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Regularization plays a pivotal role when facing the challenge of solving ill-posed inverse problems, where
the number of observations is smaller than the ambient dimension of the object to be estimated. A line
of recent work has studied regularization models with various types of low-dimensional structures. In
such settings, the general approach is to solve a regularized optimization problem, which combines a
data fidelity term and some regularization penalty that promotes the assumed low-dimensional/simple
structure. This paper provides a general framework to capture this low-dimensional structure through what
we coin partly smooth functions relative to a linear manifold. These are convex, non-negative, closed
and finite-valued functions that will promote objects living on low-dimensional subspaces. This class
of regularizers encompasses many popular examples such as the `1 norm, `1− `2 norm (group sparsity),
as well as several others including the `∞ norm. We also show that the set of partly smooth functions
relative to a linear manifold is closed under addition and pre-composition by a linear operator, which
allows to cover mixed regularization, and the so-called analysis-type priors (e.g. total variation, fused
Lasso, finite-valued polyhedral gauges). Our main result presents a unified sharp analysis of exact and
robust recovery of the low-dimensional subspace model associated to the object to recover from partial
measurements. This analysis is illustrated on a number of special and previously studied cases, and on an
analysis of the performance of `∞ regularization in a compressed sensing scenario.

Keywords: Convex regularization, Inverse problems, Model selection, Partial smoothness, Compressed
Sensing, Sparsity, Total variation.
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1. Introduction

1.1 Regularization of Linear Inverse Problems

Inverse problems are encountered in various areas throughout science and engineering. The goal is to
provably recover the structure underlying an object x0 ∈ RN , either exactly or to a good approximation,
from the partial measurements

y = Φx0 +w, (1.1)

where y ∈ RQ is the vector of observations, w ∈ RQ stands for the noise, and Φ ∈ RQ×N is a linear
operator which maps the N-dimensional signal domain onto the Q-dimensional observation domain. The
operator Φ is in general ill-conditioned or singular, so that solving for an accurate approximation of x0
from (1.1) is ill-posed.

The situation however changes if one imposes some prior knowledge on the underlying object x0,
which makes the search for solutions to (1.1) feasible. This can be achieved via regularization which
plays a fundamental role in bringing back ill-posed inverse problems to the land of well-posedness. We
here consider solutions to the regularized optimization problem

x? ∈ Argmin
x∈RN

1
2
||y−Φx||2 +λJ(x), (Pλ (y))

where the first term translates the fidelity of the forward model to the observations, and J is the regular-
ization term intended to promote solutions conforming to some notion of simplicity/low-dimensional
structure, that is made precise later. The regularization parameter λ > 0 is adapted to balance between
the allowed fraction of noise level and regularity as dictated by the prior on x0. Before proceeding with
the rest, it is worth mentioning that although we focus our analysis on the penalized form (Pλ (y)), our
results can be extended with minor adaptations to the constrained formulation, i.e. the one where the data
fidelity is put as a constraint. Note also that though we focus our attention on quadratic data fidelity for
simplicity, our analysis carries over to more general fidelity terms of the form F ◦Φ , for F smooth and
strongly convex.

When there is no noise in the observations, i.e. w = 0 in (1.1), the equality-constrained minimization
problem should be solved

x? ∈ Argmin
x∈RN

J(x) subject to Φx = y. (P0(y))

In this paper, we consider the general case where the function J is convex, non-negative and finite-
valued, hence everywhere continuous with a full domain. This class of regularizers J include many
well-studied ones in the literature. Among them, one can think of the `1 norm used to enforce sparse
solutions [39], the discrete total variation semi-norm [36], the `1− `2 norm to induce block/group
sparsity [46], or finite polyhedral gauges [43].

Assuming furthermore that J enjoys a partial smoothness property (to be defined shortly) relative to a
model subspace associated to x0, our goal in this paper is to provide a unified analysis of exact and robust
recovery guarantees of that subspace by solving (Pλ (y)) from the partial measurements in (1.1). As a
by-product, this will also entail a control on the `2-recovery error.

1.2 Contributions

Our main contributions are as follows.
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1.2.1 Subdifferential Decomposability of Convex Functions. Building upon Definition 1, which
introduces the model subspace Tx at x, we provide an equivalent description of the subdifferential of a
finite-valued convex function at x in Theorem 1. Such a description isolates and highlights a key property
of a regularizer, namely decomposability. In turn, this property allows to rewrite the first-order minimality
conditions of (Pλ (y)) and (P0(y)) in a convenient and compact way, and this lays the foundations of
our subsequent developments.

1.2.2 Uniqueness. In Theorem 2, we state a sharp sufficient condition, dubbed the Strong Null Space
Property, to ensure that the solution of (Pλ (y)) or (P0(y)) is unique. In Corollary 1, we provide a
weaker sufficient condition, stated in terms of a dual vector, the existence of which certifies uniqueness.
Putting together Theorem 1 and Corollary 1, Theorem 3 states the sufficient uniqueness condition in
terms of a specific dual certificate built from (Pλ (y)) and (P0(y)).

1.2.3 Partly Smooth Functions Relative to a Linear Manifold. In the quest for establishing robust
recovery of the subspace model Tx0 , we first need to quantify the stability of the subdifferential of the
regularizer J to local perturbations of its argument. Thus, to handle such a change of geometry, we
introduce the notion of partly smooth function relative to a linear manifold.

We show in particular that two important operations preserve partial smoothness relative to a linear
manifold. In Proposition 7 and Proposition 9, we show that partial smoothness relative to a linear
manifold is preserved under addition and pre-composition by a linear operator. Consequently, more
intricate regularizers can be built starting from simple functions, e.g. `1-norm, which are known to be
partly smooth relative to a linear manifold (see the review given in Section 6).

1.2.4 Exact and Robust Subspace Recovery. This is the core contribution of the paper. Assuming the
function is partly smooth relative to a linear manifold, we show in Theorem 6 that under a generalization
of the irrepresentable condition [17], and with the proviso that the noise level is bounded and the
minimal signal-to-noise ratio is high enough, there exists a whole range of the parameter λ for which
problem (Pλ (y)) has a unique solution x? living in the same subspace as x0. In turn, this yields a control
on `2-recovery error within a factor of the noise level, i.e. ||x?− x0||= O(||w||). In the noiseless case, the
irrepresentable condition implies that x0 is exactly identified by solving (P0(y)).

1.2.5 Compressed Sensing Regularization with `∞ Norm. To illustrate the usefulness of our findings,
we apply this model identification result to the case of the `∞ norm in Section 7. While there exists
previous works on the stable `2 recovery with `∞ regularization form random measurements, it is the
first result to assess the recovery of the anti-sparse model associated to the data to recover, which is an
important additional information. Our result shows that stability of the model operates at a different
regime than `2 recovery in term of scaling between the number of measurements and the anti-sparsity
level. This somehow contrasts with classical results in sparse recovery where it is known that they hold
at similar level (up to logarithmic terms), see Section 1.3.4.

1.3 Related Work

1.3.1 Decomposability. In [9], the authors introduced a notion of decomposable norms. In fact,
we show that their regularizers are a subclass of ours that corresponds to strong decomposability in
the sense of the Definition 4, beside symmetry since norms are symmetric gauges. Moreover, their
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definition involves two conditions, the second of which turns out to be an intrinsic property implied by
polarity rather than an assumption; see the discussion after Proposition 5. Typical examples of (strongly)
decomposable norms are the `1, `1− `2 and nuclear norms. However, strong decomposability excludes
many important cases. One can think of analysis-type semi-norms since strong decomposability is not
preserved under pre-composition by a linear operator, or the `∞ norm among many others. The analysis
provided in [9] deals only with identifiability in the noiseless case. Their work was extended in [31]
when J is the sum of decomposable norms.

1.3.2 Convergence rates. In the inverse problems literature, a convergence (stability) rates have been
derived in [7] with respect to the Bregman divergence for general convex regularizations J. The author
in [18] established a stability result for general sublinear functions J. The stability is however measured
in terms of J, and `2-stability can only be obtained if J is coercive, which, again, excludes a large class
of functions. In [16], a `2-stability result for decomposable norms (in the sense of [9]) precomposed by
a linear operator is proved. However, none of these works deals with exact and robust recovery of the
subspace model underlying x0.

1.3.3 Model selection. There is large body of previous works on the problem of the model selection
properties (sometimes referred to as model consistency) of low-complexity regularizers. These previous
works are targeting specific regularizers, most notably sparsity, group sparsity and low rank. We thus
refer to Section 6 for a discussion of these relevant previous works. A distinctive feature of our analysis
is that it is generic, so it covers all these special cases, and many more. Note however that is does not
cover the nuclear norm, because its associated manifolds are not linear (they are indeed composed of
algebraic manifolds of low rank matrices). We have recently proposed an extension of our results to
this more general non-linear case in [42]. Note however that this new analysis uses a different proof
technique, and is not able to provide explicit values for the constant involved in the robustness to noise.

1.3.4 Compressed sensing. Arguments based on the Gaussian width were used in [10] to provide sharp
estimates of the number of generic measurements required for exact and `2-stable recovery of atomic set
models from random partial information by solving a constrained form of (Pλ (y)) regularized by an
atomic norm. The atomic norm framework was then exploited in [33] in the particular case of the group
Lasso and union of subspace models. This was further generalized in [1] who developed for the noiseless
case reliable predictions about the quantitative aspects of the phase transition in regularized linear inverse
problems with random measurements. The location and width of the transition are controlled by the
statistical dimension of a cone associated with the regularizer and the unknown. All this work is however
restricted to a random (compressed sensing) scenario.

A notion of decomposability closely related to that of [9], but different, was first proposed in [29].
There, the authors study `2-stability for this class of decomposable norms with a general sufficiently
smooth data fidelity. This work however only handles norms, and their stability results require however
stronger assumptions than ours (typically a restricted strong convexity which becomes a type of restricted
eigenvalue property for linear regression with quadratic data fidelity).

1.4 Paper Organization

The outline of the paper is the following. Section 2 fully characterizes the canonical decomposition of
the subdifferential of a convex function with respect to the subspace model at x. Sufficient conditions
ensuring uniqueness of the minimizers to (Pλ (y)) and (P0(y)) are provided in Section 3. In Section 4,
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we introduce the notion of a partly smooth function relative to a linear manifold and show that this property
is preserved under addition and pre-composition by a linear operator. Section 5 is dedicated to our main
result, namely theoretical guarantees for exact subspace recovery in presence of noise, and identifiability
in the noiseless case. Section 6 exemplifies our results on several previously studied priors, and a detailed
discussion on the relation with respect to relevant previous work is provided. Section 7 delivers a
bound for the sampling complexity to guarantee exact recovery of the model subspace of antisparsity
minimization from noisy Gaussian measurements. Some conclusions and possible perspectives of this
work are drawn in Section 8. The proofs of our results are collected in the appendix.

1.5 Notations and Elements from Convex Analysis

In the following, if T is a vector space, PT denotes the orthogonal projector on T , and

xT = PT x and ΦT = Φ PT .

For a subset I of {1, . . . ,N}, we denote by Ic its complement, |I| its cardinality. x(I) is the subvector
whose entries are those of x restricted to the indices in I, and Φ(I) the submatrix whose columns are
those of Φ indexed by I. For any matrix A, A∗ denotes its adjoint matrix and A+ its Moore–Penrose
pseudo-inverse. We denote the right-completion of the real line by R= R∪{+∞}.

A real-valued function f : RN → R is coercive, if lim||x||→+∞ f (x) = +∞. The effective domain of f
is defined by dom f =

{
x ∈ RN : f (x)<+∞

}
and f is proper if dom f 6= /0. We say that a real-valued

function f is lower semi-continuous (lsc) if liminfz→x f (z)> f (x). A function is said sublinear if it is
convex and positively homogeneous.

Let the kernel of a function be denoted Ker f =
{

x ∈ RN : f (x) = 0
}

. Ker f is a cone when f is
positively homogeneous.

We now provide some elements from convex analysis that are necessary throughout this paper. A
comprehensive account can be found in [34, 20].

1.5.1 Sets. For a non-empty set C ⊂ RN , we denote co(C) the closure of its convex hull. Its affine
hull affC is the smallest affine manifold containing it, i.e.

affC =

{
k

∑
i=1

ρixi : k > 0,ρi ∈ R,xi ∈C,
k

∑
i=1

ρi = 1

}
.

It is included in the linear hull spanC which is the smallest subspace containing C.
The interior of C is denoted intC. The relative interior riC of a convex set C is the interior of C for

the topology relative to its affine full.
Let C be a non-empty convex set. The set C◦ given by

C◦ =
{

v ∈ RN : 〈v, x〉6 1 for all x ∈C
}

is called the polar of C. C◦ is a closed convex set containing the origin. When the set C is also closed
and contains the origin, then it coincides with its bipolar, i.e. C◦◦ =C.

1.5.2 Functions. Let C a nonempty convex subset of RN . The indicator function ιC of C is

ιC(x) =

{
0, if x ∈C ,

+∞, otherwise.
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The Legendre-Fenchel conjugate of a proper, lsc and convex function f is

f ∗(u) = sup
x∈dom f

〈u, x〉− f (x) ,

where f ∗ is proper, lsc and convex, and f ∗∗ = f . For instance, the conjugate of the indicator function ιC
is the support function of C

σC(u) = sup
x∈C
〈u, x〉 .

σC is sublinear, is non-negative if 0 ∈C, and is finite everywhere if, and only if, C is a bounded set.
Let f and g be two functions proper closed convex functions from RN to R. Their infimal convolution

is the function
( f

+
∨ g)(x) = inf

x1+x2=x
f (x1)+g(x2) = inf

z∈RN
f (z)+g(x− z) .

Let C ⊆ RN be a non-empty closed convex set containing the origin. The gauge of C is the function
γC defined on RN by

γC(x) = inf{λ > 0 : x ∈ λC} .
As usual, γC(x) = +∞ if the infimum is not attained. γC is a non-negative, lsc and sublinear function. It is
moreover finite everywhere, hence continuous, if, and only if, C has the origin as an interior point, see
Lemma 4 for details.

The subdifferential ∂ f (x) of a convex function f at x is the set

∂ f (x) =
{

u ∈ RN : f (x′)> f (x)+ 〈u, x′− x〉, ∀x′ ∈ dom f
}
.

An element of ∂ f (x) is a subgradient. If the convex function f is Gâteaux-differentiable at x, then its
only subgradient is its gradient, i.e. ∂ f (x) = {∇ f (x)}.

The directional derivative f ′(x,δ ) of a lsc function f at the point x ∈ dom f in the direction δ ∈ RN

is

f ′(x,δ ) = lim
t↓0

f (x+ tδ )− f (x)
t

.

When f is convex, then the function δ 7→ f ′(x, ·) exists and is sublinear. When f has also full domain,
then for any x ∈ RN , ∂ f (x) is a non-empty compact convex set of RN whose support function is f ′(x, ·),
i.e.

f ′(x,δ ) = σ∂ f (x)(δ ) = sup
η∈∂ f (x)

〈η , δ 〉.

We also recall the fundamental first-order minimality condition of a convex function: x? is the global
minimizer of a convex function f if, and only if, 0 ∈ ∂ f (x).

1.5.3 Operator norm. Let J1 and J2 be two finite-valued gauges defined on two vector spaces V1 and
V2, and A : V1→V2 a linear map. The operator bound |||A|||J1→J2

of A between J1 and J2 is given by

|||A|||J1→J2
= sup

J1(x)61
J2(Ax).

Note that |||A|||J1→J2
< +∞ if, and only if AKer(J1) ⊆ Ker(J2). In particular, if J1 is coercive (i.e.

KerJ1 = {0} from Lemma 4(iv)), then |||A|||J1→J2
is finite. As a convention, |||A|||J1→||·||p is denoted as

|||A|||J1→`p . An easy consequence of this definition is the fact that for every x ∈V1,

J2(Ax)6 |||A|||J1→J2
J1(x).
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2. Model Subspace and Decomposability

The purpose of this section is to introduce one of the main concepts used throughout this paper, namely
the model subspace associated to a convex function. The main result, Theorem 1, proves that the
subdifferential of any convex function exhibits a decomposability property with respect to this subspace.

2.1 Model Subspace Associated to a Convex Function

Let J our regularizer, i.e. a finite-valued convex function.

DEFINITION 1 (Model Subspace) For any vector x ∈ RN , denote S̄x the affine hull of the subdifferential
of J at x

S̄x = aff∂J(x),

and ex the orthogonal projection of 0 onto S̄x

ex = argmin
e∈S̄x

||e||.

