Model Selection with Low Complexity Priors
 Samuel Vaiter, Mohammad Golbabaee, Jalal M. Fadili, Gabriel Peyré

To cite this version:

Samuel Vaiter, Mohammad Golbabaee, Jalal M. Fadili, Gabriel Peyré. Model Selection with Low Complexity Priors. 2014. hal-00842603v2

HAL Id: hal-00842603
https://hal.science/hal-00842603v2
Submitted on 2 Jul 2014 (v2), last revised 20 May 2015 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Model Selection with Low Complexity Priors

Samuel Vaiter
CNRS, CEREMADE, Université Paris-Dauphine
Corresponding author: vaiter@ceremade.dauphine.fr
Mohammad Golbabaee
CNRS, CEREMADE, Université Paris-Dauphine
golbabaee@ceremade.dauphine.fr
JaLAL FADILI
GREYC, CNRS-ENSICAEN-Université de Caen
Jalal.Fadili@greyc.ensicaen.fr
AND
Gabriel Peyré
CNRS, CEREMADE, Université Paris-Dauphine
peyre@ceremade.dauphine.fr

Abstract

Regularization plays a pivotal role when facing the challenge of solving ill-posed inverse problems, where the number of observations is smaller than the ambient dimension of the object to be estimated. A line of recent work has studied regularization models with various types of low-dimensional structures. In such settings, the general approach is to solve a regularized optimization problem, which combines a data fidelity term and some regularization penalty that promotes the assumed low-dimensional/simple structure. This paper provides a general framework to capture this low-dimensional structure through what we coin partly smooth functions relative to a linear manifold. These are convex, non-negative, closed and finite-valued functions that will promote objects living on low-dimensional subspaces. This class of regularizers encompasses many popular examples such as the ℓ^{1} norm, $\ell^{1}-\ell^{2}$ norm (group sparsity), as well as several others including the ℓ^{∞} norm. We also show that the set of partly smooth functions relative to a linear manifold is closed under addition and pre-composition by a linear operator, which allows to cover mixed regularization, and the so-called analysis-type priors (e.g. total variation, fused Lasso, finite-valued polyhedral gauges). Our main result presents a unified sharp analysis of exact and robust recovery of the low-dimensional subspace model associated to the object to recover from partial measurements. This analysis is illustrated on a number of special and previously studied cases, and on an analysis of the performance of ℓ^{∞} regularization in a compressed sensing scenario.

Keywords: Convex regularization, Inverse problems, Model selection, Partial smoothness, Compressed Sensing, Sparsity, Total variation.

2 of 52

1. Introduction

1.1 Regularization of Linear Inverse Problems

Inverse problems are encountered in various areas throughout science and engineering. The goal is to provably recover the structure underlying an object $x_{0} \in \mathbb{R}^{N}$, either exactly or to a good approximation, from the partial measurements

$$
\begin{equation*}
y=\Phi x_{0}+w \tag{1.1}
\end{equation*}
$$

where $y \in \mathbb{R}^{Q}$ is the vector of observations, $w \in \mathbb{R}^{Q}$ stands for the noise, and $\Phi \in \mathbb{R}^{Q \times N}$ is a linear operator which maps the N-dimensional signal domain onto the Q-dimensional observation domain. The operator Φ is in general ill-conditioned or singular, so that solving for an accurate approximation of x_{0} from (1.1) is ill-posed.

The situation however changes if one imposes some prior knowledge on the underlying object x_{0}, which makes the search for solutions to (1.1) feasible. This can be achieved via regularization which plays a fundamental role in bringing back ill-posed inverse problems to the land of well-posedness. We here consider solutions to the regularized optimization problem

$$
\begin{equation*}
x^{\star} \in \underset{x \in \mathbb{R}^{N}}{\operatorname{Argmin}} \frac{1}{2}\|y-\Phi x\|^{2}+\lambda J(x) \tag{y}
\end{equation*}
$$

where the first term translates the fidelity of the forward model to the observations, and J is the regularization term intended to promote solutions conforming to some notion of simplicity/low-dimensional structure, that is made precise later. The regularization parameter $\lambda>0$ is adapted to balance between the allowed fraction of noise level and regularity as dictated by the prior on x_{0}. Before proceeding with the rest, it is worth mentioning that although we focus our analysis on the penalized form $\left(\mathscr{P}_{\lambda}(y)\right)$, our results can be extended with minor adaptations to the constrained formulation, i.e. the one where the data fidelity is put as a constraint. Note also that though we focus our attention on quadratic data fidelity for simplicity, our analysis carries over to more general fidelity terms of the form $F \circ \Phi$, for F smooth and strongly convex.

When there is no noise in the observations, i.e. $w=0$ in (1.1), the equality-constrained minimization problem should be solved

$$
\begin{equation*}
x^{\star} \in \underset{x \in \mathbb{R}^{N}}{\operatorname{Argmin}} J(x) \quad \text { subject to } \quad \Phi x=y \tag{0}
\end{equation*}
$$

In this paper, we consider the general case where the function J is convex, non-negative and finitevalued, hence everywhere continuous with a full domain. This class of regularizers J include many well-studied ones in the literature. Among them, one can think of the ℓ^{1} norm used to enforce sparse solutions [39], the discrete total variation semi-norm [36], the $\ell^{1}-\ell^{2}$ norm to induce block/group sparsity [46], or finite polyhedral gauges [43].

Assuming furthermore that J enjoys a partial smoothness property (to be defined shortly) relative to a model subspace associated to x_{0}, our goal in this paper is to provide a unified analysis of exact and robust recovery guarantees of that subspace by solving $\left(\mathscr{P}_{\lambda}(y)\right)$ from the partial measurements in (1.1). As a by-product, this will also entail a control on the ℓ^{2}-recovery error.

1.2 Contributions

Our main contributions are as follows.
1.2.1 Subdifferential Decomposability of Convex Functions. Building upon Definition 1, which introduces the model subspace T_{x} at x, we provide an equivalent description of the subdifferential of a finite-valued convex function at x in Theorem 1 . Such a description isolates and highlights a key property of a regularizer, namely decomposability. In turn, this property allows to rewrite the first-order minimality conditions of $\left(\mathscr{P}_{\lambda}(y)\right)$ and $\left(\mathscr{P}_{0}(y)\right)$ in a convenient and compact way, and this lays the foundations of our subsequent developments.
1.2.2 Uniqueness. In Theorem 2, we state a sharp sufficient condition, dubbed the Strong Null Space Property, to ensure that the solution of $\left(\mathscr{P}_{\lambda}(y)\right)$ or $\left(\mathscr{P}_{0}(y)\right)$ is unique. In Corollary 1, we provide a weaker sufficient condition, stated in terms of a dual vector, the existence of which certifies uniqueness. Putting together Theorem 1 and Corollary 1, Theorem 3 states the sufficient uniqueness condition in terms of a specific dual certificate built from $\left(\mathscr{P}_{\lambda}(y)\right)$ and $\left(\mathscr{P}_{0}(y)\right)$.
1.2.3 Partly Smooth Functions Relative to a Linear Manifold. In the quest for establishing robust recovery of the subspace model $T_{x_{0}}$, we first need to quantify the stability of the subdifferential of the regularizer J to local perturbations of its argument. Thus, to handle such a change of geometry, we introduce the notion of partly smooth function relative to a linear manifold.

We show in particular that two important operations preserve partial smoothness relative to a linear manifold. In Proposition 7 and Proposition 9, we show that partial smoothness relative to a linear manifold is preserved under addition and pre-composition by a linear operator. Consequently, more intricate regularizers can be built starting from simple functions, e.g. ℓ^{1}-norm, which are known to be partly smooth relative to a linear manifold (see the review given in Section 6).
1.2.4 Exact and Robust Subspace Recovery. This is the core contribution of the paper. Assuming the function is partly smooth relative to a linear manifold, we show in Theorem 6 that under a generalization of the irrepresentable condition [17], and with the proviso that the noise level is bounded and the minimal signal-to-noise ratio is high enough, there exists a whole range of the parameter λ for which problem $\left(\mathscr{P}_{\lambda}(y)\right)$ has a unique solution x^{\star} living in the same subspace as x_{0}. In turn, this yields a control on ℓ^{2}-recovery error within a factor of the noise level, i.e. $\left\|x^{\star}-x_{0}\right\|=O(\|w\|)$. In the noiseless case, the irrepresentable condition implies that x_{0} is exactly identified by solving $\left(\mathscr{P}_{0}(y)\right)$.
1.2.5 Compressed Sensing Regularization with ℓ^{∞} Norm. To illustrate the usefulness of our findings, we apply this model identification result to the case of the ℓ^{∞} norm in Section 7. While there exists previous works on the stable ℓ^{2} recovery with ℓ^{∞} regularization form random measurements, it is the first result to assess the recovery of the anti-sparse model associated to the data to recover, which is an important additional information. Our result shows that stability of the model operates at a different regime than ℓ^{2} recovery in term of scaling between the number of measurements and the anti-sparsity level. This somehow contrasts with classical results in sparse recovery where it is known that they hold at similar level (up to logarithmic terms), see Section 1.3.4.

1.3 Related Work

1.3.1 Decomposability. In [9], the authors introduced a notion of decomposable norms. In fact, we show that their regularizers are a subclass of ours that corresponds to strong decomposability in the sense of the Definition 4, beside symmetry since norms are symmetric gauges. Moreover, their
definition involves two conditions, the second of which turns out to be an intrinsic property implied by polarity rather than an assumption; see the discussion after Proposition 5. Typical examples of (strongly) decomposable norms are the $\ell^{1}, \ell^{1}-\ell^{2}$ and nuclear norms. However, strong decomposability excludes many important cases. One can think of analysis-type semi-norms since strong decomposability is not preserved under pre-composition by a linear operator, or the ℓ^{∞} norm among many others. The analysis provided in [9] deals only with identifiability in the noiseless case. Their work was extended in [31] when J is the sum of decomposable norms.
1.3.2 Convergence rates. In the inverse problems literature, a convergence (stability) rates have been derived in [7] with respect to the Bregman divergence for general convex regularizations J. The author in [18] established a stability result for general sublinear functions J. The stability is however measured in terms of J, and ℓ^{2}-stability can only be obtained if J is coercive, which, again, excludes a large class of functions. In [16], a ℓ^{2}-stability result for decomposable norms (in the sense of [9]) precomposed by a linear operator is proved. However, none of these works deals with exact and robust recovery of the subspace model underlying x_{0}.
1.3.3 Model selection. There is large body of previous works on the problem of the model selection properties (sometimes referred to as model consistency) of low-complexity regularizers. These previous works are targeting specific regularizers, most notably sparsity, group sparsity and low rank. We thus refer to Section 6 for a discussion of these relevant previous works. A distinctive feature of our analysis is that it is generic, so it covers all these special cases, and many more. Note however that is does not cover the nuclear norm, because its associated manifolds are not linear (they are indeed composed of algebraic manifolds of low rank matrices). We have recently proposed an extension of our results to this more general non-linear case in [42]. Note however that this new analysis uses a different proof technique, and is not able to provide explicit values for the constant involved in the robustness to noise.
1.3.4 Compressed sensing. Arguments based on the Gaussian width were used in [10] to provide sharp estimates of the number of generic measurements required for exact and ℓ^{2}-stable recovery of atomic set models from random partial information by solving a constrained form of $\left(\mathscr{P}_{\lambda}(y)\right)$ regularized by an atomic norm. The atomic norm framework was then exploited in [33] in the particular case of the group Lasso and union of subspace models. This was further generalized in [1] who developed for the noiseless case reliable predictions about the quantitative aspects of the phase transition in regularized linear inverse problems with random measurements. The location and width of the transition are controlled by the statistical dimension of a cone associated with the regularizer and the unknown. All this work is however restricted to a random (compressed sensing) scenario.

A notion of decomposability closely related to that of [9], but different, was first proposed in [29]. There, the authors study ℓ^{2}-stability for this class of decomposable norms with a general sufficiently smooth data fidelity. This work however only handles norms, and their stability results require however stronger assumptions than ours (typically a restricted strong convexity which becomes a type of restricted eigenvalue property for linear regression with quadratic data fidelity).

1.4 Paper Organization

The outline of the paper is the following. Section 2 fully characterizes the canonical decomposition of the subdifferential of a convex function with respect to the subspace model at x. Sufficient conditions ensuring uniqueness of the minimizers to $\left(\mathscr{P}_{\lambda}(y)\right)$ and $\left(\mathscr{P}_{0}(y)\right)$ are provided in Section 3. In Section 4,
we introduce the notion of a partly smooth function relative to a linear manifold and show that this property is preserved under addition and pre-composition by a linear operator. Section 5 is dedicated to our main result, namely theoretical guarantees for exact subspace recovery in presence of noise, and identifiability in the noiseless case. Section 6 exemplifies our results on several previously studied priors, and a detailed discussion on the relation with respect to relevant previous work is provided. Section 7 delivers a bound for the sampling complexity to guarantee exact recovery of the model subspace of antisparsity minimization from noisy Gaussian measurements. Some conclusions and possible perspectives of this work are drawn in Section 8. The proofs of our results are collected in the appendix.

1.5 Notations and Elements from Convex Analysis

In the following, if T is a vector space, P_{T} denotes the orthogonal projector on T, and

$$
x_{T}=\mathrm{P}_{T} x \quad \text { and } \quad \Phi_{T}=\Phi \mathrm{P}_{T}
$$

For a subset I of $\{1, \ldots, N\}$, we denote by I^{c} its complement, $|I|$ its cardinality. $x_{(I)}$ is the subvector whose entries are those of x restricted to the indices in I, and $\Phi_{(I)}$ the submatrix whose columns are those of Φ indexed by I. For any matrix A, A^{*} denotes its adjoint matrix and A^{+}its Moore-Penrose pseudo-inverse. We denote the right-completion of the real line by $\overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$.

A real-valued function $f: \mathbb{R}^{N} \rightarrow \overline{\mathbb{R}}$ is coercive, if $\lim _{\|x\| \rightarrow+\infty} f(x)=+\infty$. The effective domain of f is defined by $\operatorname{dom} f=\left\{x \in \mathbb{R}^{N}: f(x)<+\infty\right\}$ and f is proper if $\operatorname{dom} f \neq \emptyset$. We say that a real-valued function f is lower semi-continuous (lsc) if $\liminf _{z \rightarrow x} f(z) \geqslant f(x)$. A function is said sublinear if it is convex and positively homogeneous.

Let the kernel of a function be denoted $\operatorname{Ker} f=\left\{x \in \mathbb{R}^{N}: f(x)=0\right\}$. $\operatorname{Ker} f$ is a cone when f is positively homogeneous.

We now provide some elements from convex analysis that are necessary throughout this paper. A comprehensive account can be found in [34, 20].
1.5.1 Sets. For a non-empty set $C \subset \mathbb{R}^{N}$, we denote $\overline{\operatorname{co}}(C)$ the closure of its convex hull. Its affine hull aff C is the smallest affine manifold containing it, i.e.

$$
\operatorname{aff} C=\left\{\sum_{i=1}^{k} \rho_{i} x_{i}: k>0, \rho_{i} \in \mathbb{R}, x_{i} \in C, \sum_{i=1}^{k} \rho_{i}=1\right\}
$$

It is included in the linear hull span C which is the smallest subspace containing C.
The interior of C is denoted int C. The relative interior ri C of a convex set C is the interior of C for the topology relative to its affine full.

Let C be a non-empty convex set. The set C° given by

$$
C^{\circ}=\left\{v \in \mathbb{R}^{N}:\langle v, x\rangle \leqslant 1 \text { for all } x \in C\right\}
$$

is called the polar of $C . C^{\circ}$ is a closed convex set containing the origin. When the set C is also closed and contains the origin, then it coincides with its bipolar, i.e. $C^{\circ \circ}=C$.
1.5.2 Functions. Let C a nonempty convex subset of \mathbb{R}^{N}. The indicator function l_{C} of C is

$$
v_{C}(x)= \begin{cases}0, & \text { if } x \in C \\ +\infty, & \text { otherwise }\end{cases}
$$

6 of 52

The Legendre-Fenchel conjugate of a proper, lsc and convex function f is

$$
f^{*}(u)=\sup _{x \in \operatorname{dom} f}\langle u, x\rangle-f(x)
$$

where f^{*} is proper, lsc and convex, and $f^{* *}=f$. For instance, the conjugate of the indicator function l_{C} is the support function of C

$$
\sigma_{C}(u)=\sup _{x \in C}\langle u, x\rangle
$$

σ_{C} is sublinear, is non-negative if $0 \in C$, and is finite everywhere if, and only if, C is a bounded set.
Let f and g be two functions proper closed convex functions from \mathbb{R}^{N} to $\overline{\mathbb{R}}$. Their infimal convolution is the function

$$
(f \stackrel{+}{\vee} g)(x)=\inf _{x_{1}+x_{2}=x} f\left(x_{1}\right)+g\left(x_{2}\right)=\inf _{z \in \mathbb{R}^{N}} f(z)+g(x-z)
$$

Let $C \subseteq \mathbb{R}^{N}$ be a non-empty closed convex set containing the origin. The gauge of C is the function γ_{C} defined on \mathbb{R}^{N} by

$$
\gamma_{C}(x)=\inf \{\lambda>0: x \in \lambda C\}
$$

As usual, $\gamma_{C}(x)=+\infty$ if the infimum is not attained. γ_{C} is a non-negative, lsc and sublinear function. It is moreover finite everywhere, hence continuous, if, and only if, C has the origin as an interior point, see Lemma 4 for details.

The subdifferential $\partial f(x)$ of a convex function f at x is the set

$$
\partial f(x)=\left\{u \in \mathbb{R}^{N}: f\left(x^{\prime}\right) \geqslant f(x)+\left\langle u, x^{\prime}-x\right\rangle, \quad \forall x^{\prime} \in \operatorname{dom} f\right\} .
$$

An element of $\partial f(x)$ is a subgradient. If the convex function f is Gâteaux-differentiable at x, then its only subgradient is its gradient, i.e. $\partial f(x)=\{\nabla f(x)\}$.

The directional derivative $f^{\prime}(x, \delta)$ of a lsc function f at the point $x \in \operatorname{dom} f$ in the direction $\delta \in \mathbb{R}^{N}$ is

$$
f^{\prime}(x, \boldsymbol{\delta})=\lim _{t \downarrow 0} \frac{f(x+t \boldsymbol{\delta})-f(x)}{t}
$$

When f is convex, then the function $\delta \mapsto f^{\prime}(x, \cdot)$ exists and is sublinear. When f has also full domain, then for any $x \in \mathbb{R}^{N}, \partial f(x)$ is a non-empty compact convex set of \mathbb{R}^{N} whose support function is $f^{\prime}(x, \cdot)$, i.e.

$$
f^{\prime}(x, \boldsymbol{\delta})=\sigma_{\partial f(x)}(\boldsymbol{\delta})=\sup _{\eta \in \partial f(x)}\langle\eta, \delta\rangle
$$

We also recall the fundamental first-order minimality condition of a convex function: x^{\star} is the global minimizer of a convex function f if, and only if, $0 \in \partial f(x)$.
1.5.3 Operator norm. Let J_{1} and J_{2} be two finite-valued gauges defined on two vector spaces V_{1} and V_{2}, and $A: V_{1} \rightarrow V_{2}$ a linear map. The operator bound $\|A\|_{J_{1} \rightarrow J_{2}}$ of A between J_{1} and J_{2} is given by

$$
\|A\|_{J_{1} \rightarrow J_{2}}=\sup _{J_{1}(x) \leqslant 1} J_{2}(A x)
$$

Note that $\|A\|_{J_{1} \rightarrow J_{2}}<+\infty$ if, and only if $A \operatorname{Ker}\left(J_{1}\right) \subseteq \operatorname{Ker}\left(J_{2}\right)$. In particular, if J_{1} is coercive (i.e. $\operatorname{Ker} J_{1}=\{0\}$ from Lemma 4(iv)), then $\|A\|_{J_{1} \rightarrow J_{2}}$ is finite. As a convention, $\|A\|_{J_{1} \rightarrow\|\cdot\|_{p}}$ is denoted as $\|A\|_{J_{1} \rightarrow \ell^{p}}$. An easy consequence of this definition is the fact that for every $x \in V_{1}$,

$$
J_{2}(A x) \leqslant\|A\|_{J_{1} \rightarrow J_{2}} J_{1}(x)
$$

2. Model Subspace and Decomposability

The purpose of this section is to introduce one of the main concepts used throughout this paper, namely the model subspace associated to a convex function. The main result, Theorem 1, proves that the subdifferential of any convex function exhibits a decomposability property with respect to this subspace.

2.1 Model Subspace Associated to a Convex Function

Let J our regularizer, i.e. a finite-valued convex function.
Definition 1 (Model Subspace) For any vector $x \in \mathbb{R}^{N}$, denote \bar{S}_{x} the affine hull of the subdifferential of J at x

$$
\bar{S}_{x}=\operatorname{aff} \partial J(x)
$$

and e_{x} the orthogonal projection of 0 onto \bar{S}_{x}

$$
e_{x}=\underset{e \in \bar{S}_{x}}{\operatorname{argmin}}\|e\| .
$$

Let

$$
S_{x}=\bar{S}_{x}-e_{x}=\operatorname{span}(\partial J(x)) \quad \text { and } \quad T_{x}=S_{x}^{\perp}
$$

T_{x} is coined the model subspace of x associated to J.
When J is Gâteaux-differentiable at x, i.e. $\partial J(x)=\{\nabla J(x)\}, e_{x}=\nabla J(x)$ and $T_{x}=\mathbb{R}^{N}$. Note that the decomposition of \mathbb{R}^{N} as a sum of the two orthogonal subspaces T_{x} and S_{x} is also the core idea underlying the $\mathscr{U}-\mathscr{V}$-decomposition/theory developed in [22].

We start by summarizing some key properties of the objects e_{x} and T_{x}.
Proposition 1 For any $x \in \mathbb{R}^{N}$, one has
(i) $e_{x} \in T_{x} \cap \bar{S}_{x}$.
(ii) $\bar{S}_{x}=\left\{\eta \in \mathbb{R}^{N}: \eta_{T_{x}}=e_{x}\right\}$.

In general $e_{x} \notin \partial J(x)$, which is the situation displayed on Figure 1.

FIG. 1: Illustration of the geometrical elements $\left(S_{x}, T_{x}, e_{x}\right)$.
From this section until Section 4, we use the $\ell^{1}-\ell^{2}$ and the ℓ^{∞} norms as illustrative examples. A more comprehensive treatment is provided in Section 6 which is completely devoted to examples.

EXAMPLE $1\left(\ell^{1}-\ell^{2}\right.$ norm $)$ We consider a uniform disjoint partition \mathscr{B} of $\{1, \cdots, N\}$,

$$
\{1, \ldots, N\}=\bigcup_{b \in \mathscr{B}} b, \quad b \cap b^{\prime}=\emptyset, \forall b \neq b^{\prime}
$$

The $\ell^{1}-\ell^{2}$ norm of x is

$$
J(x)=\|x\|_{\mathscr{B}}=\sum_{b \in \mathscr{B}}\left\|x_{b}\right\| .
$$

The subdifferential of J at $x \in \mathbb{R}^{N}$ is

$$
\partial J(x)=\left\{\eta \in \mathbb{R}^{N}: \forall b \in I, \eta_{b}=\frac{x_{b}}{\left\|x_{b}\right\|} \quad \text { and } \quad \forall b \notin I,\left\|\eta_{b}\right\| \leqslant 1\right\}
$$

where $I=\left\{b \in \mathscr{B}: x_{b} \neq 0\right\}$. Thus, the affine hull of $\partial J(x)$ reads

$$
\bar{S}_{x}=\left\{\eta \in \mathbb{R}^{N}: \forall b \in I, \eta_{b}=\frac{x_{b}}{\left\|x_{b}\right\|}\right\}
$$

Hence the projection of 0 onto \bar{S}_{x} is

$$
e_{x}=\left(\mathscr{N}\left(x_{b}\right)\right)_{b \in \mathscr{B}}
$$

where $\mathscr{N}(a)=a /\|a\|$ if $a \neq 0$, and $\mathscr{N}(0)=0$ and

$$
S_{x}=\bar{S}_{x}-e_{x}=\left\{\eta \in \mathbb{R}^{N}: \forall b \in I, \eta_{b}=0\right\}
$$

and

$$
T_{x}=S_{x}^{\perp}=\left\{\eta \in \mathbb{R}^{N}: \forall b \notin I, \eta_{b}=0\right\}
$$

EXAMPLE $2\left(\ell^{\infty}\right.$ norm $)$ The ℓ^{∞} norm is $J(x)=\|x\|_{\infty}=\max _{1 \leqslant i \leqslant N}\left|x_{i}\right|$. For $x=0, \partial J(x)$ is the unit ℓ^{1} ball, hence $\bar{S}_{x}=S_{x}=\mathbb{R}^{N}, T_{x}=\{0\}$ and $e_{x}=0$. For $x \neq 0$, we have

$$
\partial J(x)=\left\{\eta: \forall i \in I^{c}, \eta_{i}=0,\langle\eta, s\rangle=1, \eta_{i} s_{i} \geqslant 0 \forall i \in I\right\}
$$

where $I=\left\{i \in\{1, \ldots, N\}:\left|x_{i}\right|=\|x\|_{\infty}\right\}, s_{i}=\operatorname{sign}\left(x_{i}\right)$ if $i \in I$ with $\operatorname{sign}(0)=0$, and $s_{i}=0$ if $i \in I^{c}$. It is clear that \bar{S}_{x} is the affine hull of an $|I|$-dimensional face of the unit ℓ^{1} ball exposed by the sign subvector $s_{(I)}$. Thus e_{x} is the barycenter of that face, i.e.

$$
e_{x}=s /|I| \quad \text { and } \quad S_{x}=\left\{\eta: \eta_{\left(I^{c}\right)}=0 \quad \text { and } \quad\left\langle\eta_{(I)}, s_{(I)}\right\rangle=0\right\}
$$

In turn

$$
T_{x}=S_{x}^{\perp}=\left\{\alpha: \alpha_{(I)}=\rho s_{(I)} \quad \text { for } \quad \rho \in \mathbb{R}\right\}
$$

2.2 Decomposability Property

2.2.1 The subdifferential gauge and its polar. Before providing an equivalent description of the subdifferential of J at x in terms of the geometrical objects e_{x}, T_{x} and S_{x}, we introduce a gauge that plays a prominent role in this description.

