markov process and unstable refers to transience of a Markov process.

Suppose documents arrive on each route r at rate ν r and each of these documents has expected size μ -1 r . The amount of work arriving per unit time is then ρ r = νr μr . If the rate of work arriving at a network resource, j, is strictly above the resources capacity to process this work, C j , then certainly instability will arise. So, the condition that the rate of work arriving is less than capacity provides a natural necessary condition for stability r:j∈r ρ r < C j , j ∈ J .

(1.1)

Even so, with this condition is place, one could imagine a traffic regime where a network is unable to process a document transfer before a new transfer arrives. Such instability, for example, is known to occur in models of radio packets switch networks, see [START_REF] Aldous | Ultimate instability of exponential back-off protocol for acknowledgmentbased transmission control of random access communication channels[END_REF].

Given that users receive a bandwidth allocation that optimizes a utility function, is the condition (1.1) sufficient to guarantee stability of the Markov process describing the document transfers in progress? When documents arrive from independent Poisson process and documents sizes are independent exponentially distributed, then it has been shown that condition (1.1) is sufficient for stability, see [START_REF] Bertsekas | Impact of fairness on internet performance[END_REF]. Document sizes for Internet transfers are known to follow a heavy tailed distribution and thus the assumption that document transfers are exponentially distributed is not entirely satisfactory. In this article, we discuss the conjecture that condition (1.1) is sufficient for stability for general document size distributions.

If such a conjecture holds then this would suggest that congestion controllers provide a viable mechanism to provide the maximum level of stability. As we will review shortly, the resolution of this conjecture has spurred a great deal of interesting research literature; none the less, the conjecture remains open.

We now concentrate on describing the Markov chain model which we wish to study and reviewing the progress made by different authors. The conjecture which we discuss is presented in Section 2.4.

Model, conjecture and literature review

We now build the various components of our model of document transfer over a communication network. First, we define the structure of a communication network. Second, we define the utility optimizing bandwidth allocations that might be achieved by a congestion controller. We, then, define a stochastic model of document transfer when documents are exponentially distributed and then finally when documents are of a general size. Throughout this section, we introduce and discuss literature relevant to our conjecture. The conjecture itself is presented in Section 2.4.

Network structure

We let J index the set of resources of a communication network. With each resource j ∈ J , we associate a capacity C j > 0. A route through the network, r, is a (non-empty) set of resources. We let R ⊂ 2 J index the set of routes. We let n r give the number of document transfers in progress on route r. As a function of n = (n r : r ∈ R), route r document transfers are allocated an amount of bandwidth Λ r (n) ∈ R + . This bandwidth is then shared equally amongst all the transfers present on route r. In other words, within each route a processor sharing discipline is used. This important feature of our model will be discussed later. The bandwidth available to each route is constrained by the available capacity at each resource. So,

r:j∈r Λ r (n) ≤ C j , j ∈ J . (2.1)
We call any such function Λ(•) a bandwidth allocation policy. In a communication network, each document transfer receives a rate which may vary depending on the number of transfers present on each route. Here a bandwidth allocation policy is used in order to define this transfer rate.

Network utility maximization and fairness

Congestion control within the Internet is chiefly governed by the Transmission Control Protocol (TCP). It has been suggested that TCP implicitly attempts to maximize the utility of the transfer rate received by its users, see [START_REF] Kelly | Rate control in communication networks: shadow prices, proportional fairness and stability[END_REF]. With this in mind, with each route r ∈ R, we associate a utility function U r (•): a real valued increasing, strictly concave function of the bandwidth allocated to each route r user. A congestion controller then allocates bandwidth in order to optimize the following objective

maximize r∈R n r U r Λ r n r (2.2a) subject to r:j∈r Λ r ≤ C j , j ∈ J (2.2b) over Λ r ≥ 0, r ∈ R. (2.2c)
In addition, if n r = 0 we assume that Λ r (n) = 0. The solution to the above optimization represents the equilibrium rate of packet transfer in a communications network given the number of documents in transfer on each route. Over different values of n = (n r : r ∈ R) ∈ Z R + , the solutions to this optimization problem, Λ(n), define a bandwidth allocation policy achieved by a congestion control mechanism.