Let
Sx = S̄x− ex = span(∂J(x)) and Tx = S⊥x .

Tx is coined the model subspace of x associated to J.

When J is Gâteaux-differentiable at x, i.e. ∂J(x) = {∇J(x)}, ex = ∇J(x) and Tx = RN . Note that the
decomposition of RN as a sum of the two orthogonal subspaces Tx and Sx is also the core idea underlying
the U −V -decomposition/theory developed in [22].

We start by summarizing some key properties of the objects ex and Tx.

PROPOSITION 1 For any x ∈ RN , one has

(i) ex ∈ Tx∩ S̄x.

(ii) S̄x =
{

η ∈ RN : ηTx = ex
}

.

In general ex 6∈ ∂J(x), which is the situation displayed on Figure 1.

0

Sx

S̄x

@J(x)

ex

x

Tx

FIG. 1: Illustration of the geometrical elements (Sx,Tx,ex).

From this section until Section 4, we use the `1-`2 and the `∞ norms as illustrative examples. A more
comprehensive treatment is provided in Section 6 which is completely devoted to examples.
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EXAMPLE 1 (`1-`2 norm) We consider a uniform disjoint partition B of {1, · · · ,N},

{1, . . . ,N}=
⋃

b∈B
b, b∩b′ = /0, ∀b 6= b′ .

The `1− `2 norm of x is
J(x) = ||x||B = ∑

b∈B
||xb||.

The subdifferential of J at x ∈ RN is

∂J(x) =
{

η ∈ RN : ∀b ∈ I, ηb =
xb

||xb||
and ∀b 6∈ I, ||ηb||6 1

}
,

where I = {b ∈B : xb 6= 0}. Thus, the affine hull of ∂J(x) reads

S̄x =

{
η ∈ RN : ∀b ∈ I, ηb =

xb

||xb||

}
.

Hence the projection of 0 onto S̄x is
ex = (N (xb))b∈B

where N (a) = a/||a|| if a 6= 0, and N (0) = 0 and

Sx = S̄x− ex =
{

η ∈ RN : ∀b ∈ I, ηb = 0
}
,

and
Tx = S⊥x =

{
η ∈ RN : ∀b 6∈ I, ηb = 0

}
.

EXAMPLE 2 (`∞ norm) The `∞ norm is J(x) = ||x||∞ = max
16i6N

|xi|. For x = 0, ∂J(x) is the unit `1 ball,

hence S̄x = Sx = RN , Tx = {0} and ex = 0. For x 6= 0, we have

∂J(x) = {η : ∀ i ∈ Ic, ηi = 0, 〈η , s〉= 1, ηisi > 0 ∀ i ∈ I} .

where I = {i ∈ {1, . . . ,N} : |xi|= ||x||∞}, si = sign(xi) if i ∈ I with sign(0) = 0, and si = 0 if i ∈ Ic. It is
clear that S̄x is the affine hull of an |I|-dimensional face of the unit `1 ball exposed by the sign subvector
s(I). Thus ex is the barycenter of that face, i.e.

ex = s/|I| and Sx =
{

η : η(Ic) = 0 and 〈η(I), s(I)〉= 0
}
.

In turn
Tx = S⊥x =

{
α : α(I) = ρs(I) for ρ ∈ R

}
.

2.2 Decomposability Property

2.2.1 The subdifferential gauge and its polar. Before providing an equivalent description of the
subdifferential of J at x in terms of the geometrical objects ex, Tx and Sx, we introduce a gauge that plays
a prominent role in this description.
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DEFINITION 2 (Subdifferential Gauge) Let J be a convex function. Let x ∈ RN \{0} and fx ∈ ri∂J(x).
The subdifferential gauge associated to fx is the gauge Jx,◦

fx = γ∂J(x)− fx .

Since ∂J(x)− fx is a closed (in fact compact) convex set containing the origin, it is uniquely charac-
terized by the subdifferential gauge Jx,◦

fx (see Lemma 4(i)).

The following proposition states the main properties of the gauge Jx,◦
fx .

PROPOSITION 2 The subdifferential gauge Jx,◦
fx is such that domJx,◦

fx = Sx, and is coercive on Sx.

We now turn to the gauge polar to the subdifferential gauge Jx
fx = (Jx,◦

fx )
◦, where the last equality is a

consequence of Lemma 5(i). Jx
fx comes into play in several results in the rest of the paper. The following

proposition summarizes its most important properties.

PROPOSITION 3 The gauge Jx
fx is such that

(i) Its has a full domain.

(ii) Jx
fx(d) = Jx

fx(dS) = supJx,◦
fx (ηSx )61〈ηSx , d〉.

(iii) KerJx
fx = Tx and Jx

fx is coercive on Sx.

Let’s derive the subdifferential gauge on the illustrative example of the `∞ norm. The case of `1− `2

norm is detailed in Section 2.3.

EXAMPLE 3 (`∞ norm) Recall from Section 2.1 that for J = || · ||∞, fx = ex = s/|I|, with s(I) = sign(x(I)),
and s(Ic) = 0. Let Kx = ∂J(x)− ex. It can be straightforwardly shown that in this case,

Kx =
{

v : ∀(i, j) ∈ I× Ic, v j = 0, 〈v(I), s(I)〉= 0,−|I|visi 6 1
}
.

This is rewritten as
Kx = Sx∩{v : ∀ i ∈ I,−|I|visi 6 1}︸ ︷︷ ︸

=K ′
x

.

Thus the subdifferential gauge reads

Jx,◦
fx (η) = γKx(η) = max(γSx(η),γK ′

x
(η)).

We have γSx(η) = ιSx(η) and γK ′
x
(η) = max

i∈I
(−|I|siηi)+, where (·)+ is the positive part, hence we obtain

Jx,◦
fx (η) =

{
max
i∈I

(−|I|siηi)+ if η ∈ Sx

+∞ otherwise.

Therefore the subdifferential of || · ||∞ at x takes the form

∂J(x) =
{

η ∈ RN : ηTx = ex =
s
|I|

and max
i∈I

(−|I|siηi)+ 6 1
}
.
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2.2.2 Decomposability of the subdifferential. Piecing together the above ingredients yields a funda-
mental pointwise decomposition of the subdifferential of the regularizer J. This decomposability property
is at the heart of our results in the rest of the paper.

THEOREM 1 (Decomposability) Let J be a convex function. Let x ∈ RN \{0} and fx ∈ ri∂J(x). Then
the subdifferential of J at x reads

∂J(x) =
{

η ∈ RN : ηTx = ex and Jx,◦
fx (PSx(η− fx))6 1

}
.

2.2.3 First-order minimality condition. Capitalizing on Theorem 1, we are now able to deduce a
convenient necessary and sufficient first-order (global) minimality condition of (Pλ (y)) and (P0(y)).

PROPOSITION 4 Let x ∈ RN , and denote for short T = Tx and S = Sx. The two following propositions
hold.

(i) The vector x is a global minimizer of (Pλ (y)) if, and only if,

Φ
∗
T (y−Φx) = λex and Jx,◦

fx (λ−1
Φ
∗
S (y−Φx)−PS( fx))6 1.

(ii) The vector x is a global minimizer of (P0(y)) if, and only if, there exists a dual vector α ∈ RQ

such that
Φ
∗
T α = ex and Jx,◦

fx (Φ∗S α−PS( fx))6 1.

2.3 Strong Gauge

In this section, we study a particular subclass of regularizers J that we dub strong gauges. We start with
some definitions.

DEFINITION 3 A finite-valued regularizing gauge J is separable with respect to T = S⊥ if

∀(x,x′) ∈ T ×S, J(x+ x′) = J(x)+ J(x′).

Separability of J is equivalent to the following property on the polar J◦.

LEMMA 1 Let J be a finite-valued gauge. Then, J is separable w.r.t. to T = S⊥ if, and only if its polar J◦

satisfies
J◦(x+ x′) = max

(
J◦(x),J◦(x′)

)
, ∀(x,x′) ∈ T ×S .

The decomposability of ∂J(x) as described in Theorem 1 depends on the particular choice of the map
x 7→ fx ∈ ri∂J(x). An interesting situation is encountered when ex ∈ ri∂J(x), in which case, one can just
choose fx = ex, hence implying that fSx = 0. Strong gauges are precisely a class of gauges for which this
situation occurs.

In the sequel, for a given model subspace T , we denote T̃ the set of vectors sharing the same T ,

T̃ =
{

x ∈ RN : Tx = T
}
.

Using positive homogeneity, it is easy to show that Tρx = Tx and eρx = ex ∀ρ > 0, see Proposition 16(i).
Thus T̃ is a non-empty cone which is contained in T by Proposition 16(ii).

DEFINITION 4 (Strong Gauge) A strong gauge on T is a finite-valued gauge J such that
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1. For every x ∈ T̃ , ex ∈ ri∂J(x).

2. J is separable with respect to T and S = T⊥.

The following result shows that the decomposability property of Theorem 1 has a simpler form when
J is a strong gauge.

PROPOSITION 5 Let J be a strong gauge on Tx. Then, the subdifferential of J at x reads

∂J(x) =
{

η ∈ RN : ηTx = ex and J◦(ηSx)6 1
}
.

When J is in addition a norm, this coincides exactly with the decomposability definition of [9]. Note
however that the last part of assertion (ii) in Proposition 3 is an intrinsic property of the polar of the
subdifferential gauge, while it is stated as an assumption in [9].

EXAMPLE 4 (`1-`2 norm) Recall the notations of this example in Section 2.1. Since ex = (N (xb))b∈B ∈
ri∂J(x), and the `1-`2 norm is separable, it is a strong norm according to Definition 4. Thus, its
subdifferential at x reads

∂J(x) =
{

η ∈ RN : ηTx = ex = (N (xb))b∈B and max
b6∈I
||ηb||6 1

}
.

Note however that, except for N = 2, `∞ is not a strong gauge.

3. Uniqueness

This section derives sufficient conditions under which the solution of problems (Pλ (y)) and (P0(y)) is
unique.

We start with the key observation that although (Pλ (y)) does not necessarily have a unique minimizer
in general, all solutions share the same image under Φ .

LEMMA 2 Let x,x′ be two solutions of (Pλ (y)). Then,

Φx = Φx′.

Consequently, the set of the minimizers of (Pλ (y)) is a closed convex subset of the affine space
x+Ker(Φ), where x is any minimizer of (Pλ (y)). This is also obviously the case for (P0(y)) since all
feasible solutions belong to the affine space x0 + KerΦ .

3.1 The Strong Null Space Property

The following theorem gives a sufficient condition to ensure uniqueness of the solution to (Pλ (y))
and (P0(y)), that we coin Strong Null Space Property. This condition is a generalization of the Null
Space Property introduced in [13] and popular in `1 regularization.

THEOREM 2 Let x be a solution of (Pλ (y)) (resp. a feasible point of (P0(y))). Denote T = S⊥ = Tx the
associated model subspace. If the Strong Null Space Property holds

∀δ ∈ Ker(Φ)\{0}, 〈ex, δT 〉+ 〈PS( fx), δS〉< Jx
fx(−δS), (NSPS)

then the vector x is the unique minimizer of (Pλ (y)) (resp. (P0(y))).
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This result reduces to the one proved in [16] when J is a strong norm, i.e. decomposable in the sense
of [9], pre-composed by a linear operator. Note that when specializing (NSPS) to a strong gauge J, it
reads

∀δ ∈ Ker(Φ)\{0}, 〈ex, δTx〉< J(−δSx).

3.2 Dual Certificates

In this section we derive from (NSPS) a weaker sufficient condition, stated in terms of a dual vector, the
existence of which certifies uniqueness.

For some model subspace T , the restricted injectivity of Φ on T plays a central role in the sequel.
This is achieved by imposing that

Ker(Φ)∩T = {0}. (CT )

To understand the importance of (CT ), consider the noiseless case where we want to recover a vector x0
from y = Φx0, whose model subspace is T . Assume that the latter is known. From Proposition 1(iv),
x0 ∈ T ∩{x : y = Φx}. For x0 to be uniquely recovered from y, (CT ) must be verified. Otherwise, if (CT )
does not hold, then any x0 +δ , with δ ∈KerΦ ∩T \{0}, is also a candidate solution. Thus, such objects
cannot be uniquely recovered.

We can derive from Theorem 2 the following corollary.

COROLLARY 1 Let x be a solution of (Pλ (y)) (resp. a feasible point of (P0(y))). Assume that there
exists a dual vector α such that η = Φ∗α ∈ ri(∂J(x)), and (CT ) holds where T = Tx. Then x is the unique
solution of (Pλ (y)) (resp. (P0(y))).

Piecing together Theorem 1 and Corollary 1, one can build a particular dual certificate for (Pλ (y)),
and then state a sufficient uniqueness explicitly in terms of the decomposable structure of the subdifferen-
tial of the regularizer J.

THEOREM 3 Let x ∈RN , and suppose that fx ∈ ri∂J(x). Assume furthermore that (CT ) holds for T = Tx
and let S = T⊥.

(i) If

Φ
∗
T (y−Φx) = λex, (3.1)

Jx,◦
fx

(
λ
−1

Φ
∗
S (y−Φx)−PS( fx)

)
< 1. (3.2)

then x is the unique solution of (Pλ (y)).

(ii) If there exists a dual certificate α such that

Φ
∗
T α = ex and Jx,◦

fx (Φ∗S α−PS( fx))< 1,

then x is the unique solution of (P0(y)).

4. Partly Smooth Functions Relative to a Linear Manifold

Until now, except of being convex and finite-valued (i.e. full domain), no other assumption was imposed
on the regularizer J. But, toward the goal of studying robust recovery by solving (Pλ (y)), more will be
needed. This is the main reason underlying the introduction of a subclass of finite-valued convex function
J for which the mappings x 7→ ex, x 7→ PSx( fx) and x 7→ J◦fx exhibit local regularity.



13 of 52

4.1 Partly Smooth Functions

The notion of “partly smooth” functions [23] unifies many non-smooth functions known in the literature.
Partial smoothness (as well as identifiable surfaces [45]) captures essential features of the geometry of
non-smoothness which are along the so-called “active/identifiable manifold”. Loosely speaking, a partly
smooth function behaves smoothly as we move on the partial smoothness manifold, and sharply if we
move normal to the manifold. In fact, the behaviour of the function and of its minimizers (or critical
points) depend essentially on its restriction to this manifold, hence offering a powerful framework for
sensitivity analysis theory. In particular, critical points of partly smooth functions move stably on the
manifold as the function undergoes small perturbations [23, 24].

Specialized to finite-valued convex functions, the definition of partly smooth functions reads as
follows.

DEFINITION 5 A finite-valued convex function J is said to be partly smooth at x relative to a set M ⊆RN

if

1. Smoothness. M is a C2-manifold around x and J restricted to M is C2 around x.

2. Sharpness. The tangent space of M at x is the model space Tx,

TM (x) = Tx.

3. Continuity. The set-valued mapping ∂J is continuous at x relative to M .

The manifold M is coined the model manifold of x ∈ RN . J is said to be partly smooth relative to a set
M if M is a manifold and J is partly smooth at each point x ∈M relative to M .

Since J is proper convex and finite-valued, the subdifferential of ∂J(x) is everywhere non-empty and
compact and every subgradient is regular. Therefore, the Clarke regularity property [23, Definition 2.7(ii)]
is automatically verified. In view of [23, Proposition 2.4(i)-(iii)], our sharpness property is equivalent to
that of [23, Definition 2.7(iii)]. Obviously, any smooth function J : RN → R is partly smooth relative to
the manifold RN . Moreover, if M is a manifold around x, the indicator function ιM is partly smooth at x
relative to M . Remark that in the previous definition, M needs only to be defined locally around x, and
it can be shown to be locally unique, see [19, Corollary 4.2]. Hence the notation M is unambiguous.

4.2 Partial Smoothness Relative to a Linear Manifold

Many of the partly smooth functions considered in the literature are associated to linear manifolds, i.e. in
which case the model subspace is the model manifold M = Tx (see the sharpness property). This class
of functions, coined partly smooth functions with linear manifolds, encompasses most of the popular
regularizers in signal/image processing, machine learning and statistics. One of course thinks of the
`1, `1− `2, `∞ norms, their composition by a linear operator, and/or positive combinations of them, to
name a few. However, this family of regularizers does not include the nuclear norm, whose manifold is
obviously not linear.In the sequel, we restrict our attention to the class functions J which are finite-valued
convex and partly smooth at x with respect to Tx.