Definition 2 (Subdifferential Gauge) Let J be a convex function. Let $x \in \mathbb{R}^{N} \backslash\{0\}$ and $f_{x} \in \operatorname{ri} \partial J(x)$. The subdifferential gauge associated to f_{x} is the gauge $J_{f_{x}}^{x, 0}=\gamma_{\partial J(x)-f_{x}}$.

Since $\partial J(x)-f_{x}$ is a closed (in fact compact) convex set containing the origin, it is uniquely characterized by the subdifferential gauge $J_{f_{x}}^{x, 0}$ (see Lemma 4(i)).

The following proposition states the main properties of the gauge $J_{f_{x}}^{x, \circ}$.
Proposition 2 The subdifferential gauge $J_{f_{x}}^{x, \circ}$ is such that $\operatorname{dom} J_{f_{x}}^{x, \circ}=S_{x}$, and is coercive on S_{x}.
We now turn to the gauge polar to the subdifferential gauge $J_{f_{x}}^{x}=\left(J_{f_{x}}^{x, \circ}\right)^{\circ}$, where the last equality is a consequence of Lemma 5(i). $J_{f_{x}}^{x}$ comes into play in several results in the rest of the paper. The following proposition summarizes its most important properties.
Proposition 3 The gauge $J_{f_{x}}^{x}$ is such that
(i) Its has a full domain.
(ii) $J_{f_{x}}^{x}(d)=J_{f_{x}}^{x}\left(d_{S}\right)=\sup _{J_{f_{x}}^{x, 0}}\left(\eta_{S_{x}}\right) \leqslant 1 ~\left(\eta_{S_{x}}, d\right\rangle$.
(iii) $\operatorname{Ker} J_{f_{x}}^{x}=T_{x}$ and $J_{f_{x}}^{x}$ is coercive on S_{x}.

Let's derive the subdifferential gauge on the illustrative example of the ℓ^{∞} norm. The case of $\ell^{1}-\ell^{2}$ norm is detailed in Section 2.3.

Example 3 (ℓ^{∞} norm) Recall from Section 2.1 that for $J=\|\cdot\|_{\infty}, f_{x}=e_{x}=s /|I|$, with $s_{(I)}=\operatorname{sign}\left(x_{(I)}\right)$, and $s_{\left(I^{c}\right)}=0$. Let $\mathscr{K}_{x}=\partial J(x)-e_{x}$. It can be straightforwardly shown that in this case,

$$
\mathscr{K}_{x}=\left\{v: \forall(i, j) \in I \times I^{c}, v_{j}=0,\left\langle v_{(I)}, s_{(I)}\right\rangle=0,-|I| v_{i} s_{i} \leqslant 1\right\} .
$$

This is rewritten as

$$
\mathscr{K}_{x}=S_{x} \cap \underbrace{\left\{v: \forall i \in I,-|I| v_{i} s_{i} \leqslant 1\right\}}_{=\mathscr{K}_{x}^{\prime}} .
$$

Thus the subdifferential gauge reads

$$
J_{f_{x}}^{x, \circ}(\eta)=\gamma_{\mathscr{K}_{x}}(\eta)=\max \left(\gamma_{S_{x}}(\eta), \gamma_{\mathscr{K}_{x}^{\prime}}(\eta)\right)
$$

We have $\gamma_{S_{x}}(\eta)=l_{S_{x}}(\eta)$ and $\gamma_{\mathscr{K}_{x}^{\prime}}(\eta)=\max _{i \in I}\left(-|I| s_{i} \eta_{i}\right)_{+}$, where $(\cdot)_{+}$is the positive part, hence we obtain

$$
J_{f_{x}}^{x, \circ}(\eta)= \begin{cases}\max _{i \in I}\left(-|I| s_{i} \eta_{i}\right)_{+} & \text {if } \eta \in S_{x} \\ +\infty & \text { otherwise }\end{cases}
$$

Therefore the subdifferential of $\|\cdot\|_{\infty}$ at x takes the form

$$
\partial J(x)=\left\{\eta \in \mathbb{R}^{N}: \eta_{T_{x}}=e_{x}=\frac{s}{|I|} \quad \text { and } \quad \max _{i \in I}\left(-|I| s_{i} \eta_{i}\right)_{+} \leqslant 1\right\}
$$

2.2.2 Decomposability of the subdifferential. Piecing together the above ingredients yields a fundamental pointwise decomposition of the subdifferential of the regularizer J. This decomposability property is at the heart of our results in the rest of the paper.
Theorem 1 (Decomposability) Let J be a convex function. Let $x \in \mathbb{R}^{N} \backslash\{0\}$ and $f_{x} \in \operatorname{ri} \partial J(x)$. Then the subdifferential of J at x reads

$$
\partial J(x)=\left\{\eta \in \mathbb{R}^{N}: \eta_{T_{x}}=e_{x} \quad \text { and } \quad J_{f_{x}}^{x, \circ}\left(\mathrm{P}_{S_{x}}\left(\eta-f_{x}\right)\right) \leqslant 1\right\}
$$

2.2.3 First-order minimality condition. Capitalizing on Theorem 1, we are now able to deduce a convenient necessary and sufficient first-order (global) minimality condition of $\left(\mathscr{P}_{\lambda}(y)\right)$ and $\left(\mathscr{P}_{0}(y)\right)$.

Proposition 4 Let $x \in \mathbb{R}^{N}$, and denote for short $T=T_{x}$ and $S=S_{x}$. The two following propositions hold.
(i) The vector x is a global minimizer of $\left(\mathscr{P}_{\lambda}(y)\right)$ if, and only if,

$$
\Phi_{T}^{*}(y-\Phi x)=\lambda e_{x} \quad \text { and } \quad J_{f_{x}}^{x, \circ}\left(\lambda^{-1} \Phi_{S}^{*}(y-\Phi x)-\mathrm{P}_{S}\left(f_{x}\right)\right) \leqslant 1
$$

(ii) The vector x is a global minimizer of $\left(\mathscr{P}_{0}(y)\right)$ if, and only if, there exists a dual vector $\alpha \in \mathbb{R}^{Q}$ such that

$$
\Phi_{T}^{*} \alpha=e_{x} \quad \text { and } \quad J_{f_{x}}^{x, \circ}\left(\Phi_{S}^{*} \alpha-\mathrm{P}_{S}\left(f_{x}\right)\right) \leqslant 1
$$

2.3 Strong Gauge

In this section, we study a particular subclass of regularizers J that we dub strong gauges. We start with some definitions.

DEFINITION 3 A finite-valued regularizing gauge J is separable with respect to $T=S^{\perp}$ if

$$
\forall\left(x, x^{\prime}\right) \in T \times S, \quad J\left(x+x^{\prime}\right)=J(x)+J\left(x^{\prime}\right)
$$

Separability of J is equivalent to the following property on the polar J°.
Lemma 1 Let J be a finite-valued gauge. Then, J is separable w.r.t. to $T=S^{\perp}$ if, and only if its polar J° satisfies

$$
J^{\circ}\left(x+x^{\prime}\right)=\max \left(J^{\circ}(x), J^{\circ}\left(x^{\prime}\right)\right), \quad \forall\left(x, x^{\prime}\right) \in T \times S
$$

The decomposability of $\partial J(x)$ as described in Theorem 1 depends on the particular choice of the map $x \mapsto f_{x} \in \operatorname{ri} \partial J(x)$. An interesting situation is encountered when $e_{x} \in \operatorname{ri} \partial J(x)$, in which case, one can just choose $f_{x}=e_{x}$, hence implying that $f_{S_{x}}=0$. Strong gauges are precisely a class of gauges for which this situation occurs.

In the sequel, for a given model subspace T, we denote \widetilde{T} the set of vectors sharing the same T,

$$
\widetilde{T}=\left\{x \in \mathbb{R}^{N}: T_{x}=T\right\}
$$

Using positive homogeneity, it is easy to show that $T_{\rho x}=T_{x}$ and $e_{\rho x}=e_{x} \forall \rho>0$, see Proposition 16(i). Thus \widetilde{T} is a non-empty cone which is contained in T by Proposition 16(ii).

Definition 4 (Strong Gauge) A strong gauge on T is a finite-valued gauge J such that

1. For every $x \in \widetilde{T}, e_{x} \in \operatorname{ri} \partial J(x)$.
2. J is separable with respect to T and $S=T^{\perp}$.

The following result shows that the decomposability property of Theorem 1 has a simpler form when J is a strong gauge.

Proposition 5 Let J be a strong gauge on T_{x}. Then, the subdifferential of J at x reads

$$
\partial J(x)=\left\{\eta \in \mathbb{R}^{N}: \eta_{T_{x}}=e_{x} \quad \text { and } \quad J^{\circ}\left(\eta_{S_{x}}\right) \leqslant 1\right\} .
$$

When J is in addition a norm, this coincides exactly with the decomposability definition of [9]. Note however that the last part of assertion (ii) in Proposition 3 is an intrinsic property of the polar of the subdifferential gauge, while it is stated as an assumption in [9].
EXAMPLE 4 ($\ell^{1}-\ell^{2}$ norm) Recall the notations of this example in Section 2.1. Since $e_{x}=\left(\mathscr{N}\left(x_{b}\right)\right)_{b \in \mathscr{B}} \in$ $\operatorname{ri} \partial J(x)$, and the $\ell^{1}-\ell^{2}$ norm is separable, it is a strong norm according to Definition 4. Thus, its subdifferential at x reads

$$
\partial J(x)=\left\{\eta \in \mathbb{R}^{N}: \eta_{T_{x}}=e_{x}=\left(\mathscr{N}\left(x_{b}\right)\right)_{b \in \mathscr{B}} \quad \text { and } \quad \max _{b \notin I}\left\|\eta_{b}\right\| \leqslant 1\right\}
$$

Note however that, except for $N=2, \ell^{\infty}$ is not a strong gauge.

3. Uniqueness

This section derives sufficient conditions under which the solution of problems $\left(\mathscr{P}_{\lambda}(y)\right)$ and $\left(\mathscr{P}_{0}(y)\right)$ is unique.

We start with the key observation that although $\left(\mathscr{P}_{\lambda}(y)\right)$ does not necessarily have a unique minimizer in general, all solutions share the same image under Φ.
Lemma 2 Let x, x^{\prime} be two solutions of $\left(\mathscr{P}_{\lambda}(y)\right)$. Then,

$$
\Phi x=\Phi x^{\prime} .
$$

Consequently, the set of the minimizers of $\left(\mathscr{P}_{\lambda}(y)\right)$ is a closed convex subset of the affine space $x+\operatorname{Ker}(\Phi)$, where x is any minimizer of $\left(\mathscr{P}_{\lambda}(y)\right)$. This is also obviously the case for $\left(\mathscr{P}_{0}(y)\right)$ since all feasible solutions belong to the affine space $x_{0}+\operatorname{Ker} \Phi$.

3.1 The Strong Null Space Property

The following theorem gives a sufficient condition to ensure uniqueness of the solution to $\left(\mathscr{P}_{\lambda}(y)\right)$ and $\left(\mathscr{P}_{0}(y)\right)$, that we coin Strong Null Space Property. This condition is a generalization of the Null Space Property introduced in [13] and popular in ℓ^{1} regularization.
THEOREM 2 Let x be a solution of $\left(\mathscr{P}_{\lambda}(y)\right)$ (resp. a feasible point of $\left(\mathscr{P}_{0}(y)\right)$). Denote $T=S^{\perp}=T_{x}$ the associated model subspace. If the Strong Null Space Property holds

$$
\begin{equation*}
\forall \boldsymbol{\delta} \in \operatorname{Ker}(\Phi) \backslash\{0\}, \quad\left\langle e_{x}, \delta_{T}\right\rangle+\left\langle\mathrm{P}_{S}\left(f_{x}\right), \delta_{S}\right\rangle<J_{f_{x}}^{x}\left(-\delta_{S}\right) \tag{S}
\end{equation*}
$$

then the vector x is the unique minimizer of $\left(\mathscr{P}_{\lambda}(y)\right)\left(\right.$ resp. $\left.\left(\mathscr{P}_{0}(y)\right)\right)$.

This result reduces to the one proved in [16] when J is a strong norm, i.e. decomposable in the sense of [9], pre-composed by a linear operator. Note that when specializing ($\mathrm{NSP}^{\mathrm{S}}$) to a strong gauge J, it reads

$$
\forall \delta \in \operatorname{Ker}(\Phi) \backslash\{0\}, \quad\left\langle e_{x}, \delta_{T_{x}}\right\rangle<J\left(-\delta_{S_{x}}\right)
$$

3.2 Dual Certificates

In this section we derive from ($\mathrm{NSP}^{\mathrm{S}}$) a weaker sufficient condition, stated in terms of a dual vector, the existence of which certifies uniqueness.

For some model subspace T, the restricted injectivity of Φ on T plays a central role in the sequel. This is achieved by imposing that

$$
\begin{equation*}
\operatorname{Ker}(\Phi) \cap T=\{0\} \tag{T}
\end{equation*}
$$

To understand the importance of $\left(\mathscr{C}_{T}\right)$, consider the noiseless case where we want to recover a vector x_{0} from $y=\Phi x_{0}$, whose model subspace is T. Assume that the latter is known. From Proposition 1(iv), $x_{0} \in T \cap\{x: y=\Phi x\}$. For x_{0} to be uniquely recovered from $y,\left(\mathscr{C}_{T}\right)$ must be verified. Otherwise, if $\left(\mathscr{C}_{T}\right)$ does not hold, then any $x_{0}+\delta$, with $\delta \in \operatorname{Ker} \Phi \cap T \backslash\{0\}$, is also a candidate solution. Thus, such objects cannot be uniquely recovered.

We can derive from Theorem 2 the following corollary.
COROLLARY 1 Let x be a solution of $\left(\mathscr{P}_{\lambda}(y)\right)$ (resp. a feasible point of $\left(\mathscr{P}_{0}(y)\right)$). Assume that there exists a dual vector α such that $\eta=\Phi^{*} \alpha \in \operatorname{ri}(\partial J(x))$, and $\left(\mathscr{C}_{T}\right)$ holds where $T=T_{x}$. Then x is the unique solution of $\left(\mathscr{P}_{\lambda}(y)\right)\left(\right.$ resp. $\left.\left(\mathscr{P}_{0}(y)\right)\right)$.

Piecing together Theorem 1 and Corollary 1, one can build a particular dual certificate for $\left(\mathscr{P}_{\lambda}(y)\right)$, and then state a sufficient uniqueness explicitly in terms of the decomposable structure of the subdifferential of the regularizer J.

THEOREM 3 Let $x \in \mathbb{R}^{N}$, and suppose that $f_{x} \in \operatorname{ri} \partial J(x)$. Assume furthermore that $\left(\mathscr{C}_{T}\right)$ holds for $T=T_{x}$ and let $S=T^{\perp}$.
(i) If

$$
\begin{align*}
& \Phi_{T}^{*}(y-\Phi x)=\lambda e_{x} \tag{3.1}\\
& J_{f_{x}}^{x, \circ}\left(\lambda^{-1} \Phi_{S}^{*}(y-\Phi x)-\mathrm{P}_{S}\left(f_{x}\right)\right)<1 \tag{3.2}
\end{align*}
$$

then x is the unique solution of $\left(\mathscr{P}_{\lambda}(y)\right)$.
(ii) If there exists a dual certificate α such that

$$
\Phi_{T}^{*} \alpha=e_{x} \quad \text { and } \quad J_{f_{x}}^{x, \circ}\left(\Phi_{S}^{*} \alpha-\mathrm{P}_{S}\left(f_{x}\right)\right)<1
$$

then x is the unique solution of $\left(\mathscr{P}_{0}(y)\right)$.

4. Partly Smooth Functions Relative to a Linear Manifold

Until now, except of being convex and finite-valued (i.e. full domain), no other assumption was imposed on the regularizer J. But, toward the goal of studying robust recovery by solving $\left(\mathscr{P}_{\lambda}(y)\right)$, more will be needed. This is the main reason underlying the introduction of a subclass of finite-valued convex function J for which the mappings $x \mapsto e_{x}, x \mapsto \mathrm{P}_{S_{x}}\left(f_{x}\right)$ and $x \mapsto J_{f_{x}}^{\circ}$ exhibit local regularity.

4.1 Partly Smooth Functions

The notion of "partly smooth" functions [23] unifies many non-smooth functions known in the literature. Partial smoothness (as well as identifiable surfaces [45]) captures essential features of the geometry of non-smoothness which are along the so-called "active/identifiable manifold". Loosely speaking, a partly smooth function behaves smoothly as we move on the partial smoothness manifold, and sharply if we move normal to the manifold. In fact, the behaviour of the function and of its minimizers (or critical points) depend essentially on its restriction to this manifold, hence offering a powerful framework for sensitivity analysis theory. In particular, critical points of partly smooth functions move stably on the manifold as the function undergoes small perturbations [23, 24].

Specialized to finite-valued convex functions, the definition of partly smooth functions reads as follows.

DEFINITION 5 A finite-valued convex function J is said to be partly smooth at x relative to a set $\mathscr{M} \subseteq \mathbb{R}^{N}$ if

1. Smoothness. \mathscr{M} is a C^{2}-manifold around x and J restricted to \mathscr{M} is C^{2} around x .
2. Sharpness. The tangent space of \mathscr{M} at x is the model space T_{x},

$$
\mathscr{T}_{\mathscr{M}}(x)=T_{x} .
$$

3. Continuity. The set-valued mapping ∂J is continuous at x relative to \mathscr{M}.

The manifold \mathscr{M} is coined the model manifold of $x \in \mathbb{R}^{N} . J$ is said to be partly smooth relative to a set \mathscr{M} if \mathscr{M} is a manifold and J is partly smooth at each point $x \in \mathscr{M}$ relative to \mathscr{M}.

Since J is proper convex and finite-valued, the subdifferential of $\partial J(x)$ is everywhere non-empty and compact and every subgradient is regular. Therefore, the Clarke regularity property [23, Definition 2.7(ii)] is automatically verified. In view of [23, Proposition 2.4(i)-(iii)], our sharpness property is equivalent to that of [23, Definition 2.7(iii)]. Obviously, any smooth function $J: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is partly smooth relative to the manifold \mathbb{R}^{N}. Moreover, if \mathscr{M} is a manifold around x, the indicator function $l_{\mathscr{M}}$ is partly smooth at x relative to \mathscr{M}. Remark that in the previous definition, \mathscr{M} needs only to be defined locally around x, and it can be shown to be locally unique, see [19, Corollary 4.2]. Hence the notation \mathscr{M} is unambiguous.

4.2 Partial Smoothness Relative to a Linear Manifold

Many of the partly smooth functions considered in the literature are associated to linear manifolds, i.e. in which case the model subspace is the model manifold $\mathscr{M}=T_{x}$ (see the sharpness property). This class of functions, coined partly smooth functions with linear manifolds, encompasses most of the popular regularizers in signal/image processing, machine learning and statistics. One of course thinks of the $\ell^{1}, \ell^{1}-\ell^{2}, \ell^{\infty}$ norms, their composition by a linear operator, and/or positive combinations of them, to name a few. However, this family of regularizers does not include the nuclear norm, whose manifold is obviously not linear.In the sequel, we restrict our attention to the class functions J which are finite-valued convex and partly smooth at x with respect to T_{x}.

When the continuity property (Definition 5 (iii)) of the set-valued mapping ∂J is strenghthned to Lipschitz-continuity, it turns out that one can quantify precisely the local regularity of the mappings $x \mapsto e_{x}, x \mapsto \mathrm{P}_{S_{x}}\left(f_{x}\right)$ and $x \mapsto J_{f_{x}}^{x, \circ}$. This is formalized as follows.

THEOREM 4 Let Γ be any gauge which is finite and coercive on T_{x} for $x \in \mathbb{R}^{N}$. Let J be a partly smooth function at x relative to T_{x}, and assume that $\partial J: \mathbb{R}^{N} \rightrightarrows \mathbb{R}^{N}$ is Lipschitz-continuous around x relative to T_{x}. Then for any Lipschitz-continuous mapping

$$
f: \begin{cases}T_{x} & \rightarrow \mathbb{R}^{N} \\ \tilde{x} & \mapsto f_{\tilde{x}} \in \operatorname{ri} \partial J(\tilde{x}),\end{cases}
$$

there exist four non-negative reals $v_{x}, \mu_{x}, \tau_{x}, \xi_{x}$ such that

$$
\begin{equation*}
\forall x^{\prime} \in T, \Gamma\left(x-x^{\prime}\right) \leqslant v_{x} \Rightarrow T_{x}=T_{x^{\prime}} \tag{4.1}
\end{equation*}
$$

and for every $x^{\prime} \in T$ with $\Gamma\left(x-x^{\prime}\right)<v_{x}$, one has

$$
\begin{align*}
& \Gamma\left(e_{x}-e_{x^{\prime}}\right) \leqslant \mu_{x} \Gamma\left(x-x^{\prime}\right), \tag{4.2}\\
& J_{f_{x}}^{x, \circ}\left(\mathrm{P}_{S}\left(f_{x}-f_{x^{\prime}}\right)\right) \leqslant \tau_{x} \Gamma\left(x-x^{\prime}\right), \tag{4.3}\\
& \sup _{\substack{u \in S \\
u \neq 0}}^{J_{f_{x^{\prime}} x^{\prime}, \circ}^{x^{\prime}}(u)-J_{f_{x}}^{x, \circ}(u)} \tag{4.4}\\
& J_{f_{x}}^{x, \circ}(u) \leqslant \xi_{x} \Gamma\left(x-x^{\prime}\right) .
\end{align*}
$$

Moreover, the mapping f always exists.
This result motivates the following definition.
DEFINITION 6 The set of finite-valued convex and partly smooth functions at x relative to T_{x}, such that ∂J is Lipschitz around x relative to T_{x}, with parameters $\left(\Gamma, f_{x}, \nu_{x}, \mu_{x}, \tau_{x}, \xi_{x}\right)$, is denoted $\operatorname{PSFL}_{x}\left(\Gamma, f_{x}, v_{x}, \mu_{x}, \tau_{x}, \xi_{x}\right)$.