We think of a utility function U r (x r ) as summarizing an Internet connections benefit from receiving bandwidth x r . We then think of the optimization problem (2.2) as allocating the available bandwidth in order to maximize the total benefit its users. Because a bandwidth allocation policy may attempt to allocate some amount of bandwidth to all transfers, one often thinks of a bandwidth allocation being fair.

Literature on network utility maximization

In general, a bandwidth allocation policy need not be particularly fair. For example, it could attempt to maximize the total bandwidth within the network. This maximization leads to some transfers receiving zero bandwidth. As we shall see, this maximum throughout allocation can lead to bad stability properties. A bandwidth allocation can be very fair. For example, subject to network capacity constraints, one could attempt to maximize the transfer rate of the document with the smallest bandwidth and then maximize the second smallest and so forth... Such a policy would achieve max-min fairness.

In the context of communication networks, this was the first fairness criteria to be considered, see [START_REF] Bertsekas | Impact of fairness on internet performance[END_REF]. The utility optimization framework considered here was first introduced by [START_REF] Kelly | Charging and rate control for elastic traffic[END_REF], and in particular, proportional fairness where U r (x r ) = log(x r ) has proved a particularly tractable criteria for analysis.

A popular class of utility functions introduced by [START_REF] Mo | Fair end-to-end window-based congestion control[END_REF] are the set of weighted α-fair utility functions. For this class of utility functions U r takes the form

U r (x r ) = w r x 1-α r 1-α
for α > 0, w r log(x r ) for α = 1.

Here the class of utility functions are parameterized by weights w = (w r : r ∈ R) ∈ R + and fairness parameter α > 0.

The weighted α-fair class has proved popular as it contains a number of popular fairness criteria: proportional fairness (α = w r = 1); TCP fairness

(α = 2, w r = 1 T 2 r
), and also it converges to maximum throughput (α → 0, w r = 1) and max-min fairness (α → ∞, w r = 1). Although certainly other fairness criteria exist, the weighted α-fair family parameterizes the set of fairness criteria of interest. For this reason, weighted α-fairness often acts as a convenient starting point for results on fair bandwidth sharing.

Although it is not the central objective of this article, good introductions to the relationship between utility optimization and congestion control are the short article of [START_REF] Kelly | The mathematics of traffic in networks[END_REF] and the book by [START_REF] Srikant | Stability of data networks under an optimization-based bandwidth allocation[END_REF].
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A stochastic model with exponentially distributed document sizes

Until now, we discussed an equilibrium that might be achieved by packets in transfer across a communication network. We, now, define a model that incorporates the stochastic arrival and departure of documents and also allocates service with an allocation policy. We ask if this stochastic model has an equilibrium. This model can be thought of as a model of document transfer across the Internet. We introduce our stochastic model for a bandwidth allocation policy Λ(•). Documents to be transferred arrive as a Poisson process. Route r ∈ R documents arrive as an independent Poisson process of rate ν r > 0. Each document has a size that is independent exponentially distributed with mean μ -1 r . We, thus, define the traffic intensity of work arriving at route r by ρ r = νr μr . When there are n = (n r : r ∈ R) documents in transfer on each route, each route r documents is served at rate Λr(n) nr . Documents are then processed at this rate until the number of documents in transfer changes either by a document departure or arrival.

Here n = (n r : r ∈ R) the number of documents in transfer gives the state of a Markov chain with non-zero transition rates

q(n, n + e r ) = ν r , (2.3a) q(n, x -e r ) = μ r Λ r (n) if n r > 0. (2.3b)
This model Markov chain model was introduced by Massoulié and Roberts (1998). We now discuss the stability of this stochastic model.

An example of instability

We note here that seemingly sensible bandwidth allocation policies need not be stable. The following example is taken from [START_REF] Bertsekas | Impact of fairness on internet performance[END_REF]. Consider a network that consists of two resources, J = {A, B} each with capacity 1, and three routes: r 0 = {A, B}, r 1 = {A} and r 2 = {B}. This network is called a two-node linear network. This is because our network forms a line, r 0 , with two types of cross traffic, r 1 , r 2 .