When the continuity property (Definition 5(iii)) of the set-valued mapping ∂J is strenghthned to
Lipschitz-continuity, it turns out that one can quantify precisely the local regularity of the mappings
x 7→ ex, x 7→ PSx( fx) and x 7→ Jx,◦

fx . This is formalized as follows.
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THEOREM 4 Let Γ be any gauge which is finite and coercive on Tx for x ∈ RN . Let J be a partly smooth
function at x relative to Tx, and assume that ∂J : RN ⇒ RN is Lipschitz-continuous around x relative to
Tx. Then for any Lipschitz-continuous mapping

f :

{
Tx → RN

x̃ 7→ fx̃ ∈ ri∂J(x̃),

there exist four non-negative reals νx,µx,τx,ξx such that

∀x′ ∈ T,Γ (x− x′)6 νx⇒ Tx = Tx′ (4.1)

and for every x′ ∈ T with Γ (x− x′)< νx, one has

Γ (ex− ex′)6 µxΓ (x− x′), (4.2)
Jx,◦

fx (PS( fx− fx′))6 τxΓ (x− x′), (4.3)

sup
u∈S
u 6=0

Jx′,◦
fx′

(u)− Jx,◦
fx (u)

Jx,◦
fx (u)

6 ξxΓ (x− x′). (4.4)

Moreover, the mapping f always exists.

This result motivates the following definition.

DEFINITION 6 The set of finite-valued convex and partly smooth functions at x relative to Tx, such that ∂J
is Lipschitz around x relative to Tx, with parameters (Γ , fx,νx,µx,τx,ξx), is denoted PSFLx(Γ , fx,νx,µx,τx,ξx).

4.3 Operations Preserving Partial Smoothness Relative to a Linear Manifold

The set PSFLx is closed under addition and pre-composition by a linear operator.

4.3.1 Addition. The following proposition determines the model subspace and the subdifferential
gauge of the sum of two functions

H = J+G

in terms of those associated to J and G.

PROPOSITION 6 Let J and G be two finite-valued convex functions. Denote T J and eJ (resp. T G and eG)
the model subspace and vector at a point x corresponding to J (resp. G). Then the subdifferential of H
has the decomposability property with

(i) T H = T J ∩T G, or equivalently SH = (T H)⊥ = span
(
SJ ∪SG

)
.

(ii) eH = PT H (eJ + eG).

(iii) Moreover, let Jx,◦
f J
x

and Gx,◦
f G
x

denote the subdifferential gauges for the pairs (J, f J
x ∈ ri∂J(x)) and

(G, f G
x ∈ ri∂G(x)), correspondingly. Then, for the particular choice of

f H
x = f J

x + f G
x

we have f H
x ∈ ri∂H(x), and for a given η ∈ SH , the subdifferential gauge of H reads

Hx,◦
f H
x
(η) = inf

η1+η2=η
max(Jx,◦

f J
x
(η1),G

x,◦
f G
x
(η2)) .
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Armed with this result, we show the following.

PROPOSITION 7 Let x ∈ RN . Suppose that

J ∈ PSFLx(Γ
J ,νJ

x ,µ
J
x ,τ

J
x ,ξ

J
x ) and G ∈ PSFLx(Γ

G,νG
x ,µ

G
x ,τ

G
x ,ξ

G
x ).

Then, for the choice f H
x = f J

x + f G
x and Γ H = max(Γ J ,Γ G), we have

H = J+G ∈ PSFLx(Γ
H ,νH

x ,µH
x ,τH

x ,ξ H
x )

with

ν
H
x = min(νJ

x ,ν
G
x )

µ
H
x = µ

J
x |||PT H |||Γ J→Γ H +µ

G
x |||PT H |||Γ G→Γ H

τ
H
x = τ

J
x + τ

G
x +µ

J
x |||PSH∩T J |||Γ J→Hx,◦

f Hx

+µ
G
x |||PSH∩T G |||Γ G→Hx,◦

f Hx

ξ
H
x = max(ξ J

x ,ξ
G
x ).

4.3.2 Smooth perturbation. It is common in the litterature to find regularizers of the form Jε(x) =
J(x)+ ε

2 ||x||
2
2, such as the Elastic net [47] . More generally, we consider any smooth perturbation of J.

The following is a straighforward consequence of Proposition 6.

COROLLARY 2 Let J be a finite-valued convex function, x ∈ RN and G a convex function which is
Gâteaux-differentiable at x. Then,

T J+G
x = T J and eJ+G

x = eJ
x +PT J

x
∇G(x).

Moreover, for the particular choice of

f J+G
x = f J

x +∇G(x),

we have f J+G
x ∈ ri(J+G)(x) and for a given η ∈ SJ

x , the subdifferential gauge of J+G reads

(J+G)x,◦
f J+G
x ,x

(η) = Jx,◦
f J
x ,x

(η).

Hence, the model subspace Tx and the subdifferential gauge are insensitive to smooth perturbations.
Combining Proposition 7 and Corollary 2 yields the partial smoothness Lipschitz constants of smooth
perturbation.

COROLLARY 3 Let x ∈ RN . Suppose that J ∈ PSFLx(Γ
J ,νJ

x ,µ
J
x ,τ

J
x ,ξ

J
x ), that G is C2 on RN with a

β -Lipschitz gradient. Then for the choice f H
x = f J

x +∇G(x) and Γ H = max(Γ J , || · ||), H = J +G ∈
PSFLx(Γ

H ,νH
x ,µH

x ,τH
x ,ξ H

x ) with

ν
H
x = ν

J
x , µ

H
x = µ

J
x |||PT J |||Γ J→Γ H +β |||PT J |||`2→Γ H ,

τ
H
x = τ

J
x , ξ

H
x = ξ

J
x .
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4.3.3 Pre-composition by a Linear Operator. Convex functions of the form J0 ◦D∗, where J0 is a
finute-valued convex function, correspond to the so-called analysis-type regularizers. The most popular
example in this class if the total variation where J0 is the `1 or the `1− `2 norm, and D∗ = ∇ is a finite
difference discretization of the gradient.

In the following, we denote T = Tx = S⊥ and e = ex the subspace and vector in the decomposition
of the subdifferential of J at a given x ∈ RN . Analogously, T0 = S⊥0 and e0 are those of J0 at D∗x. The
following proposition details the decomposability structure of analysis-type regularizers.

PROPOSITION 8 Let J0 be a convex finite-valued function. Then the subdifferential of J = J0 ◦D∗ has
the decomposability property with

(i) T = Ker(D∗S0
), or equivalently S = Im(DS0).

(ii) e = PT De0.

(iii) Moreover, let JD∗x,◦
0, fD∗x

denote the subdifferential gauge for the pair (J0, f0,D∗x ∈ ri∂J0(x)). Then, for
the particular choice of

fx = D f0,D∗x

we have fx ∈ ri∂J(x), domJx,◦
fx = S and for every η ∈ S

Jx,◦
fx (η) = inf

z∈Ker(DS0 )
JD∗x,◦

0, fD∗x
(D+

S0
η + z) .

The infimum can be equivalently taken over Ker(D)∩S0.

Capitalizing on these properties, we now establish the following.

PROPOSITION 9 Let x ∈ RN and u = D∗x. Suppose that J0 ∈ PSFLu(Γ0,ν0,u,µ0,u,τ0,u,ξ0,u). Then with
the choice fx = D f0,u and Γ any finite-valued coercive gauge on T , J = J0 ◦D∗ ∈ PSFLx(Γ ,νx,µx,τx,ξx),
with

νx =
1

|||D∗|||
Γ→Γ0

ν0,u

µx = µ0,u|||PT D|||
Γ→Γ0

|||D∗|||
Γ→Γ0

τx =

(
τ0,u

∣∣∣∣∣∣∣∣∣D+
S0

PS D
∣∣∣∣∣∣∣∣∣

Ju,◦
0, f0,u

→Ju,◦
0, f0,u

+µ0,u

∣∣∣∣∣∣∣∣∣D+
S0

PS D
∣∣∣∣∣∣∣∣∣

Γ0→Ju,◦
0, f0,u

)
|||D∗|||

Γ→Γ0

ξx = ξ0,u|||D∗|||Γ→Γ0
.

5. Exact Model Selection and Identifiability

In this section, we state our main recovery guarantee, which asserts that under appropriate conditions,
(Pλ (y)) with a partly smooth function J relative to a linear manifold has a unique solution x? such that
its model subspace Tx? = Tx0 , even in presence of small enough noise. Put differently, regularization by J
is able to stably select the correct model subspace underlying x0.
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5.1 Linearized Precertificate

Let us first introduce the definition of the linearized precertificate.

DEFINITION 7 The linearized precertificate αF for x ∈ RN is defined by

αF = argmin
Φ∗Tx α=ex

||α||.

The subscript F is used as a salute to J.-J. Fuchs [17] who first considered this vector as a dual
certificate for `1 minimization. The intuition behind it is well-understood if one realizes that the existence
of a dual certificate α is equivalent to η = Φ∗α for some α such that ηT = ex and Jx,◦

fx (ηS−PS fx)6 1.
Dropping the last constraint, and choosing the minimal `2-norm solution to the first constraint recovers
the definition of αF .

A convenient property of this vector, is that under the restricted injectivity condition, it has a closed
form expression.

LEMMA 3 Let x ∈ RN and suppose that (CT ) is verified with T = Tx. Then αF is well-defined and

αF = Φ
+,∗
Tx

ex.

Beside condition (CTx) stated above, the following Irrepresentability Criterion will play a pivotal role.

DEFINITION 8 For x ∈ RN such that (CTx) with T = Tx holds, we define the Irrepresentability Criterion
at x as

IC(x) = Jx,◦
fx (Φ∗Sx Φ

+,∗
Tx

ex−PSx fx).

A fundamental remark is that IC(x)< 1 is the analytical equivalent to the topological non-degeneracy
condition Φ∗αF ∈ ri∂J(x). Note that if J is a strong gauge on T , then it reads IC(x) = J◦(Φ∗Sx

Φ
+,∗
Tx

ex).
The Irrepresentability Criterion clearly brings into play the promoted subspace Tx and the interaction
between the restriction of Φ to Tx and Sx. It is a generalization of the irrepresentable condition that has
been studied in the literature for some popular regularizers, including the `1-norm [17], analysis-`1 [41],
and `1-`2 [3]. See Section 6 for a comprehensive discussion.

We begin with the noiseless case, i.e. w = 0 in (1.1). In fact, in this setting, IC(x0)< 1 is a sufficient
condition for identifiability without any any other particular assumption on the finite-valued convex
function J, such as partial smoothness. By identifiability, we mean the fact that x0 is the unique solution
of (P0(y)).

THEOREM 5 Let x0 ∈ RN and T = Tx0 . We assume that (CT ) holds and IC(x0) < 1. Then x0 is the
unique solution of (P0(y)).

5.2 Exact Model Selection

It turns out that even in presence of noise in the measurements y according to (1.1), condition IC(x0)< 1
is also sufficient for (Pλ (y)) with PSFLx0 regularizer to stably recover the model subspace underlying
x0. This is stated in the following theorem.

THEOREM 6 Let x0 ∈ RN and T = Tx0 . Suppose that J ∈ PSFLx0(Γ ,νx0 ,µx0 ,τx0 ,ξx0). Assume that (CT )
holds and IC(x0)< 1. Then there exist positive constants (AT ,BT ) that solely depend on T and a constant
C(x0) such that if w and λ obey

AT

1− IC(x0)
||w||6 λ 6 νx0 min

(
BT ,C(x0)

)
(5.1)
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the solution x? of (Pλ (y)) with noisy measurements y is unique, and satisfies Tx? = T . Furthermore, one
has

||x0− x?||= O
(

max(||w||,λ )
)
.

Clearly this result asserts that exact recovery of Tx0 from noisy partial measurements is possible with
the proviso that the regularization parameter λ lies in the interval (5.1). The value λ should be large
enough to reject noise, but small enough to recover the entire subspace Tx0 . In order for the constraint (5.1)
to be non-empty, the noise-to-signal level ||w||/νx0 should be small enough, i.e.

||w||
νx0

6
1− IC(x0)

AT
min(BT ,C(x0)) .

The constant C(x0) involved in this bound depends on x0 and has the form

C(x0) =
1− IC(x0)

ξx0 νx0

H
(

DT µx0 + τx0

ξx0

)
where H(β ) =

β +1/2
ET β

ϕ

(
2β

(β +1)2

)
and ϕ(u) =

√
1+u−1 .

The constants (DT ,ET ) only depend on T . C(x0) captures the influence of the parameters πx0 =
(µx0 ,τx0 ,ξx0), where the latter reflect the geometry of the partly smooth regulrizer J at x0. More
precisely, the larger C(x0), the more tolerant the recovery is to noise. Thus favorable regularizers are
those where C(x0) is large, or equivalently where πx0 has small entries, since H is a strictly decreasing
function.

It is worth noting that this analysis is in some sense sharp following the argument in [42, Proposition
1]. The only case not covered by our analysis is when IC(x) = 1.

6. Examples of Partly Smooth Functions Relative to a Linear Manifold

6.1 Synthesis `1 Sparsity

The regularized problem (Pλ (y)) with J(x) = ||x||1 = ∑
N
i=1 |xi| promotes sparse solutions. It goes by

the name of Lasso [39] in the statistical literature, and Basis Pursuit DeNoising (or Basis Pursuit in the
noiseless case) [11] in signal processing.

6.1.1 Structure of the `1 norm. The norm J(x) = ||x||1 is a symmetric (finite-valued) strong gauge.
More precisely, we have the following result.

PROPOSITION 10 J = || · ||1 is a symmetric strong gauge with

Tx =
{

η ∈ RN : ∀ j 6∈ I, η j = 0
}
, Sx =

{
η ∈ RN : ∀i ∈ I, ηi = 0

}
,

ex = sign(x), fx = ex, J◦fx = || · ||∞ + ιSx ,

where I = I(x) = {i : xi 6= 0}. Moreover, it is partly smooth relative to a linear manifold with

Γ = || · ||∞, νx = (1−δ )min
i∈I
|xi| ,δ ∈]0,1] and µx = τx = ξx = 0.
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6.1.2 Relation to previous works. The theoretical recovery guarantees of `1-regularization have been
extensively studied in the recent years. There is of course a huge literature on the subject, and covering
it comprehensively is beyond the scope of this paper. In this section, we restrict our overview to those
works pertaining to ours, i.e., sparsity pattern recovery in presence of noise.

For instance, an irrepresentability criterion was introduced in [17]. Let s ∈ {−1,0,+1}N and I its
support. Suppose that Φ(I) has full column rank, which is precisely (CT ) in this case. The synthesis
irrepresentability criterion IC`1 of s is defined as

IC`1(s) = ||Φ∗(Ic)Φ
+,∗
(I) s(I)||∞ = max

j∈Ic
|〈Φ j, Φ

+,∗
(I) s(I)〉|.

From Definition 8 and Proposition 10, one immediately recognizes that IC`1(sign(x)) = IC(x). The
condition IC`1(sign(x))< 1, also known as the irrepresentable condition in the statistical literature, was
proposed [17] for exact support (and sign) pattern recovery with `1-regularization from partial noisy
measurements. In this respect, this work can then be viewed as a special instance of ours, as Theorem 6
in this case ensures recovery of the support pattern.

6.2 Analysis `1 Sparsity

Let D = (di)
P
i=1 be a collection of P atoms di ∈ RN . The analysis semi-norm associated to D is J(x) =

||D∗x||1 = ∑
P
i=1 |〈di, x〉|. Obviously, the synthesis `1-regularization corresponds to D = Id. Popular

examples of analysis-type `1 semi-norms include for instance the discrete anisotropic total variation [36],
the Fused Lasso [40] and shift invariant wavelets [37].

6.2.1 Structure of the analysis `1 semi-norm. The semi-norm J(x) = ||D∗x||1 is a symmetric partly
smooth function relative to a linear manifold. This is formalized in the following proposition whose
proof is a straightforward application of Proposition 8, Proposition 9 and Proposition 10.

PROPOSITION 11 J = ||D∗ · ||1 is a symmetric (finite-valued) gauge with

Tx = Ker(D∗(Ic))) =
{

η ∈ RN : ∀ j 6∈ I, 〈d j, η j〉= 0
}
, Sx = Im(DIc),

ex = PKer(D∗Ic ) Dsign(D∗x), fx = Dsign(D∗x),

J◦fx(η) = inf
z∈Ker(D(Ic))

||D+
(Ic)η + z||∞, for η ∈ Sx ,

where I = I(x) = {i : 〈di, xi〉 6= 0}. Moreover, it is partly smooth relative to a linear manifold with
parameters

νx = (1−δ )min
i∈I
|〈di, xi〉|,δ ∈]0,1] and µx = τx = ξx = 0.