4.3 Operations Preserving Partial Smoothness Relative to a Linear Manifold

The set PSFL_{x} is closed under addition and pre-composition by a linear operator.
4.3.1 Addition. The following proposition determines the model subspace and the subdifferential gauge of the sum of two functions

$$
H=J+G
$$

in terms of those associated to J and G.
Proposition 6 Let J and G be two finite-valued convex functions. Denote T^{J} and e_{J} (resp. T^{G} and e_{G}) the model subspace and vector at a point x corresponding to J (resp. G). Then the subdifferential of H has the decomposability property with
(i) $T^{H}=T^{J} \cap T^{G}$, or equivalently $S^{H}=\left(T^{H}\right)^{\perp}=\operatorname{span}\left(S^{J} \cup S^{G}\right)$.
(ii) $e_{H}=\mathrm{P}_{T^{H}}\left(e_{J}+e_{G}\right)$.
(iii) Moreover, let $J_{f_{x}^{J}}^{x, \circ}$ and $G_{f_{x}^{G}}^{x, \circ}$ denote the subdifferential gauges for the pairs $\left(J, f_{x}^{J} \in \operatorname{ri} \partial J(x)\right)$ and $\left(G, f_{x}^{G} \in \operatorname{ri} \partial G(x)\right)$, correspondingly. Then, for the particular choice of

$$
f_{x}^{H}=f_{x}^{J}+f_{x}^{G}
$$

we have $f_{x}^{H} \in \operatorname{ri} \partial H(x)$, and for a given $\eta \in S^{H}$, the subdifferential gauge of H reads

$$
H_{f_{x}^{H}}^{x, \circ}(\eta)=\inf _{\eta_{1}+\eta_{2}=\eta} \max \left(J_{f_{x}^{J}}^{x, \circ}\left(\eta_{1}\right), G_{f_{x}^{G}}^{x, \circ}\left(\eta_{2}\right)\right) .
$$

Armed with this result, we show the following.
Proposition 7 Let $x \in \mathbb{R}^{N}$. Suppose that

$$
J \in \operatorname{PSFL}_{x}\left(\Gamma^{J}, v_{x}^{J}, \mu_{x}^{J}, \tau_{x}^{J}, \xi_{x}^{J}\right) \quad \text { and } \quad G \in \operatorname{PSFL}_{x}\left(\Gamma^{G}, v_{x}^{G}, \mu_{x}^{G}, \tau_{x}^{G}, \xi_{x}^{G}\right)
$$

Then, for the choice $f_{x}^{H}=f_{x}^{J}+f_{x}^{G}$ and $\Gamma^{H}=\max \left(\Gamma^{J}, \Gamma^{G}\right)$, we have

$$
H=J+G \in \operatorname{PSFL}_{x}\left(\Gamma^{H}, v_{x}^{H}, \mu_{x}^{H}, \tau_{x}^{H}, \xi_{x}^{H}\right)
$$

with

$$
\begin{aligned}
& v_{x}^{H}=\min \left(v_{x}^{J}, v_{x}^{G}\right) \\
& \mu_{x}^{H}=\mu_{x}^{J}\left\|\mathrm{P}_{T^{H}}\right\|_{\Gamma^{J} \rightarrow \Gamma^{H}}+\mu_{x}^{G}\left\|\mathrm{P}_{T^{H}}\right\|_{\Gamma^{G} \rightarrow \Gamma^{H}} \\
& \tau_{x}^{H}=\tau_{x}^{J}+\tau_{x}^{G}+\mu_{x}^{J}\left\|\mathrm{P}_{S^{H} \cap T^{J}}\right\|_{\Gamma^{J} \rightarrow H_{f_{x}^{H}}^{x, \circ}}+\mu_{x}^{G}\left\|\mathrm{P}_{S^{H} \cap T^{G}}\right\|_{\Gamma^{G} \rightarrow H_{f_{x}^{H}}^{x, \circ}} \\
& \xi_{x}^{H}=\max \left(\xi_{x}^{J}, \xi_{x}^{G}\right)
\end{aligned}
$$

4.3.2 Smooth perturbation. It is common in the litterature to find regularizers of the form $J_{\mathcal{E}}(x)=$ $J(x)+\frac{\varepsilon}{2}\|x\|_{2}^{2}$, such as the Elastic net [47]. More generally, we consider any smooth perturbation of J. The following is a straighforward consequence of Proposition 6.
Corollary 2 Let J be a finite-valued convex function, $x \in \mathbb{R}^{N}$ and G a convex function which is Gâteaux-differentiable at x. Then,

$$
T_{x}^{J+G}=T^{J} \quad \text { and } \quad e_{x}^{J+G}=e_{x}^{J}+P_{T_{x}^{J}} \nabla G(x)
$$

Moreover, for the particular choice of

$$
f_{x}^{J+G}=f_{x}^{J}+\nabla G(x)
$$

we have $f_{x}^{J+G} \in \operatorname{ri}(J+G)(x)$ and for a given $\eta \in S_{x}^{J}$, the subdifferential gauge of $J+G$ reads

$$
(J+G)_{f_{x}^{J+G}, x}^{x, \circ}(\eta)=J_{f_{x}^{J}, x}^{x, \circ}(\eta)
$$

Hence, the model subspace T_{x} and the subdifferential gauge are insensitive to smooth perturbations. Combining Proposition 7 and Corollary 2 yields the partial smoothness Lipschitz constants of smooth perturbation.
Corollary 3 Let $x \in \mathbb{R}^{N}$. Suppose that $J \in \operatorname{PSFL}_{x}\left(\Gamma^{J}, v_{x}^{J}, \mu_{x}^{J}, \tau_{x}^{J}, \xi_{x}^{J}\right)$, that G is C^{2} on \mathbb{R}^{N} with a β-Lipschitz gradient. Then for the choice $f_{x}^{H}=f_{x}^{J}+\nabla G(x)$ and $\Gamma^{H}=\max \left(\Gamma^{J},\|\cdot\|\right), H=J+G \in$ $\operatorname{PSFL}_{x}\left(\Gamma^{H}, v_{x}^{H}, \mu_{x}^{H}, \tau_{x}^{H}, \xi_{x}^{H}\right)$ with

$$
\begin{gathered}
v_{x}^{H}=v_{x}^{J}, \quad \mu_{x}^{H}=\mu_{x}^{J}\| \| \mathrm{P}_{T^{J}}\| \|_{\Gamma^{J} \rightarrow \Gamma^{H}}+\beta\left\|\mathrm{P}_{T^{J}}\right\|_{\ell^{2} \rightarrow \Gamma^{H}} \\
\tau_{x}^{H}=\tau_{x}^{J}, \quad \xi_{x}^{H}=\xi_{x}^{J}
\end{gathered}
$$

4.3.3 Pre-composition by a Linear Operator. Convex functions of the form $J_{0} \circ D^{*}$, where J_{0} is a finute-valued convex function, correspond to the so-called analysis-type regularizers. The most popular example in this class if the total variation where J_{0} is the ℓ^{1} or the $\ell^{1}-\ell^{2}$ norm, and $D^{*}=\nabla$ is a finite difference discretization of the gradient.

In the following, we denote $T=T_{x}=S^{\perp}$ and $e=e_{x}$ the subspace and vector in the decomposition of the subdifferential of J at a given $x \in \mathbb{R}^{N}$. Analogously, $T_{0}=S_{0}^{\perp}$ and e_{0} are those of J_{0} at $D^{*} x$. The following proposition details the decomposability structure of analysis-type regularizers.

Proposition 8 Let J_{0} be a convex finite-valued function. Then the subdifferential of $J=J_{0} \circ D^{*}$ has the decomposability property with
(i) $T=\operatorname{Ker}\left(D_{S_{0}}^{*}\right)$, or equivalently $S=\operatorname{Im}\left(D_{S_{0}}\right)$.
(ii) $e=\mathrm{P}_{T} D e_{0}$.
(iii) Moreover, let $J_{0, f_{D^{*} x}}^{D^{*} x, \circ}$ denote the subdifferential gauge for the pair $\left(J_{0}, f_{0, D^{*} x} \in \operatorname{ri} \partial J_{0}(x)\right)$. Then, for the particular choice of

$$
f_{x}=D f_{0, D^{*} x}
$$

we have $f_{x} \in \operatorname{ri} \partial J(x), \operatorname{dom} J_{f_{x}}^{x, \circ}=S$ and for every $\eta \in S$

$$
J_{f_{x}}^{x, \circ}(\eta)=\inf _{z \in \operatorname{Ker}\left(D_{S_{0}}\right)} J_{0, f_{D^{*} x}}^{D^{*} x, \circ}\left(D_{S_{0}}^{+} \eta+z\right)
$$

The infimum can be equivalently taken over $\operatorname{Ker}(D) \cap S_{0}$.
Capitalizing on these properties, we now establish the following.
Proposition 9 Let $x \in \mathbb{R}^{N}$ and $u=D^{*} x$. Suppose that $J_{0} \in \operatorname{PSFL}_{u}\left(\Gamma_{0}, v_{0, u}, \mu_{0, u}, \tau_{0, u}, \xi_{0, u}\right)$. Then with the choice $f_{x}=D f_{0, u}$ and Γ any finite-valued coercive gauge on $T, J=J_{0} \circ D^{*} \in \operatorname{PSFL}_{x}\left(\Gamma, v_{x}, \mu_{x}, \tau_{x}, \xi_{x}\right)$, with

$$
\begin{aligned}
v_{x} & =\frac{1}{\left\|D^{*}\right\|_{\Gamma \rightarrow \Gamma_{0}}} v_{0, u} \\
\mu_{x} & =\mu_{0, u}\left\|P_{T} D\right\|_{\Gamma \rightarrow \Gamma_{0}}\left\|D^{*}\right\|_{\Gamma \rightarrow \Gamma_{0}} \\
\tau_{x} & =\left(\tau_{0, u}\| \| D_{S_{0}}^{+} \mathrm{P}_{S} D\| \|_{J_{0, f_{0, u}}^{u, \circ} \rightarrow J_{0, f_{0, u}}^{u, \circ}}+\mu_{0, u}\| \| D_{S_{0}}^{+} \mathrm{P}_{S} D\| \|_{\Gamma_{0} \rightarrow J_{0, f_{0, u}}^{u, o}}\right)\left\|D^{*}\right\|_{\Gamma \rightarrow \Gamma_{0}} \\
\xi_{x} & =\xi_{0, u}\left\|D^{*}\right\|_{\Gamma \rightarrow \Gamma_{0}} .
\end{aligned}
$$

5. Exact Model Selection and Identifiability

In this section, we state our main recovery guarantee, which asserts that under appropriate conditions, $\left(\mathscr{P}_{\lambda}(y)\right)$ with a partly smooth function J relative to a linear manifold has a unique solution x^{\star} such that its model subspace $T_{x^{\star}}=T_{x_{0}}$, even in presence of small enough noise. Put differently, regularization by J is able to stably select the correct model subspace underlying x_{0}.

5.1 Linearized Precertificate

Let us first introduce the definition of the linearized precertificate.
Definition 7 The linearized precertificate α_{F} for $x \in \mathbb{R}^{N}$ is defined by

$$
\alpha_{F}=\underset{\Phi_{T_{x}}^{*} \alpha=e_{x}}{\operatorname{argmin}}\|\alpha\| .
$$

The subscript F is used as a salute to J.-J. Fuchs [17] who first considered this vector as a dual certificate for ℓ^{1} minimization. The intuition behind it is well-understood if one realizes that the existence of a dual certificate α is equivalent to $\eta=\Phi^{*} \alpha$ for some α such that $\eta_{T}=e_{x}$ and $J_{f_{x}}^{x, \circ}\left(\eta_{S}-P_{S} f_{x}\right) \leqslant 1$. Dropping the last constraint, and choosing the minimal ℓ^{2}-norm solution to the first constraint recovers the definition of α_{F}.

A convenient property of this vector, is that under the restricted injectivity condition, it has a closed form expression.
Lemma 3 Let $x \in \mathbb{R}^{N}$ and suppose that $\left(\mathscr{C}_{T}\right)$ is verified with $T=T_{x}$. Then α_{F} is well-defined and

$$
\alpha_{F}=\Phi_{T_{x}}^{+, *} e_{x}
$$

Beside condition $\left(\mathscr{C}_{T_{x}}\right)$ stated above, the following Irrepresentability Criterion will play a pivotal role.
DEFINITION 8 For $x \in \mathbb{R}^{N}$ such that $\left(\mathscr{C}_{T_{x}}\right)$ with $T=T_{x}$ holds, we define the Irrepresentability Criterion at x as

$$
\mathbf{I C}(x)=J_{f_{x}}^{x, \circ}\left(\Phi_{S_{x}}^{*} \Phi_{T_{x}}^{+, *} e_{x}-\mathrm{P}_{S_{x}} f_{x}\right)
$$

A fundamental remark is that $\mathbf{I C}(x)<1$ is the analytical equivalent to the topological non-degeneracy condition $\Phi^{*} \alpha_{F} \in \operatorname{ri} \partial J(x)$. Note that if J is a strong gauge on T, then it reads $\mathbf{I C}(x)=J^{\circ}\left(\Phi_{S_{x}}^{*} \Phi_{T_{x}}^{+, *} e_{x}\right)$. The Irrepresentability Criterion clearly brings into play the promoted subspace T_{x} and the interaction between the restriction of Φ to T_{x} and S_{x}. It is a generalization of the irrepresentable condition that has been studied in the literature for some popular regularizers, including the ℓ^{1}-norm [17], analysis- ℓ^{1} [41], and $\ell^{1}-\ell^{2}$ [3]. See Section 6 for a comprehensive discussion.

We begin with the noiseless case, i.e. $w=0$ in (1.1). In fact, in this setting, $\mathbf{I C}\left(x_{0}\right)<1$ is a sufficient condition for identifiability without any any other particular assumption on the finite-valued convex function J, such as partial smoothness. By identifiability, we mean the fact that x_{0} is the unique solution of $\left(\mathscr{P}_{0}(y)\right)$.
Theorem 5 Let $x_{0} \in \mathbb{R}^{N}$ and $T=T_{x_{0}}$. We assume that $\left(\mathscr{C}_{T}\right)$ holds and $\mathbf{I C}\left(x_{0}\right)<1$. Then x_{0} is the unique solution of ($\left.\mathscr{P}_{0}(y)\right)$.

5.2 Exact Model Selection

It turns out that even in presence of noise in the measurements y according to (1.1), condition $\mathbf{I C}\left(x_{0}\right)<1$ is also sufficient for $\left(\mathscr{P}_{\lambda}(y)\right)$ with $P S F L_{x_{0}}$ regularizer to stably recover the model subspace underlying x_{0}. This is stated in the following theorem.
TheOrem 6 Let $x_{0} \in \mathbb{R}^{N}$ and $T=T_{x_{0}}$. Suppose that $J \in \operatorname{PSFL}_{x_{0}}\left(\Gamma, v_{x_{0}}, \mu_{x_{0}}, \tau_{x_{0}}, \xi_{x_{0}}\right)$. Assume that $\left(\mathscr{C}_{T}\right)$ holds and $\mathbf{I C}\left(x_{0}\right)<1$. Then there exist positive constants $\left(A_{T}, B_{T}\right)$ that solely depend on T and a constant $C\left(x_{0}\right)$ such that if w and λ obey

$$
\begin{equation*}
\frac{A_{T}}{1-\mathbf{I C}\left(x_{0}\right)}\|w\| \leqslant \lambda \leqslant v_{x_{0}} \min \left(B_{T}, C\left(x_{0}\right)\right) \tag{5.1}
\end{equation*}
$$

the solution x^{\star} of $\left(\mathscr{P}_{\lambda}(y)\right)$ with noisy measurements y is unique, and satisfies $T_{x^{\star}}=T$. Furthermore, one has

$$
\left\|x_{0}-x^{\star}\right\|=O(\max (\|w\|, \lambda))
$$

Clearly this result asserts that exact recovery of $T_{x_{0}}$ from noisy partial measurements is possible with the proviso that the regularization parameter λ lies in the interval (5.1). The value λ should be large enough to reject noise, but small enough to recover the entire subspace $T_{x_{0}}$. In order for the constraint (5.1) to be non-empty, the noise-to-signal level $\|w\| / \nu_{x_{0}}$ should be small enough, i.e.

$$
\frac{\|w\|}{v_{x_{0}}} \leqslant \frac{1-\mathbf{I} \mathbf{C}\left(x_{0}\right)}{A_{T}} \min \left(B_{T}, C\left(x_{0}\right)\right) .
$$

The constant $C\left(x_{0}\right)$ involved in this bound depends on x_{0} and has the form

$$
C\left(x_{0}\right)=\frac{1-\mathbf{I} \mathbf{C}\left(x_{0}\right)}{\xi_{x_{0}} v_{x_{0}}} H\left(\frac{D_{T} \mu_{x_{0}}+\tau_{x_{0}}}{\xi_{x_{0}}}\right)
$$

where $\quad H(\beta)=\frac{\beta+1 / 2}{E_{T} \beta} \varphi\left(\frac{2 \beta}{(\beta+1)^{2}}\right) \quad$ and $\quad \varphi(u)=\sqrt{1+u}-1$.
The constants $\left(D_{T}, E_{T}\right)$ only depend on $T . C\left(x_{0}\right)$ captures the influence of the parameters $\pi_{x_{0}}=$ $\left(\mu_{x_{0}}, \tau_{x_{0}}, \xi_{x_{0}}\right)$, where the latter reflect the geometry of the partly smooth regulrizer J at x_{0}. More precisely, the larger $C\left(x_{0}\right)$, the more tolerant the recovery is to noise. Thus favorable regularizers are those where $C\left(x_{0}\right)$ is large, or equivalently where $\pi_{x_{0}}$ has small entries, since H is a strictly decreasing function.

It is worth noting that this analysis is in some sense sharp following the argument in [42, Proposition 1]. The only case not covered by our analysis is when $\mathbf{I C}(x)=1$.

6. Examples of Partly Smooth Functions Relative to a Linear Manifold

6.1 Synthesis ℓ^{1} Sparsity

The regularized problem $\left(\mathscr{P}_{\lambda}(y)\right)$ with $J(x)=\|x\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right|$ promotes sparse solutions. It goes by the name of Lasso [39] in the statistical literature, and Basis Pursuit DeNoising (or Basis Pursuit in the noiseless case) [11] in signal processing.
6.1.1 Structure of the ℓ^{1} norm. The norm $J(x)=\|x\|_{1}$ is a symmetric (finite-valued) strong gauge. More precisely, we have the following result.
PROPOSITION $10 J=\|\cdot\|_{1}$ is a symmetric strong gauge with

$$
\begin{gathered}
T_{x}=\left\{\eta \in \mathbb{R}^{N}: \forall j \notin I, \eta_{j}=0\right\}, \quad S_{x}=\left\{\eta \in \mathbb{R}^{N}: \forall i \in I, \eta_{i}=0\right\} \\
e_{x}=\operatorname{sign}(x), \quad f_{x}=e_{x}, \quad J_{f_{x}}^{\circ}=\|\cdot\|_{\infty}+l_{S_{x}}
\end{gathered}
$$

where $I=I(x)=\left\{i: x_{i} \neq 0\right\}$. Moreover, it is partly smooth relative to a linear manifold with

$$
\left.\left.\Gamma=\|\cdot\|_{\infty}, \quad v_{x}=(1-\delta) \min _{i \in I}\left|x_{i}\right|, \delta \in\right] 0,1\right] \quad \text { and } \quad \mu_{x}=\tau_{x}=\xi_{x}=0
$$

6.1.2 Relation to previous works. The theoretical recovery guarantees of ℓ^{1}-regularization have been extensively studied in the recent years. There is of course a huge literature on the subject, and covering it comprehensively is beyond the scope of this paper. In this section, we restrict our overview to those works pertaining to ours, i.e., sparsity pattern recovery in presence of noise.

For instance, an irrepresentability criterion was introduced in [17]. Let $s \in\{-1,0,+1\}^{N}$ and I its support. Suppose that $\Phi_{(I)}$ has full column rank, which is precisely $\left(\mathscr{C}_{T}\right)$ in this case. The synthesis irrepresentability criterion $\mathbf{I C}_{\ell^{1}}$ of s is defined as

$$
\mathbf{I C}_{\ell^{1}}(s)=\left\|\Phi_{\left(I^{c}\right)}^{*} \Phi_{(I)}^{+, *} s_{(I)}\right\|_{\infty}=\max _{j \in I^{c}}\left|\left\langle\Phi_{j}, \Phi_{(I)}^{+, *} s_{(I)}\right\rangle\right|
$$

From Definition 8 and Proposition 10, one immediately recognizes that $\mathbf{I C}_{\ell^{1}}(\operatorname{sign}(x))=\mathbf{I C}(x)$. The condition $\mathbf{I C}_{\ell^{1}}(\operatorname{sign}(x))<1$, also known as the irrepresentable condition in the statistical literature, was proposed [17] for exact support (and sign) pattern recovery with ℓ^{1}-regularization from partial noisy measurements. In this respect, this work can then be viewed as a special instance of ours, as Theorem 6 in this case ensures recovery of the support pattern.

6.2 Analysis ℓ^{1} Sparsity

Let $D=\left(d_{i}\right)_{i=1}^{P}$ be a collection of P atoms $d_{i} \in \mathbb{R}^{N}$. The analysis semi-norm associated to D is $J(x)=$ $\left\|D^{*} x\right\|_{1}=\sum_{i=1}^{P}\left|\left\langle d_{i}, x\right\rangle\right|$. Obviously, the synthesis ℓ^{1}-regularization corresponds to $D=$ Id. Popular examples of analysis-type ℓ^{1} semi-norms include for instance the discrete anisotropic total variation [36], the Fused Lasso [40] and shift invariant wavelets [37].
6.2.1 Structure of the analysis ℓ^{1} semi-norm. The semi-norm $J(x)=\left\|D^{*} x\right\|_{1}$ is a symmetric partly smooth function relative to a linear manifold. This is formalized in the following proposition whose proof is a straightforward application of Proposition 8, Proposition 9 and Proposition 10.
Proposition $11 J=\left\|D^{*} \cdot\right\|_{1}$ is a symmetric (finite-valued) gauge with

$$
\begin{gathered}
T_{x}=\operatorname{Ker}\left(D_{\left.\left(I^{c}\right)\right)}^{*}\right)=\left\{\eta \in \mathbb{R}^{N}: \forall j \notin I,\left\langle d_{j}, \eta_{j}\right\rangle=0\right\}, \quad S_{x}=\operatorname{Im}\left(D_{I^{c}}\right) \\
e_{x}=\mathrm{P}_{\operatorname{Ker}\left(D_{I^{c}}^{*}\right)}^{*} D \operatorname{sign}\left(D^{*} x\right), \quad f_{x}=D \operatorname{sign}\left(D^{*} x\right) \\
J_{f_{x}}^{\circ}(\eta)=\inf _{z \in \operatorname{Ker}\left(D_{\left(I^{c}\right)}\right)}\left\|D_{\left(I^{c}\right)}^{+} \eta+z\right\|_{\infty}, \quad \text { for } \quad \eta \in S_{x}
\end{gathered}
$$

where $I=I(x)=\left\{i:\left\langle d_{i}, x_{i}\right\rangle \neq 0\right\}$. Moreover, it is partly smooth relative to a linear manifold with parameters

$$
\left.\left.v_{x}=(1-\delta) \min _{i \in I}\left|\left\langle d_{i}, x_{i}\right\rangle\right|, \delta \in\right] 0,1\right] \quad \text { and } \quad \mu_{x}=\tau_{x}=\xi_{x}=0
$$

6.2.2 Relation to previous works. Some insights on the relation and distinction between synthesisand analysis-based sparsity regularizations were first given in [15]. When D is orthogonal, and more generally when D is square and invertible, the two forms of regularization are equivalent in the sense that the set of minimizers of one problem can be retrieved from that of an equivalent form of the other through a bijective change of variable. It is only recently that theoretical guarantees of ℓ^{1}-analysis sparse regularization have been investigated, see [41] for a comprehensive review. Among such a work, the authors in [28] propose a null space property for identifiability in the noiseless case. The most relevant
work to ours here is that of [41], where the authors prove exact robust recovery of the support and sign patterns under conditions that are a specialization of those in Theorem 6.

More precisely, let I be the support of $D^{*} x_{0}$, and s its sign vector. Denote $T=T_{x_{0}}=S^{\perp}=\operatorname{Ker}\left(D_{I^{c}}^{*}\right)$, $e_{x_{0}}=\operatorname{sign}\left(D^{*} x_{0}\right)=s, e=e_{x_{0}}=\mathrm{P}_{T} D s, f=f_{x_{0}}=D s$. From Definition 8 and Proposition 11, the criterion IC $\left(x_{0}\right)$ in this case takes the form

$$
\begin{aligned}
\mathbf{I C}\left(x_{0}\right) & =J_{f_{x}}^{\circ}\left(\Phi_{S}^{*} \Phi_{T}^{+, *} \mathrm{P}_{T} D s-\mathrm{P}_{S} D s\right) \\
& =\inf _{z \in \operatorname{Ker}\left(D_{\left(I^{c}\right)}\right)}\left\|D_{\left(I^{c}\right)}^{+}\left(\Phi_{S}^{*} \Phi_{T}^{+, *} \mathrm{P}_{T}-\mathrm{P}_{S}\right) D s+z\right\|_{\infty} \\
& =\inf _{z \in \operatorname{Ker}\left(D_{\left(I^{c}\right)}\right)}\left\|D_{\left(I^{c}\right)}^{+}\left(\left(\mathrm{Id}-\mathrm{P}_{T}\right) \Phi^{*} \Phi \mathrm{P}_{T}\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1} \mathrm{P}_{T}-\mathrm{P}_{S}\right) D s+z\right\|_{\infty} \\
& =\inf _{z \in \operatorname{Ker}\left(D_{\left(I^{c}\right)}\right)}\left\|D_{\left(I^{c}\right)}^{+}\left(\Phi^{*} \Phi \mathrm{P}_{T}\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1} \mathrm{P}_{T}-\left(\mathrm{P}_{T}+\mathrm{P}_{S}\right)\right) D s+z\right\|_{\infty} \\
& =\inf _{z \in \operatorname{Ker}\left(D_{\left(I c^{c}\right)}\right)}\left\|D_{\left(I^{c}\right)}^{+}\left(\Phi^{*} \Phi \mathrm{P}_{T}\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1} \mathrm{P}_{T}-\mathrm{Id}\right) D_{(I)} s_{(I)}+z\right\|_{\infty}
\end{aligned}
$$

Introducing U as a matrix whose columns form a basis of $T, \mathbf{I C}\left(x_{0}\right)$ can be equivalently rewritten

$$
\mathbf{I C}\left(x_{0}\right)=\inf _{z \in \operatorname{Ker}\left(D_{\left(I^{c}\right)}\right)}\left\|D_{\left(I^{c}\right)}^{+}\left(\Phi^{*} \Phi A^{\left[I^{c}\right]}-\mathrm{Id}\right) D_{(I)^{s_{(I)}}}+z\right\|_{\infty}
$$

where $A^{\left[{ }^{c}\right]}=U\left(U^{*} \Phi^{*} \Phi U\right)^{-1} U^{*}$. We recover exactly the expression of the $\mathbf{I C}_{\ell^{1}-D}$ introduced in [41].

$6.3 \ell^{\infty}$ Antisparsity Regularization

Regularization by the ℓ^{∞}-norm corresponds to taking $J(x)=\|x\|_{\infty}=\max _{1 \leqslant i \leqslant N}\left|x_{i}\right|$. This regularizer promotes flat solutions. It plays a prominent role in a variety of applications including approximate nearest neighbor search [21] or vector quantization [26]; see also [38] and references therein.
6.3.1 Structure of the ℓ^{∞}-norm. The norm $J(x)=\|x\|_{\infty}$ is a symmetric partly smooth function relative to a linear manifold, but unlike the ℓ^{1}-norm, it is not strongly so (except for $N=2$). Therefore, in the following proposition, we rule out the trivial case $x=0$.
Proposition $12 J=\|\cdot\|_{\infty}$ is a symmetric (finite-valued) gauge with

$$
\begin{gathered}
S_{x}=\left\{\eta: \eta_{\left(I^{c}\right)}=0 \quad \text { and } \quad\left\langle\eta_{(I)}, s_{(I)}\right\rangle=0\right\}, \quad T_{x}=\left\{\alpha: \alpha_{(I)}=\rho s_{(I)} \quad \text { for } \quad \rho \in \mathbb{R}\right\}, \\
e_{x}=\frac{s}{|I|}, \quad f_{x}=e_{x}, \quad J_{f_{x}}^{\circ}(\eta)=\max _{i \in I}\left(-|I| s_{i} \eta_{i}\right)_{+} \quad \text { for } \quad \eta \in S_{x}
\end{gathered}
$$

where $s=\operatorname{sign}(x)$ and $I=I(x)=\left\{i:\left|x_{i}\right|=\|x\|_{\infty}\right\}$. Moreover, it is partly smooth relative to a linear manifold with

$$
\left.\left.\Gamma=\|\cdot\|_{1}, \quad v_{x}=(1-\delta)\left(\|x\|_{\infty}-\max _{j \notin I}\left|x_{j}\right|\right), \delta \in\right] 0,1\right] \quad \text { and } \quad \mu_{x}=\tau_{x}=\xi_{x}=0 .
$$

6.3.2 Relation to previous work. In the noiseless case, i.e. $\left(\mathscr{P}_{0}(y)\right)$ with $J=\|\cdot\|_{\infty}$, theoretical analysis of ℓ^{∞}-regularization goes back to the 70's through the work of [8]. [26] provided results that characterize
signal representations with small (but not necessarily minimal) ℓ^{∞}-norm subject to linear constraints. A necessary and sufficient condition for a vector to be the unique minimizer of $\left(\mathscr{P}_{0}(y)\right)$ is derived in [27]. The work of [14] analyzes recovery guarantees by ℓ^{∞}-regularization in a noiseless random sensing setting.