Suppose, we use a policy that maximizes the total bandwidth allocated. In this case, it is preferred to allocate bandwidth to routes r 1 and r 2 over r 0 because route r 0 uses capacity at both resources A and B, whilst r 1 and r 2 only use one resource. So we use a bandwidth allocation policy that gives all available bandwidth to routes r 1 and r 2 whenever there is a document in transfer on either route. Only when there are no documents in transfer on
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(Λ r0 (n), Λ r1 (n), Λ r2 (n)) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
(0, 1, 1) if n r1 > 0 and n r2 > 0, (0, 1, 0) if n r1 > 0 and n r2 = 0, (0, 0, 1) if n r1 = 0 and n r2 > 0, (1, 0, 0) if n r0 > 0, n r1 = 0 and n r2 = 0, (0, 0, 0) if n r0 = 0, n r1 = 0 and n r2 = 0.

This policy maximizes the total amount of bandwidth allocated and therefore places the maximum amount of effort towards processing documents. But is this allocation policy stable under condition (1.1)? Unfortunately, it is not stable. Suppose the condition (1.1) holds. We note that route r 1 , and similarly r 2 , has priority over route r 0 and so route r 1 behaves as a single server queue with server capacity 1. Also, as they do not interact, one can see that the number of documents transfers on route r 2 is independent of route r 1 . So for routes 1 and 2, the stability condition (1.1) is sufficient for routes 1 and 2 to be positive recurrent. If we look at route r 0 , we notice that it can only process documents when both routes r 1 and r 2 have no documents in transfer. The long run proportion of time that this occurs is given by the stationary probability that no documents are in transfer on routes r 1 and r 2 , which is (1

-ρ 1 )(1 -ρ 2 ).
For the stability of class r 0 , the long run proportion of capacity devoted to r 0 documents must be strictly larger than the rate at which work arrives, and thus we derive the stability condition

ρ 0 < (1 -ρ 1 ) (1 -ρ 2 ) .
This condition more restrictive than the condition (1.1), and so, condition (1.1) is not sufficient for stability in this example.

Literature on stability with exponentially distributed documents

As we have mentioned the stochastic model considered above with exponentially distributed documents sizes is first considered by [START_REF] Massoulié | Bandwidth sharing and admission control for elastic traffic[END_REF]. [START_REF] Massoulié | Bandwidth sharing and admission control for elastic traffic[END_REF] prove that condition (1.1) is sufficient for stability for the proportionally fair allocation policy on a linear network. [START_REF] Massoulié | Bandwidth sharing and admission control for elastic traffic[END_REF] do this by explicitly calculating the stationary distribution of the proportionally fair model on this network topology.

Subsequently, De [START_REF] Veciana | Stability and performance analysis of networks supporting services with rate control -could the internet be unstable[END_REF] prove that (1.1) is sufficient for stability for both proportionally fair and max-min fair allocation policies under a general network topology. De [START_REF] Veciana | Stability and performance analysis of networks supporting services with rate control -could the internet be unstable[END_REF] proved stability by the construction of an appropriate Lyapunov function and then by applying Foster's Lemma.

The generalization of these results to the rest of the weighted α-fair family was proven by [START_REF] Bertsekas | Impact of fairness on internet performance[END_REF]. Once again, their arguments consisted of constructing an appropriate Lyapunov function. Instead of applying their Lyapunov function directly to their Markov processes, the Lyapunov
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dt = ν r -μ r Λ r (n), n r > 0, r ∈ R. (2.4)
Intuitively, this differential equation makes sense: it relates the rate that documents arrive and depart to changes in the number of documents present.

To derive (2.4), one must prove a 'fluid limit', a formal law of large numbers argument that proves the convergence of the Markov chain model (2.3) to a solution of the differential equation (2.4). For weighted α-fair allocation policies, this fluid limit result is proven in [START_REF] Kelly | Fluid model for a network operating under a fair bandwidthsharing policy[END_REF]. For general discussions on proving fluid limits, please see [START_REF] Darling | Fluid limits of pure jump markov processes: a practical guide[END_REF] and [START_REF] Darling | Differential equation approximations for markov chains[END_REF].