6.2.2 Relation to previous works. Some insights on the relation and distinction between synthesis-
and analysis-based sparsity regularizations were first given in [15]. When D is orthogonal, and more
generally when D is square and invertible, the two forms of regularization are equivalent in the sense
that the set of minimizers of one problem can be retrieved from that of an equivalent form of the other
through a bijective change of variable. It is only recently that theoretical guarantees of `1-analysis sparse
regularization have been investigated, see [41] for a comprehensive review. Among such a work, the
authors in [28] propose a null space property for identifiability in the noiseless case. The most relevant
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work to ours here is that of [41], where the authors prove exact robust recovery of the support and sign
patterns under conditions that are a specialization of those in Theorem 6.

More precisely, let I be the support of D∗x0, and s its sign vector. Denote T = Tx0 = S⊥ = Ker(D∗Ic),
ex0 = sign(D∗x0) = s, e = ex0 = PT Ds, f = fx0 = Ds. From Definition 8 and Proposition 11, the criterion
IC(x0) in this case takes the form

IC(x0) = J◦fx(Φ
∗
S Φ

+,∗
T PT Ds−PS Ds)

= inf
z∈Ker(D(Ic))

||D+
(Ic)

(
Φ
∗
S Φ

+,∗
T PT −PS

)
Ds+ z||∞

= inf
z∈Ker(D(Ic))

||D+
(Ic)

(
(Id−PT )Φ

∗
Φ PT (Φ

∗
T ΦT )

−1 PT −PS
)

Ds+ z||∞

= inf
z∈Ker(D(Ic))

||D+
(Ic)

(
Φ
∗
Φ PT (Φ

∗
T ΦT )

−1 PT −(PT +PS)
)

Ds+ z||∞

= inf
z∈Ker(D(Ic))

||D+
(Ic)

(
Φ
∗
Φ PT (Φ

∗
T ΦT )

−1 PT −Id
)

D(I)s(I)+ z||∞ .

Introducing U as a matrix whose columns form a basis of T , IC(x0) can be equivalently rewritten

IC(x0) = inf
z∈Ker(D(Ic))

||D+
(Ic)

(
Φ
∗
ΦA[Ic]− Id

)
D(I)s(I)+ z||∞ ,

where A[Ic] =U(U∗Φ∗ΦU)−1U∗. We recover exactly the expression of the IC`1−D introduced in [41].

6.3 `∞ Antisparsity Regularization

Regularization by the `∞-norm corresponds to taking J(x) = ||x||∞ = max
16i6N

|xi|. This regularizer promotes

flat solutions. It plays a prominent role in a variety of applications including approximate nearest neighbor
search [21] or vector quantization [26]; see also [38] and references therein.

6.3.1 Structure of the `∞-norm. The norm J(x) = ||x||∞ is a symmetric partly smooth function relative
to a linear manifold, but unlike the `1-norm, it is not strongly so (except for N = 2). Therefore, in the
following proposition, we rule out the trivial case x = 0.

PROPOSITION 12 J = || · ||∞ is a symmetric (finite-valued) gauge with

Sx =
{

η : η(Ic) = 0 and 〈η(I), s(I)〉= 0
}
, Tx =

{
α : α(I) = ρs(I) for ρ ∈ R

}
,

ex =
s
|I|

, fx = ex, J◦fx(η) = max
i∈I

(−|I|siηi)+ for η ∈ Sx ,

where s = sign(x) and I = I(x) = {i : |xi|= ||x||∞}. Moreover, it is partly smooth relative to a linear
manifold with

Γ = || · ||1, νx = (1−δ )
(
||x||∞−max

j/∈I
|x j|
)
,δ ∈]0,1] and µx = τx = ξx = 0.

6.3.2 Relation to previous work. In the noiseless case, i.e. (P0(y)) with J = || · ||∞, theoretical analysis
of `∞-regularization goes back to the 70’s through the work of [8]. [26] provided results that characterize
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signal representations with small (but not necessarily minimal) `∞-norm subject to linear constraints.
A necessary and sufficient condition for a vector to be the unique minimizer of (P0(y)) is derived in
[27]. The work of [14] analyzes recovery guarantees by `∞-regularization in a noiseless random sensing
setting.

The authors in [38] analyzed the properties of solutions obtained from a constrained form of (Pλ (y))
with J = || · ||∞. In particular, they improved and generalized the bound of [26] on the `∞ of the solution.

The work of [5, 30] studies robust recovery with regularization using a subclass of polyhedral norms
obtained by convex relaxation of combinatorial penalties. Although this covers the case of the `∞-norm,
their notion of support is however, completely different from ours. We will come back to this work with
a more detailed discussion in Section 6.5.

6.4 Group Sparsity Regularization

Let’s recall from Section 2.1 that B is a uniform disjoint partition of {1, · · · ,N},

{1, . . . ,N}=
⋃

b∈B
b, b∩b′ = /0, ∀b 6= b′ .

The `1− `2 norm of x is
J(x) = ||x||B = ∑

b∈B
||xb||.

This prior has been advocated when the signal exhibits a structured sparsity pattern where the entries are
assumed to be clustered in few non-zero groups; see for instance [6, 46]. The corresponding regularized
problem (Pλ (y)) is known as the group Lasso.

6.4.1 Structure of the `1-`2 norm. The `1− `2 norm is a symmetric partly smooth function relative to
a linear manifold.

PROPOSITION 13 The `1− `2 norm associated to the partition B is a symmetric (finite-valued) strong
gauge with

Tx =
{

η : ∀ j /∈ I, η j = 0
}
, Sx = {η : ∀i ∈ I, ηi = 0} ,

ex = (N (xb))b∈B, fx = ex, J◦ = || · ||∞,2 + ιSx ,

where I = I(x) = {b : xb 6= 0}, and N (a) = a/||a|| if a 6= 0, and N (0) = 0. Moreover, it is partly
smooth relative to a linear manifold with

Γ = || · ||∞,2, νx = (1−δ )min
b∈I
||xb||,δ ∈]0,1] µx =

√
2

νx
and τx = ξx = 0.

6.4.2 Relation to previous work. Theoretical guarantees of the group Lasso have been investigated by
several authors under different performance criteria; see e.g. [46, 35, 3, 12, 25, 44] to cite only a few. In
particular, the author in [3] studies the asymptotic group selection consistency of the group Lasso in the
overdetermined case, under a group irrepresentable condition. This condition also appears in noiseless
identifiability in the work of [9]. The group irrepresentable condition is nothing but the specialization to
the group Lasso of our condition based on IC(x0). Indeed, using Definition 8 and Proposition 13, and
assuming that Φ(I) is full column rank (i.e. (CT ) is fulfilled), IC(x0) reads

IC(x0) =
∥∥∥Φ
∗
(Ic)Φ

+,∗
(I)

(
xb
||xb||

)
b∈I

∥∥∥
∞,2

. (6.1)
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It is worth mentioning that the discrete isotropic total variation in d-dimension, d > 2, can be viewed
as an analysis-type `1− `2 semi-norm. Partial smoothness and theoretical recovery guarantees with such
a regularization can be retrieved from those of this paper using the results on the pre-composition rule
given in Section 4.3.3.

6.5 Polyhedral Regularization

The `1 and `∞ norms are special cases of polyhedral priors. There are two alternative ways to define a
polyhedral gauge. The H-representation encodes the gauge through the hyperplanes that support the
polygonal facets of its unit level set. The V -representation encodes the gauge through the vertices that
are the extreme points of this unit level set. We focus here on the H-representation.

6.5.1 Structure of polyhedral gauges. A polyhedral gauge in the H-representation is defined as

J(x) = max
16i6NH

(〈x, hi〉)+ = J0(H∗x) where J0(u) = max
16i6NH

(ui)+,

and we have defined H = (hi)
NH
i=1 ∈ RN×NH .

Such a polyhedral gauge can also be thought as an analysis gauge as considered in Section 4.3.3 by
identifying D = H. One can then characterize decomposability and partial smoothness relative to a linear
manifold of J0 and then invoke Proposition 8 and 9 to derive those of J. This is what we are about to do.
In the following, we denote (ai)16i6NH the standard basis of RNH .

PROPOSITION 14 J0(u) = max16i6NH (ui)+ is a (finite-valued) gauge and,

• If ui 6 0, ∀i ∈ {1, · · · ,NH}, then

Su = span
(
ai)

i∈I0
, Tu = span

(
ai)

i/∈I0
,

eu = 0, fu = µ ∑
i∈I0

ai, for any 0 < µ < 1,

J◦fu(η) = inf
τ>maxi∈I0 (−ηi)+/µ

max
(

τµ|I0|+ ∑
i∈I0

ηi,τ
)

for η ∈ Su ,

where
I0 = {i ∈ {1, · · · ,NH} : ui = J0(u) = 0} .

• If ∃i ∈ {1, · · · ,NH} such that ui > 0, then

Su =
{

η : η(Ic
+)

= 0 and 〈η(I+), s(I+)〉= 0
}
,

Tu =
{

α : α(I+) = µs(I+) for µ ∈ R
}
,

eu =
s
|I+|

, fu = eu, J◦fu(η) = max
i∈I+

(−|I+|ηi)+ for η ∈ Su ,

where
s = ∑

i∈I+

ai and I+ = {i ∈ {1, · · · ,NH} : ui = J0(u) and ui > 0} .

Moreover, it is partly smooth relative to a linear manifold with parameters (assuming I+ 6= /0)

νu = (1−δ )
(

max
i∈I+

ui− max
j/∈I+,u j>0

u j
)
,δ ∈]0,1] and µu = τu = ξu = 0.



23 of 52

6.5.2 Relation to previous works. As stated in the case of `∞-norm, the work of of [5] considers
robust recovery with a subclass of polyhedral norms but his notion of support is different from ours. The
work [32] studies numerically some polyhedral regularizations. Again in a compressed sensing scenario,
the work of [10] studies a subset of polyhedral regularizations to get sharp estimates of the number of
measurements for exact and `2-stable recovery. The closest work to ours is that reported in [43], where
theoretical recovery guarantees by polyhedral regularization were provided under similar conditions to
ours and with the same notion of support as considered above. However only finite-valued coercive
polyhedral gauges were considered there.

6.6 A Counter-Example: the Nuclear Norm

The nuclear norm is the natural extension of `1 sparsity to matrix-valued data x ∈ RN0×N0 (where
N = N2

0 ). We denote x =Vx diag(Λx)U∗x an SVD decomposition of x, where Λx ∈ RN0
+ . Note that this can

be extended easily to rectangular matrices. The nuclear norm imposes such a sparsity and is defined as

J(x) = ||x||∗ = ||Λx||1,

see [42] and the reference therein. This norm can be shown to be partly smooth (in the sense of
Definition 5) at some x with respect to the set M = {x′ : rank(x) = rank(x′)} that is locally a manifold
around x. This manifold is however not a linear space, hence one does not have M = Tx. This shows
that the nuclear norm is not in the set PSFLx of fonctions that are partly smooth with respect to a linear
manifold (in the sense of Definition 6). In particular, Theorem 6 cannot be applied to this functional.

It is however possible to show that the manifold M associated to x is stable to small noise perturbation
in the observation under the same hypotheses as Theorem 6. This result is proved in [42], which extends
the previous result of Bach [4]. Note however that these proofs do not give explicit stability constants, on
the contrary to Theorem 6.

7. Case Study: Compressed Sensing with `∞ Regularization

In this section, based on the generalized irrepresentable condition, we provide a bound for the sampling
complexity to guarantee exact and stable recovery of the model subspace Tx0 of antisparsity minimization
from noisy Gaussian measurements.

THEOREM 7 Let x be an arbitrary vector with its saturation support I, its model tangent subspace Tx = S⊥x
and model vector ex as defined above. Let β > 1. For Φ drawn from the standard Gaussian ensemble
with

Q> N−|I|+2β |I| log(|I|/2) ,

IC(x)< 1 with probability at least 1−2(|I|/2)− f (β ,|I|) where

f (β , |I|) =

(√
β

2|I|
+β −1−

√
β

2|I|

)2

.

The above bound and probability bears some similarities to what we get with `1 minimization, except
that now the probability of success scales in a power of |I| and not N directly. The reason underlying such
a similarity is the proof technique usual in compressed sensing-type bounds and the use of the minimal
`2-norm dual certificate.
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The map f (β , |I|) is an increasing function of |I|, so that lim|I|→∞ f (β , |I|) = β−1 and the probability
of success increases with increasing size of the saturation support. But this comes at the price of a
stronger requirement on the number of measurements.

For the noiseless problem (P0(y)), it can be shown using arguments based on the statistical dimen-
sion [1] of the descent cone of the `∞-norm that there is a phase transition exactly at N−|I|/2, see also [10,
Proposition 3.12]. The reason is that each face of the descent cone of the hypercube at a point living on its
k-dimensional face is the direct sum of a subspace (the linear hull of the face), and of an orthant of dimen-
sion N− k (up to an isometry). The statistical dimension is then (N− k)/2+ k = (N + k)/2 = N−|I|/2,
observing that k = N−|I|.

8. Conclusion

In this paper, we introduced the notion of partly smooth function relative to a linear manifold as a generic
convex regularization framework, and presented a unified view to derive exact and robust recovery
guarantees for a large class of convex regularizations. In particular, we provided sufficient conditions
ensuring uniqueness of the minimizer to both (Pλ (y)) and (P0(y)), whose by-product is to guarantee
exact recovery of the original object x0 in the noiseless case by solving (P0(y)). In presence of noise,
sufficient sharp conditions were given to certify exact recovery of the model subspace underlying x0. As
shown in the considered examples, these results encompass a variety of cases extensively studied in the
literature (e.g. `1, analysis `1, `1− `2), as well as less popular ones (`∞, polyhedral). We exemplified the
usefulness of this analysis by providing a sampling complexity bound for exact support recovery in `∞

regularization from Gaussian measurements.

A. Gauges and their Polars

A.0.1 Definitions and main properties. We start by collecting some important properties of gauges
and their polars. A comprehensive account on them can be found in [34].

LEMMA 4

(i) γC is a non-negative, lsc and sublinear function.

(ii) C is the unique closed convex set containing the origin such that

C =
{

x ∈ RN : γC(x)6 1
}
.

(iii) γC is finite everywhere if, and only if, 0 ∈ intC, in which case γC is continuous.

(iv) KerγC = {0} if, and only if, C is compact.

(v) γC is finite and coercive on domγC = spanC if, and only if, C is compact and 0 ∈ riC. In particular,
γC is finite everywhere and coercive if, and only if, C is compact and 0 ∈ intC.

Proof. (i)-(iii) are obtained from [20, Theorem V.1.2.5]. (iv) is obtained by combining [20, Corol-
lary V.1.2.6 and Proposition IV.3.2.5]. (v): the second statement follows by combining (iii)-(iv), while
the first part is the second one written in domγC = affC = spanC since 0 ∈ riC. �

Lemma 4(ii) is fundamental result of convex analysis that states that there is a one-to-one correspon-
dence between gauge functions and closed convex sets containing the origin. This allows to identify sets
from their gauges, and vice versa.
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γC is a norm, having C as its unit ball, if and only if C is bounded with nonempty interior and
symmetric. When C is only symmetric with nonempty interior, then γC becomes a semi-norm.

Let us now turn to the polar of a convex set and a gauge.

DEFINITION 9 (Polar set) Let C be a non-empty convex set. The set C◦ given by

C◦ =
{

v ∈ RN : 〈v, x〉6 1 for all x ∈C
}

is called the polar of C.

C◦ is a closed convex set containing the origin. When the set C is also closed and contains the origin,
then it coincides with its bipolar, i.e. C◦◦ =C.

We are now in position to define the polar gauge.

DEFINITION 10 (Polar Gauge) The polar of a gauge γC is the function γ◦C defined by

γ
◦
C(u) = inf{µ > 0 : 〈x, u〉6 µγ

◦
C(x),∀x} .

Observe that gauges polar to each other have the property

〈x, u〉6 γC(x)γ◦C(u) ∀(x,u) ∈ domγC×domγ
◦
C ,

just as dual norms satisfy a duality inequality. In fact, polar pairs of gauges correspond to the best
inequalities of this type.

LEMMA 5 Let C ⊆ RN be a closed convex set containing 0. Then,

(i) γ◦C is a gauge function and γ◦◦C = γC.