The authors in [38] analyzed the properties of solutions obtained from a constrained form of ($\left.\mathscr{P}_{\lambda}(y)\right)$ with $J=\|\cdot\|_{\infty}$. In particular, they improved and generalized the bound of [26] on the ℓ^{∞} of the solution.

The work of [5,30] studies robust recovery with regularization using a subclass of polyhedral norms obtained by convex relaxation of combinatorial penalties. Although this covers the case of the ℓ^{∞}-norm, their notion of support is however, completely different from ours. We will come back to this work with a more detailed discussion in Section 6.5.

6.4 Group Sparsity Regularization

Let's recall from Section 2.1 that \mathscr{B} is a uniform disjoint partition of $\{1, \cdots, N\}$,

$$
\{1, \ldots, N\}=\bigcup_{b \in \mathscr{B}} b, \quad b \cap b^{\prime}=\emptyset, \forall b \neq b^{\prime} .
$$

The $\ell^{1}-\ell^{2}$ norm of x is

$$
J(x)=\|x\|_{\mathscr{B}}=\sum_{b \in \mathscr{B}}\left\|x_{b}\right\|
$$

This prior has been advocated when the signal exhibits a structured sparsity pattern where the entries are assumed to be clustered in few non-zero groups; see for instance [6, 46]. The corresponding regularized problem $\left(\mathscr{P}_{\lambda}(y)\right)$ is known as the group Lasso.
6.4.1 Structure of the $\ell^{1}-\ell^{2}$ norm. The $\ell^{1}-\ell^{2}$ norm is a symmetric partly smooth function relative to a linear manifold.

Proposition 13 The $\ell^{1}-\ell^{2}$ norm associated to the partition \mathscr{B} is a symmetric (finite-valued) strong gauge with

$$
\begin{gathered}
T_{x}=\left\{\eta: \forall j \notin I, \eta_{j}=0\right\}, \quad S_{x}=\left\{\eta: \forall i \in I, \eta_{i}=0\right\} \\
e_{x}=\left(\mathscr{N}\left(x_{b}\right)\right)_{b \in \mathscr{B}}, \quad f_{x}=e_{x}, \quad J^{\circ}=\|\cdot\|_{\infty, 2}+l_{S_{x}}
\end{gathered}
$$

where $I=I(x)=\left\{b: x_{b} \neq 0\right\}$, and $\mathscr{N}(a)=a /\|a\|$ if $a \neq 0$, and $\mathscr{N}(0)=0$. Moreover, it is partly smooth relative to a linear manifold with

$$
\left.\left.\Gamma=\|\cdot\|_{\infty, 2}, \quad v_{x}=(1-\delta) \min _{b \in I}\left\|x_{b}\right\|, \delta \in\right] 0,1\right] \quad \mu_{x}=\frac{\sqrt{2}}{v_{x}} \quad \text { and } \quad \tau_{x}=\xi_{x}=0
$$

6.4.2 Relation to previous work. Theoretical guarantees of the group Lasso have been investigated by several authors under different performance criteria; see e.g. [46, $35,3,12,25,44]$ to cite only a few. In particular, the author in [3] studies the asymptotic group selection consistency of the group Lasso in the overdetermined case, under a group irrepresentable condition. This condition also appears in noiseless identifiability in the work of [9]. The group irrepresentable condition is nothing but the specialization to the group Lasso of our condition based on $\mathbf{I C}\left(x_{0}\right)$. Indeed, using Definition 8 and Proposition 13, and assuming that $\Phi_{(I)}$ is full column rank (i.e. $\left(\mathscr{C}_{T}\right)$ is fulfilled), $\mathbf{I C}\left(x_{0}\right)$ reads

$$
\begin{equation*}
\mathbf{I C}\left(x_{0}\right)=\left\|\Phi_{\left(I^{c}\right)}^{*} \Phi_{(I)}^{+, *}\left(\frac{x_{b}}{\left\|x_{b}\right\|}\right)_{b \in I}\right\|_{\infty, 2} \tag{6.1}
\end{equation*}
$$

It is worth mentioning that the discrete isotropic total variation in d-dimension, $d \geqslant 2$, can be viewed as an analysis-type $\ell^{1}-\ell^{2}$ semi-norm. Partial smoothness and theoretical recovery guarantees with such a regularization can be retrieved from those of this paper using the results on the pre-composition rule given in Section 4.3.3.

6.5 Polyhedral Regularization

The ℓ^{1} and ℓ^{∞} norms are special cases of polyhedral priors. There are two alternative ways to define a polyhedral gauge. The H-representation encodes the gauge through the hyperplanes that support the polygonal facets of its unit level set. The V-representation encodes the gauge through the vertices that are the extreme points of this unit level set. We focus here on the H-representation.
6.5.1 Structure of polyhedral gauges. A polyhedral gauge in the H-representation is defined as

$$
J(x)=\max _{1 \leqslant i \leqslant N_{H}}\left(\left\langle x, h_{i}\right\rangle\right)_{+}=J_{0}\left(H^{*} x\right) \quad \text { where } \quad J_{0}(u)=\max _{1 \leqslant i \leqslant N_{H}}\left(u_{i}\right)_{+}
$$

and we have defined $H=\left(h_{i}\right)_{i=1}^{N_{H}} \in \mathbb{R}^{N \times N_{H}}$.
Such a polyhedral gauge can also be thought as an analysis gauge as considered in Section 4.3 .3 by identifying $D=H$. One can then characterize decomposability and partial smoothness relative to a linear manifold of J_{0} and then invoke Proposition 8 and 9 to derive those of J. This is what we are about to do. In the following, we denote $\left(a^{i}\right)_{1 \leqslant i \leqslant N_{H}}$ the standard basis of $\mathbb{R}^{N_{H}}$.
PROPOSITION $14 J_{0}(u)=\max _{1 \leqslant i \leqslant N_{H}}\left(u_{i}\right)_{+}$is a (finite-valued) gauge and,

- If $u_{i} \leqslant 0, \forall i \in\left\{1, \cdots, N_{H}\right\}$, then

$$
\begin{gathered}
S_{u}=\operatorname{span}\left(a^{i}\right)_{i \in I_{0}}, \quad T_{u}=\operatorname{span}\left(a^{i}\right)_{i \notin I_{0}}, \\
e_{u}=0, \quad f_{u}=\mu \sum_{i \in I_{0}} a^{i}, \text { for any } 0<\mu<1, \\
J_{f_{u}}^{\circ}(\eta)=\inf _{\tau \geqslant \max _{i \in I_{0}}\left(-\eta_{i}\right)_{+} / \mu} \max \left(\tau \mu\left|I_{0}\right|+\sum_{i \in I_{0}} \eta_{i}, \tau\right) \text { for } \eta \in S_{u},
\end{gathered}
$$

where

$$
I_{0}=\left\{i \in\left\{1, \cdots, N_{H}\right\}: u_{i}=J_{0}(u)=0\right\} .
$$

- If $\exists i \in\left\{1, \cdots, N_{H}\right\}$ such that $u_{i}>0$, then

$$
\begin{gathered}
S_{u}=\left\{\eta: \eta_{\left(I_{+}^{c}\right)}=0 \quad \text { and } \quad\left\langle\eta_{\left(I_{+}\right)}, s_{\left(I_{+}\right)}\right\rangle=0\right\} \\
T_{u}=\left\{\alpha: \alpha_{\left(I_{+}\right)}=\mu s_{\left(I_{+}\right)} \quad \text { for } \mu \in \mathbb{R}\right\} \\
e_{u}=\frac{s}{\left|I_{+}\right|}, \quad f_{u}=e_{u}, \quad J_{f_{u}}^{\circ}(\eta)=\max _{i \in I_{+}}\left(-\left|I_{+}\right| \eta_{i}\right)_{+} \quad \text { for } \quad \eta \in S_{u}
\end{gathered}
$$

where

$$
s=\sum_{i \in I_{+}} a^{i} \quad \text { and } \quad I_{+}=\left\{i \in\left\{1, \cdots, N_{H}\right\}: u_{i}=J_{0}(u) \quad \text { and } \quad u_{i}>0\right\}
$$

Moreover, it is partly smooth relative to a linear manifold with parameters (assuming $I_{+} \neq \emptyset$)

$$
\left.\left.v_{u}=(1-\delta)\left(\max _{i \in I_{+}} u_{i}-\max _{j \notin I_{+}, u_{j}>0} u_{j}\right), \delta \in\right] 0,1\right] \quad \text { and } \quad \mu_{u}=\tau_{u}=\xi_{u}=0
$$

6.5.2 Relation to previous works. As stated in the case of ℓ^{∞}-norm, the work of of [5] considers robust recovery with a subclass of polyhedral norms but his notion of support is different from ours. The work [32] studies numerically some polyhedral regularizations. Again in a compressed sensing scenario, the work of [10] studies a subset of polyhedral regularizations to get sharp estimates of the number of measurements for exact and ℓ^{2}-stable recovery. The closest work to ours is that reported in [43], where theoretical recovery guarantees by polyhedral regularization were provided under similar conditions to ours and with the same notion of support as considered above. However only finite-valued coercive polyhedral gauges were considered there.

6.6 A Counter-Example: the Nuclear Norm

The nuclear norm is the natural extension of ℓ^{1} sparsity to matrix-valued data $x \in \mathbb{R}^{N_{0} \times N_{0}}$ (where $N=N_{0}^{2}$). We denote $x=V_{x} \operatorname{diag}\left(\Lambda_{x}\right) U_{x}^{*}$ an SVD decomposition of x, where $\Lambda_{x} \in \mathbb{R}_{+}^{N_{0}}$. Note that this can be extended easily to rectangular matrices. The nuclear norm imposes such a sparsity and is defined as

$$
J(x)=\|x\|_{*}=\left\|\Lambda_{x}\right\|_{1}
$$

see [42] and the reference therein. This norm can be shown to be partly smooth (in the sense of Definition 5) at some x with respect to the set $\mathscr{M}=\left\{x^{\prime}: \operatorname{rank}(x)=\operatorname{rank}\left(x^{\prime}\right)\right\}$ that is locally a manifold around x. This manifold is however not a linear space, hence one does not have $\mathscr{M}=T_{x}$. This shows that the nuclear norm is not in the set PSFL_{x} of fonctions that are partly smooth with respect to a linear manifold (in the sense of Definition 6). In particular, Theorem 6 cannot be applied to this functional.

It is however possible to show that the manifold \mathscr{M} associated to x is stable to small noise perturbation in the observation under the same hypotheses as Theorem 6. This result is proved in [42], which extends the previous result of Bach [4]. Note however that these proofs do not give explicit stability constants, on the contrary to Theorem 6.

7. Case Study: Compressed Sensing with ℓ^{∞} Regularization

In this section, based on the generalized irrepresentable condition, we provide a bound for the sampling complexity to guarantee exact and stable recovery of the model subspace $T_{x_{0}}$ of antisparsity minimization from noisy Gaussian measurements.
THEOREM 7 Let x be an arbitrary vector with its saturation support I, its model tangent subspace $T_{x}=S_{x}^{\perp}$ and model vector e_{x} as defined above. Let $\beta>1$. For Φ drawn from the standard Gaussian ensemble with

$$
Q \geqslant N-|I|+2 \beta|I| \log (|I| / 2),
$$

$\mathbf{I C}(x)<1$ with probability at least $1-2(|I| / 2)^{-f(\beta,|I|)}$ where

$$
f(\beta,|I|)=\left(\sqrt{\frac{\beta}{2|I|}+\beta-1}-\sqrt{\frac{\beta}{2|I|}}\right)^{2} .
$$

The above bound and probability bears some similarities to what we get with ℓ^{1} minimization, except that now the probability of success scales in a power of $|I|$ and not N directly. The reason underlying such a similarity is the proof technique usual in compressed sensing-type bounds and the use of the minimal ℓ^{2}-norm dual certificate.

The map $f(\beta,|I|)$ is an increasing function of $|I|$, so that $\lim _{|I| \rightarrow \infty} f(\beta,|I|)=\beta-1$ and the probability of success increases with increasing size of the saturation support. But this comes at the price of a stronger requirement on the number of measurements.

For the noiseless problem $\left(\mathscr{P}_{0}(y)\right)$, it can be shown using arguments based on the statistical dimension [1] of the descent cone of the ℓ^{∞}-norm that there is a phase transition exactly at $N-|I| / 2$, see also [10, Proposition 3.12]. The reason is that each face of the descent cone of the hypercube at a point living on its k-dimensional face is the direct sum of a subspace (the linear hull of the face), and of an orthant of dimension $N-k$ (up to an isometry). The statistical dimension is then $(N-k) / 2+k=(N+k) / 2=N-|I| / 2$, observing that $k=N-|I|$.

8. Conclusion

In this paper, we introduced the notion of partly smooth function relative to a linear manifold as a generic convex regularization framework, and presented a unified view to derive exact and robust recovery guarantees for a large class of convex regularizations. In particular, we provided sufficient conditions ensuring uniqueness of the minimizer to both $\left(\mathscr{P}_{\lambda}(y)\right)$ and $\left(\mathscr{P}_{0}(y)\right)$, whose by-product is to guarantee exact recovery of the original object x_{0} in the noiseless case by solving $\left(\mathscr{P}_{0}(y)\right)$. In presence of noise, sufficient sharp conditions were given to certify exact recovery of the model subspace underlying x_{0}. As shown in the considered examples, these results encompass a variety of cases extensively studied in the literature (e.g. ℓ^{1}, analysis $\ell^{1}, \ell^{1}-\ell^{2}$), as well as less popular ones (ℓ^{∞}, polyhedral). We exemplified the usefulness of this analysis by providing a sampling complexity bound for exact support recovery in ℓ^{∞} regularization from Gaussian measurements.

A. Gauges and their Polars

A.0.1 Definitions and main properties. We start by collecting some important properties of gauges and their polars. A comprehensive account on them can be found in [34].
Lemma 4
(i) γ_{C} is a non-negative, lsc and sublinear function.
(ii) C is the unique closed convex set containing the origin such that

$$
C=\left\{x \in \mathbb{R}^{N}: \gamma_{C}(x) \leqslant 1\right\}
$$

(iii) γ_{C} is finite everywhere if, and only if, $0 \in \operatorname{int} C$, in which case γ_{C} is continuous.
(iv) $\operatorname{Ker} \gamma_{C}=\{0\}$ if, and only if, C is compact.
(v) γ_{C} is finite and coercive on $\operatorname{dom} \gamma_{C}=$ span C if, and only if, C is compact and $0 \in$ ri C. In particular, γ_{C} is finite everywhere and coercive if, and only if, C is compact and $0 \in \operatorname{int} C$.

Proof. (i)-(iii) are obtained from [20, Theorem V.1.2.5]. (iv) is obtained by combining [20, Corollary V.1.2.6 and Proposition IV.3.2.5]. (v): the second statement follows by combining (iii)-(iv), while the first part is the second one written in $\operatorname{dom} \gamma_{C}=\operatorname{aff} C=\operatorname{span} C$ since $0 \in \operatorname{ri} C$.

Lemma 4(ii) is fundamental result of convex analysis that states that there is a one-to-one correspondence between gauge functions and closed convex sets containing the origin. This allows to identify sets from their gauges, and vice versa.
γ_{C} is a norm, having C as its unit ball, if and only if C is bounded with nonempty interior and symmetric. When C is only symmetric with nonempty interior, then γ_{C} becomes a semi-norm.

Let us now turn to the polar of a convex set and a gauge.
Definition 9 (Polar set) Let C be a non-empty convex set. The set C° given by

$$
C^{\circ}=\left\{v \in \mathbb{R}^{N}:\langle v, x\rangle \leqslant 1 \text { for all } x \in C\right\}
$$

is called the polar of C.
C° is a closed convex set containing the origin. When the set C is also closed and contains the origin, then it coincides with its bipolar, i.e. $C^{\circ \circ}=C$.

We are now in position to define the polar gauge.
DEfinition 10 (Polar Gauge) The polar of a gauge γ_{C} is the function γ_{C}° defined by

$$
\gamma_{C}^{\circ}(u)=\inf \left\{\mu \geqslant 0:\langle x, u\rangle \leqslant \mu \gamma_{C}^{\circ}(x), \forall x\right\} .
$$

Observe that gauges polar to each other have the property

$$
\langle x, u\rangle \leqslant \gamma_{C}(x) \gamma_{C}^{\circ}(u) \quad \forall(x, u) \in \operatorname{dom} \gamma_{C} \times \operatorname{dom} \gamma_{C}^{\circ}
$$

just as dual norms satisfy a duality inequality. In fact, polar pairs of gauges correspond to the best inequalities of this type.

Lemma 5 Let $C \subseteq \mathbb{R}^{N}$ be a closed convex set containing 0 . Then,
(i) γ_{C}° is a gauge function and $\gamma_{C}^{\circ \circ}=\gamma_{C}$.
(ii) $\gamma_{C}^{\rho}=\gamma_{C^{\circ}}$, or equivalently

$$
C^{\circ}=\left\{x \in \mathbb{R}^{N}: \gamma_{C}^{\circ}(x) \leqslant 1\right\}=\left\{x \in \mathbb{R}^{N}: \gamma_{C^{\circ}}(x) \leqslant 1\right\} .
$$

(iii) The gauge of C and the support function of C are mutually polar, i.e.

$$
\gamma_{C}=\sigma_{C^{\circ}} \quad \text { and } \quad \gamma_{C^{\circ}}=\sigma_{C}
$$

Proof. (i) follows from [34, Theorem 15.1]. (ii) [34, Corollary 15.1.1] or [20, Proposition V.3.2.4]. (iii) [34, Corollary 15.1.2] or [20, Proposition V.3.2.5].
A.0.2 Gauge and polar calculus. We here derive the expression of the gauge function of the Minkowski sum of two sets, as well as that of the image of a set by a linear operator. These results play an important role in Section 4.
LEMMA 6 Let C_{1} and C_{2} be nonempty closed convex sets containing the origin. Then

$$
\gamma_{C_{1}+C_{2}}(x)=\sup _{\rho \in[0,1]} \rho \gamma_{C_{1}} \stackrel{+}{\vee}(1-\rho) \gamma_{C_{2}}(x) .
$$

If x is such that $\gamma_{C_{1}}\left(x_{1}\right)+\gamma_{C_{2}}\left(x_{2}\right)$ is continuous and finite on $\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2}=x\right\}$, then

$$
\gamma_{C_{1}+C_{2}}(x)=\inf _{z \in \mathbb{R}^{N}} \max \left(\gamma_{C_{1}}(z), \gamma_{C_{2}}(x-z)\right) .
$$

Proof. We have from Lemma 5 and calculus rules on support functions,

$$
\gamma_{\left(C_{1}+C_{2}\right)^{\circ}}=\sigma_{C_{1}+C_{2}}=\sigma_{C_{1}}+\sigma_{C_{2}} .
$$

Thus

$$
\left(C_{1}+C_{2}\right)^{\circ}=\left\{u: \sigma_{C_{1}}(u)+\sigma_{C_{2}}(u) \leqslant 1\right\}
$$

This yields that

$$
\begin{aligned}
\gamma_{C_{1}+C_{2}}(x)= & \sigma_{\left(C_{1}+C_{2}\right)^{\circ}}(x) \\
= & \sigma_{\sigma_{C_{1}}(u)+\sigma_{C_{2}}(u) \leqslant 1}(x) \\
& =\sup _{\sigma_{C_{1}}(u)+\sigma_{C_{2}}(u) \leqslant 1}\langle u, x\rangle \\
& =\sup _{\rho \in[0,1] \sigma_{C_{1}}(u) \leqslant \rho, \sigma_{C_{2}}(u) \leqslant 1-\rho} \sup \langle u, x\rangle \\
= & \sup _{\rho \in[0,1]} \sigma_{\sigma_{C_{1}}(u) \leqslant \rho} \stackrel{+}{\vee} \sigma_{\sigma_{C_{2}}}(u) \leqslant 1-\rho(x) \\
= & \sup _{\rho \in[0,1]} \rho \sigma_{\sigma_{C_{1}}(u) \leqslant 1} \stackrel{+}{\vee}(1-\rho) \sigma_{\sigma_{C_{2}}(u) \leqslant 1}(x) \\
= & \sup _{\rho \in[0,1]} \rho \sigma_{C_{1}^{\circ}} \stackrel{+}{\vee}(1-\rho) \sigma_{C_{2}^{\circ}}(x) \\
= & \sup _{\rho \in[0,1]} \sigma_{\rho C_{1}^{\circ}} \stackrel{+}{\vee} \sigma_{(1-\rho) C_{2}^{\circ}}(x) \\
= & \sup _{\rho \in[0,1]} \rho \gamma_{C_{1}} \stackrel{+}{\vee}(1-\rho) \gamma_{C_{2}}(x),
\end{aligned}
$$

which is the first assertion.
The last identity can be rewritten

$$
\gamma_{C_{1}+C_{2}}(x)=\sup _{\rho \in[0,1]} \inf _{x_{1}+x_{2}=x} \rho \gamma_{C_{1}}\left(x_{1}\right)+(1-\rho) \gamma_{C_{2}}\left(x_{2}\right) .
$$

Under the assumptions of the lemma, the objective in the supinf is a continuous finite concave-convex function on $[0,1] \times\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2}=x\right\}$. Since the latter sets are non-empty, closed and convex, and $[0,1]$ is obviously bounded, we have from using [34, Corollary 37.3.2]

$$
\begin{aligned}
\gamma_{C_{1}+C_{2}}(x) & =\inf _{z \in \mathbb{R}^{N}} \sup _{\rho \in[0,1]} \rho \gamma_{C_{1}}(z)+(1-\rho) \gamma_{C_{2}}(x-z) \\
& =\inf _{z \in \mathbb{R}^{N}} \max \left(\gamma_{C_{1}}(z), \gamma_{C_{2}}(x-z)\right) .
\end{aligned}
$$

LEMMA 7 Let C be a closed convex set such that $0 \in \operatorname{ri} C$, and D a linear operator. Then, for every $x \in \operatorname{Im}(D)$

$$
\gamma_{D(C)}(x)=\inf _{z \in \operatorname{Ker}(D)} \gamma_{C}\left(D^{+} x+z\right)
$$

Proof. It is immediate to see that $D(C)$ is a closed convex set containing the origin. Moreover, we have $\operatorname{Im}\left(D^{*}\right) \cap \operatorname{dom}\left(\sigma_{C}\right) \neq \emptyset$, since the origin is in both of them. Thus, using [20, Theorem X.2.1.1] and Lemma 5, we have

$$
\gamma_{(D(C))^{\circ}}=\sigma_{D(C)}=\left(l_{D(C)}\right)^{*}=\sigma_{C} \circ D^{*}
$$

Now, as by assumption $0 \in \operatorname{ri} C$, we have $0 \in \operatorname{ri}\left(C^{\circ}\right)$, and therefore $\operatorname{Im}\left(D^{*}\right) \cap \operatorname{ri}\left(C^{\circ}\right) \neq \emptyset$. By virtue of [20, Theorem X.2.2.3] and Lemma 5, we get

$$
\begin{aligned}
\gamma_{D(C)}(x) & =\sigma_{(D(C))^{\circ}}(x) \\
& =\sigma_{\sigma_{C} \circ D^{*}(u) \leqslant 1}(x) \\
& =\left(l_{\sigma_{C}(w) \leqslant 1} \circ D^{*}\right)^{*}(x) \\
& =\inf _{v} \sigma_{\sigma_{C}(w) \leqslant 1}(v) \quad \text { s.t. } \quad D v=x \\
& =\inf _{z \in \operatorname{Ker}(D)} \sigma_{\sigma_{C}(w) \leqslant 1}\left(D^{+} x+z\right) \\
& =\inf _{z \in \operatorname{Ker}(D)} \sigma_{\sigma_{C}(w) \leqslant 1}\left(D^{+} x+z\right) \\
& =\inf _{z \in \operatorname{Ker}(D)} \gamma_{C}\left(D^{+} x+z\right) .
\end{aligned}
$$$\square$ Using Lemma 4(v), one can observe that the infimum is finite if $\left(D^{+} x+\operatorname{Ker}(D)\right) \cap \operatorname{span} C \neq \emptyset$.