Given the fluid model (2.4) is related to the Markov process (2.3), the stability of the differential equation (2.4) may perhaps relate to the positive recurrent of the Markov process (2.3). A result, proven by Dai (1995a), shows that if any fluid limit model eventually reaches zero and stays there, regardless of the initial system configuration, then the underlying queueing process is positive Harris recurrent. Bonald and Massoulié prove stability of the associated fluid model with the Lyapunov function

F (n) := r∈R w r μ -1 r ρ -α r n 1+α r α + 1
To give some feeling as to how such Lyapunov functions are applied, we present and discuss the proof of [START_REF] Bertsekas | Impact of fairness on internet performance[END_REF] in the Appendix. The Lyapunov function of [START_REF] Bertsekas | Impact of fairness on internet performance[END_REF] was next generalized to apply to a general utility function by Ye (2003). Aside form a few technical conditions bounding derivatives, this result demonstrated that condition (1.1) was sufficient for network stability when utility functions where general and when documents had exponentially distributed sizes.

Finally, we note that there are some Markov chain generalizations beyond the model presented. Liu et al (2007) present and prove stability of a model where the capacity region (2.1) may be a non-convex and may vary in time. Also, in practice congestion controllers may take some time to converge to a utility optimizing bandwidth allocation. The paper [START_REF] Lin | Flow-level stability of data networks with non-convex and time-varying rate regions[END_REF] discusses and proves the stability when a utility optimizing bandwidth allocation is not achieved instantaneously.

A further note on fluid limits and positive recurrence

A key component of the proof of [START_REF] Bertsekas | Impact of fairness on internet performance[END_REF] was the stability result presented in Dai (1995a) and Dai (1995b). The work of Dai applies to queueing network where customers have general service requirements but the
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[06/09 10:34] SmallExtended , MathPhysSci , Numbered 7/15 result of Dai comes with the caveat that if a queueing model processes jobs in different classes/routes, the service discipline must be head-of-the-line, meaning that within each class documents are processed with a first-in-first-out service discipline. As we described in Section 2.1, service within a route is processor sharing not head-of-the-line. Due to the memoryless property, processor sharing and head-of-the-line service disciplines are equivalent when documents have an exponentially distributed size. So the results of Dai do apply to the case where documents are exponentially distributed, but unfortunately they do not directly apply to document sizes that are not exponentially distributed.

To deal with this issue new theory must be developed.

A stochastic model with generally distributed document sizes

The assumption of exponentially distributed document sizes is somewhat idealistic and so it is desirable to model the transfer of documents of a generally distributed size. The description of such a Markov process is a natural extension of our previous Markov chain model. Documents to be transferred arrive as a Poisson process. Route r ∈ R documents arrive as an independent Poisson processes of rate ν r > 0. Each document on route r has a size that is independent identically distributed according to some random variable X r . A route r document's distribution has support on (0, ∞) and has mean μ -1 r . Once again we define the traffic insensitivity of route r by ρ r = ν r /μ r . Between document arrival and departure events, on each route r, a document is processed linearly at rate Λr (n) nr . In order to give an Markov process description of our communication network, we must record the residual sizes of documents. That is, the amount of each document which remains to be transferred. Given that there are n r documents to be transfer on route r, for k = 1, ..., n r , we let y rk > 0 be the residual size of the k-th document in transfer on route r. We index elements y rk so that y r1 ≤ y r2 ≤ ... ≤ y rnr . The state of the documents in transfer on route r is then given by the vector y r = (y rk : k = 1, ..., n r ), and the state of the documents in transfer is given by y = (y r : r ∈ R).

The variable y rk decreases linearly at rate Λr (n) nr until a document departure or arrival occurs. I.e. given the Markov process takes state y 0 at time t 0

y r (t) = y 0 r -(t -t 0 ) Λ r (n 0 ) n 0 r , for t > t 0
while y r1 (t) > 0 (before a document departure) and while (tt 0 ) < min r {S r } (before a document arrival). Here each S r is an independent exponential random variable with parameter ν r . We let y(t -) give the state of our Markov process instantaneously before time t. If a document departure occurs at time t, that is y r1 (t -) = 0 and (tt 0 ) < min r {S r } then n r (t) is updated to equal n r (t -) -1 and y r (t) is updated so that y(t) = (y rk (t -) : k = 2, ..., n r ).