(ii) γ◦C = γC◦ , or equivalently

C◦ =
{

x ∈ RN : γ
◦
C(x)6 1

}
=
{

x ∈ RN : γC◦(x)6 1
}
.

(iii) The gauge of C and the support function of C are mutually polar, i.e.

γC = σC◦ and γC◦ = σC .

Proof. (i) follows from [34, Theorem 15.1]. (ii) [34, Corollary 15.1.1] or [20, Proposition V.3.2.4]. (iii)
[34, Corollary 15.1.2] or [20, Proposition V.3.2.5]. �

A.0.2 Gauge and polar calculus. We here derive the expression of the gauge function of the
Minkowski sum of two sets, as well as that of the image of a set by a linear operator. These results play
an important role in Section 4.

LEMMA 6 Let C1 and C2 be nonempty closed convex sets containing the origin. Then

γC1+C2(x) = sup
ρ∈[0,1]

ργC1

+
∨ (1−ρ)γC2(x) .

If x is such that γC1(x1)+ γC2(x2) is continuous and finite on {(x1,x2) : x1 + x2 = x}, then

γC1+C2(x) = inf
z∈RN

max(γC1(z),γC2(x− z)) .
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Proof. We have from Lemma 5 and calculus rules on support functions,

γ(C1+C2)◦ = σC1+C2 = σC1 +σC2 .

Thus
(C1 +C2)

◦ = {u : σC1(u)+σC2(u)6 1} .

This yields that

γC1+C2(x) = σ(C1+C2)◦(x)

= σσC1 (u)+σC2 (u)61(x)

= sup
σC1 (u)+σC2 (u)61

〈u, x〉

= sup
ρ∈[0,1]

sup
σC1 (u)6ρ,σC2 (u)61−ρ

〈u, x〉

= sup
ρ∈[0,1]

σσC1 (u)6ρ

+
∨ σσC2 (u)61−ρ(x)

= sup
ρ∈[0,1]

ρσσC1 (u)61
+
∨ (1−ρ)σσC2 (u)61(x)

= sup
ρ∈[0,1]

ρσC◦1

+
∨ (1−ρ)σC◦2 (x)

= sup
ρ∈[0,1]

σρC◦1

+
∨ σ(1−ρ)C◦2

(x)

= sup
ρ∈[0,1]

ργC1

+
∨ (1−ρ)γC2(x) ,

which is the first assertion.
The last identity can be rewritten

γC1+C2(x) = sup
ρ∈[0,1]

inf
x1+x2=x

ργC1(x1)+(1−ρ)γC2(x2) .

Under the assumptions of the lemma, the objective in the supinf is a continuous finite concave-convex
function on [0,1]×{(x1,x2) : x1 + x2 = x}. Since the latter sets are non-empty, closed and convex, and
[0,1] is obviously bounded, we have from using [34, Corollary 37.3.2]

γC1+C2(x) = inf
z∈RN

sup
ρ∈[0,1]

ργC1(z)+(1−ρ)γC2(x− z)

= inf
z∈RN

max(γC1(z),γC2(x− z)) .

�

LEMMA 7 Let C be a closed convex set such that 0 ∈ riC, and D a linear operator. Then, for every
x ∈ Im(D)

γD(C)(x) = inf
z∈Ker(D)

γC(D+x+ z) .
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Proof. It is immediate to see that D(C) is a closed convex set containing the origin. Moreover, we
have Im(D∗)∩dom(σC) 6= /0, since the origin is in both of them. Thus, using [20, Theorem X.2.1.1] and
Lemma 5, we have

γ(D(C))◦ = σD(C) =
(
ιD(C)

)∗
= σC ◦D∗ .

Now, as by assumption 0 ∈ riC, we have 0 ∈ ri(C◦), and therefore Im(D∗)∩ ri(C◦) 6= /0. By virtue of [20,
Theorem X.2.2.3] and Lemma 5, we get

γD(C)(x) = σ(D(C))◦(x)

= σσC◦D∗(u)61(x)

=
(
ισC(w)61 ◦D∗

)∗
(x)

= inf
v

σσC(w)61(v) s.t. Dv = x

= inf
z∈Ker(D)

σσC(w)61(D
+x+ z)

= inf
z∈Ker(D)

σσC(w)61(D
+x+ z)

= inf
z∈Ker(D)

γC(D+x+ z) .

� Using Lemma 4(v), one can observe that the infimum is finite if (D+x+Ker(D))∩ spanC 6= /0.

A.0.3 Subdifferential of a gauge. The subdifferential of a gauge γC at a point x is completely charac-
terized by the face of its polar set C◦ exposed by x. Put formally, we have [20]

∂γC(x) = FC◦(x) =
{

η ∈ RN : η ∈C◦ and 〈η , x〉= γC(x)
}
,

where FC◦(x) is the face of C◦ exposed by x. The latter is the intersection of C◦ and the supporting
hyperplane

{
η ∈ RN : 〈η , x〉= γC(x)

}
. The special case of x = 0 has a much simpler structure; it is the

polar set C◦ from Lemma 5(ii)-(iii), i.e.

∂γC(x) =
{

η ∈ RN : γC◦(η)6 1
}
=C◦.

The following proposition gives an equivalent convenient description of the subdifferential of the
regularizer J = γC at x in terms of a particular supporting hyperplane to C◦: the affine hull S̄x.

PROPOSITION 15 Let J = γC be a finite-valued gauge. Then for x ∈ RN , one has

∂J(x) = S̄x∩C◦.

Proof. Let x ∈ RN . We have
∂J(x) = FC◦(x) = H ∩C◦,

where H =
{

η ∈ RN : 〈η , x〉= J(x)
}

is the supporting hyperplane of C◦ at x. By Proposition 1(i), we
have

S̄x = aff∂J(x)⊆ H,

which implies that
S̄x∩C◦ ⊆ H ∩C◦.

The converse inclusion is true since ∂J(x) = H ∩C◦ ⊆ S̄x. �
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PROPOSITION 16 Let J = γC be a finite-valued gauge. For any x ∈ RN , one has

(i) For every u ∈ S̄x, J(x) = 〈u, x〉.

(ii) x ∈ Tx.

(iii) The subdifferential gauge Jx,◦
fx reads

Jx,◦
fx (η) = inf

τ>0
max(J◦(τ fx +η),τ)+ ιSx(η) .

(iv) The polar of the subdifferential gauge Jx
fx reads

Jx
fx(d) = J(dSx)−〈 fSx , dSx〉.

Proof.

(i) Each element of S̄x can be written as u = ∑
k
i=1 ρiηi, for k > 0, where ηi ∈ ∂J(x) and ∑

k
i=1 ρi = 1.

By Fenchel identity applied to the gauge J, and using Lemma 5(iii), we have

〈x, ηi〉= J(x)+ ιC◦(ηi), ∀i .

Since ηi ∈ ∂J(x)⊆C◦, we get
〈x, ηi〉= J(x), ∀i ,

Multiplying by ρi and summing this identity over i and using the fact that ∑
k
i=1 ρi = 1 we obtain the

desired result.

(ii) For any v ∈ Sx, we have v+ ex ∈ S̄x since ex ∈ S̄x. Thus applying (i), we get 〈x, ex + v〉 = J(x)
and 〈x, ex〉= J(x). Combining both identities implies that 〈x, v〉= 0, ∀v ∈ Sx, or equivalently that
x ∈ S⊥x = Tx.

(iii) Since fx ∈ ri∂J(x)⊂ S̄x, Proposition 1 implies that fx = PSx( fx)+PTx( fx) = PSx( fx)+ ex. Hence,
using Proposition 15, we get

∂J(x)− fx = (C◦− fx)∩ (S̄x− fx)

= (C◦− fx)∩ (Sx−{PSx( fx)})
= (C◦− fx)∩Sx .

We therefore obtain

Jx
fx(η) = γ(C◦− fx)∩Sx(η)

= max(γC◦− fx(η),γSx(η))

= max(γC◦− fx(η), ιSx(η))

= γC◦− fx(η)+ ιSx(η) .

At this stage, Lemma 6 does not apply straightforwardly since 0∈C◦ but fx 6= 0 in general. However,
proceeding as in the proof of that lemma, we arrive at

γC◦+{− fx}(η) = sup
ρ∈[0,1]

ρJ◦
+
∨ (1−ρ)σ{− fx}◦(η)
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where, from Definition 9, {− fx}◦ = {η : 〈η , fx〉>−1}, which indeed contains the origin as an
interior point. Continuing from the last equality, we get

γC◦+{− fx}(η) = sup
ρ∈[0,1]

ρJ◦
+
∨ (1−ρ)γ{− fx}◦◦(η)

= sup
ρ∈[0,1]

ρJ◦
+
∨ (1−ρ)γco({− fx}∪{0})(η)

= sup
ρ∈[0,1]

ρJ◦
+
∨ (1−ρ)γ{−µ fx: µ∈[0,1]}(η) .

It is easy to see that

γ{−µ fx: µ∈[0,1]}(−η) =

{
τ if η ∈ τ fx,τ ∈ R+ ,

+∞ otherwise .

Thus

γC◦+{− fx}(η) = sup
ρ∈[0,1]

inf
τ>0

ρJ◦(τ fx +η)+(1−ρ)τ .

Recalling that J◦ is a finite-valued gauge, hence continuous, the objective in the supinf fulfills the
assumption of the second assertion of Lemma 6, whence we get

γC◦+{− fx}(η) = inf
τ>0

max(J◦(τ fx +η),τ) .

(iv) Using some calculus rules with support functions and assertion (ii), we have

Jx
fx(d) = Jx

fx(dSx) = σ(C◦+{− fx})∩Sx(dSx)

= co
(
inf(σC◦+{− fx}(dSx),σS(dSx))

)
= co

(
inf(σC◦+{− fx}(dSx), ιT (dSx))

)
= σC◦+{− fx}(dSx)

= σC◦(dSx)−〈PSx( fx), dSx〉
= J(dSx)−〈PSx( fx), dSx〉 .

�
We end by showing that if a set-valued mapping is Lipschitz, then its polar is also Lipschitz continuous.

LEMMA 8 Let F : RN ⇒ RN be a β -Lipschitz set-valued mapping, such that F(x) is a compact convex
set containing the origin as a relative interior point for every x ∈ RN . Then F◦ defined as x 7→ F(x)◦

is β -Lipschitz. Moreover, the mapping x 7→ γF(x)(u), for any u ∈ dom(γF(x)) = span(F(x)), is β ||u||-
Lipschitz.

Proof. Using the Lipschitz continuity of F , we have

F(x′)⊆ F(x)+β ||x′− x||B(0),
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Using the symmetry of B(0), we get that

F(x′)+β ||x′− x||B(0)⊆ F(x).

Since the polarity reverses the order of inclusion, we have

(F(x′)+β ||x′− x||B(0))◦ ⊇ F(x)◦,

or equivalently, by Lemma 5,

γF(x)(u) = σF(x)◦(u)6 σ(F(x′)+β ||x′−x||B(0))◦(u) = γF(x′)+β ||x′−x||B(0)(u), (A.1)

Observe that these gauges are finite-valued and coercive for u as prescribed (see Lemma 4(v)). According
to Lemma 6, one has

γF(x′)+β ||x′−x||B(0)(u) = inf
z∈RN

max(γF(x′)(u),γβ ||x′−x||B(0)(u− z)).

It then follows that

γF(x′)+β ||x′−x||B(0)(u)6 γF(x′)(u)+ γβ ||x′−x||B(0)(u)

= γF(x′)(u)+β ||x′− x||||u||.

Thus, combining this with (A.1), we get

|γF(x)(u)− γF(x′)(u)|6 β ||x′− x||||u|| .

which concludes the proof. �

B. Proofs of Section 2

Proof of Proposition 1.

(i) This is due to the fact that ex is the orthogonal projection of 0 on the affine space S̄x. It is therefore
an element of S̄x∩ (S̄x− ex)

⊥, i.e. ex ∈ S̄x∩Tx.

(ii) This is straightforward from the fact that Sx =
{

η ∈ RN : ηTx = 0
}

, S̄x = Sx + ex and ex ∈ Tx from
(i).

�
Proof of Proposition 2. It follows from Lemma 4(v) since 0 ∈ ri(∂J(x)− fx). �
Proof of Proposition 3. The gauge Jx

fx is the support function of the set

Kx
def.
= ∂J(x)− fx =

{
η ∈ RN : J◦fx(η)6 1

}
⊂ Sx ,

where the inclusion follows from Proposition 2.

(i) Since Kx is a bounded set, its support function is finite-valued [20, Proposition V.2.1.3]. It then
follows that domJx

fx = RN .
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(ii) We have

Jx
fx(d) = sup

η∈Kx

〈η , d〉= sup
Jx,◦

fx (η)61
〈η , d〉= sup

Jx,◦
fx (ηSx )61

〈ηSx , d〉

= sup
η∈Kx

〈η , dTx〉+ 〈η , dSx〉= sup
η∈Kx

〈η , dSx〉

= Jx
fx(dSx) ,

where we used the fact that 〈η , dTx〉= 0 on Kx.

(iii) As a consequence of (ii), Jx
fx(dTx) = 0. Clearly, Tx ⊂ Ker(Jx

fx) and Jx
fx is constant along all affine

subspaces parallel to Tx. But, since 0 ∈ riKx, excluding the origin, the supremum in Jx
fx is always

attained at some nonzero η ∈Kx ⊂ Sx. Thus Jx
fx(d)> 0 for all d such that d /∈ Tx. This shows that

actually Ker(Jx
fx) = Tx. In particular, this yields that on Sx, the gauge Jx

fx is coercive.

�
Proof of Theorem 1. Invoking Proposition 1, we get that for every η ∈ ∂J(x), ηTx = ex, and PTx( fx) = ex.
It remains now to uniquely characterize the part of the subdifferential lying in Sx, i.e. ∂J(x)− ex. Since
fx ∈ ri∂J(x), we have from the one-to-one correspondence of Lemma 4(i) and the definition of the
subdifferential gauge,

η ∈
{

η ∈ RN : Jx,◦
fx (ηSx −PSx( fx))6 1

}
⇐⇒ ηSx −PSx( fx) ∈ ∂J(x)− fx

⇐⇒ ηSx ∈ ∂J(x)− ex

⇐⇒ η ∈ ∂J(x) .

�
Proof of Proposition 4. This is a convenient rewriting of the fact that x is a global minimizer if, and
only if, 0 is a subgradient of the objective function at x.

(i) For problem (Pλ (y)), this is equivalent to

1
λ

Φ
∗(y−Φx) ∈ ∂J(x).

Projecting this relation on T and S yields the desired result.

(ii) Let’s turn to problem (P0(y)). We have at any global minimizer x

0 ∈ ∂J(x)+Φ
∗N{α: α=y}(Φx)

where N{α: α=y}(x) is the normal cone of the constraint set {α : α = y} at x, which is obviously the
whole space RQ. Thus, this monotone inclusion is equivalent to the existence of α ∈ RQ such that

Φ
∗
α ∈ ∂J(x) .

Projecting again this on T and S proves the assertion.
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�
Proof of Lemma 1. Let J = γC, x ∈ T and x′ ∈ S.
⇒: By virtue of Lemma 5, we have

J◦(x+ x′) = sup
u∈C
〈x+ x′, u〉

= sup
J(u)61

〈x+ x′, u〉

= supJ(uT +uS)6 1〈x, uT 〉+ 〈x′, uS〉
= supJ(uT )+ J(uS)6 1〈x, uT 〉+ 〈x′, uS〉
= sup

ρ∈[0,1]
sup

J(uT )6ρ,J(uS)61−ρ

〈x, uT 〉+ 〈x′, uS〉

= sup
ρ∈[0,1]

ρ sup
J(uT )61

〈x, uT 〉+(1−ρ) sup
J(uS)61

〈x′, uS〉

= sup
ρ∈[0,1]

ρ sup
v∈C∩T

〈x, v〉+(1−ρ) sup
wC∩T
〈x′, w〉

= sup
ρ∈[0,1]

ρσC∩T (x)+(1−ρ)σC∩S(x′)

= max(σC∩T (x),σC∩S(x′)) .