A.0.3 Subdifferential of a gauge. The subdifferential of a gauge γ_{C} at a point x is completely characterized by the face of its polar set C° exposed by x. Put formally, we have [20]

$$
\partial \gamma_{C}(x)=\mathbf{F}_{C^{\circ}}(x)=\left\{\eta \in \mathbb{R}^{N}: \eta \in C^{\circ} \quad \text { and } \quad\langle\eta, x\rangle=\gamma_{C}(x)\right\},
$$

where $\mathbf{F}_{C^{\circ}}(x)$ is the face of C° exposed by x. The latter is the intersection of C° and the supporting hyperplane $\left\{\eta \in \mathbb{R}^{N}:\langle\eta, x\rangle=\gamma_{C}(x)\right\}$. The special case of $x=0$ has a much simpler structure; it is the polar set C° from Lemma 5(ii)-(iii), i.e.

$$
\partial \gamma_{C}(x)=\left\{\eta \in \mathbb{R}^{N}: \gamma_{C^{\circ}}(\eta) \leqslant 1\right\}=C^{\circ}
$$

The following proposition gives an equivalent convenient description of the subdifferential of the regularizer $J=\gamma_{C}$ at x in terms of a particular supporting hyperplane to C° : the affine hull \bar{S}_{x}.
Proposition 15 Let $J=\gamma_{C}$ be a finite-valued gauge. Then for $x \in \mathbb{R}^{N}$, one has

$$
\partial J(x)=\bar{S}_{x} \cap C^{\circ} .
$$

Proof. Let $x \in \mathbb{R}^{N}$. We have

$$
\partial J(x)=\mathbf{F}_{C^{\circ}}(x)=H \cap C^{\circ},
$$

where $H=\left\{\eta \in \mathbb{R}^{N}:\langle\eta, x\rangle=J(x)\right\}$ is the supporting hyperplane of C° at x. By Proposition 1(i), we have

$$
\bar{S}_{x}=\operatorname{aff} \partial J(x) \subseteq H
$$

which implies that

$$
\bar{S}_{x} \cap C^{\circ} \subseteq H \cap C^{\circ}
$$

The converse inclusion is true since $\partial J(x)=H \cap C^{\circ} \subseteq \bar{S}_{x}$.

Proposition 16 Let $J=\gamma_{C}$ be a finite-valued gauge. For any $x \in \mathbb{R}^{N}$, one has
(i) For every $u \in \bar{S}_{x}, J(x)=\langle u, x\rangle$.
(ii) $x \in T_{x}$.
(iii) The subdifferential gauge $J_{f_{x}}^{x, \circ}$ reads

$$
J_{f_{x}}^{x, \circ}(\eta)=\inf _{\tau \geqslant 0} \max \left(J^{\circ}\left(\tau f_{x}+\eta\right), \tau\right)+\boldsymbol{l}_{S_{x}}(\eta)
$$

(iv) The polar of the subdifferential gauge $J_{f_{x}}^{x}$ reads

$$
J_{f_{x}}^{x}(d)=J\left(d_{S_{x}}\right)-\left\langle f_{S_{x}}, d_{S_{x}}\right\rangle
$$

Proof.
(i) Each element of \bar{S}_{x} can be written as $u=\sum_{i=1}^{k} \rho_{i} \eta_{i}$, for $k>0$, where $\eta_{i} \in \partial J(x)$ and $\sum_{i=1}^{k} \rho_{i}=1$. By Fenchel identity applied to the gauge J, and using Lemma 5(iii), we have

$$
\left\langle x, \eta_{i}\right\rangle=J(x)+l_{C^{\circ}}\left(\eta_{i}\right), \quad \forall i
$$

Since $\eta_{i} \in \partial J(x) \subseteq C^{\circ}$, we get

$$
\left\langle x, \eta_{i}\right\rangle=J(x), \quad \forall i
$$

Multiplying by ρ_{i} and summing this identity over i and using the fact that $\sum_{i=1}^{k} \rho_{i}=1$ we obtain the desired result.
(ii) For any $v \in S_{x}$, we have $v+e_{x} \in \bar{S}_{x}$ since $e_{x} \in \bar{S}_{x}$. Thus applying (i), we get $\left\langle x, e_{x}+v\right\rangle=J(x)$ and $\left\langle x, e_{x}\right\rangle=J(x)$. Combining both identities implies that $\langle x, v\rangle=0, \forall v \in S_{x}$, or equivalently that $x \in S_{x}^{\perp}=T_{x}$.
(iii) Since $f_{x} \in \operatorname{ri} \partial J(x) \subset \bar{S}_{x}$, Proposition 1 implies that $f_{x}=\mathrm{P}_{S_{x}}\left(f_{x}\right)+\mathrm{P}_{T_{x}}\left(f_{x}\right)=\mathrm{P}_{S_{x}}\left(f_{x}\right)+e_{x}$. Hence, using Proposition 15, we get

$$
\begin{aligned}
\partial J(x)-f_{x} & =\left(C^{\circ}-f_{x}\right) \cap\left(\bar{S}_{x}-f_{x}\right) \\
& =\left(C^{\circ}-f_{x}\right) \cap\left(S_{x}-\left\{\mathrm{P}_{S_{x}}\left(f_{x}\right)\right\}\right) \\
& =\left(C^{\circ}-f_{x}\right) \cap S_{x} .
\end{aligned}
$$

We therefore obtain

$$
\begin{aligned}
J_{f_{x}}^{x}(\eta) & =\gamma_{\left(C^{\circ}-f_{x}\right) \cap S_{x}}(\eta) \\
& =\max \left(\gamma_{C^{\circ}-f_{x}}(\eta), \gamma_{S_{x}}(\eta)\right) \\
& =\max \left(\gamma_{C^{\circ}-f_{x}}(\eta), \boldsymbol{l}_{S_{x}}(\eta)\right) \\
& =\gamma_{C^{\circ}-f_{x}}(\eta)+\boldsymbol{l}_{S_{x}}(\eta) .
\end{aligned}
$$

At this stage, Lemma 6 does not apply straightforwardly since $0 \in C^{\circ}$ but $f_{x} \neq 0$ in general. However, proceeding as in the proof of that lemma, we arrive at

$$
\gamma_{C^{\circ}+\left\{-f_{x}\right\}}(\eta)=\sup _{\rho \in[0,1]} \rho J^{\circ} \stackrel{+}{\vee}(1-\rho) \sigma_{\left\{-f_{x}\right\}^{\circ}}(\eta)
$$

where, from Definition $9,\left\{-f_{x}\right\}^{\circ}=\left\{\eta:\left\langle\eta, f_{x}\right\rangle \geqslant-1\right\}$, which indeed contains the origin as an interior point. Continuing from the last equality, we get

$$
\begin{aligned}
\gamma_{C^{\circ}+\left\{-f_{x}\right\}}(\eta) & =\sup _{\rho \in[0,1]} \rho J^{\circ} \stackrel{+}{\vee}(1-\rho) \gamma_{\left\{-f_{x}\right\}^{\circ \circ}}(\eta) \\
& =\sup _{\rho \in[0,1]} \rho J^{\circ} \stackrel{+}{\vee}(1-\rho) \gamma_{\overline{c o}\left(\left\{-f_{x}\right\} \cup\{0\}\right)}(\eta) \\
& =\sup _{\rho \in[0,1]} \rho J^{\circ} \stackrel{+}{\vee}(1-\rho) \gamma_{\left\{-\mu f_{x}: \mu \in[0,1]\right\}}(\eta) .
\end{aligned}
$$

It is easy to see that

$$
\gamma_{\left\{-\mu f_{x}: \mu \in[0,1]\right\}}(-\eta)= \begin{cases}\tau & \text { if } \eta \in \tau f_{x}, \tau \in \mathbb{R}_{+} \\ +\infty & \text { otherwise }\end{cases}
$$

Thus

$$
\gamma_{C^{\circ}+\left\{-f_{x}\right\}}(\eta)=\sup _{\rho \in[0,1]} \inf _{\tau \geqslant 0} \rho J^{\circ}\left(\tau f_{x}+\eta\right)+(1-\rho) \tau .
$$

Recalling that J° is a finite-valued gauge, hence continuous, the objective in the supinf fulfills the assumption of the second assertion of Lemma 6, whence we get

$$
\gamma_{C^{\circ}+\left\{-f_{x}\right\}}(\eta)=\inf _{\tau \geqslant 0} \max \left(J^{\circ}\left(\tau f_{x}+\eta\right), \tau\right)
$$

(iv) Using some calculus rules with support functions and assertion (ii), we have

$$
\begin{aligned}
J_{f_{x}}^{x}(d)=J_{f_{x}}^{x}\left(d_{S_{x}}\right) & =\sigma_{\left(C^{\circ}+\left\{-f_{x}\right\}\right) \cap S_{x}}\left(d_{S_{x}}\right) \\
& =\overline{\operatorname{co}}\left(\inf \left(\sigma_{C^{\circ}+\left\{-f_{x}\right\}}\left(d_{S_{x}}\right), \sigma_{S}\left(d_{S_{x}}\right)\right)\right) \\
& =\overline{\operatorname{co}}\left(\inf \left(\sigma_{C^{\circ}+\left\{-f_{x}\right\}}\left(d_{S_{x}}\right), \boldsymbol{l}_{T}\left(d_{S_{x}}\right)\right)\right) \\
& =\sigma_{C^{\circ}+\left\{-f_{x}\right\}}\left(d_{S_{x}}\right) \\
& =\sigma_{C^{\circ}}\left(d_{S_{x}}\right)-\left\langle\mathrm{P}_{S_{x}}\left(f_{x}\right), d_{S_{x}}\right\rangle \\
& =J\left(d_{S_{x}}\right)-\left\langle\mathrm{P}_{S_{x}}\left(f_{x}\right), d_{S_{x}}\right\rangle .
\end{aligned}
$$

We end by showing that if a set-valued mapping is Lipschitz, then its polar is also Lipschitz continuous.
Lemma 8 Let $F: \mathbb{R}^{N} \rightrightarrows \mathbb{R}^{N}$ be a β-Lipschitz set-valued mapping, such that $F(x)$ is a compact convex set containing the origin as a relative interior point for every $x \in \mathbb{R}^{N}$. Then F° defined as $x \mapsto F(x)^{\circ}$ is β-Lipschitz. Moreover, the mapping $x \mapsto \gamma_{F(x)}(u)$, for any $u \in \operatorname{dom}\left(\gamma_{F(x)}\right)=\operatorname{span}(F(x))$, is $\beta\|u\|$ Lipschitz.

Proof. Using the Lipschitz continuity of F, we have

$$
F\left(x^{\prime}\right) \subseteq F(x)+\beta\left\|x^{\prime}-x\right\| \mathbb{B}(0)
$$

Using the symmetry of $\mathbb{B}(0)$, we get that

$$
F\left(x^{\prime}\right)+\beta\left\|x^{\prime}-x\right\| \mathbb{B}(0) \subseteq F(x)
$$

Since the polarity reverses the order of inclusion, we have

$$
\left(F\left(x^{\prime}\right)+\beta\left\|x^{\prime}-x\right\| \mathbb{B}(0)\right)^{\circ} \supseteq F(x)^{\circ},
$$

or equivalently, by Lemma 5,

$$
\begin{equation*}
\gamma_{F(x)}(u)=\sigma_{F(x)^{\circ}}(u) \leqslant \sigma_{\left(F\left(x^{\prime}\right)+\beta\left\|x^{\prime}-x\right\| \mathbb{B}(0)\right)^{\circ}}(u)=\gamma_{F\left(x^{\prime}\right)+\beta\left\|x^{\prime}-x\right\| \mathbb{B}(0)}(u), \tag{A.1}
\end{equation*}
$$

Observe that these gauges are finite-valued and coercive for u as prescribed (see Lemma 4(v)). According to Lemma 6, one has

$$
\gamma_{F\left(x^{\prime}\right)+\beta\left\|x^{\prime}-x\right\| \mathbb{B}(0)}(u)=\inf _{z \in \mathbb{R}^{N}} \max \left(\gamma_{F\left(x^{\prime}\right)}(u), \gamma_{\beta\left\|x^{\prime}-x\right\| \mathbb{B}(0)}(u-z)\right) .
$$

It then follows that

$$
\begin{aligned}
\gamma_{F\left(x^{\prime}\right)+\beta\left\|x^{\prime}-x\right\| \mathbb{B}(0)}(u) & \leqslant \gamma_{F\left(x^{\prime}\right)}(u)+\gamma_{\beta\left\|x^{\prime}-x\right\| \mathbb{B}(0)}(u) \\
& =\gamma_{F\left(x^{\prime}\right)}(u)+\beta\left\|x^{\prime}-x\right\|\|u\| .
\end{aligned}
$$

Thus, combining this with (A.1), we get

$$
\left|\gamma_{F(x)}(u)-\gamma_{F\left(x^{\prime}\right)}(u)\right| \leqslant \beta\left\|x^{\prime}-x\right\|\|u\| .
$$

which concludes the proof.

B. Proofs of Section 2

Proof of Proposition 1.
(i) This is due to the fact that e_{x} is the orthogonal projection of 0 on the affine space \bar{S}_{x}. It is therefore an element of $\bar{S}_{x} \cap\left(\bar{S}_{x}-e_{x}\right)^{\perp}$, i.e. $e_{x} \in \bar{S}_{x} \cap T_{x}$.
(ii) This is straightforward from the fact that $S_{x}=\left\{\eta \in \mathbb{R}^{N}: \eta_{T_{x}}=0\right\}, \bar{S}_{x}=S_{x}+e_{x}$ and $e_{x} \in T_{x}$ from (i).

Proof of Proposition 2. It follows from Lemma 4(v) since $0 \in \operatorname{ri}\left(\partial J(x)-f_{x}\right)$. Proof of Proposition 3. The gauge $J_{f_{x}}^{x}$ is the support function of the set

$$
\mathscr{K}_{x} \stackrel{\text { def. }}{=} \partial J(x)-f_{x}=\left\{\eta \in \mathbb{R}^{N}: J_{f_{x}}^{\circ}(\eta) \leqslant 1\right\} \subset S_{x},
$$

where the inclusion follows from Proposition 2.
(i) Since \mathscr{K}_{x} is a bounded set, its support function is finite-valued [20, Proposition V.2.1.3]. It then follows that $\operatorname{dom} J_{f_{x}}^{x}=\mathbb{R}^{N}$.
(ii) We have

$$
\begin{aligned}
J_{f_{x}}^{x}(d) & =\sup _{\eta \in \mathscr{K}_{x}}\langle\eta, d\rangle=\sup _{J_{f_{x}}^{x, 0}(\eta) \leqslant 1}\langle\eta, d\rangle=\sup _{J_{f_{x}}^{x, \circ}\left(\eta_{S_{x}}\right) \leqslant 1}\left\langle\eta_{S_{x}}, d\right\rangle \\
& =\sup _{\eta \in \mathscr{K}_{x}}\left\langle\eta, d_{T_{x}}\right\rangle+\left\langle\eta, d_{S_{x}}\right\rangle=\sup _{\eta \in \mathscr{K}_{x}}\left\langle\eta, d_{S_{x}}\right\rangle \\
& =J_{f_{x}}^{x}\left(d_{S_{x}}\right),
\end{aligned}
$$

where we used the fact that $\left\langle\eta, d_{T_{x}}\right\rangle=0$ on \mathscr{K}_{x}.
(iii) As a consequence of (ii), $J_{f_{x}}^{x}\left(d_{T_{x}}\right)=0$. Clearly, $T_{x} \subset \operatorname{Ker}\left(J_{f_{x}}^{x}\right)$ and $J_{f_{x}}^{x}$ is constant along all affine subspaces parallel to T_{x}. But, since $0 \in \operatorname{ri} \mathscr{K}_{x}$, excluding the origin, the supremum in $J_{f_{x}}^{x}$ is always attained at some nonzero $\eta \in \mathscr{K}_{x} \subset S_{x}$. Thus $J_{f_{x}}^{x}(d)>0$ for all d such that $d \notin T_{x}$. This shows that actually $\operatorname{Ker}\left(J_{f_{x}}^{x}\right)=T_{x}$. In particular, this yields that on S_{x}, the gauge $J_{f_{x}}^{x}$ is coercive.

Proof of Theorem 1. Invoking Proposition 1, we get that for every $\eta \in \partial J(x), \eta_{T_{x}}=e_{x}$, and $\mathrm{P}_{T_{x}}\left(f_{x}\right)=e_{x}$. It remains now to uniquely characterize the part of the subdifferential lying in S_{x}, i.e. $\partial J(x)-e_{x}$. Since $f_{x} \in \operatorname{ri} \partial J(x)$, we have from the one-to-one correspondence of Lemma 4(i) and the definition of the subdifferential gauge,

$$
\begin{aligned}
\eta \in\left\{\eta \in \mathbb{R}^{N}: J_{f_{x}}^{x, \circ}\left(\eta_{S_{x}}-\mathrm{P}_{S_{x}}\left(f_{x}\right)\right) \leqslant 1\right\} & \Longleftrightarrow \eta_{S_{x}}-\mathrm{P}_{S_{x}}\left(f_{x}\right) \in \partial J(x)-f_{x} \\
& \Longleftrightarrow \eta_{S_{x}} \in \partial J(x)-e_{x} \\
& \Longleftrightarrow \eta \in \partial J(x)
\end{aligned}
$$

Proof of Proposition 4. This is a convenient rewriting of the fact that x is a global minimizer if, and only if, 0 is a subgradient of the objective function at x.
(i) For problem $\left(\mathscr{P}_{\lambda}(y)\right)$, this is equivalent to

$$
\frac{1}{\lambda} \Phi^{*}(y-\Phi x) \in \partial J(x)
$$

Projecting this relation on T and S yields the desired result.
(ii) Let's turn to problem $\left(\mathscr{P}_{0}(y)\right)$. We have at any global minimizer x

$$
0 \in \partial J(x)+\Phi^{*} N_{\{\alpha: \alpha=y\}}(\Phi x)
$$

where $N_{\{\alpha: \alpha=y\}}(x)$ is the normal cone of the constraint set $\{\alpha: \alpha=y\}$ at x, which is obviously the whole space \mathbb{R}^{Q}. Thus, this monotone inclusion is equivalent to the existence of $\alpha \in \mathbb{R}^{Q}$ such that

$$
\Phi^{*} \alpha \in \partial J(x)
$$

Projecting again this on T and S proves the assertion.

Proof of Lemma 1. Let $J=\gamma_{C}, x \in T$ and $x^{\prime} \in S$.
\Rightarrow : By virtue of Lemma 5, we have

$$
\begin{aligned}
J^{\circ}\left(x+x^{\prime}\right) & =\sup _{u \in C}\left\langle x+x^{\prime}, u\right\rangle \\
& =\sup _{J(u) \leqslant 1}\left\langle x+x^{\prime}, u\right\rangle \\
& =\sup J\left(u_{T}+u_{S}\right) \leqslant 1\left\langle x, u_{T}\right\rangle+\left\langle x^{\prime}, u_{S}\right\rangle \\
& =\sup J\left(u_{T}\right)+J\left(u_{S}\right) \leqslant 1\left\langle x, u_{T}\right\rangle+\left\langle x^{\prime}, u_{S}\right\rangle \\
& =\sup _{\rho \in[0,1] J\left(u_{T}\right) \leqslant \rho, J\left(u_{S}\right) \leqslant 1-\rho}\left\langle x, u_{T}\right\rangle+\left\langle x^{\prime}, u_{S}\right\rangle \\
& =\sup _{\rho \in[0,1]} \rho \sup _{J\left(u_{T}\right) \leqslant 1}\left\langle x, u_{T}\right\rangle+(1-\rho) \sup _{J\left(u_{S}\right) \leqslant 1}\left\langle x^{\prime}, u_{S}\right\rangle \\
& =\sup _{\rho \in[0,1]} \rho \sup _{v \in C \cap T}\langle x, v\rangle+(1-\rho) \sup _{w C \cap T}\left\langle x^{\prime}, w\right\rangle \\
& =\sup _{\rho \in[0,1]} \rho \sigma_{C \cap T}(x)+(1-\rho) \sigma_{C \cap S}\left(x^{\prime}\right) \\
& =\max \left(\sigma_{C \cap T}(x), \sigma_{C \cap S}\left(x^{\prime}\right)\right) .
\end{aligned}
$$

Since

$$
\sigma_{C \cap T}(x)=\overline{\operatorname{co}}\left(\inf \left(\sigma_{C}(x), l_{S}(x)\right)\right)=\sigma_{C}(x)=J^{\circ}(x)
$$

and

$$
\sigma_{C \cap S}\left(x^{\prime}\right)=\overline{\operatorname{co}}\left(\inf \left(\sigma_{C}\left(x^{\prime}\right), v_{T}\left(x^{\prime}\right)\right)\right)=\sigma_{C}\left(x^{\prime}\right)=J^{\circ}\left(x^{\prime}\right),
$$

the implication follows.
\Leftarrow : Using again Lemma 5, we get

$$
\begin{aligned}
J\left(x+x^{\prime}\right) & =\sup _{u \in C^{\circ}}\left\langle x+x^{\prime}, u\right\rangle \\
& =\sup _{J^{\circ}\left(u_{T}+u_{S}\right) \leqslant 1}\left\langle x, u_{T}\right\rangle+\left\langle x^{\prime}, u_{S}\right\rangle \\
& =\operatorname{map}_{\max \left(J^{\circ}\left(u_{T}\right), J^{\circ}\left(u_{S}\right)\right) \leqslant 1}\left\langle x, u_{T}\right\rangle+\left\langle x^{\prime}, u_{S}\right\rangle \\
& =\sup _{J^{\circ}\left(u_{T}\right) \leqslant 1, J^{\circ}\left(u_{S}\right) \leqslant 1}\left\langle x, u_{T}\right\rangle+\left\langle x^{\prime}, u_{S}\right\rangle \\
& =\sup _{v \in C^{\circ} \cap T}\langle x, v\rangle+\sup _{w \in C^{\circ} \cap S}\left\langle x^{\prime}, w\right\rangle \\
& =\sigma_{C^{\circ} \cap T}(x)+\sigma_{C^{\circ} \cap S}\left(x^{\prime}\right) \\
& =\overline{\operatorname{co}}\left(\inf \left(\sigma_{C^{\circ}}(x), l_{S}(x)\right)\right)+\overline{\operatorname{co}}\left(\inf \left(\sigma_{C^{\circ}}\left(x^{\prime}\right), \imath_{T}\left(x^{\prime}\right)\right)\right) \\
& =\sigma_{C^{\circ}}(x)+\sigma_{C^{\circ}}\left(x^{\prime}\right) \\
& =J(x)+J\left(x^{\prime}\right) .
\end{aligned}
$$

This concludes the proof.
Proof of Proposition 5.

Let $J=\gamma_{C}$. We only need to show that $J_{e_{x}}^{x, \circ}\left(\eta_{S_{x}}\right)=J^{\circ}\left(\eta_{S_{x}}\right)$. This follows from Proposition 2, Lemma 1 and Lemma 5(ii). Indeed,

$$
\begin{array}{rlr}
J_{e_{x}}^{x, \circ}\left(\eta_{S_{x}}\right) & =\inf _{\tau \geqslant 0} \max \left(J^{\circ}\left(\tau e_{x}+\eta_{S_{x}}\right), \tau\right) & \text { from Proposition 2, } \\
& =\inf _{\tau \geqslant 0} \max \left(\tau J^{\circ}\left(e_{x}\right), J^{\circ}\left(\eta_{S_{x}}\right), \tau\right) & \text { from Lemma 1, } \\
& =\inf _{\tau \geqslant 0} \max \left(J^{\circ}\left(\eta_{S_{x}}\right), \tau\right) & \text { from } e_{x} \in \partial J(x) \subset C^{\circ}, \\
& =J^{\circ}\left(\eta_{S_{x}}\right) &
\end{array}
$$

C. Proofs of Section 3

Proof of Lemma 2. Let x_{1}, x_{2} be two (global) minimizers of $\left(\mathscr{P}_{\lambda}(y)\right)$. Suppose that $\Phi x^{1} \neq \Phi x^{2}$. Define $x_{t}=t x_{1}+(1-t) x_{2}$ for any $t \in(0,1)$. By strict convexity of $u \mapsto\|y-u\|_{2}^{2}$, one has

$$
\frac{1}{2}\left\|y-\Phi x_{t}\right\|_{2}^{2}<\frac{t}{2}\left\|y-\Phi x_{1}\right\|_{2}^{2}+\frac{1-t}{2}\left\|y-\Phi x_{2}\right\|_{2}^{2}
$$

Since J is convex, we get

$$
J\left(x_{t}\right) \leqslant t J\left(x_{1}\right)+(1-t) J\left(x_{2}\right) .
$$

Combining these two inequalities contradicts the fact that x_{1}, x_{2} are global minimizers of $\left(\mathscr{P}_{\lambda}(y)\right)$.
Proof of Theorem 2. To prove this theorem, we need the following lemmata.
Lemma 9 Let C be a non-empty closed convex set and f a proper lsc convex function. Let x be a minimizer of $\min _{z \in C} f(z)$. If

$$
f^{\prime}(x, z-x)>0 \quad \forall z \in C, z \neq x
$$

then, x is the unique solution of f on C.
Proof. We first show that $t \mapsto(f(x+t(z-x))-f(z)) / t$ is non-decreasing on $(0,1]$. Indeed, let $g:[0,1] \rightarrow \mathbb{R}$ a convex function such that $g(0)=0$. Let $(t, s) \in(0,1]^{2}$ with $s>t$. Then,

$$
\begin{aligned}
g(t)=g(s(t / s)) & =g(s(t / s)+(1-t / s) 0) \\
& \leqslant t \frac{g(s)}{s}+(1-t / s) g(0) \\
& =t \frac{g(s)}{s},
\end{aligned}
$$

which proves that $t \in(0,1] \mapsto \frac{g(t)}{t}$ is non-decreasing on $(0,1]$. Since f is convex, applying this result shows that the function

$$
t \in(0,1] \mapsto g(t)=f(x+t(z-x))-f(z)
$$

is such that $g(0)=0$ and $g(t) / t$ is non-decreasing.
Assume now that that $f^{\prime}(x, z-x)>0$. Then, for every $x \in C$,

$$
g(1)=f(z)-f(x) \geqslant f^{\prime}(x, z-x)>0, \quad \forall z \in C, z \neq x
$$

which is equivalent to x being the unique minimizer of f on C.
We now compute the directional derivative of a finite-valued convex function J.