The random variables S r represent the Poisson arrival of documents. If a document arrival occurs on route r i.e. t-t 0 = S r = min r S r and y r1 (t) > 0 for all r ∈ R, then a independent random variable X r is drawn according to the distribution of route r documents. This gives the size of the arriving document. Accordingly n r (t) is updated to equal n r (t -) -1 and y r (t) is updated to give

y r (t) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (X r , y r1 (t -), ..., y rnr (t -))
for X r ≤ y r1 (t -) (y r1 (t -), ..., y rk (t -), X r , y rk+1 (t -), ..., y rnr (t -))

for y rk (t -) ≤ X r ≤ y rk+1 (t -), (y r1 (t -), ..., y rnr (t -), X r ) for y rnr (t -) ≤ X r .

A new exponential parameter ν r random variable S r is then drawn to replace S r . The process we describe here is a piecewise linear cádlág Markov processes. We could also describe the state of each route y r as a measure with a Dirac mass at y rk , this measure valued description is used by [START_REF] Gromoll | Fluid limits for networks with bandwidth sharing and general document size distributions[END_REF] and [START_REF] Bramson | Network stability under max-min fair bandwidth sharing[END_REF].

Remark 1 We remark that this model could be generalized so that inter-arrival times are independent identically distributed rather than exponentially distributed. Residual inter-arrival time could then be incorporated to give a Markov state description. We do not include this extension, firstly, because a Poisson process is justifiable arrival process, it is the aggregation of a large number of rare events, and secondly, because allowing general document sizes is our primary modeling objective.

We are interested to know when our Markov process has a stationary distribution. We cannot use the theory of countable state space Markov chains and so, in this setting, a slightly different notion of recurrence and positive recurrence is used. In particular, the corresponding notions of recurrence and positive recurrence are Harris recurrence and positive Harris recurrence. We will shortly give pointers to precise definitions and literature on this topic, but first we state our conjecture.

The principle conjecture of interest is the following Conjecture 1 The Markov process described above: a bandwidth sharing network operating under a bandwidth allocation which optimizes (2.2) and with general document sizes, is positive Harris recurrent under the condition This conjecture is widely expected to hold for weighted α-fair utility functions. Like the result of Ye ( 2003), for general utility functions, some additional restrictions may be required.

r:j∈r ρ r < C j , j ∈ J .

Discussion on positive Harris recurrence and queueing

The theory of Harris recurrence was firstly developed by its namesake [START_REF] Harris | The existence of stationary measures for certain Markov processes[END_REF]. A processes is said to be Harris recurrent, if there exists a σ-finite measure, φ, defined on the state space of our Markov process, S, such that

φ(A) > 0 implies P y (τ A < ∞), x ∈ S,
where P y is the law of our Markov process started at y, A is a Borel measurable subset of our Markov process's state space, τ A is the hitting time of the Markov process on set A.

Like in the countable state space theory, it has been shown that Harris recurrence is sufficient for a Markov process to have a stationary measure, see [START_REF] Getoor | Transience and recurrence of Markov processes[END_REF]. If this measure is a finite measure then a stationary distribution exists and our process is said to be positive Harris recurrent.

A crucial role in proving Positive Harris recurrence is the existence of a petite set. In words, a petite set is a set of states from which there is some measure determined lower bound on the probability of reaching any other set of states. The existence of a petite set that has finite expected hitting time after leaving itself is equivalent to a Markov process being positive Harris recurrent. Thus to prove positive Harris recurrence, one must find a petite set and prove its expected return time is finite. An excellent account of this approach for discrete time Markov processes is given by Meyn and Tweedie (1993b). A continuous time treatment is given by the same authors in the papers Meyn and Tweedie (1993a,c,d).