Since
σC∩T (x) = co(inf(σC(x), ιS(x))) = σC(x) = J◦(x)

and
σC∩S(x′) = co

(
inf(σC(x′), ιT (x′))

)
= σC(x′) = J◦(x′) ,

the implication follows.
⇐: Using again Lemma 5, we get

J(x+ x′) = sup
u∈C◦
〈x+ x′, u〉

= sup
J◦(uT+uS)61

〈x, uT 〉+ 〈x′, uS〉

= sup
max(J◦(uT ),J◦(uS))61

〈x, uT 〉+ 〈x′, uS〉

= sup
J◦(uT )61,J◦(uS)61

〈x, uT 〉+ 〈x′, uS〉

= sup
v∈C◦∩T

〈x, v〉+ sup
w∈C◦∩S

〈x′, w〉

= σC◦∩T (x)+σC◦∩S(x′)

= co(inf(σC◦(x), ιS(x)))+ co
(
inf(σC◦(x′), ιT (x′))

)
= σC◦(x)+σC◦(x′)

= J(x)+ J(x′) .

This concludes the proof. �
Proof of Proposition 5.
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Let J = γC. We only need to show that Jx,◦
ex (ηSx) = J◦(ηSx). This follows from Proposition 2, Lemma 1

and Lemma 5(ii). Indeed,

Jx,◦
ex (ηSx) = inf

τ>0
max(J◦(τex +ηSx),τ) from Proposition 2,

= inf
τ>0

max(τJ◦(ex),J◦(ηSx),τ) from Lemma 1,

= inf
τ>0

max(J◦(ηSx),τ) from ex ∈ ∂J(x)⊂C◦,

= J◦(ηSx) .

�

C. Proofs of Section 3

Proof of Lemma 2. Let x1,x2 be two (global) minimizers of (Pλ (y)). Suppose that Φx1 6= Φx2. Define
xt = tx1 +(1− t)x2 for any t ∈ (0,1). By strict convexity of u 7→ ||y−u||22, one has

1
2
||y−Φxt ||22 <

t
2
||y−Φx1||22 +

1− t
2
||y−Φx2||22.

Since J is convex, we get
J(xt)6 tJ(x1)+(1− t)J(x2).

Combining these two inequalities contradicts the fact that x1,x2 are global minimizers of (Pλ (y)). �
Proof of Theorem 2. To prove this theorem, we need the following lemmata.

LEMMA 9 Let C be a non-empty closed convex set and f a proper lsc convex function. Let x be a
minimizer of minz∈C f (z). If

f ′(x,z− x)> 0 ∀z ∈C,z 6= x ,

then, x is the unique solution of f on C.

Proof. We first show that t 7→ ( f (x+ t(z− x))− f (z))/t is non-decreasing on (0,1]. Indeed, let
g : [0,1]→ R a convex function such that g(0) = 0. Let (t,s) ∈ (0,1]2 with s > t. Then,

g(t) = g(s(t/s)) = g(s(t/s)+(1− t/s)0)

6 t
g(s)

s
+(1− t/s)g(0)

= t
g(s)

s
,

which proves that t ∈ (0,1] 7→ g(t)
t is non-decreasing on (0,1]. Since f is convex, applying this result

shows that the function
t ∈ (0,1] 7→ g(t) = f (x+ t(z− x))− f (z)

is such that g(0) = 0 and g(t)/t is non-decreasing.
Assume now that that f ′(x,z− x)> 0. Then, for every x ∈C,

g(1) = f (z)− f (x)> f ′(x,z− x)> 0, ∀z ∈C,z 6= x ,

which is equivalent to x being the unique minimizer of f on C. �
We now compute the directional derivative of a finite-valued convex function J.
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LEMMA 10 The directional derivative J′(x,δ ) at point x ∈ RN in the direction δ reads

J′(x,δ ) = 〈ex, δTx〉+ 〈PSx( fx), δSx〉+ Jx
fx(δSx).

Proof. This comes directly from the structure of Jx
fx . Indeed, one has

Jx
fx(δSx) = Jx

fx(δ ) Using Proposition 3(ii)

= sup
η∈∂J(x)−{ fx}

〈η , δ 〉

=−〈δ , fx〉+ sup
η∈∂J(x)

〈η , d〉

=−〈δ , fx〉+ J′(x,δ )

=−〈ex, δTx〉−〈PSx( fx), δSx〉+ J′(x,δ ) .

�
We are now in position to show Theorem 3. We provide the proof for (Pλ (y)). That of (P0(y)) is

similar.
Let x be a solution of (Pλ (y)). According to Lemma 2, the set of minimizers of (Pλ (y)) reads

M⊆ x+Ker(Φ), which is a closed convex set. We can therefore rewrite (Pλ (y)) as

min
z∈M

J(z).

Invoking Lemma 9 with C = M, x is thus the unique minimizer if

∀δ ∈ Ker(Φ)\{0}, J′(x,δ )> 0.

Using Lemma 10 and the fact that Ker(Φ) is a subspace, this is equivalent to

∀δ ∈ Ker(Φ)\{0}, 〈ex, δT 〉+ 〈PS( fx), δS〉< Jx
fx(−δS).

which is (NSPS). �
Proof of Corollary 1. Using [20, Theorem V.2.2.3], we know that

η ∈ ri(∂J(x))⇔ J′(x,δ )> 〈η , δ 〉 ∀δ such that J′(x,δ )+ J′(x,−δ )> 0.

Applying this with η = Φ∗α ∈ ri(∂J(x)), and using Lemma 10, we obtain

Φ
∗
α ∈ ri(∂J(x))⇔ J′(x,δ )> 〈α, Φδ 〉 ∀δ such that Jx

fx(δ )+ Jx
fx(−δ )> 0.

Moreover, since Jx
fx and Ker(Jx

fx) = Tx = T from Proposition 3(iii), and (CT ) holds, we get

Φ
∗
α ∈ ri(∂J(x))⇔ J′(x,δ )> 〈α, Φδ 〉 ∀δ /∈ T

⇒ J′(x,δ )> 0 ∀δ ∈ Ker(Φ).

We conclude using Theorem 2. �
Proof of Theorem 3.
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(i) Let the dual vector α = (y−Φx)/λ , and η = Φ∗α ∈ ∂J(x) by Theorem 1(i). We then observe that

η ∈
{

η ∈ RN : J◦fx(ηS−PS( fx))< 1
}
⇐⇒ ηS−PS( fx) ∈ ri(∂J(x)−{ fx})
⇐⇒ η ∈ ri(∂J(x)) .

Thus, applying Corollary 1 with such a dual vector yields the assertion.

(ii) The proof is similar to (i) except that we invoke Theorem 1(ii).

�

D. Proofs of Section 4

Proof of Theorem 4. Without loss of generality, we show this result for Γ = || · || since for every x ∈ RN ,

Γ (x)6 |||Id|||
Γ→`2 ||x||.

Recall that J is partly smooth at x relative to Tx, and ∂J : RN ⇒ RN is Lipschitz-continuous around x
relative to Tx.

• Existence of fx. Such a mapping exists according to [2, Theorem 9.4.3].

• ν-stability. Using [23, Proposition 2.10] the sharpness property Definition 5(ii) is locally stable.
Hence, for x′ ∈ Tx in a neighborhood of x, TTx(x

′) = Tx = Tx′ . The radius of this neighborhood can
be taken as νx.

• µ-stability. Using [20, Corollary VI.2.1.3], we write for any h ∈ Tx

J(x+ th) = J(x)+ t〈s, h〉+o(t) = J(x)+ t〈ex, h〉+o(t),

where s ∈ F∂J(x)(h). Since J restricted to Tx ∩U is C2 according to the smoothness property,
repeating this argument at order 2 allows to conclude that the mapping z ∈ Tx∩U 7→ ez is C1, when
local Lipschitz continuity follows immediately.

• τ-stability. One has

Jx,◦
fx (PS( fx− fx′))6 |||PSx |||Jx,◦

fx →`2 || fx− fx′ ||6 τx||x− x′||,

where τx = |||PSx |||Jx,◦
fx →`2β and β is the Lipschitz constant associated to fx, proving (4.3).

• ξ -stability. ∂J is Lipschitz-continous around x relative to Tx, and x 7→ fx is β -Lipschitz-continuous.
Hence, the mapping x 7→ (∂J(x)− fx) is Lipschitz on Tx. In view of Lemma 8, we get that

Jx′,◦
fx′

(u)− Jx,◦
fx (u)6 β ||x′− x||||u||.

Since ||u||6 |||Id|||`2→Jx,◦
fx

Jx,◦
fx (u), we get the desired bound where ξx = β |||Id|||`2→Jx,◦

fx
.

�
Proof of Proposition 6.
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(i) First, we have
∂H(x) = ∂J(x)+∂G(x),

Let SJ = span(∂J(x)−ηJ) and SG = span(∂G(x)−ηG), for any pair ηJ ∈ ∂J(x) and ηG ∈ ∂G(x).
Choosing ηH = ηJ +ηG ∈ ∂H(x) we have

SH = span(∂H(x)−η
H)

= span
(
(∂J(x)−η

J)+(∂G(x)−η
G)
)

= span
(
span(∂J(x)−η

J)+span(∂G(x)−η
G)
)

= span(SJ ∪SG).

As a consequence we have T H = (SH)⊥ = T J ∩T G.

(ii) Moreover, since T H⊥SJ ∪SG we have from Proposition 1(iii) that

eH = PT H (∂H(x)) = PT H (∂J(x)+∂G(x))

= PT H (eJ +PSJ ∂J(x)+ eG +PSG ∂G(x))

= PT H (eJ + eG).

(iii) As f J
x ∈ ri∂J(x) and f G

x ∈ ri∂G(x), it follows from [34, Corollary 6.6.2] that

f H
x = f J

x + f G
x ∈ ri∂J(x)+ ri∂G(x) = ri(∂J(x)+∂G(x)) = ri∂H(x) .

The subdifferential gauge associated to H is then

Hx,◦
f H
x
= γ∂H(x)− f H

x
= γ(∂J(x)− f J

x )+(∂G(x)− f G
x )

,

which is coercive and finite on SH according to Proposition 2. Invoking Lemma 6, we get the
desired result since for any ρ > 0,

u 7→ ρJx,◦
f J
x
(u)+(1−ρ)Gx,◦

f G
x
(η−u) = ργ∂J(x)− f J

x
(u)+(1−ρ)γ∂G(x)− f G

x
(η−u)

is finite and continuous on SJ ∩ (SG +η), for η ∈ SH = span(SJ +SG) by (i).

�
Proof of Proposition 7. In the following, all operator bounds that appear are finite owing to the coercivity
assumption on the involved gauges in Definition 6 of a partly smooth regularizer.

It is straightforward to see that the function Γ H = max(Γ J ,Γ G) is indeed a gauge, which is finite
and coercive on T H = T J ∩T G. Moreover, given that both J and G are partly smooth relative to a linear
manifold at x with corresponding parameters νJ

x and νG
x , we have with the advocated choice of Γ H and

νH
x ,

Γ
J(x− x′)6 ν

J
x and Γ

G(x− x′)6 ν
G
x ,

for every ∀x′ ∈ T H
x such that Γ H(x− x′)6 νH

x . It follows that:

• Since J and G are both partly smmoth relative to a linear manifold, then we have T J
x = T J

x′ and
T G

x = T G
x′ , and thus by Proposition 6(i)

T H
x = T J

x ∩T G
x = T J

x′ ∩T G
x′ = T H

x′ = T H .
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• µH
x -stability: we have from Proposition 6(ii)

Γ
H(eH

x − eH
x′ ) = Γ

H (PT H (eJ
x + eG

x − eJ
x′ − eG

x′)
)

6 Γ
H (PT H (eJ

x− eJ
x′)
)
+Γ

H (PT H (eG
x − eG

x′)
)

6 |||PT H |||Γ J→Γ H Γ
J (eJ

x− eJ
x′
)
+ |||PT H |||Γ G→Γ H Γ

G (eG
x − eG

x′
)

6
(
µ

J
x |||PT H |||Γ J→Γ H +µ

G
x |||PT H |||Γ G→Γ H

)
Γ

H(x− x′) ,

where we used µJ
x - and µG

x -stability of J and G in the last inequality.

• τH
x -stability: the fact that SJ ⊆ SH and SG ⊆ SH and subadditivity of gauges lead to

Hx,◦
f H
x

(
PSH ( f H

x − f H
x′ )
)

= Hx,◦
f H
x

(
PSJ ( f J

x − f J
x′)+PSG( f G

x − f G
x′ )+PSH (eJ

x− eJ
x′)+PSH (eG

x − eG
x′)
)

6 Hx,◦
f H
x

(
PSJ ( f J

x − f J
x′)
)
+Hx,◦

f H
x

(
PSG( f G

x − f G
x′ )
)

+Hx,◦
f H
x

(
PSH (eJ

x− eJ
x′)
)
+Hx,◦

f H
x

(
PSH (eG

x − eG
x′)
)
. (A.1)

According to Proposition 6(iii), we have

Hx,◦
f H
x

(
PSJ ( f J

x − f J
x′)
)
= inf

η1+η2=PSJ ( f J
x− f J

x′ )
max(Jx,◦

f J
x
(η1),G

x,◦
f G
x
(η2)) .

Since domJx,◦
f J
x
= SJ , (η1,η2) = (PSJ ( f J

x − f J
x′),0) is a feasible point of the last problem, and we

get
Hx,◦

f H
x

(
PSJ ( f J

x − f J
x′)
)
6 Jx,◦

f J
x

(
PSJ ( f J

x − f J
x′)
)
.

Moreover, as eJ
x ,e

J
x′ ∈ T J (see Proposition 1(ii)) and SJ ⊆ SH , we have

min
η1∈T J ,η2SJ ,η1+η2∈SH

||η1 +η2− (eJ
x− eJ

x′)||
2

= min
η1∈T J ,η2SJ ,η1+η2∈SH

||η1− (eJ
x− eJ

x′)||
2 + ||η2||2

= min
η1∈T J ,η2SJ ,η1∈SH

||η1− (eJ
x− eJ

x′)||
2 + ||η2||2

= min
η1∈SH∩T J

||η1− (eJ
x− eJ

x′)||
2 .

That is
PSH (eJ

x− eJ
x′) = PSH∩T J (eJ

x− eJ
x′) .

Thus
Hx,◦

f H
x

(
PSH (eJ

x− eJ
x′)
)
6 |||PSH∩T J |||Γ J→Hx,◦

f Hx

Γ
J (eJ

x− eJ
x′
)
.

Similar reasoning leads to the following bounds

Hx,◦
f H
x

(
PSG( f G

x − f G
x′ )
)
6 Gx,◦

f G
x

(
PSG( f G

x − f G
x′ )
)
,

Hx,◦
f H
x

(
PSH (eG

x − eG
x′)
)
6 |||PSH∩T G |||Γ J→Hx,◦

f Hx

Γ
G (eG

x − eG
x′
)
.
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Having this, we can continue to bound (A.1) as

Hx,◦
f H
x

(
PSH ( f H

x − f H
x′ )
)

6 Jx,◦
f J
x

(
PSJ ( f J

x − f J
x′)
)
+Gx,◦

f G
x

(
PSG( f G

x − f G
x′ )
)

+ |||PSH∩T J |||Γ J→Hx,◦
f Hx

Γ
J (eJ

x− eJ
x′
)
+ |||PSH∩T G |||Γ J→Hx,◦

f Hx

Γ
G (eG

x − eG
x′
)

6 τ
J
x Γ

J(x− x′)+ τ
G
x Γ

G(x− x′)+µ
J
x |||PSH∩T J |||Γ J→Hx,◦

f Hx

Γ
J (x− x′

)
+µ

G
x |||PSH∩T G |||Γ G→Hx,◦

f Hx

Γ
G (x− x′

)
6

(
τ

J
x + τ

G
x +µ

J
x |||PSH∩T J |||Γ J→Hx,◦

f Hx

+µ
G
x |||PSH∩T G |||Γ G→Hx,◦

f Hx

)
Γ

H(x− x′) ,

where the last two inequalities J and G follow from µJ
x -, τJ

x -, µG
x - and τG

x - stability of J and G.

• ξ H
x -stability: Proposition 6(iii) again yields that for any η ∈ SH

H◦f H
x′
(η) = inf

η1+η2=η
max(J◦f J

x′
(η1),G◦f G

x′
(η2))

6max(J◦f J
x′
(η̄1),G◦f G

x′
(η̄2))

for any feasible (η̄1, η̄2)∈ SJ×SG∩{(η1,η2 : η1 +η2 = η}. Now both J and G are partly smooth
relative to a linear manifold, hence respectively ξ J

x - and ξ G
x -stable. Therefore, with the form of Γ H

we have

J◦f J
x′
(η̄1)6 (1+ξ

J
x Γ

J(x− x′))Jx,◦
f J
x
(η̄1)6 βJx,◦

f J
x
(η̄1)

G◦f G
x′
(η̄2)6 (1+ξ

G
x Γ

G(x− x′))Gx,◦
f G
x
(η̄2)6 βGx,◦

f G
x
(η̄2) ,

where β = 1+max
(
ξ J

x ,ξ
G
x
)

Γ H(x− x′). Whence we get

max(J◦f J
x′
(η1),G◦f G

x′
(η2))6 β max(Jx,◦

f J
x
(η̄1),G

x,◦
f G
x
(η̄2)) .