Lemma 10 The directional derivative $J^{\prime}(x, \delta)$ at point $x \in \mathbb{R}^{N}$ in the direction δ reads

$$
J^{\prime}(x, \boldsymbol{\delta})=\left\langle e_{x}, \delta_{T_{x}}\right\rangle+\left\langle P_{S_{x}}\left(f_{x}\right), \delta_{S_{x}}\right\rangle+J_{f_{x}}^{x}\left(\delta_{S_{x}}\right)
$$

Proof. This comes directly from the structure of $J_{f_{x}}^{x}$. Indeed, one has

$$
\begin{aligned}
J_{f_{x}}^{x}\left(\delta_{S_{x}}\right) & =J_{f_{x}}^{x}(\boldsymbol{\delta}) \\
& =\sup _{\eta \in \partial J(x)-\left\{f_{x}\right\}}\langle\eta, \delta\rangle \\
& =-\left\langle\boldsymbol{\delta}, f_{x}\right\rangle+\sup _{\eta \in \partial J(x)}\langle\eta, d\rangle \\
& =-\left\langle\boldsymbol{\delta}, f_{x}\right\rangle+J^{\prime}(x, \boldsymbol{\delta}) \\
& =-\left\langle e_{x}, \delta_{T_{x}}\right\rangle-\left\langle P_{S_{x}}\left(f_{x}\right), \delta_{S_{x}}\right\rangle+J^{\prime}(x, \boldsymbol{\delta}) .
\end{aligned}
$$

We are now in position to show Theorem 3. We provide the proof for $\left(\mathscr{P}_{\lambda}(y)\right)$. That of $\left(\mathscr{P}_{0}(y)\right)$ is similar.

Let x be a solution of $\left(\mathscr{P}_{\lambda}(y)\right)$. According to Lemma 2, the set of minimizers of $\left(\mathscr{P}_{\lambda}(y)\right)$ reads $\mathbf{M} \subseteq x+\operatorname{Ker}(\Phi)$, which is a closed convex set. We can therefore rewrite $\left(\mathscr{P}_{\lambda}(y)\right)$ as

$$
\min _{z \in \mathbf{M}} J(z)
$$

Invoking Lemma 9 with $C=\mathbf{M}, x$ is thus the unique minimizer if

$$
\forall \delta \in \operatorname{Ker}(\Phi) \backslash\{0\}, \quad J^{\prime}(x, \delta)>0
$$

Using Lemma 10 and the fact that $\operatorname{Ker}(\Phi)$ is a subspace, this is equivalent to

$$
\forall \boldsymbol{\delta} \in \operatorname{Ker}(\Phi) \backslash\{0\}, \quad\left\langle e_{x}, \boldsymbol{\delta}_{T}\right\rangle+\left\langle P_{S}\left(f_{x}\right), \delta_{S}\right\rangle<J_{f_{x}}^{x}\left(-\delta_{S}\right) .
$$

which is $\left(\mathrm{NSP}^{\mathrm{S}}\right)$.
Proof of Corollary 1. Using [20, Theorem V.2.2.3], we know that

$$
\eta \in \operatorname{ri}(\partial J(x)) \Leftrightarrow J^{\prime}(x, \delta)>\langle\eta, \delta\rangle \quad \forall \delta \text { such that } J^{\prime}(x, \delta)+J^{\prime}(x,-\delta)>0
$$

Applying this with $\eta=\Phi^{*} \alpha \in \operatorname{ri}(\partial J(x))$, and using Lemma 10, we obtain

$$
\Phi^{*} \alpha \in \operatorname{ri}(\partial J(x)) \Leftrightarrow J^{\prime}(x, \delta)>\langle\alpha, \Phi \delta\rangle \quad \forall \delta \text { such that } J_{f_{x}}^{x}(\delta)+J_{f_{x}}^{x}(-\delta)>0
$$

Moreover, since $J_{f_{x}}^{x}$ and $\operatorname{Ker}\left(J_{f_{x}}^{x}\right)=T_{x}=T$ from Proposition 3(iii), and $\left(\mathscr{C}_{T}\right)$ holds, we get

$$
\begin{aligned}
\Phi^{*} \alpha \in \operatorname{ri}(\partial J(x)) & \Leftrightarrow J^{\prime}(x, \delta)>\langle\alpha, \Phi \delta\rangle \quad \forall \delta \notin T \\
& \Rightarrow J^{\prime}(x, \delta)>0 \quad \forall \delta \in \operatorname{Ker}(\Phi)
\end{aligned}
$$

We conclude using Theorem 2.
Proof of Theorem 3.
(i) Let the dual vector $\alpha=(y-\Phi x) / \lambda$, and $\eta=\Phi^{*} \alpha \in \partial J(x)$ by Theorem 1(i). We then observe that

$$
\begin{aligned}
\eta \in\left\{\eta \in \mathbb{R}^{N}: J_{f_{x}}^{\circ}\left(\eta_{S}-\mathrm{P}_{S}\left(f_{x}\right)\right)<1\right\} & \Longleftrightarrow \eta_{S}-\mathrm{P}_{S}\left(f_{x}\right) \in \operatorname{ri}\left(\partial J(x)-\left\{f_{x}\right\}\right) \\
& \Longleftrightarrow \eta \in \operatorname{ri}(\partial J(x))
\end{aligned}
$$

Thus, applying Corollary 1 with such a dual vector yields the assertion.
(ii) The proof is similar to (i) except that we invoke Theorem 1(ii).

D. Proofs of Section 4

Proof of Theorem 4. Without loss of generality, we show this result for $\Gamma=\|\cdot\|$ since for every $x \in \mathbb{R}^{N}$,

$$
\Gamma(x) \leqslant\|\mid I \mathrm{Id}\|_{\Gamma \rightarrow \ell^{2}}\|x\|
$$

Recall that J is partly smooth at x relative to T_{x}, and $\partial J: \mathbb{R}^{N} \rightrightarrows \mathbb{R}^{N}$ is Lipschitz-continuous around x relative to T_{x}.

- Existence of f_{x}. Such a mapping exists according to [2, Theorem 9.4.3].
- v-stability. Using [23, Proposition 2.10] the sharpness property Definition 5(ii) is locally stable. Hence, for $x^{\prime} \in T_{x}$ in a neighborhood of $x, \mathscr{T}_{T_{x}}\left(x^{\prime}\right)=T_{x}=T_{x^{\prime}}$. The radius of this neighborhood can be taken as v_{x}.
- μ-stability. Using [20, Corollary VI.2.1.3], we write for any $h \in T_{x}$

$$
J(x+t h)=J(x)+t\langle s, h\rangle+o(t)=J(x)+t\left\langle e_{x}, h\right\rangle+o(t)
$$

where $s \in \mathbf{F}_{\partial J(x)}(h)$. Since J restricted to $T_{x} \cap U$ is C^{2} according to the smoothness property, repeating this argument at order 2 allows to conclude that the mapping $z \in T_{x} \cap U \mapsto e_{z}$ is C^{1}, when local Lipschitz continuity follows immediately.

- τ-stability. One has

$$
J_{f_{x}}^{x, \circ}\left(\mathrm{P}_{S}\left(f_{x}-f_{x^{\prime}}\right)\right) \leqslant\left\|\mathrm{P}_{S_{x}}\right\|_{J_{f_{x}}^{x, \circ} \rightarrow \ell^{2}}\left\|f_{x}-f_{x^{\prime}}\right\| \leqslant \tau_{x}\left\|x-x^{\prime}\right\|
$$

where $\tau_{x}=\left\|\mid \mathrm{P}_{S_{x}}\right\|_{J_{f_{x}}^{x, \circ} \rightarrow \ell^{2}} \beta$ and β is the Lipschitz constant associated to f_{x}, proving (4.3).

- ξ-stability. ∂J is Lipschitz-continous around x relative to T_{x}, and $x \mapsto f_{x}$ is β-Lipschitz-continuous. Hence, the mapping $x \mapsto\left(\partial J(x)-f_{x}\right)$ is Lipschitz on T_{x}. In view of Lemma 8, we get that

$$
J_{f_{x^{\prime}}}^{x^{\prime}, \circ}(u)-J_{f_{x}}^{x, \circ}(u) \leqslant \beta\left\|x^{\prime}-x\right\|\|u\|
$$

Since $\|u\| \leqslant\|\operatorname{Id}\|_{\ell^{2} \rightarrow f_{f_{x}}^{x, 0}} J_{f_{x}}^{x, \circ}(u)$, we get the desired bound where $\xi_{x}=\beta\| \| \mathrm{Id} \|_{\ell^{2} \rightarrow J_{f_{x}}^{x, \circ}}$.

Proof of Proposition 6.

(i) First, we have

$$
\partial H(x)=\partial J(x)+\partial G(x)
$$

Let $S^{J}=\operatorname{span}\left(\partial J(x)-\eta^{J}\right)$ and $S^{G}=\operatorname{span}\left(\partial G(x)-\eta^{G}\right)$, for any pair $\eta^{J} \in \partial J(x)$ and $\eta^{G} \in \partial G(x)$. Choosing $\eta^{H}=\eta^{J}+\eta^{G} \in \partial H(x)$ we have

$$
\begin{aligned}
S^{H} & =\operatorname{span}\left(\partial H(x)-\eta^{H}\right) \\
& =\operatorname{span}\left(\left(\partial J(x)-\eta^{J}\right)+\left(\partial G(x)-\eta^{G}\right)\right) \\
& =\operatorname{span}\left(\operatorname{span}\left(\partial J(x)-\eta^{J}\right)+\operatorname{span}\left(\partial G(x)-\eta^{G}\right)\right) \\
& =\operatorname{span}\left(S^{J} \cup S^{G}\right) .
\end{aligned}
$$

As a consequence we have $T^{H}=\left(S^{H}\right)^{\perp}=T^{J} \cap T^{G}$.
(ii) Moreover, since $T^{H} \perp S^{J} \cup S^{G}$ we have from Proposition 1(iii) that

$$
\begin{aligned}
e_{H}=\mathrm{P}_{T^{H}}(\partial H(x)) & =\mathrm{P}_{T^{H}}(\partial J(x)+\partial G(x)) \\
& =\mathrm{P}_{T^{H}}\left(e_{J}+\mathrm{P}_{S^{J}} \partial J(x)+e_{G}+\mathrm{P}_{S^{G}} \partial G(x)\right) \\
& =\mathrm{P}_{T^{H}}\left(e_{J}+e_{G}\right)
\end{aligned}
$$

(iii) As $f_{x}^{J} \in \operatorname{ri} \partial J(x)$ and $f_{x}^{G} \in \operatorname{ri} \partial G(x)$, it follows from [34, Corollary 6.6.2] that

$$
f_{x}^{H}=f_{x}^{J}+f_{x}^{G} \in \operatorname{ri} \partial J(x)+\operatorname{ri} \partial G(x)=\operatorname{ri}(\partial J(x)+\partial G(x))=\operatorname{ri} \partial H(x)
$$

The subdifferential gauge associated to H is then

$$
H_{f_{x}^{H}}^{x, \circ}=\gamma_{\partial H(x)-f_{x}^{H}}=\gamma_{\left(\partial J(x)-f_{x}^{J}\right)+\left(\partial G(x)-f_{x}^{G}\right)},
$$

which is coercive and finite on S^{H} according to Proposition 2. Invoking Lemma 6, we get the desired result since for any $\rho \geqslant 0$,

$$
u \mapsto \rho J_{f_{x}^{J}}^{x, \circ}(u)+(1-\rho) G_{f_{x}^{G}}^{x, \circ}(\eta-u)=\rho \gamma_{\partial J(x)-f_{x}^{J}}(u)+(1-\rho) \gamma_{\partial G(x)-f_{x}^{G}}(\eta-u)
$$

is finite and continuous on $S^{J} \cap\left(S^{G}+\eta\right)$, for $\eta \in S^{H}=\operatorname{span}\left(S^{J}+S^{G}\right)$ by (i).

Proof of Proposition 7. In the following, all operator bounds that appear are finite owing to the coercivity assumption on the involved gauges in Definition 6 of a partly smooth regularizer.

It is straightforward to see that the function $\Gamma^{H}=\max \left(\Gamma^{J}, \Gamma^{G}\right)$ is indeed a gauge, which is finite and coercive on $T^{H}=T^{J} \cap T^{G}$. Moreover, given that both J and G are partly smooth relative to a linear manifold at x with corresponding parameters v_{x}^{J} and v_{x}^{G}, we have with the advocated choice of Γ^{H} and v_{x}^{H},

$$
\Gamma^{J}\left(x-x^{\prime}\right) \leqslant v_{x}^{J} \quad \text { and } \quad \Gamma^{G}\left(x-x^{\prime}\right) \leqslant v_{x}^{G}
$$

for every $\forall x^{\prime} \in T_{x}^{H}$ such that $\Gamma^{H}\left(x-x^{\prime}\right) \leqslant v_{x}^{H}$. It follows that:

- Since J and G are both partly smmoth relative to a linear manifold, then we have $T_{x}^{J}=T_{x^{\prime}}^{J}$ and $T_{x}^{G}=T_{x^{\prime}}^{G}$, and thus by Proposition 6(i)

$$
T_{x}^{H}=T_{x}^{J} \cap T_{x}^{G}=T_{x^{\prime}}^{J} \cap T_{x^{\prime}}^{G}=T_{x^{\prime}}^{H}=T^{H}
$$

- μ_{x}^{H}-stability: we have from Proposition 6(ii)

$$
\begin{aligned}
\Gamma^{H}\left(e_{x}^{H}-e_{x^{\prime}}^{H}\right) & =\Gamma^{H}\left(\mathrm{P}_{T^{H}}\left(e_{x}^{J}+e_{x}^{G}-e_{x^{\prime}}^{J}-e_{x^{\prime}}^{G}\right)\right) \\
& \leqslant \Gamma^{H}\left(\mathrm{P}_{T^{H}}\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)\right)+\Gamma^{H}\left(\mathrm{P}_{T^{H}}\left(e_{x}^{G}-e_{x^{\prime}}^{G}\right)\right) \\
& \leqslant\left\|\mathrm{P}_{T^{H}}\right\|_{\Gamma^{J} \rightarrow \Gamma^{H}} \Gamma^{J}\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)+\left\|\mathrm{P}_{T^{H}}\right\| \|_{\Gamma^{G} \rightarrow \Gamma^{H}} \Gamma^{G}\left(e_{x}^{G}-e_{x^{\prime}}^{G}\right) \\
& \leqslant\left(\mu_{x}^{J}\left\|\mathrm{P}_{T^{H}}\right\|_{\Gamma^{J} \rightarrow \Gamma^{H}}+\mu_{x}^{G}\left\|\mathrm{P}_{T^{H}}\right\|_{\Gamma^{G} \rightarrow \Gamma^{H}}\right) \Gamma^{H}\left(x-x^{\prime}\right),
\end{aligned}
$$

where we used μ_{x}^{J} - and μ_{x}^{G}-stability of J and G in the last inequality.

- τ_{x}^{H}-stability: the fact that $S^{J} \subseteq S^{H}$ and $S^{G} \subseteq S^{H}$ and subadditivity of gauges lead to

$$
\begin{align*}
& H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{H}}\left(f_{x}^{H}-f_{x^{\prime}}^{H}\right)\right) \\
& =H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{J}}\left(f_{x}^{J}-f_{x^{\prime}}^{J}\right)+\mathrm{P}_{S^{G}}\left(f_{x}^{G}-f_{x^{\prime}}^{G}\right)+\mathrm{P}_{S^{H}}\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)+\mathrm{P}_{S^{H}}\left(e_{x}^{G}-e_{x^{\prime}}^{G}\right)\right) \\
& \leqslant H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{J}}\left(f_{x}^{J}-f_{x^{\prime}}^{J}\right)\right)+H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{G}}\left(f_{x}^{G}-f_{x^{\prime}}^{G}\right)\right) \\
& \quad+H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{H}}\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)\right)+H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{H}}\left(e_{x}^{G}-e_{x^{\prime}}^{G}\right)\right) . \tag{A.1}
\end{align*}
$$

According to Proposition 6(iii), we have

$$
H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{J}}\left(f_{x}^{J}-f_{x^{\prime}}^{J}\right)\right)=\inf _{\eta_{1}+\eta_{2}=\mathrm{P}_{S^{J}}\left(f_{x}^{J}-f_{x^{\prime}}^{J}\right)} \max \left(J_{f_{x}^{J}}^{x, \circ}\left(\eta_{1}\right), G_{f_{x}^{G}}^{x, \circ}\left(\eta_{2}\right)\right)
$$

Since $\operatorname{dom} J_{f_{x}^{J}}^{x, \circ}=S^{J},\left(\eta_{1}, \eta_{2}\right)=\left(\mathrm{P}_{S^{J}}\left(f_{x}^{J}-f_{x^{\prime}}^{J}\right), 0\right)$ is a feasible point of the last problem, and we get

$$
H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{J}}\left(f_{x}^{J}-f_{x^{\prime}}^{J}\right)\right) \leqslant J_{f_{x}^{J}}^{x, \circ}\left(\mathrm{P}_{S^{J}}\left(f_{x}^{J}-f_{x^{\prime}}^{J}\right)\right)
$$

Moreover, as $e_{x}^{J}, e_{x^{\prime}}^{J} \in T^{J}$ (see Proposition 1(ii)) and $S^{J} \subseteq S^{H}$, we have

$$
\begin{aligned}
& \min _{\eta_{1} \in T^{J}, \eta_{2} S^{J}, \eta_{1}+\eta_{2} \in S^{H}}\left\|\eta_{1}+\eta_{2}-\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)\right\|^{2} \\
& =\min _{\eta_{1} \in T^{J}, \eta_{2} S^{J}, \eta_{1}+\eta_{2} \in S^{H}}\left\|\eta_{1}-\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)\right\|^{2}+\left\|\eta_{2}\right\|^{2} \\
& =\min _{\eta_{1} \in T^{J}, \eta_{2} S^{J}, \eta_{1} \in S^{H}}\left\|\eta_{1}-\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)\right\|^{2}+\left\|\eta_{2}\right\|^{2} \\
& =\min _{\eta_{1} \in S^{H} \cap T^{J}}\left\|\eta_{1}-\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)\right\|^{2} .
\end{aligned}
$$

That is

$$
\mathrm{P}_{S^{H}}\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)=\mathrm{P}_{S^{H} \cap T^{J}}\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)
$$

Thus

$$
H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{H}}\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)\right) \leqslant\left\|\mathrm{P}_{S^{H} \cap T^{J}}\right\|_{\Gamma^{J} \rightarrow H_{f_{x}^{H}}^{x, \circ}} \Gamma^{J}\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)
$$

Similar reasoning leads to the following bounds

$$
\begin{aligned}
& H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{G}}\left(f_{x}^{G}-f_{x^{\prime}}^{G}\right)\right) \leqslant G_{f_{x}^{G}}^{x, \circ}\left(\mathrm{P}_{S^{G}}\left(f_{x}^{G}-f_{x^{\prime}}^{G}\right)\right), \\
& H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{H}}\left(e_{x}^{G}-e_{x^{\prime}}^{G}\right)\right) \leqslant\left\|\mathrm{P}_{S^{H} \cap T^{G}}\right\|_{\Gamma^{J} \rightarrow H_{f_{x}^{H}}^{x, \circ}} \Gamma^{G}\left(e_{x}^{G}-e_{x^{\prime}}^{G}\right) .
\end{aligned}
$$

Having this, we can continue to bound (A.1) as

$$
\begin{aligned}
& H_{f_{x}^{H}}^{x, \circ}\left(\mathrm{P}_{S^{H}}\left(f_{x}^{H}-f_{x^{\prime}}^{H}\right)\right) \\
& \leqslant J_{f_{x}^{\prime}, \circ}^{x, \circ}\left(\mathrm{P}_{S^{J}}\left(f_{x}^{J}-f_{x^{\prime}}^{J}\right)\right)+G_{f_{x}^{G}}^{x, \circ}\left(\mathrm{P}_{S^{G}}\left(f_{x}^{G}-f_{x^{\prime}}^{G}\right)\right) \\
&+\| \| \mathrm{P}_{S^{H} \cap T^{J}}\left\|_{\Gamma^{J} \rightarrow H_{f_{x}^{H}}^{x, \circ}} \Gamma^{J}\left(e_{x}^{J}-e_{x^{\prime}}^{J}\right)+\right\|\left\|\mathrm{P}_{S^{H} \cap T^{G}}\right\|_{\Gamma^{J} \rightarrow H_{f_{x}^{H}}^{x, \circ}} \Gamma^{G}\left(e_{x}^{G}-e_{x^{\prime}}^{G}\right) \\
& \leqslant \tau_{x}^{J} \Gamma^{J}\left(x-x^{\prime}\right)+\tau_{x}^{G} \Gamma^{G}\left(x-x^{\prime}\right)+\mu_{x}^{J}\| \| \mathrm{P}_{S^{H} \cap T^{J}} \|_{\Gamma^{J} \rightarrow H_{f_{x}^{H}}^{x, \circ}} \Gamma^{J}\left(x-x^{\prime}\right) \\
&+\mu_{x}^{G}\| \| \mathrm{P}_{S^{H} \cap T^{G}} \|_{\Gamma^{G} \rightarrow H_{f_{x}^{H}}^{x, \circ}} \Gamma^{G}\left(x-x^{\prime}\right) \\
& \leqslant\left(\tau_{x}^{J}+\tau_{x}^{G}+\mu_{x}^{J}\left\|\mathrm{P}_{S^{H} \cap T^{J}}\right\|_{\Gamma^{J} \rightarrow H_{f_{x}^{H}}^{x, \circ}}+\mu_{x}^{G}\| \| \mathrm{P}_{S^{H} \cap T^{G}} \|_{\Gamma^{G} \rightarrow H_{f_{x}^{H}}^{x, \circ}}\right) \Gamma^{H}\left(x-x^{\prime}\right),
\end{aligned}
$$

where the last two inequalities J and G follow from $\mu_{x}^{J}-, \tau_{x}^{J}-, \mu_{x}^{G}$ - and τ_{x}^{G} - stability of J and G.

- ξ_{x}^{H}-stability: Proposition 6(iii) again yields that for any $\eta \in S^{H}$

$$
\begin{aligned}
H_{f_{x^{\prime}}^{H}}^{\circ}(\eta) & =\inf _{\eta_{1}+\eta_{2}=\eta} \max \left(J_{f_{x^{\prime}}^{J}}^{\circ}\left(\eta_{1}\right), G_{f_{x^{\prime}}^{G}}^{\circ}\left(\eta_{2}\right)\right) \\
& \leqslant \max \left(J_{f_{x^{\prime}}^{J}}^{\circ}\left(\bar{\eta}_{1}\right), G_{f_{x^{\prime}}^{G}}^{\circ}\left(\bar{\eta}_{2}\right)\right)
\end{aligned}
$$

for any feasible $\left(\bar{\eta}_{1}, \bar{\eta}_{2}\right) \in S^{J} \times S^{G} \cap\left\{\left(\eta_{1}, \eta_{2}: \eta_{1}+\eta_{2}=\eta\right\}\right.$. Now both J and G are partly smooth relative to a linear manifold, hence respectively ξ_{x}^{J} - and ξ_{x}^{G}-stable. Therefore, with the form of Γ^{H} we have

$$
\begin{gathered}
J_{f_{x^{\prime}}^{\circ}\left(\bar{\eta}_{1}\right)} \leqslant\left(1+\xi_{x}^{J} \Gamma^{J}\left(x-x^{\prime}\right)\right) J_{f_{x}^{J}}^{x, \circ}\left(\bar{\eta}_{1}\right) \leqslant \beta J_{f_{x}^{J}}^{x, \circ}\left(\bar{\eta}_{1}\right) \\
G_{f_{x^{\prime}}^{G}}^{\circ}\left(\bar{\eta}_{2}\right) \leqslant\left(1+\xi_{x}^{G} \Gamma^{G}\left(x-x^{\prime}\right)\right) G_{f_{x}^{G}}^{x, \circ}\left(\bar{\eta}_{2}\right) \leqslant \beta G_{f_{x}^{G}}^{x, \circ}\left(\bar{\eta}_{2}\right),
\end{gathered}
$$

where $\beta=1+\max \left(\xi_{x}^{J}, \xi_{x}^{G}\right) \Gamma^{H}\left(x-x^{\prime}\right)$. Whence we get

$$
\max \left(J_{f_{x^{\prime}}^{\circ}}^{\circ}\left(\eta_{1}\right), G_{f_{x^{\prime}}^{G}}^{\circ}\left(\eta_{2}\right)\right) \leqslant \beta \max \left(J_{f_{x}^{J}}^{x, \circ}\left(\bar{\eta}_{1}\right), G_{f_{x}^{G}}^{x, \circ}\left(\bar{\eta}_{2}\right)\right) .
$$

Taking in particular

$$
\left(\bar{\eta}_{1}, \bar{\eta}_{2}\right) \in \underset{\eta_{1}+\eta_{2}=\eta}{\operatorname{Argmin}} \max \left(J_{f_{x}^{J}}^{x, \circ}\left(\eta_{1}\right), G_{f_{x}^{G}}^{x, \circ}\left(\eta_{2}\right)\right)
$$

we arrive at

$$
H_{f_{x^{\prime}}^{H}}^{\circ}(\eta) \leqslant \beta \inf _{\eta_{1}+\eta_{2}=\eta} \max \left(J_{f_{x}^{J}}^{\circ}\left(\eta_{1}\right), G_{f_{x}^{G}}^{\circ}\left(\eta_{2}\right)\right)=\beta H_{f_{x}^{H}}^{\circ}(\eta) .
$$

This completes the proof.
Proof of Corollary 2. Gâteaux-differentiability entails that $\partial G(x)=\{\nabla G(x)\}$, whence we obtain $T_{x}^{G}=\mathbb{R}^{N}$ and $e_{x}^{G}=\nabla G(x)$. Applying Proposition 6, we get the result. It is sufficient to remark that the smooth perturbation G translates the subdifferential $\partial J(x)$ by $\nabla G(x)$. Hence, using our choice of f_{x}^{J+G}, we find the same subdifferential gauge.
Proof of Corollary 3. Since G si C^{2} on \mathbb{R}^{N}, it is obviously partly smooth relative to $T_{x}^{G}=\mathbb{R}^{N}$ according to [23, Example 3.1]. We now exhibit the constants involved.