So, in the context of our queueing applications and in the approach of Dai (1995a,b), one needs to characterize a petite set and then show it has a finite expected return time. To characterize a petite set some technical assumptions must be made on document inter-arrival times. These assumption are presented in [START_REF] Meyn | Stability of generalized Jackson networks[END_REF] and further in (Bramson, 2008, Section 4.2). These assumptions are satisfied for an independent Poisson arrival process. To prove that expected return times are finite one can apply Foster's Lemma. Proposition 4.6 of [START_REF] Bramson | Stability of queueing networks[END_REF] presents a form of Foster's Lemma, the multiplicative Foster's Criterion. This version of Foster's Lemma is used to execute the stability proof in Dai (1995a,b). The book of [START_REF] Bramson | Stability of queueing networks[END_REF] provides a superb account of the theory relevant to proving the stability of queueing networks and should be the first place to start on this topic.

Literature on stability with generally distributed documents

For general document sizes, initial results on the stability of utility optimizing bandwidth allocations were proven by [START_REF] Bonald | Insensitive bandwidth sharing in data networks[END_REF]. Bonald and Proutière ( 2003) studied the behavior of insensitive bandwidth allocations. [START_REF] Bonald | Insensitive bandwidth sharing in data networks[END_REF] showed that the proportionally fair allocation policy coincided with an insensitive policy for line, grid and hypercube network topologies. They thus proved that (1.1) gave stability for the proportionally fair policy with phase-type document sizes for these specific networks. For lines and the special case of a 2 × 2 grid, this result is also observed by [START_REF] Lakshmikantha | On the use of sos methods for analysis of connection-level stability in the internet[END_REF].

By further developing the link between proportional fairness and insensitivity, [START_REF] Massoulié | Structural properties of proportional fairness: Stability and insensitivity[END_REF] proves stability of proportionally fair bandwidth allocation policies with the assumption that documents sizes are from phase-type. [START_REF] Massoulié | Structural properties of proportional fairness: Stability and insensitivity[END_REF] proves results for any network topology.

Under a relatively mild second moment condition, [START_REF] Bramson | Network stability under max-min fair bandwidth sharing[END_REF] proves stability for networks operating under a max-min fair allocations policy with generally distributed document sizes.

With the aim of establishing a fluid limit proof of stability, as given by Dai (1995a) for head-of-the-line disciplines, a number of authors have established fluid limits for bandwidth sharing networks with general document sizes. In particular, [START_REF] Chiang | Stochastic stability under network utility maximization: General file size distribution[END_REF] prove fluid limit results for weighted α-fair bandwidth allocations with α sufficiently close to zero. [START_REF] Chiang | Stochastic stability under network utility maximization: General file size distribution[END_REF] use this result to place probabilistic bounds on their queueing network's state. Similarly, [START_REF] Gromoll | Fluid limits for networks with bandwidth sharing and general document size distributions[END_REF] provide a formal fluid limit argument for bandwidth networks with general document sizes. [START_REF] Gromoll | Fluid model for a data network with alpha-fair bandwidth sharing and general document size distributions: two examples of stability. Markov Processes and Related Topics: A Festschrift for Thomas[END_REF] show fluid limit stability for tree network and line network topologies. Further, a fluid model of weighted α-fair bandwidth sharing is stated in the paper [START_REF] Paganini | Stability of networks under general file size distribution with alpha fair rate allocation[END_REF]. Here the authors prove stability of their partial differential equation model. As it stands there is no proof that fluid model stability implies positive Harris recurrence and so theory must be developed so that these papers imply stability of the underlying Markov process.

A Appendix: Fluid limit and Stability

The paper [START_REF] Bertsekas | Impact of fairness on internet performance[END_REF] considers the Markov chain (2.3) for a weight αfair bandwidth allocations. The paper proves that a necessary and sufficient condition for positive recurrence of the Markov chain is that r:j∈r ρr < C j for each j ∈ J . We will state one result needed for the proof, introduce some notation, and then give their proof.

Theorem 1 (Dai (1995a)) If any fluid model n satisfying (2.4) is such that ∃ T > 0 s.t. ∀ t > T, n(t) = 0 then the Markov chain (2.3) is positive recurrent.