Taking in particular
(η̄1, η̄2) ∈ Argmin

η1+η2=η

max(Jx,◦
f J
x
(η1),G

x,◦
f G
x
(η2))

we arrive at
H◦f H

x′
(η)6 β inf

η1+η2=η
max(J◦f J

x
(η1),G◦f G

x
(η2)) = βH◦f H

x
(η) .

This completes the proof.
�

Proof of Corollary 2. Gâteaux-differentiability entails that ∂G(x) = {∇G(x)}, whence we obtain
T G

x = RN and eG
x = ∇G(x). Applying Proposition 6, we get the result. It is sufficient to remark that the

smooth perturbation G translates the subdifferential ∂J(x) by ∇G(x). Hence, using our choice of f J+G
x ,

we find the same subdifferential gauge. �
Proof of Corollary 3. Since G si C2 on RN , it is obviously partly smooth relative to T G

x =RN according
to [23, Example 3.1]. We now exhibit the constants involved.
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• ν-stability. For every x′ ∈ RN , x′ ∈ T G
x , and thus νG

x =+∞, implying that νH
x = νJ

x .

• µ-stability. Using the µ-stability of J and the fact that ∇G is β -Lipschitz, we get that

µ
H
x = µ

J
x |||PT J |||Γ J→Γ H +β |||PT J |||`2→Γ H .

• τ- and ξ -stability. Since S = {0}, τG
x = ξ G

x = 0, and we get from Proposition 7

τ
H
x = τ

J
x and ξ

H
x = ξ

J
x .

�
Proof of Proposition 8.

(i) One has ∂J = D◦∂J0 ◦D∗, hence S = DS0 = Im(DS0) and T = S⊥ = Ker(D∗S0
).

(ii) As S = DS̄0 = De0 +S, we get rom Proposition 1

e ∈ argmin
z∈S̄

||z||= argmin
z−De0∈S

||z||= De0 + argmin
h∈S

||h+De0||

= De0 +PS(−De0) = (Id−PS)De0 = PT De0 .

(iii) With such a choice of fx, we have

f0,D∗x ∈ ri∂J0(D∗x)⇒ D f0,D∗x ∈ D ri∂J0(D∗x)

⇐⇒ fx ∈ riD∂J0(D∗x) ⇐⇒ fx ∈ ri∂J(x) .

We follow the same lines as in the proof of Lemma 7, where we additionally invoke Proposition 3(ii)
to get

Jx
fx(d) = σ∂J(x)− fx(d)

= σD(∂J0(D∗x)− f0,D∗x)
(d)

= σ∂J0(D∗x)− f0,D∗x
(D∗d)

= JD∗x
0, f0,D∗x

(D∗d)

= JD∗x
0, f0,D∗x

(D∗S0
d) .

Note that Jx
fx is indeed constant along affine subspaces parallel to Ker(D∗S0

) = S⊥ = T . We now get
that for every η ∈ S = Ker(D+

S0
)⊥

Jx
fx(η) = σJx

fx (d)61(η)

= σJD∗x
0, f0,D∗x

(D∗S0
d)61(η)

=

(
ιJD∗x

0, f0,D∗x
(w)61 ◦D∗S0

)∗
(η)

= inf
v

σJD∗x
0, f0,D∗x

(w)61(v) s.t. DS0v = η

= inf
z∈Ker(DS0 )

JD∗x,◦
0, fD∗x

(D+
S0

η + z) .
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The infimum is finite and is attained necessarily at some z∈Ker(DS0)∩S0 6= /0 since domJD∗x,◦
0, fD∗x

= S0

and Im(D+
S0
) = Im(D∗S0

)⊂ S0. Moreover, Ker(DS0)∩S0 = Ker(D)∩S0.

�
Proof of Proposition 9. In the following, all operator bounds that appear are finite owing to the coercivity
assumption on the involved gauges in Definition 6 of a partly smooth regularizer.

• Let x′ such that
Γ (x− x′)6

1
|||D∗|||

Γ→Γ0

ν0,D∗x.

Hence,
Γ0(D∗x−D∗x′)6 |||D∗|||

Γ→Γ0
Γ (x− x′)6 ν0,D∗x

As J0 is a partly smooth relative to a linear manifold at D∗x, we have T0,D∗x = T0,D∗x′ = T0 and
consequently, using Proposition 8(i), Tx = Ker(D∗S0,D∗x

) = Ker(D∗S0,D∗x′
) = Tx′ = T = S⊥.

• µx-stability: we now have

Γ (ex− e′x) = Γ (PT D(e0,D∗x− e0,D∗x′)) Proposition 8(ii)
6 |||PT D|||

Γ0→Γ
Γ0(e0,D∗x− e0,D∗x′)

6 µ0,D∗x|||PT D|||
Γ0→Γ

Γ0(D∗x−D∗x′) using µ0,D∗x-stability of J0

6 µ0,D∗x|||PT D|||
Γ0→Γ

|||D∗|||
Γ→Γ0

Γ (x− x′).

• τx-stability: since f0,D∗x ∈ ∂J0(D∗x) and f0,D∗x′ ∈ ∂J0(D∗x′), one has

f0,D∗x− f0,D∗x′ = PS0( f0,D∗x− f0,D∗x′)+ e0,D∗x− e0,D∗x′ .

Thus, subadditivity yields

Jx,◦
fx (PS( fx− fx′)) = Jx,◦

fx (PS D( f0,D∗x− f0,D∗x′))

6 Jx,◦
fx (PS DPS0( f0,D∗x− f0,D∗x′))+ Jx,◦

fx (PS D(e0,D∗x− e0,D∗x′)).

Using Proposition 8(iii) and τ0,D∗x-stability of J0, we get the following bound on the first term

Jx,◦
fx (PS DPS0( f0,D∗x− f0,D∗x′))

= inf
z∈Ker(D)∩S0

JD∗x,◦
0, fD∗x

(D+
S0

PS DPS0( f0,D∗x− f0,D∗x′)+ z)

6 JD∗x,◦
0, fD∗x

(D+
S0

PS DPS0( f0,D∗x− f0,D∗x′))

6
∣∣∣∣∣∣∣∣∣D+

S0
PS D

∣∣∣∣∣∣∣∣∣
JD∗x,◦

0, fD∗x
→JD∗x,◦

0, fD∗x

JD∗x,◦
0, fD∗x

(PS0( f0,D∗x− f0,D∗x′))

6 τ0,D∗x

∣∣∣∣∣∣∣∣∣D+
S0

PS D
∣∣∣∣∣∣∣∣∣

JD∗x,◦
0, fD∗x

→JD∗x,◦
0, fD∗x

Γ0(D∗x−D∗x′)

6 τ0,D∗x

∣∣∣∣∣∣∣∣∣D+
S0

PS D
∣∣∣∣∣∣∣∣∣

JD∗x,◦
0, fD∗x

→JD∗x,◦
0, fD∗x

|||D∗|||
Γ→Γ0

Γ (x− x′).
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Now, combining Proposition 8(iii) and µ0,D∗x-stability of J0, we obtain the following bound on the
second term

Jx,◦
fx (PS D(e0,D∗x− e0,D∗x′))6 JD∗x,◦

0, fD∗x
(D+

S0
PS D(e0,D∗x− e0,D∗x′))

6
∣∣∣∣∣∣∣∣∣D+

S0
PS D

∣∣∣∣∣∣∣∣∣
Γ0→JD∗x,◦

0, fD∗x

Γ0(e0,D∗x− e0,D∗x′)

6 µ0,D∗x

∣∣∣∣∣∣∣∣∣D+
S0

PS D
∣∣∣∣∣∣∣∣∣

Γ0→JD∗x,◦
0, fD∗x

|||D∗|||
Γ→Γ0

Γ (x− x′).

Combining these inequalities, we arrive at

Jx,◦
fx (PS( fx− fx′))6

(
τ0,D∗x

∣∣∣∣∣∣∣∣∣D+
S0

PS D
∣∣∣∣∣∣∣∣∣

JD∗x,◦
0, fD∗x

→JD∗x,◦
0, fD∗x

+µ0,D∗x

∣∣∣∣∣∣∣∣∣D+
S0

PS D
∣∣∣∣∣∣∣∣∣

Γ0→JD∗x,◦
0, fD∗x

)
|||D∗|||

Γ→Γ0
Γ (x− x′),

whence we get τx-stability.

• ξx-stability: from Proposition 8(iii), we can write for any η ∈ S

Jx′,◦
fx′

(η) = inf
z∈Ker(D)∩S0

JD∗x′,◦
0, fD∗x′

(D+
S0

η + z)

6 Jx′,◦
fx′

(D+
S0

η + z̄)

for any z̄ ∈ Ker(D)∩S0.

Owing to ξ0,D∗x-stability of J0, and since D+
S0

η ∈ S0, we have for any feasible z̄ ∈ Ker(D)∩S0

JD∗x′,◦
0, fD∗x′

(D+
S0

η + z̄)6
(
1+ξ0,D∗xΓ0(D∗x−D∗x′)

)
JD∗x,◦

0, fD∗x
(D+

S0
η + z̄) .

Taking in particular

z̄ ∈ Argmin
z∈Ker(D)∩S0

JD∗x,◦
0, fD∗x

(D+
S0

η + z)

we get the bound

Jx′,◦
fx′

(η)6
(
1+ξ0,D∗xΓ0(D∗x−D∗x′)

)
inf

z∈Ker(D)∩S0
JD∗x,◦

0, fD∗x
(D+

S0
η + z)

=
(
1+ξ0,D∗xΓ0(D∗x−D∗x′)

)
Jx′,◦

fx′
(η)

=
(

1+ξ0,D∗x|||D∗|||Γ→Γ0
Γ (x− x′)

)
Jx′,◦

fx′
(η) ,

where we used again Proposition 8(iii) in the first equality.

�
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E. Proofs of Section 5

Proof of Theorem 5. This is a straightforward consequence of Theorem 3(ii) by constructing an
appropriate dual certificate from IC(x0). Denote e = ex0 , f = fx0 and S = T⊥. Taking the dual vector
α = Φ

+,∗
T e, we have on the one hand

Φ
∗
T Φ

+,∗
T e = e

since e ∈ Im(Φ∗T ).
On the other hand,

Jx0,◦
f0

(Φ∗S Φ
+,∗
T e−PS f ) = IC(x0)< 1.

�
Proof of Theorem 6. To lighten the notation, we let ε = ||w||, ν = νx0 ,µ = µx0 ,τ = τx0 ,ξ = ξx0 , f = fx0 .

The strategy is to construct a vector which, by (CT ), is the unique solution to

min
x∈T

1
2
||y−Φx||2 +λJ(x) , (PT

λ
(y))

and then to show that it is actually the unique solution to (Pλ (y)) under the assumptions of Theorem 6.
The following lemma gives a convenient implicit equation satisfied by the unique solution to (PT

λ
(y)).

LEMMA 11 Let x0 ∈ RN and denote T = Tx0 . Assume that (CT ) holds. Then (PT
λ
(y)) has exactly one

minimizer x̂, and the latter satisfies

x̂ = x0 +Φ
+
T w−λ (Φ∗T ΦT )

−1ẽ where ẽ ∈ PT (∂J(x̂)). (A.1)

Proof. Assumption (CT ) implies that the objective in (PT
λ
(y)) is strongly convex on the feasible set T ,

whence uniqueness follows immediately. By a trivial change of variable, (PT
λ
(y)) be also rewritten in

the unconstrained form
x̂ = argmin

x∈RN

1
2
||y−ΦT x||2 +λJ(PT x) .

Thus, using Proposition 4(i), x̂ has to satisfy

Φ
∗
T (y−ΦT x̂)+λ ẽ = 0,

for any ẽ ∈ PT (∂J(x̂)). Owing to the invertibility of Φ on T , i.e. (CT ), we obtain (A.1). �
We are now in position to prove Theorem 6. This is be achieved in three steps:

Step 1: We show that in fact Tx̂ = T .

Step 2: Then, we prove that x̂ is the unique solution of (Pλ (y)) using Theorem 3.

Step 3: We finally exhibit an appropriate regime on λ and ε for the above two statements to hold.

E.0.4 Step 1: Subspace equality. By construction of x̂ in (PT
λ
(y)), it is clear that x̂ ∈ T . The key

argument now is to use that J is partly smooth relative to a linear manifold at x0, and to show that

Γ (x0− x̂)6 ν , (A.2)

which in turn will imply subspace equality, i.e. Tx̂ = T (see Definition 6).



43 of 52

We have from (A.1) and subadditivity that

Γ (x0− x̂)6 Γ (−Φ
+
T w)+λΓ ((Φ∗T ΦT )

−1ẽ)

6
∣∣∣∣∣∣(Φ∗T ΦT )

−1∣∣∣∣∣∣
Γ→Γ

{Γ (−Φ
∗
T w)+λΓ (ẽ)}

6
∣∣∣∣∣∣(Φ∗T ΦT )

−1∣∣∣∣∣∣
Γ→Γ

{|||Φ∗T |||`2→Γ
ε +α0λ} . (A.3)

where α0 = Γ (ẽ). Consequently, to show that (A.2) is verified, it is sufficient to prove that

Aε +Bλ 6 ν , (C1)

where we set the positive constants

A =
∣∣∣∣∣∣(Φ∗T ΦT )

−1∣∣∣∣∣∣
Γ→Γ
|||Φ∗T |||`2→Γ

,

B = α0
∣∣∣∣∣∣(Φ∗T ΦT )

−1∣∣∣∣∣∣
Γ→Γ

.

Suppose for now that (C1) holds and consequently, Tx̂ = T . Then decomposability of J on T
(Theorem 1) implies that

ê = PTx̂(∂J(x̂)) = PT (∂J(x̂)) = ẽ,

where we have denote ê = ex̂. Thus (A.1) yields the following implicit equation

x̂ = x0 +Φ
+
T w−λ (Φ∗T ΦT )

−1ê. (A.4)

E.0.5 Step 2: x̂ is the unique solution of (Pλ (y)). Recall that under condition (C1), J is decomposable
at x̂ and x0 with the same model subspace T . Moreover, (A.4) is nothing but condition (3.1) in Theorem 3
satisfied by x̂. To deduce that x̂ is the unique solution of (Pλ (y)), it remains to show that (3.2) holds i.e.,

Jx̂,◦
f̂
(λ−1

Φ
∗
S (y−Φ x̂)− f̂S)< 1. (A.5)

where we use the shorthand notations f̂ = fx̂ and f̂S = PS f̂ .
Under condition (C1), the ξ -stability property (4.4) of J at x0 yields

Jx̂,◦
f̂
(λ−1

Φ
∗
S (y−Φ x̂)− f̂S)6

(
1+ξΓ (x0− x̂)

)
Jx0,◦

f0
(λ−1

Φ
∗
S (y−Φ x̂)− f̂S). (A.6)

Furthermore, from (A.4), we can derive

λ
−1

Φ
∗
S (y−Φ x̂)− f̂S = Φ

∗
S Φ

+,∗
T ê+λ

−1
Φ
∗
S QT w− f̂S, (A.7)

where QT = Id−ΦT Φ
+
T = PKer(Φ∗T )

. Inserting(A.7) in (A.6), we obtain

Jx̂,◦
f̂
(λ−1

Φ
∗
S (y−Φ x̂)− f̂S)6

(
1+ξΓ (x0− x̂)

)
Jx0,◦

f0
(Φ∗S Φ

+,∗
T ê+λ

−1
Φ
∗
S QT w− f̂S).