- v-stability. For every $x^{\prime} \in \mathbb{R}^{N}, x^{\prime} \in T_{x}^{G}$, and thus $v_{x}^{G}=+\infty$, implying that $v_{x}^{H}=v_{x}^{J}$.
- μ-stability. Using the μ-stability of J and the fact that ∇G is β-Lipschitz, we get that

$$
\mu_{x}^{H}=\mu_{x}^{J}\left\|\mathrm{P}_{T^{J}}\right\|_{\Gamma^{J} \rightarrow \Gamma^{H}}+\beta\left\|\mathrm{P}_{T^{J}}\right\|_{\ell^{2} \rightarrow \Gamma^{H}}
$$

- τ - and ξ-stability. Since $S=\{0\}, \tau_{x}^{G}=\xi_{x}^{G}=0$, and we get from Proposition 7

$$
\tau_{x}^{H}=\tau_{x}^{J} \quad \text { and } \quad \xi_{x}^{H}=\xi_{x}^{J}
$$

Proof of Proposition 8.

(i) One has $\partial J=D \circ \partial J_{0} \circ D^{*}$, hence $S=D S_{0}=\operatorname{Im}\left(D_{S_{0}}\right)$ and $T=S^{\perp}=\operatorname{Ker}\left(D_{S_{0}}^{*}\right)$.
(ii) As $S=D \overline{S_{0}}=D e_{0}+S$, we get rom Proposition 1

$$
\begin{aligned}
e \in \underset{z \in \bar{S}}{\operatorname{argmin}}\|z\|=\underset{z-D e_{0} \in S}{\operatorname{argmin}}\|z\| & =D e_{0}+\underset{h \in S}{\operatorname{argmin}}\left\|h+D e_{0}\right\| \\
& =D e_{0}+\mathrm{P}_{S}\left(-D e_{0}\right)=\left(\mathrm{Id}-\mathrm{P}_{S}\right) D e_{0}=\mathrm{P}_{T} D e_{0} .
\end{aligned}
$$

(iii) With such a choice of f_{x}, we have

$$
\begin{aligned}
& f_{0, D^{*} x} \in \operatorname{ri} \partial J_{0}\left(D^{*} x\right) \Rightarrow D f_{0, D^{*} x} \in D \operatorname{ri} \partial J_{0}\left(D^{*} x\right) \\
& \Longleftrightarrow \Longleftrightarrow f_{x} \in \operatorname{ri} D \partial J_{0}\left(D^{*} x\right) \Longleftrightarrow f_{x} \in \operatorname{ri} \partial J(x) .
\end{aligned}
$$

We follow the same lines as in the proof of Lemma 7, where we additionally invoke Proposition 3(ii) to get

$$
\begin{aligned}
J_{f_{x}}^{x}(d) & =\sigma_{\partial J(x)-f_{x}}(d) \\
& =\sigma_{D\left(\partial J_{0}\left(D^{*} x\right)-f_{0, D^{*} x}\right)}(d) \\
& =\sigma_{\partial J_{0}\left(D^{*} x\right)-f_{0, D^{*} x}}\left(D^{*} d\right) \\
& =J_{0, f_{0, D^{*} x}^{D^{*} x}}\left(D^{*} d\right) \\
& =J_{0, f_{0, D^{*} x}^{D^{*} x}}\left(D_{S_{0}}^{*} d\right) .
\end{aligned}
$$

Note that $J_{f_{x}}^{x}$ is indeed constant along affine subspaces parallel to $\operatorname{Ker}\left(D_{S_{0}}^{*}\right)=S^{\perp}=T$. We now get that for every $\eta \in S=\operatorname{Ker}\left(D_{S_{0}}^{+}\right)^{\perp}$

$$
\begin{aligned}
& J_{f_{x}}^{x}(\eta)=\sigma_{J_{f_{x}}^{x}(d) \leqslant 1}(\eta) \\
&=\sigma_{J_{0, f_{0, D^{*} x}}^{D^{*} x}}\left(D_{S_{0}}^{*} d\right) \leqslant 1 \\
&=(\eta) \\
&=\imath_{J_{0, f_{0, D}}^{D^{*} x}}(w) \leqslant 1 \\
& \inf _{v} \sigma_{J_{0, f_{0, D}}^{D^{*} x}}(w) \leqslant 1 \\
&\left.=D_{S_{0}}^{*}\right)^{*}(\eta) \quad \text { s.t. } \quad D_{S_{0}} v=\eta \\
& \inf _{\operatorname{Ker}\left(D_{S_{0}}\right)} J_{0, f_{D^{*} x}}^{D^{*} x, \circ}\left(D_{S_{0}}^{+} \eta+z\right) .
\end{aligned}
$$

The infimum is finite and is attained necessarily at some $z \in \operatorname{Ker}\left(D_{S_{0}}\right) \cap S_{0} \neq \emptyset$ since $\operatorname{dom} J_{0, f_{D^{*} x}}^{D^{*} x, \circ}=S_{0}$ and $\operatorname{Im}\left(D_{S_{0}}^{+}\right)=\operatorname{Im}\left(D_{S_{0}}^{*}\right) \subset S_{0}$. Moreover, $\operatorname{Ker}\left(D_{S_{0}}\right) \cap S_{0}=\operatorname{Ker}(D) \cap S_{0}$.

Proof of Proposition 9. In the following, all operator bounds that appear are finite owing to the coercivity assumption on the involved gauges in Definition 6 of a partly smooth regularizer.

- Let x^{\prime} such that

$$
\Gamma\left(x-x^{\prime}\right) \leqslant \frac{1}{\left\|D^{*}\right\|_{\Gamma \rightarrow \Gamma_{0}}} v_{0, D^{*} x} .
$$

Hence,

$$
\Gamma_{0}\left(D^{*} x-D^{*} x^{\prime}\right) \leqslant\left\|D^{*}\right\|_{\Gamma \rightarrow \Gamma_{0}} \Gamma\left(x-x^{\prime}\right) \leqslant v_{0, D^{*} x}
$$

As J_{0} is a partly smooth relative to a linear manifold at $D^{*} x$, we have $T_{0, D^{*} x}=T_{0, D^{*} x^{\prime}}=T_{0}$ and consequently, using Proposition $8(\mathrm{i}), T_{x}=\operatorname{Ker}\left(D_{S_{0, D^{*} x}^{*}}^{*}\right)=\operatorname{Ker}\left(D_{S_{0, D^{*} x^{\prime}}^{*}}^{*}\right)=T_{x^{\prime}}=T=S^{\perp}$.

- μ_{x}-stability: we now have

$$
\begin{array}{rlr}
\Gamma\left(e_{x}-e_{x}^{\prime}\right) & =\Gamma\left(\mathrm{P}_{T} D\left(e_{0, D^{*} x}-e_{0, D^{*} x^{\prime}}\right)\right) \quad \text { Proposition 8(ii) } \\
& \leqslant\left\|\mathrm{P}_{T} D\right\|_{\Gamma_{0} \rightarrow \Gamma} \Gamma_{0}\left(e_{0, D^{*} x}-e_{0, D^{*} x^{\prime}}\right) & \\
& \leqslant \mu_{0, D^{*} x}\left\|\mathrm{P}_{T} D\right\|_{\Gamma_{0} \rightarrow \Gamma} \Gamma_{0}\left(D^{*} x-D^{*} x^{\prime}\right) & \text { using } \mu_{0, D^{*} x^{\prime}} \text {-stability of } J_{0} \\
& \leqslant \mu_{0, D^{*} x}\left\|\mathrm{P}_{T} D\right\|_{\Gamma_{0} \rightarrow \Gamma}\left\|D^{*}\right\|_{\Gamma \rightarrow \Gamma_{0}} \Gamma\left(x-x^{\prime}\right) &
\end{array}
$$

- τ_{x}-stability: since $f_{0, D^{*} x} \in \partial J_{0}\left(D^{*} x\right)$ and $f_{0, D^{*} x^{\prime}} \in \partial J_{0}\left(D^{*} x^{\prime}\right)$, one has

$$
f_{0, D^{*} x}-f_{0, D^{*} x^{\prime}}=\mathrm{P}_{S_{0}}\left(f_{0, D^{*} x}-f_{0, D^{*} x^{\prime}}\right)+e_{0, D^{*} x}-e_{0, D^{*} x^{\prime}} .
$$

Thus, subadditivity yields

$$
\begin{aligned}
& J_{f_{x}}^{x, \circ}\left(\mathrm{P}_{S}\left(f_{x}-f_{x^{\prime}}\right)\right)=J_{f_{x}}^{x, \circ}\left(\mathrm{P}_{S} D\left(f_{0, D^{*} x}-f_{0, D^{*} x^{\prime}}\right)\right) \\
& \quad \leqslant J_{f_{x}}^{x, \circ}\left(\mathrm{P}_{S} D \mathrm{P}_{S_{0}}\left(f_{0, D^{*} x}-f_{0, D^{*} x^{\prime}}\right)\right)+J_{f_{x}}^{x, \circ}\left(\mathrm{P}_{S} D\left(e_{0, D^{*} x}-e_{0, D^{*} x^{\prime}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& J_{f_{x}}^{x, \circ}\left(\mathrm{P}_{S} D \mathrm{P}_{S_{0}}\left(f_{0, D^{*} x}-f_{0, D^{*} x^{\prime}}\right)\right) \\
& =\inf _{z \in \operatorname{Ker}(D) \cap S_{0}} J_{0, f_{D^{*} x}}^{D^{*} x, \circ}\left(D_{S_{0}}^{+} \mathrm{P}_{S} D \mathrm{P}_{S_{0}}\left(f_{0, D^{*} x}-f_{0, D^{*} x^{\prime}}\right)+z\right) \\
& \leqslant J_{0, f_{D^{*} x}}^{D^{*} x, \circ}\left(D_{S_{0}}^{+} \mathrm{P}_{S} D \mathrm{P}_{S_{0}}\left(f_{0, D^{*} x}-f_{0, D^{*} x^{\prime}}\right)\right) \\
& \leqslant\left\|D_{S_{0}}^{+} \mathrm{P}_{S} D\right\| \|_{J_{0, f_{D^{*} x}}^{D^{*}, \circ} \rightarrow J_{0, f_{D^{*} x}}^{D^{*} x, \circ}} J_{0, f_{D^{*} x}}^{D^{*} x, \circ}\left(\mathrm{P}_{S_{0}}\left(f_{0, D^{*} x}-f_{0, D^{*} x^{\prime}}\right)\right) \\
& \leqslant \tau_{0, D^{*} x} \mid\left\|D_{S_{0}}^{+} \mathrm{P}_{S} D\right\| \|_{J_{0, f_{D^{*} x}}^{D^{*} x, \circ} \rightarrow J_{0, f_{D^{*} x}}^{D^{*} x, \circ}} \Gamma_{0}\left(D^{*} x-D^{*} x^{\prime}\right) \\
& \leqslant \tau_{0, D^{*} x}\left|\left\|D_{S_{0}}^{+} \mathrm{P}_{S} D \mid\right\|_{J_{0, f_{D^{*} x}}^{D^{*} x, \circ} \rightarrow J_{0, f_{D^{*} x}}^{D^{*} x,}}\| \| D^{*} \|_{\Gamma \rightarrow \Gamma_{0}} \Gamma\left(x-x^{\prime}\right) .\right.
\end{aligned}
$$

Now, combining Proposition 8 (iii) and $\mu_{0, D^{*} x}$-stability of J_{0}, we obtain the following bound on the second term

$$
\begin{aligned}
J_{f_{x}}^{x, \circ}\left(\mathrm{P}_{S} D\left(e_{0, D^{*} x}-e_{0, D^{*} x^{\prime}}\right)\right) & \leqslant J_{0, f_{D^{*} x}}^{D^{*} x, \circ}\left(D_{S_{0}}^{+} \mathrm{P}_{S} D\left(e_{0, D^{*} x}-e_{0, D^{*} x^{\prime}}\right)\right) \\
& \leqslant\| \| D_{S_{0}}^{+} \mathrm{P}_{S} D\| \|_{\Gamma_{0} \rightarrow J_{0, f_{D^{*} x}}^{D^{*} x,}} \Gamma_{0}\left(e_{0, D^{*} x}-e_{0, D^{*} x^{\prime}}\right) \\
& \leqslant \mu_{0, D^{*} x}\| \| D_{S_{0}}^{+} \mathrm{P}_{S} D\| \|_{\Gamma_{0} \rightarrow J_{0, f_{D^{*} x} x}^{D^{*}, \circ}}\| \| D^{*} \|_{\Gamma \rightarrow \Gamma_{0}} \Gamma\left(x-x^{\prime}\right)
\end{aligned}
$$

Combining these inequalities, we arrive at

$$
\begin{aligned}
J_{f_{x}}^{x, \circ}\left(\mathrm{P}_{S}\left(f_{x}-f_{x^{\prime}}\right)\right) \leqslant(& \tau_{0, D^{*} x} \mid\left\|D_{S_{0}}^{+} \mathrm{P}_{S} D\right\| \|_{J_{0, f_{D^{*} x}}^{D_{x}^{*} \rightarrow J_{0, f, D_{D^{*} x}}^{D^{*} x, \circ}}} \\
& \left.+\mu_{0, D^{*} x}\| \| D_{S_{0}}^{+} \mathrm{P}_{S} D\| \|_{\Gamma_{0} \rightarrow J_{0, f_{D^{*} x}}^{D^{*}, x, \circ}}\right)\left\|D^{*}\right\|_{\Gamma \rightarrow \Gamma_{0}} \Gamma\left(x-x^{\prime}\right)
\end{aligned}
$$

whence we get τ_{x}-stability.

- ξ_{x}-stability: from Proposition 8(iii), we can write for any $\eta \in S$

$$
\begin{aligned}
& J_{f_{x^{\prime}}}^{x^{\prime}, \circ}(\eta)=\inf _{z \in \operatorname{Ker}(D) \cap S_{0}} J_{0, f_{D^{*} x^{\prime}}}^{D^{*} x^{\prime} \circ}\left(D_{S_{0}}^{+} \eta+z\right) \\
& \leqslant J_{f_{x^{\prime}}}^{x^{\prime}, \circ}\left(D_{S_{0}}^{+} \eta+\bar{z}\right)
\end{aligned}
$$

for any $\bar{z} \in \operatorname{Ker}(D) \cap S_{0}$.
Owing to $\xi_{0, D^{*} x}$-stability of J_{0}, and since $D_{S_{0}}^{+} \eta \in S_{0}$, we have for any feasible $\bar{z} \in \operatorname{Ker}(D) \cap S_{0}$

$$
J_{0, f_{D^{*} x^{\prime}}}^{D^{*} x^{\prime} \circ}\left(D_{S_{0}}^{+} \eta+\bar{z}\right) \leqslant\left(1+\xi_{0, D^{*} x} \Gamma_{0}\left(D^{*} x-D^{*} x^{\prime}\right)\right) J_{0, f_{D^{*} x}}^{D^{*} x, \circ}\left(D_{S_{0}}^{+} \eta+\bar{z}\right)
$$

Taking in particular

$$
\bar{z} \in \underset{z \in \operatorname{Ker}(D) \cap S_{0}}{\operatorname{Argmin}} J_{0, f_{D^{*} x}}^{D^{*} x, \circ}\left(D_{S_{0}}^{+} \eta+z\right)
$$

we get the bound

$$
\begin{aligned}
J_{f_{x^{\prime}}}^{x^{\prime}, \circ}(\eta) & \leqslant\left(1+\xi_{0, D^{*} x} \Gamma_{0}\left(D^{*} x-D^{*} x^{\prime}\right)\right) \inf _{z \in \operatorname{Ker}(D) \cap S_{0}} J_{0, f_{D^{*} x}}^{D^{*} x, \circ}\left(D_{S_{0}}^{+} \eta+z\right) \\
& =\left(1+\xi_{0, D^{*} x} \Gamma_{0}\left(D^{*} x-D^{*} x^{\prime}\right)\right) J_{f_{x^{\prime}} x^{\prime}, \circ}(\eta) \\
& =\left(1+\xi_{0, D^{*} x}\left\|D^{*}\right\| \|_{\Gamma \rightarrow \Gamma_{0}} \Gamma\left(x-x^{\prime}\right)\right) J_{f_{x^{\prime}}}^{x^{\prime}, \circ}(\eta),
\end{aligned}
$$

where we used again Proposition 8(iii) in the first equality.

E. Proofs of Section 5

Proof of Theorem 5. This is a straightforward consequence of Theorem 3(ii) by constructing an appropriate dual certificate from $\mathbf{I C}\left(x_{0}\right)$. Denote $e=e_{x_{0}}, f=f_{x_{0}}$ and $S=T^{\perp}$. Taking the dual vector $\alpha=\Phi_{T}^{+, *} e$, we have on the one hand

$$
\Phi_{T}^{*} \Phi_{T}^{+, *} e=e
$$

since $e \in \operatorname{Im}\left(\Phi_{T}^{*}\right)$.
On the other hand,

$$
J_{f_{0}}^{x_{0}, \circ}\left(\Phi_{S}^{*} \Phi_{T}^{+, *} e-\mathrm{P}_{S} f\right)=\mathbf{I C}\left(x_{0}\right)<1
$$

Proof of Theorem 6. To lighten the notation, we let $\varepsilon=\|w\|, v=v_{x_{0}}, \mu=\mu_{x_{0}}, \tau=\tau_{x_{0}}, \xi=\xi_{x_{0}}, f=f_{x_{0}}$.
The strategy is to construct a vector which, by $\left(\mathscr{C}_{T}\right)$, is the unique solution to

$$
\min _{x \in T} \frac{1}{2}\|y-\Phi x\|^{2}+\lambda J(x)
$$

and then to show that it is actually the unique solution to $\left(\mathscr{P}_{\lambda}(y)\right)$ under the assumptions of Theorem 6.
The following lemma gives a convenient implicit equation satisfied by the unique solution to $\left(\mathscr{P}_{\lambda}^{T}(y)\right)$.
Lemma 11 Let $x_{0} \in \mathbb{R}^{N}$ and denote $T=T_{x_{0}}$. Assume that $\left(\mathscr{C}_{T}\right)$ holds. Then $\left(\mathscr{P}_{\lambda}^{T}(y)\right)$ has exactly one minimizer \hat{x}, and the latter satisfies

$$
\begin{equation*}
\hat{x}=x_{0}+\Phi_{T}^{+} w-\lambda\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1} \tilde{e} \quad \text { where } \quad \tilde{e} \in \mathrm{P}_{T}(\partial J(\hat{x})) . \tag{A.1}
\end{equation*}
$$

Proof. Assumption $\left(\mathscr{C}_{T}\right)$ implies that the objective in $\left(\mathscr{P}_{\lambda}^{T}(y)\right)$ is strongly convex on the feasible set T, whence uniqueness follows immediately. By a trivial change of variable, $\left(\mathscr{P}_{\lambda}^{T}(y)\right)$ be also rewritten in the unconstrained form

$$
\hat{x}=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \frac{1}{2}\left\|y-\Phi_{T} x\right\|^{2}+\lambda J\left(\mathrm{P}_{T} x\right) .
$$

Thus, using Proposition 4(i), \hat{x} has to satisfy

$$
\Phi_{T}^{*}\left(y-\Phi_{T} \hat{x}\right)+\lambda \tilde{e}=0
$$

for any $\tilde{e} \in \mathrm{P}_{T}(\partial J(\hat{x}))$. Owing to the invertibility of Φ on T, i.e. (\mathscr{C}_{T}), we obtain (A.1).
We are now in position to prove Theorem 6. This is be achieved in three steps:
Step 1: We show that in fact $T_{\hat{x}}=T$.
Step 2: Then, we prove that \hat{x} is the unique solution of $\left(\mathscr{P}_{\lambda}(y)\right)$ using Theorem 3.
Step 3: We finally exhibit an appropriate regime on λ and ε for the above two statements to hold.
E.0.4 Step 1: Subspace equality. By construction of \hat{x} in $\left(\mathscr{P}_{\lambda}^{T}(y)\right)$, it is clear that $\hat{x} \in T$. The key argument now is to use that J is partly smooth relative to a linear manifold at x_{0}, and to show that

$$
\begin{equation*}
\Gamma\left(x_{0}-\hat{x}\right) \leqslant v \tag{A.2}
\end{equation*}
$$

which in turn will imply subspace equality, i.e. $T_{\hat{x}}=T$ (see Definition 6).

We have from (A.1) and subadditivity that

$$
\begin{align*}
\Gamma\left(x_{0}-\hat{x}\right) & \leqslant \Gamma\left(-\Phi_{T}^{+} w\right)+\lambda \Gamma\left(\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1} \tilde{e}\right) \\
& \leqslant\| \|\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1}\| \|_{\Gamma \rightarrow \Gamma}\left\{\Gamma\left(-\Phi_{T}^{*} w\right)+\lambda \Gamma(\tilde{e})\right\} \\
& \leqslant\| \|\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1}\| \|_{\Gamma \rightarrow \Gamma}\left\{\left\|\Phi_{T}^{*}\right\|_{\ell^{2} \rightarrow \Gamma} \varepsilon+\alpha_{0} \lambda\right\} \tag{A.3}
\end{align*}
$$

where $\alpha_{0}=\Gamma(\tilde{e})$. Consequently, to show that (A.2) is verified, it is sufficient to prove that

$$
\begin{equation*}
A \varepsilon+B \lambda \leqslant v \tag{1}
\end{equation*}
$$

where we set the positive constants

$$
\begin{aligned}
A & =\| \|\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1}\left\|_{\Gamma \rightarrow \Gamma}\right\| \Phi_{T}^{*} \|_{\ell^{2} \rightarrow \Gamma} \\
B & =\alpha_{0}\left\|\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1}\right\| \|_{\Gamma \rightarrow \Gamma}
\end{aligned}
$$

Suppose for now that $\left(C_{1}\right)$ holds and consequently, $T_{\hat{x}}=T$. Then decomposability of J on T (Theorem 1) implies that

$$
\hat{e}=\mathrm{P}_{T_{\hat{x}}}(\partial J(\hat{x}))=\mathrm{P}_{T}(\partial J(\hat{x}))=\tilde{e}
$$

where we have denote $\hat{e}=e_{\hat{x}}$. Thus (A.1) yields the following implicit equation

$$
\begin{equation*}
\hat{x}=x_{0}+\Phi_{T}^{+} w-\lambda\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1} \hat{e} \tag{A.4}
\end{equation*}
$$

E.0.5 Step 2: \hat{x} is the unique solution of $\left(\mathscr{P}_{\lambda}(y)\right)$. Recall that under condition $\left(C_{1}\right), J$ is decomposable at \hat{x} and x_{0} with the same model subspace T. Moreover, (A.4) is nothing but condition (3.1) in Theorem 3 satisfied by \hat{x}. To deduce that \hat{x} is the unique solution of $\left(\mathscr{P}_{\lambda}(y)\right)$, it remains to show that (3.2) holds i.e.,

$$
\begin{equation*}
J_{\hat{f}}^{\hat{x}, \circ}\left(\lambda^{-1} \Phi_{S}^{*}(y-\Phi \hat{x})-\hat{f}_{S}\right)<1 . \tag{A.5}
\end{equation*}
$$

where we use the shorthand notations $\hat{f}=f_{\hat{x}}$ and $\hat{f}_{S}=\mathrm{P}_{S} \hat{f}$.
Under condition (C_{1}), the ξ-stability property (4.4) of J at x_{0} yields

$$
\begin{equation*}
J_{\hat{f}}^{\hat{x}, \circ}\left(\lambda^{-1} \Phi_{S}^{*}(y-\Phi \hat{x})-\hat{f}_{S}\right) \leqslant\left(1+\xi \Gamma\left(x_{0}-\hat{x}\right)\right) J_{f_{0}}^{x_{0}, \circ}\left(\lambda^{-1} \Phi_{S}^{*}(y-\Phi \hat{x})-\hat{f}_{S}\right) \tag{A.6}
\end{equation*}
$$

Furthermore, from (A.4), we can derive

$$
\begin{equation*}
\lambda^{-1} \Phi_{S}^{*}(y-\Phi \hat{x})-\hat{f}_{S}=\Phi_{S}^{*} \Phi_{T}^{+, *} \hat{e}+\lambda^{-1} \Phi_{S}^{*} Q_{T} w-\hat{f}_{S} \tag{A.7}
\end{equation*}
$$

where $Q_{T}=\operatorname{Id}-\Phi_{T} \Phi_{T}^{+}=\mathrm{P}_{\operatorname{Ker}\left(\Phi_{T}^{*}\right)}$. Inserting(A.7) in (A.6), we obtain

$$
J_{\hat{f}}^{\hat{x}, \circ}\left(\lambda^{-1} \Phi_{S}^{*}(y-\Phi \hat{x})-\hat{f}_{S}\right) \leqslant\left(1+\xi \Gamma\left(x_{0}-\hat{x}\right)\right) J_{f_{0}}^{x_{0}, \circ}\left(\Phi_{S}^{*} \Phi_{T}^{+, *} \hat{e}+\lambda^{-1} \Phi_{S}^{*} Q_{T} w-\hat{f}_{S}\right)
$$