Consider the objective function of the weighted α-fair optimization problem

Gn(Λ) = ⎧ ⎨ ⎩ r∈R wrnr 1 1-α Λr (n) nr 1-α , for α = 1, r∈R wrnr log Λr, for α = 1.
From Gn(Λ), we can heuristically construct a Lyapunov function. Assuming the condition (1.1), the weighted α-fair bandwidth allocation Λ(n) and traffic intensity ρ both satisfy the networks capacity constraints. Because Λ(n) is optimal, Gn(Λ(n)) > Gn(ρ). 

G n(t) (Λ(n(t))) -G n(t) (ρ) dt = T 0 (Λ(n(t)) -ρ) • ∇G n(t) (ρ) + o(|Λ(n(t)) -ρ|)dt = - T 0 r (ρr -Λr(n(t)))wr nr(t) ρr α dt + o T 0 |Λ(n(t)) -ρ|dt = - T 0 1 μr dnr(t) dt wr nr(t) ρr α dt + o T 0 |Λ(n(t)) -ρ|dt = F (n(0)) -F (n(t)) + o T 0 |Λ(n(t)) -ρ|dt ,
where we define the non-negative function

F (n) := r∈I wrμ -1 r ρ -α r n 1+α r α + 1 . Thus F (n(t)) = F (n(0)) - T 0 G n(t) (Λ(n(t))) -G n(t) (ρ) dt + o T 0 |Λ(n(t)) -ρ|dt .
F (n) determines the cumulative benefit of Λ(n) out performing ρ. If the network is stable, in the long run Λ(n) is approximately ρ. So, the little o term above should have a small effect on the evolution of F (n(t)). Now we can give the theorem:

Theorem 2 (Bonald and Massoulié ( 2001)) . The Markov chain given by (2.3) is positive recurrent iff r:j∈r ρr < C j for each j ∈ J

Proof

We first prove the if direction of the result. As we observed above dF (n(t)) dt = ∇Gn(ρ) • (ρ -Λ(n(t))) , Gn(Λ(n)) ≥ Gn(u), for any u ∈ R R + satisfy the networks capacity constraints r:j∈r ur ≤ C j . Thus, the partial derivate of the convex function Gn(•) in the direction Λ(n)u is positive, i.e. ∇Gn(u) • (Λ(n(t))u) ≥ 0.

In particular, we take u = (ρr(1 + ) : r ∈ R) where > 0 is sufficiently small so u satisfies the network capacity constraints. and n 2 := (F (n)) 1/α+1 both define norms on R R .

Since all finite dimensional norms are equivalent there is a constant β s.t. n 1 ≥ β n 2 and so we have dF (n) dt ≤β α F (n(t)) α/(α+1) . (A.1)

If F (n(t)) = 0 then (A.1) implies that dF (n(t)) dt = 0 and so F (n(t )) = 0 ∀ t > t and hence n(t ) = 0 ∀ t > t. Hence all we need now is to check that F (n(T )) = 0 for some T ≥ 0. Integrating (A.1) yields, F (n(T )) 

+

We can find T > 0 such that the left hand side of the above equation is 0 and hence making F (n(T )) = 0.

We now show the only if direction of the Theorem. Suppose this result is not so i.e. ∃ a link j s.t.

r:j∈r ρr ≥ C j . Set W such that, for our Markov chain (2.3), every time a document arrives on a route r with j ∈ r an amount of work equal to the size of that document is added to W . Let work at W be processed at constant rate C = C j . Hence C ≥ r:j∈r Λr(Nr(t)) for all t and so in this coupling the amount of work W is greater than the amount of work on all routes associated with queue j. W is the workload process of a multi-class single server queue with different input flows for each r such that j ∈ r. It is known that such a multi-class single server queues is positive recurrent iff r:j∈r ρr C j < 1.

But by assumption this is not, so the expected time for W to reach zero is infinite. As the expected time for this workload process to reach zero is infinite the same must be true for our bandwidth model. Hence the Markov chain (2.3) is not positive recurrent and so we have a contradiction.

  Λr) = ∇Gn(ρ) • (Λ(n(t))ρ) = dF (

  In this sense, processing rate Λ(n) is out performing the work arrival rate ρ. We now ask what the long run effect of this is. By applying a Taylor expansion
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