Moreover, subadditivity yields

Jx0,◦
f0

(Φ∗S Φ
+,∗
T ê+λ

−1
Φ
∗
S QT w− f̂S)6 Jx0,◦

f0
(Φ∗S Φ

+,∗
T e− fS)+ Jx0,◦

f0
(Φ∗S Φ

+,∗
T (ê− e))

+ Jx0,◦
f0

(PS( f − f̂ ))+ Jx0,◦
f0

(λ−1
Φ
∗
S QT w). (A.8)
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We now bound each term of (A.8). In the first term, one recognizes

Jx0,◦
f0

(Φ∗S Φ
+,∗
T e− fS)6 IC(x0). (A.9)

Appealing to the µ-stability property, we get

Jx0,◦
f0

(Φ∗S Φ
+,∗
T (ê− e))6

∣∣∣∣∣∣∣∣∣−Φ
∗
S Φ

+,∗
T

∣∣∣∣∣∣∣∣∣
Γ→J

x0 ,◦
f0

Γ (e− ê)

6 µ

∣∣∣∣∣∣∣∣∣−Φ
∗
S Φ

+,∗
T

∣∣∣∣∣∣∣∣∣
Γ→J

x0 ,◦
f0

Γ (x0− x̂). (A.10)

From τ-stability, we have

Jx0,◦
f0

( fS− f̂S)6 τΓ (x0− x̂). (A.11)

Finally, we use a simple operator bound to get

Jx0,◦
f0

(λ−1
Φ
∗
S QT w)6

1
λ
|||Φ∗S QT |||`2→J

x0 ,◦
f0

ε. (A.12)

Following the same steps as for the bound (A.3), except using ẽ = ê here, gives

Γ
(
x0− x̂)

)
6
∣∣∣∣∣∣(Φ∗T ΦT )

−1∣∣∣∣∣∣
Γ→Γ

{|||Φ∗T |||`2→Γ
ε +λΓ (ê)} . (A.13)

Plugging inequalities (A.9)-(A.13) into (A.6) we get the upper-bound

Jx̂,◦
f̂
(Φ∗S Φ

+,∗
T ê+λ

−1
Φ
∗
S QT w− f̂S)

6 (1+ξΓ (x0− x̂))
(

IC(x0)+Γ (x0− x̂)
(
µ

∣∣∣∣∣∣∣∣∣−Φ
∗
S Φ

+,∗
T

∣∣∣∣∣∣∣∣∣
Γ→J

x0 ,◦
f0

+ τ
)

+
1
λ
|||Φ∗S QT |||`2→J

x0 ,◦
f0

ε

)
6 (1+ξ (c1ε +λc2))

(
IC(x0)+(c1ε +λc2)µ̄ +

1
λ

c4ε

)
< 1,

where we have introduced

µ̄ = µc3 + τ and α1 = Γ (ê) = Γ (ẽ) = α0

and
c1 = A, c2 = α1

∣∣∣∣∣∣(Φ∗T ΦT )
−1
∣∣∣∣∣∣

Γ→Γ
,

c3 =
∣∣∣∣∣∣∣∣∣−Φ∗S Φ

+,∗
T

∣∣∣∣∣∣∣∣∣
Γ→J

x0 ,◦
f0

, c4 =
∣∣∣∣∣∣Φ∗S QT

∣∣∣∣∣∣
`2→J

x0 ,◦
f0

.

If is then sufficient that

(1+ξ (c1ε +λc2))
(

IC(x0)+(c1ε +λc2)µ̄ +
1
λ

c4ε

)
< 1, (A.14)

for (3.2) in Theorem 3 to be in force.
In particular, if

Cε 6 λ
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holds for some constant C > 0 to be fixed later, then inequality (A.14) is true if

P(λ ) = aλ
2 +bλ + c > 0 where

 a =−ξ µ̄ (c1/C+ c2)
2

b =−(c1/C+ c2)(ξ IC(x0)+ξ c4/C+ µ̄)
c = 1− IC(x0)− c4/C

. (A.15)

Let us set the value of C to
C =

2c4

1− IC(x0)
,

which, for 06 IC(x0)< 1, it ensures that c = 1−IC(x0)
2 is bounded and positive, and thus, the polynomial

P has a negative and a positive root λmax equal to

λmax =
b

2a
ϕ

(
−4

ac
b2

)
,

 a =−ξ µ̄((1− IC(x0))c1/(2c4)+ c2)
2

b =−((1− IC(x0))c1/(2c4)+ c2)(µ̄ +(1+ IC(x0))ξ/2)
c = (1− IC(x0))/2

=
µ̄ +(1+ IC(x0))ξ/2

ξ µ̄((1− IC(x0))c1/c4 +2c2)
ϕ

(
2ξ (1− IC(x0))µ̄

(µ̄ +(1+ IC(x0))ξ/2)2

)
>

1− IC(x0)

ξ
H(µ̄/ξ ),

where

ϕ(β ) =
√

1+β −1, and H(β ) =
β +1/2

β (c1/c4 +2c2)
ϕ

(
2β

(β +1)2

)
.

To get the above lower-bound on λmax, we used that ϕ is increasing (in fact strictly) and concave on R+

with ϕ(1) = 0, and that IC(x0) ∈ [0,1[. Consequently, we can conclude that the bounds

2c4

1− IC(x0)
ε 6 λ 6

1− IC(x0)

ξ
H(µ̄/ξ ) (C2)

imply condition (A.14), which in turn yields (A.5).

E.0.6 Step 3: (C1) and (C2) are in agreement. It remains now that show the compatibility of (C1)
and (C2), i.e. to provide appropriate regimes of λ and ε such that both conditions hold simultaneously.
We first observe that (C1) and the left-hand-side of (C2) both hold for λ fulfilling

λ 6C0ν where C0 =

(
A

2c4
+B
)−1

6

(
1− IC(x0)

2c4
A+B

)−1

.

This updates (C2) to the following ultimate range on λ

2c4

1− IC(x0)
ε 6 λ 6min

(
C0ν ,

1− IC(x0)

ξ
H(µ̄/ξ )

)
.

Now in order to have an admissible non-empty range for λ , the noise level ε must be upper-bounded as

ε 6
1− IC(x0)

2c4
min

(
C0ν ,

1− IC(x0)

ξ
H(µ̄/ξ )

)
.
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Finally, the constants provided in the statement of the theorem (and subsequent discussion) are as follows

AT = 2c4, BT =C0, DT = c3, and ET = c1/c4 +2c2 ,

which completes the proof.
�

F. Proofs of Section 6

Proof of Proposition 10. The subdifferential of || · ||1 reads

∂ || · ||1(x) =
{

η ∈ RN : η(I) = sign(x(I)) and ||η(Ic)||∞ 6 1
}
.

The expressions of Sx, Tx, ex and fx follow immediately. Since ex ∈ ri∂ || · ||1(x) and || · ||1 is separable, it
follows from Definition 4 that the `1-norm is a strong gauge. Therefore J◦fx = J◦ = || · ||∞, and Proposi-
tion 5 specializes to the stated subdifferential.

Turning to partial smothness, let x′ ∈ T , i.e. I(x′)⊆ I(x), and assume that

||x− x′||∞ 6 νx = (1−δ )min
i∈I
|xi| ,δ ∈]0,1] .

This implies that ∀i ∈ I(x), |x′i|> νx−||x− x′||∞ > 0, which in turn yields I(x′) = I(x), and thus Tx′ = Tx.
Since the sign is also locally constant on the restriction to T of the `∞-ball centered at x of radius νx, one
can choose µx = 0. Finally τx = ξx = 0 because fx = ex. �
Proof of Proposition 12. The proof of the first part was given Section 2.1 and Section 2.2 where the
`∞-norm example was considered.

It remains to show partial smothness. Let x′ ∈ T , and assume that

||x− x′||1 6 νx = (1−δ )
(
||x||∞−max

j/∈I
|x j|
)
,δ ∈]0,1] .

This means that x′ lies in the relative interior of the `1-ball (relatively to T ) centered at x of radius
||x||∞−max

j/∈I
|x j|. Within this ball, the support and the sign pattern restricted to the support are locally

constant, i.e. I(x) = I(x′) and sign(x(I(x))) = sign(x′(I(x′))). Thus Tx′ = Tx = T and ex′ = ex, and from the
latter we deduce that µx = 0. As fx = ex we also conclude that τx = ξx = 0, which completes the proof.
�
Proof of Proposition 13. Again, the proof of the first part was given Section 2.1 and Section 2.3 where
the `1− `2-norm example was handled.

Let x′ ∈ T , i.e. I(x′)⊆ I(x), and νx = (1−δ )min
b∈I
||xb||, δ ∈]0,1]. First, observe that the condition

||x− x′||∞,2 = max
b∈B
||xb− x′b||6 νx

ensures that for all b ∈ I

||x′b||> ||xb||− ||xb− x′b||> νx−||x− x′||∞,2 > 0,

and thus I(x′) = I(x), i.e. Tx′ = Tx. Moreover, since the gauge is strong, one has τx = ξx = 0. To establish
the µx-stability we use the following lemma.
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LEMMA 12 Given any pair of non-zero vectors u and v where, ||u− v||6 ρ||u||, for 0 < ρ < 1, we have∥∥∥∥ u
||u||
− v
||v||

∥∥∥∥6Cρ

||u− v||
||u||

,

where Cρ =
√

2
ρ

√
1−
√

1−ρ2 ∈]1,
√

2[.

Proof. Let d = v−u and β = 〈u,d〉
||u||||d|| ∈ [−1,1]. We then have the following identities∥∥∥∥ u

||u||
− v
||v||

∥∥∥∥2

= 2−2
〈u, v〉
||u||||v||

= 2−2
||u||2 + ||u||||d||β

||u||
√
||u||2 + ||d||2 +2||u||||d||β

, (A.1)

for non-zero vectors u and d, the unique maximizer of (A.1) is β ? =−||d||/||u||. Note that the assumption
||d||/||u||6 ρ < 1 assures β ? to comply with the admissible range of β and further, the argument of the
square root will be always positive. Now, inserting β ? in (A.1), using concavity of

√
· on R+, and that

||d||/||u||6 ρ , we can deduce the following bound∥∥∥∥ u
||u||
− v
||v||

∥∥∥∥2

6 2−2

√
1− ||d||

2

||u||2
= 2−2

√(
1− ||d||2

ρ2||u||2

)
+
||d||2

ρ2||u||2
(1−ρ2)

6 2−2
((

1− ||d||2

ρ2||u||2

)
+
||d||2

ρ2||u||2
√

1−ρ2

)
= 2−2

(
1− 1−

√
1−ρ2

ρ2
||d||2

||u||2

)

= 2
1−
√

1−ρ2

ρ2
||d||2

||u||2
.

�
By definition of νx, we have (1− δ )||xb|| > νx, for δ ∈]0,1], ∀b ∈ I, and thus ||xb− x′b|| 6 νx 6

(1−δ )||xb||. Lemma 12 then applies, and it follows that, ∀b ∈ I

||N (xb)−N (x′b)||6Cρ

||x′b− xb||
||xb||

6Cρ

||x′b− xb||
νx

,

and therefore we get

||N (x)−N (x′)||∞,2 6
Cρ

νx
||x′− x||∞,2,

which implies µx-stability for µx =Cρ/νx.
�

Proof of Proposition 14. In general, the subdifferential of J0 reads

∂J0(u) =

∑
i∈I

ρisiai : ρ ∈ ΣI ,si ∈


{1} if ui > 0
[0,1] if ui = 0
{0} if ui < 0

 ,

where ΣI is the canonical simplex in R|I|, and I = {i ∈ {1, · · · ,NH} : (xi)+ = J0(x)}.
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• If ui 6 0, ∀i ∈ {1, · · · ,NH}, the above expression becomes

∂J0(u) =

{
∑
i∈I0

ρisiai : ρ ∈ ΣI0 ,si ∈ [0,1]

}
,

where I0 = {i ∈ {1, · · · ,NH} : ui = J0(u) = 0}. Equivalently, ∂J0(u) is the intersection of the unit
`1 ball and the positive orthant on R|I0|. The expressions of Su, Tu and eu then follow immediately.
∂J0(u) then contains eu = 0, but not in its relative interior. Choosing any fu as advocated, we have
fu ∈ ri∂J0(u). To get the subdifferential gauge, we use some calculus rules on gauges and apply
Lemma 2 to get

Ju,◦
fu (η(I0)) = inf

τ>0, τ( fu)i>−ηi ∀i∈I0
max(||τ fu +η ||1,τ) ,

where the extra-constraints on τ come from the fact that ∂J0(u) is in the positive orthant, and the
`1 norm is the gauge of the unit `1-ball. We then have

Ju,◦
fu (η(I0)) = inf

τ>0, µτ>maxi∈I0 −ηi
max(τ ∑

i∈I0

(
µai +ηi

)
,τ)

= inf
τ>maxi∈I0 (−ηi)+/µ

max(τµ|I0|+ ∑
i∈I0

ηi,τ) .

• Assume now that ui > 0 for at least one i ∈ {1, · · · ,NH}. In such a case, J0(u) = ||u||∞, and the
subdifferential becomes

∂J0(u) = ΣI+ ,

where I+ {i ∈ {1, · · · ,NH} : ui = J0(u) and ui > 0}. The forms of Su, Tu, eu, fu and the subdif-
ferential gauge can then be retrieved from those of the `∞-norm with s(I+) = 1 and s(Ic

+)
= 0.

For partial smothness, the parameters are derived following the same lines as for the `∞-norm. Let
u′ ∈ T , and assume that

||u−u′||1 6 νu = (1−δ )

(
max
i∈I+

ui− max
j 6∈I+,u j>0

u j

)
,

for δ ∈]0,1]. This means that x′ lies in the relative interior of the `1-ball (relatively to T ) centered at x of
radius

max
i∈I+

ui− max
j 6∈I+,u j>0

u j = ||u||∞− max
j 6∈I+,u j>0

|u j|

Within this set, one can observe that the set I+ associated to u is constant. Moreover, the sign pattern is also
constant leading to the fact that Tu′ = Tu = T . Hence, we deduce as in the `∞-case that µu = τu = ξu = 0.
�

G. Proofs of Section 7

Proof of Theorem 7. To lighten the notation, we drop the dependence on x of T , S and e. Without of
loss of generality, by symmetry of the norm, we will assume that the entries of x are positive.

We follow the same program as in the compressed sensing literature, see e.g. [9]. The key ingredient
of the proof is the fact that owing to the isotropy of the Gaussian ensemble, αF and Φ∗S are independent.
Thus, for some τ > 0

Pr(IC(x)> 1)6 Pr
(

IC(x)> 1
∣∣∣||αF ||6 τ

)
+Pr(||αF ||> τ) .
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As soon as Q> dim(T ) = N−|I|+1, ΦT is full-column rank. Thus

||αF ||2 = 〈e, (Φ∗T ΦT )
−1 e〉 .

(Φ∗T ΦT )
−1 is an inverse Wishart matrix with Q degrees of freedom. To estimate the deviation of this

quadratic form, we use classical results on inverse χ2 random variables with Q−N + |I| degrees of
freedom and we get the tail bound

Pr

(
||αF ||>

√
1

Q−N + |I|− t
||e||

)
6 e
− t2

4(Q−N+|I|)

for t > 0. Now, conditionally on αF , the entries of αS = PS Φ∗αF are i.i.d. N (0, ||αF ||2) and so are those
of −αS by trivial symmetry of the centered Gaussian. Thus, using a union bound, we get

Pr
(

IC(x)> 1
∣∣∣||αF ||6 τ

)
6 Pr

(
max
i∈I

(−(αSx)i)+ > 1/|I|
∣∣∣||αF ||6 τ

)
6 Pr

(
max
i∈I

((αSx)i)+ > 1/|I|
∣∣∣||αF ||6 τ

)
6 |I|Pr((z)+ > 1/(τ|I|))
6 |I|Pr(z> 1/(τ|I|))

6 |I|e
− 1

2τ2|I|2 .

Observe that (αS)i = 0 for all i ∈ Ic. Choosing

τ =

√
1

|I|(Q−N + |I|− t)

where we used that ||e||= 1/
√

I, and inserting in the above probability terms, we get

Pr(||αF ||> τ)6 e
− t2

4(Q−N+|I|) ,

Pr
(

IC(x)> 1
∣∣∣||αF ||6 τ

)
6 e
−
(

Q−N+|I|−t
2|I| −log(|I|/2)

)
.

Equating the arguments of the exponentials and solving

t2

4q
+

t
2|I|
−
(

q
2|I|
− log

(
|I|
2

))
= 0

for t to get equal probabilities, we get

t =
q
|I|


√√√√√1+2|I|

1−2
2|I| log

(
|I|
2

)
q

−1

 ,
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where q = Q−N + |I|> 1 by the restricted injectivity assumption. Setting

β =
q

2|I| log
(
|I|
2

) ,

we get under the bound on Q that β > 1, and

t = 2β log
(
|I|
2

)(√
1+2|I|β−1

β
−1
)

.

Inserting t in one of the probability terms, and after basic algebraic rearrangements, we get the probability
of success with the expression of the function f (β , |I|). �
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