Moreover, subadditivity yields

$$
\begin{align*}
J_{f_{0}}^{x_{0}, \circ}\left(\Phi_{S}^{*} \Phi_{T}^{+, *} \hat{e}+\lambda^{-1} \Phi_{S}^{*} Q_{T} w-\hat{f}_{S}\right) & \leqslant J_{f_{0}}^{x_{0}, \circ}\left(\Phi_{S}^{*} \Phi_{T}^{+, *} e-f_{S}\right)+J_{f_{0}}^{x_{0}, \circ}\left(\Phi_{S}^{*} \Phi_{T}^{+, *}(\hat{e}-e)\right) \\
& +J_{f_{0}}^{x_{0}, \circ}\left(\mathrm{P}_{S}(f-\hat{f})\right)+J_{f_{0}}^{x_{0}, \circ}\left(\lambda^{-1} \Phi_{S}^{*} Q_{T} w\right) \tag{A.8}
\end{align*}
$$

We now bound each term of (A.8). In the first term, one recognizes

$$
\begin{equation*}
J_{f_{0}}^{x_{0, \circ}}\left(\Phi_{S}^{*} \Phi_{T}^{+, *} e-f_{S}\right) \leqslant \mathbf{I C}\left(x_{0}\right) \tag{A.9}
\end{equation*}
$$

Appealing to the μ-stability property, we get

$$
\begin{align*}
J_{f_{0}}^{x_{0}, \circ}\left(\Phi_{S}^{*} \Phi_{T}^{+, *}(\hat{e}-e)\right) & \leqslant\| \|-\Phi_{S}^{*} \Phi_{T}^{+, * *}\| \|_{\Gamma \rightarrow J_{f_{0}}^{x_{0},,}} \Gamma(e-\hat{e}) \\
& \leqslant \mu\left\|\left|-\Phi_{S}^{*} \Phi_{T}^{+, *}\right|\right\|_{\Gamma \rightarrow J_{f_{0}}^{x_{0}, \circ}} \Gamma\left(x_{0}-\hat{x}\right) . \tag{A.10}
\end{align*}
$$

From τ-stability, we have

$$
\begin{equation*}
J_{f_{0}}^{x_{0}, \circ}\left(f_{S}-\hat{f}_{S}\right) \leqslant \tau \Gamma\left(x_{0}-\hat{x}\right) \tag{A.11}
\end{equation*}
$$

Finally, we use a simple operator bound to get

$$
\begin{equation*}
J_{f_{0}}^{x_{0}, \circ}\left(\lambda^{-1} \Phi_{S}^{*} Q_{T} w\right) \leqslant \frac{1}{\lambda}\| \| \Phi_{S}^{*} Q_{T} \|_{\ell^{2} \rightarrow J_{f_{0}}^{x_{0},,} \in} \tag{A.12}
\end{equation*}
$$

Following the same steps as for the bound (A.3), except using $\tilde{e}=\hat{e}$ here, gives

$$
\begin{equation*}
\left.\Gamma\left(x_{0}-\hat{x}\right)\right) \leqslant\| \|\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1}\| \|_{\Gamma \rightarrow \Gamma}\left\{\left\|\mid \Phi_{T}^{*}\right\|_{\ell^{2} \rightarrow \Gamma} \varepsilon+\lambda \Gamma(\hat{e})\right\} . \tag{A.13}
\end{equation*}
$$

Plugging inequalities (A.9)-(A.13) into (A.6) we get the upper-bound

$$
\begin{aligned}
J_{\hat{f}}^{\hat{x}, \circ} & \left(\Phi_{S}^{*} \Phi_{T}^{+, *} \hat{e}+\lambda^{-1} \Phi_{S}^{*} Q_{T} w-\hat{f}_{S}\right) \\
\leqslant & \left(1+\xi \Gamma\left(x_{0}-\hat{x}\right)\right)\left(\mathbf{I C}\left(x_{0}\right)+\Gamma\left(x_{0}-\hat{x}\right)\left(\mu\| \|-\Phi_{S}^{*} \Phi_{T}^{+, *} \mid \|_{\Gamma \rightarrow f_{f_{0}}^{x_{0}, \circ}}+\tau\right)\right. \\
& \left.+\frac{1}{\lambda}\| \| \Phi_{S}^{*} Q_{T} \|_{\ell^{2} \rightarrow J_{f_{0}}^{x_{0}, \circ}} \varepsilon\right) \\
\leqslant & \left(1+\xi\left(c_{1} \varepsilon+\lambda c_{2}\right)\right)\left(\mathbf{I C}\left(x_{0}\right)+\left(c_{1} \varepsilon+\lambda c_{2}\right) \bar{\mu}+\frac{1}{\lambda} c_{4} \varepsilon\right)<1,
\end{aligned}
$$

where we have introduced

$$
\bar{\mu}=\mu c_{3}+\tau \quad \text { and } \quad \alpha_{1}=\Gamma(\hat{e})=\Gamma(\tilde{e})=\alpha_{0}
$$

and

$$
\begin{array}{ll}
c_{1}=A, & c_{2}=\alpha_{1}\left\|\mid\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1}\right\|_{\Gamma \rightarrow \Gamma}, \\
c_{3}=\left\|-\Phi_{S}^{*} \Phi_{T}^{+, *}\right\|_{\Gamma \rightarrow J_{f_{0}}^{x_{0}, \circ}}, & c_{4}=\left\|\mid \Phi_{S}^{*} Q_{T}\right\|_{\ell^{2} \rightarrow J_{f_{0}}^{x_{0}, \circ}}
\end{array}
$$

If is then sufficient that

$$
\begin{equation*}
\left(1+\xi\left(c_{1} \varepsilon+\lambda c_{2}\right)\right)\left(\mathbf{I C}\left(x_{0}\right)+\left(c_{1} \varepsilon+\lambda c_{2}\right) \bar{\mu}+\frac{1}{\lambda} c_{4} \varepsilon\right)<1 \tag{A.14}
\end{equation*}
$$

for (3.2) in Theorem 3 to be in force.
In particular, if

$$
C \varepsilon \leqslant \lambda
$$

holds for some constant $C>0$ to be fixed later, then inequality (A.14) is true if

$$
P(\lambda)=a \lambda^{2}+b \lambda+c>0 \quad \text { where } \quad\left\{\begin{array}{l}
a=-\xi \bar{\mu}\left(c_{1} / C+c_{2}\right)^{2} \tag{A.15}\\
b=-\left(c_{1} / C+c_{2}\right)\left(\xi \mathbf{I C}\left(x_{0}\right)+\xi c_{4} / C+\bar{\mu}\right) \\
c=1-\mathbf{I C}\left(x_{0}\right)-c_{4} / C
\end{array}\right.
$$

Let us set the value of C to

$$
C=\frac{2 c_{4}}{1-\mathbf{I} \mathbf{C}\left(x_{0}\right)},
$$

which, for $0 \leqslant \mathbf{I C}\left(x_{0}\right)<1$, it ensures that $c=\frac{1-\mathbf{I C}\left(x_{0}\right)}{2}$ is bounded and positive, and thus, the polynomial P has a negative and a positive root $\lambda_{\text {max }}$ equal to

$$
\begin{aligned}
\lambda_{\max } & =\frac{b}{2 a} \varphi\left(-4 \frac{a c}{b^{2}}\right), \quad\left\{\begin{array}{l}
a=-\xi \bar{\mu}\left(\left(1-\mathbf{I C}\left(x_{0}\right)\right) c_{1} /\left(2 c_{4}\right)+c_{2}\right)^{2} \\
b=-\left(\left(1-\mathbf{I C}\left(x_{0}\right)\right) c_{1} /\left(2 c_{4}\right)+c_{2}\right)\left(\bar{\mu}+\left(1+\mathbf{I C}\left(x_{0}\right)\right) \xi / 2\right) \\
c=\left(1-\mathbf{I C}\left(x_{0}\right)\right) / 2
\end{array}\right. \\
& =\frac{\bar{\mu}+\left(1+\mathbf{I C}\left(x_{0}\right)\right) \xi / 2}{\xi \bar{\mu}\left(\left(1-\mathbf{I C}\left(x_{0}\right)\right) c_{1} / c_{4}+2 c_{2}\right)} \varphi\left(\frac{2 \xi\left(1-\mathbf{I C}\left(x_{0}\right)\right) \bar{\mu}}{\left(\bar{\mu}+\left(1+\mathbf{I C}\left(x_{0}\right)\right) \xi / 2\right)^{2}}\right) \\
& \geqslant \frac{1-\mathbf{I C}\left(x_{0}\right)}{\xi} H(\bar{\mu} / \xi),
\end{aligned}
$$

where

$$
\varphi(\beta)=\sqrt{1+\beta}-1, \quad \text { and } \quad H(\beta)=\frac{\beta+1 / 2}{\beta\left(c_{1} / c_{4}+2 c_{2}\right)} \varphi\left(\frac{2 \beta}{(\beta+1)^{2}}\right)
$$

To get the above lower-bound on $\lambda_{\max }$, we used that φ is increasing (in fact strictly) and concave on \mathbb{R}_{+} with $\varphi(1)=0$, and that $\mathbf{I C}\left(x_{0}\right) \in[0,1[$. Consequently, we can conclude that the bounds

$$
\begin{equation*}
\frac{2 c_{4}}{1-\mathbf{I C}\left(x_{0}\right)} \varepsilon \leqslant \lambda \leqslant \frac{1-\mathbf{I C}\left(x_{0}\right)}{\xi} H(\bar{\mu} / \xi) \tag{2}
\end{equation*}
$$

imply condition (A.14), which in turn yields (A.5).
E.0.6 Step 3: $\left(C_{1}\right)$ and $\left(C_{2}\right)$ are in agreement. It remains now that show the compatibility of $\left(C_{1}\right)$ and $\left(C_{2}\right)$, i.e. to provide appropriate regimes of λ and ε such that both conditions hold simultaneously. We first observe that (C_{1}) and the left-hand-side of $\left(C_{2}\right)$ both hold for λ fulfilling

$$
\lambda \leqslant C_{0} v \quad \text { where } \quad C_{0}=\left(\frac{A}{2 c_{4}}+B\right)^{-1} \leqslant\left(\frac{1-\mathbf{I} \mathbf{C}\left(x_{0}\right)}{2 c_{4}} A+B\right)^{-1}
$$

This updates $\left(C_{2}\right)$ to the following ultimate range on λ

$$
\frac{2 c_{4}}{1-\mathbf{I C}\left(x_{0}\right)} \varepsilon \leqslant \lambda \leqslant \min \left(C_{0} v, \frac{1-\mathbf{I C}\left(x_{0}\right)}{\xi} H(\bar{\mu} / \xi)\right) .
$$

Now in order to have an admissible non-empty range for λ, the noise level ε must be upper-bounded as

$$
\varepsilon \leqslant \frac{1-\mathbf{I C}\left(x_{0}\right)}{2 c_{4}} \min \left(C_{0} v, \frac{1-\mathbf{I C}\left(x_{0}\right)}{\xi} H(\bar{\mu} / \xi)\right)
$$

Finally, the constants provided in the statement of the theorem (and subsequent discussion) are as follows

$$
A_{T}=2 c_{4}, B_{T}=C_{0}, D_{T}=c_{3}, \text { and } E_{T}=c_{1} / c_{4}+2 c_{2}
$$

which completes the proof.

F. Proofs of Section 6

Proof of Proposition 10. The subdifferential of $\|\cdot\|_{1}$ reads

$$
\partial\|\cdot\|_{1}(x)=\left\{\eta \in \mathbb{R}^{N}: \eta_{(I)}=\operatorname{sign}\left(x_{(I)}\right) \quad \text { and } \quad\left\|\eta_{\left(I^{c}\right)}\right\|_{\infty} \leqslant 1\right\}
$$

The expressions of S_{x}, T_{x}, e_{x} and f_{x} follow immediately. Since $e_{x} \in \operatorname{ri} \partial\|\cdot\|_{1}(x)$ and $\|\cdot\|_{1}$ is separable, it follows from Definition 4 that the ℓ^{1}-norm is a strong gauge. Therefore $J_{f_{x}}^{\circ}=J^{\circ}=\|\cdot\|_{\infty}$, and Proposition 5 specializes to the stated subdifferential.

Turning to partial smothness, let $x^{\prime} \in T$, i.e. $I\left(x^{\prime}\right) \subseteq I(x)$, and assume that

$$
\left.\left.\left\|x-x^{\prime}\right\|_{\infty} \leqslant v_{x}=(1-\delta) \min _{i \in I}\left|x_{i}\right|, \delta \in\right] 0,1\right]
$$

This implies that $\forall i \in I(x),\left|x_{i}^{\prime}\right|>v_{x}-\left\|x-x^{\prime}\right\|_{\infty} \geqslant 0$, which in turn yields $I\left(x^{\prime}\right)=I(x)$, and thus $T_{x^{\prime}}=T_{x}$. Since the sign is also locally constant on the restriction to T of the ℓ^{∞}-ball centered at x of radius v_{x}, one can choose $\mu_{x}=0$. Finally $\tau_{x}=\xi_{x}=0$ because $f_{x}=e_{x}$.
Proof of Proposition 12. The proof of the first part was given Section 2.1 and Section 2.2 where the ℓ^{∞}-norm example was considered.

It remains to show partial smothness. Let $x^{\prime} \in T$, and assume that

$$
\left.\left.\left\|x-x^{\prime}\right\|_{1} \leqslant v_{x}=(1-\delta)\left(\|x\|_{\infty}-\max _{j \notin I}\left|x_{j}\right|\right), \delta \in\right] 0,1\right] .
$$

This means that x^{\prime} lies in the relative interior of the ℓ^{1}-ball (relatively to T) centered at x of radius $\|x\|_{\infty}-\max _{j \neq I}\left|x_{j}\right|$. Within this ball, the support and the sign pattern restricted to the support are locally constant, i.e. $I(x)=I\left(x^{\prime}\right)$ and $\operatorname{sign}\left(x_{(I(x))}\right)=\operatorname{sign}\left(x_{\left(I\left(x^{\prime}\right)\right)}^{\prime}\right)$. Thus $T_{x^{\prime}}=T_{x}=T$ and $e_{x^{\prime}}=e_{x}$, and from the latter we deduce that $\mu_{x}=0$. As $f_{x}=e_{x}$ we also conclude that $\tau_{x}=\xi_{x}=0$, which completes the proof.

Proof of Proposition 13. Again, the proof of the first part was given Section 2.1 and Section 2.3 where the $\ell^{1}-\ell^{2}$-norm example was handled.

Let $x^{\prime} \in T$, i.e. $I\left(x^{\prime}\right) \subseteq I(x)$, and $\left.\left.v_{x}=(1-\delta) \min _{b \in I}\left\|x_{b}\right\|, \delta \in\right] 0,1\right]$. First, observe that the condition

$$
\left\|x-x^{\prime}\right\|_{\infty, 2}=\max _{b \in \mathscr{B}}\left\|x_{b}-x_{b}^{\prime}\right\| \leqslant v_{x}
$$

ensures that for all $b \in I$

$$
\left\|x_{b}^{\prime}\right\| \geqslant\left\|x_{b}\right\|-\left\|x_{b}-x_{b}^{\prime}\right\|>v_{x}-\left\|x-x^{\prime}\right\|_{\infty, 2} \geqslant 0
$$

and thus $I\left(x^{\prime}\right)=I(x)$, i.e. $T_{x^{\prime}}=T_{x}$. Moreover, since the gauge is strong, one has $\tau_{x}=\xi_{x}=0$. To establish the μ_{x}-stability we use the following lemma.

Lemma 12 Given any pair of non-zero vectors u and v where, $\|u-v\| \leqslant \rho\|u\|$, for $0<\rho<1$, we have

$$
\left\|\frac{u}{\|u\|}-\frac{v}{\|v\|}\right\| \leqslant C_{\rho} \frac{\|u-v\|}{\|u\|}
$$

where $\left.C_{\rho}=\frac{\sqrt{2}}{\rho} \sqrt{1-\sqrt{1-\rho^{2}}} \in\right] 1, \sqrt{2}[$.
Proof. Let $d=v-u$ and $\beta=\frac{\langle u, d\rangle}{\|u\|\|d\|} \in[-1,1]$. We then have the following identities

$$
\begin{equation*}
\left\|\frac{u}{\|u\|}-\frac{v}{\|v\|}\right\|^{2}=2-2 \frac{\langle u, v\rangle}{\|u\|\|v\|}=2-2 \frac{\|u\|^{2}+\|u\|\|d\| \beta}{\|u\| \sqrt{\|u\|^{2}+\|d\|^{2}+2\|u\|\|d\| \beta}} \tag{A.1}
\end{equation*}
$$

for non-zero vectors u and d, the unique maximizer of (A.1) is $\beta^{\star}=-\|d\| /\|u\|$. Note that the assumption $\|d\| /\|u\| \leqslant \rho<1$ assures β^{\star} to comply with the admissible range of β and further, the argument of the square root will be always positive. Now, inserting β^{\star} in (A.1), using concavity of $\sqrt{\cdot}$ on \mathbb{R}_{+}, and that $\|d\| /\|u\| \leqslant \rho$, we can deduce the following bound

$$
\begin{aligned}
\left\|\frac{u}{\|u\|}-\frac{v}{\|v\|}\right\|^{2} \leqslant 2-2 \sqrt{1-\frac{\|d\|^{2}}{\|u\|^{2}}} & =2-2 \sqrt{\left(1-\frac{\|d\|^{2}}{\rho^{2}\|u\|^{2}}\right)+\frac{\|d\|^{2}}{\rho^{2}\|u\|^{2}}\left(1-\rho^{2}\right)} \\
& \leqslant 2-2\left(\left(1-\frac{\|d\|^{2}}{\rho^{2}\|u\|^{2}}\right)+\frac{\|d\|^{2}}{\rho^{2}\|u\|^{2}} \sqrt{1-\rho^{2}}\right) \\
& =2-2\left(1-\frac{1-\sqrt{1-\rho^{2}}}{\rho^{2}} \frac{\|d\|^{2}}{\|u\|^{2}}\right) \\
& =2 \frac{1-\sqrt{1-\rho^{2}}}{\rho^{2}} \frac{\|d\|^{2}}{\|u\|^{2}} .
\end{aligned}
$$

By definition of v_{x}, we have $(1-\delta)\left\|x_{b}\right\|>v_{x}$, for $\left.\left.\delta \in\right] 0,1\right], \forall b \in I$, and thus $\left\|x_{b}-x_{b}^{\prime}\right\| \leqslant v_{x} \leqslant$ $(1-\boldsymbol{\delta})\left\|x_{b}\right\|$. Lemma 12 then applies, and it follows that, $\forall b \in I$

$$
\left\|\mathscr{N}\left(x_{b}\right)-\mathscr{N}\left(x_{b}^{\prime}\right)\right\| \leqslant C_{\rho} \frac{\left\|x_{b}^{\prime}-x_{b}\right\|}{\left\|x_{b}\right\|} \leqslant C_{\rho} \frac{\left\|x_{b}^{\prime}-x_{b}\right\|}{v_{x}}
$$

and therefore we get

$$
\left\|\mathscr{N}(x)-\mathscr{N}\left(x^{\prime}\right)\right\|_{\infty, 2} \leqslant \frac{C_{\rho}}{v_{x}}\left\|x^{\prime}-x\right\|_{\infty, 2}
$$

which implies μ_{x}-stability for $\mu_{x}=C_{\rho} / v_{x}$.
Proof of Proposition 14. In general, the subdifferential of J_{0} reads

$$
\partial J_{0}(u)=\left\{\sum_{i \in I} \rho_{i} s_{i} a^{i}: \rho \in \Sigma_{I}, s_{i} \in\left\{\begin{array}{ll}
\{1\} & \text { if } u_{i}>0 \\
{[0,1]} & \text { if } u_{i}=0 \\
\{0\} & \text { if } u_{i}<0
\end{array}\right\}\right.
$$

where Σ_{I} is the canonical simplex in $\mathbb{R}^{|I|}$, and $I=\left\{i \in\left\{1, \cdots, N_{H}\right\}:\left(x_{i}\right)_{+}=J_{0}(x)\right\}$.

- If $u_{i} \leqslant 0, \forall i \in\left\{1, \cdots, N_{H}\right\}$, the above expression becomes

$$
\partial J_{0}(u)=\left\{\sum_{i \in I_{0}} \rho_{i} s_{i} a^{i}: \rho \in \Sigma_{I_{0}}, s_{i} \in[0,1]\right\}
$$

where $I_{0}=\left\{i \in\left\{1, \cdots, N_{H}\right\}: u_{i}=J_{0}(u)=0\right\}$. Equivalently, $\partial J_{0}(u)$ is the intersection of the unit ℓ^{1} ball and the positive orthant on $\mathbb{R}^{\left|I_{0}\right|}$. The expressions of S_{u}, T_{u} and e_{u} then follow immediately. $\partial J_{0}(u)$ then contains $e_{u}=0$, but not in its relative interior. Choosing any f_{u} as advocated, we have $f_{u} \in \operatorname{ri} \partial J_{0}(u)$. To get the subdifferential gauge, we use some calculus rules on gauges and apply Lemma 2 to get

$$
J_{f_{u}}^{u, \circ}\left(\eta_{\left(I_{0}\right)}\right)=\inf _{\tau \geqslant 0, \tau\left(f_{u}\right)_{i} \geqslant-\eta_{i} \forall i \in I_{0}} \max \left(\left\|\tau f_{u}+\eta\right\|_{1}, \tau\right),
$$

where the extra-constraints on τ come from the fact that $\partial J_{0}(u)$ is in the positive orthant, and the ℓ^{1} norm is the gauge of the unit ℓ^{1}-ball. We then have

$$
\begin{aligned}
J_{f_{u}}^{u, \circ}\left(\eta_{\left(I_{0}\right)}\right) & =\inf _{\tau \geqslant 0, \mu \tau \geqslant \max _{i \in I_{0}-\eta_{i}}} \max \left(\tau \sum_{i \in I_{0}}\left(\mu a^{i}+\eta_{i}\right), \tau\right) \\
& =\inf _{\tau \geqslant \max _{i \in I_{0}}\left(-\eta_{i}\right)_{+} / \mu} \max \left(\tau \mu\left|I_{0}\right|+\sum_{i \in I_{0}} \eta_{i}, \tau\right) .
\end{aligned}
$$

- Assume now that $u_{i}>0$ for at least one $i \in\left\{1, \cdots, N_{H}\right\}$. In such a case, $J_{0}(u)=\|u\|_{\infty}$, and the subdifferential becomes

$$
\partial J_{0}(u)=\Sigma_{I_{+}}
$$

where $I_{+}\left\{i \in\left\{1, \cdots, N_{H}\right\}: u_{i}=J_{0}(u) \quad\right.$ and $\left.\quad u_{i}>0\right\}$. The forms of $S_{u}, T_{u}, e_{u}, f_{u}$ and the subdifferential gauge can then be retrieved from those of the ℓ^{∞}-norm with $s_{\left(I_{+}\right)}=1$ and $s_{\left(I_{+}^{c}\right)}=0$.
For partial smothness, the parameters are derived following the same lines as for the ℓ^{∞}-norm. Let $u^{\prime} \in T$, and assume that

$$
\left\|u-u^{\prime}\right\|_{1} \leqslant v_{u}=(1-\delta)\left(\max _{i \in I_{+}} u_{i}-\max _{j \notin I_{+}, u_{j}>0} u_{j}\right)
$$

for $\delta \in] 0,1]$. This means that x^{\prime} lies in the relative interior of the ℓ^{1}-ball (relatively to T) centered at x of radius

$$
\max _{i \in I_{+}} u_{i}-\max _{j \notin I_{+}, u_{j}>0} u_{j}=\|u\|_{\infty}-\max _{j \notin I_{+}, u_{j}>0}\left|u_{j}\right|
$$

Within this set, one can observe that the set I_{+}associated to u is constant. Moreover, the sign pattern is also constant leading to the fact that $T_{u^{\prime}}=T_{u}=T$. Hence, we deduce as in the ℓ^{∞}-case that $\mu_{u}=\tau_{u}=\xi_{u}=0$.

G. Proofs of Section 7

Proof of Theorem 7. To lighten the notation, we drop the dependence on x of T, S and e. Without of loss of generality, by symmetry of the norm, we will assume that the entries of x are positive.

We follow the same program as in the compressed sensing literature, see e.g. [9]. The key ingredient of the proof is the fact that owing to the isotropy of the Gaussian ensemble, α_{F} and Φ_{S}^{*} are independent. Thus, for some $\tau>0$

$$
\operatorname{Pr}(\mathbf{I C}(x) \geqslant 1) \leqslant \operatorname{Pr}\left(\mathbf{I C}(x) \geqslant 1 \mid\left\|\alpha_{F}\right\| \leqslant \tau\right)+\operatorname{Pr}\left(\left\|\alpha_{F}\right\| \geqslant \tau\right)
$$

As soon as $Q \geqslant \operatorname{dim}(T)=N-|I|+1, \Phi_{T}$ is full-column rank. Thus

$$
\left\|\alpha_{F}\right\|^{2}=\left\langle e,\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1} e\right\rangle
$$

$\left(\Phi_{T}^{*} \Phi_{T}\right)^{-1}$ is an inverse Wishart matrix with Q degrees of freedom. To estimate the deviation of this quadratic form, we use classical results on inverse χ^{2} random variables with $Q-N+|I|$ degrees of freedom and we get the tail bound

$$
\operatorname{Pr}\left(\left\|\alpha_{F}\right\| \geqslant \sqrt{\frac{1}{Q-N+|I|-t}}\|e\|\right) \leqslant e^{-\frac{t^{2}}{4(Q-N+|I|)}}
$$

for $t>0$. Now, conditionally on α_{F}, the entries of $\alpha_{S}=\mathrm{P}_{S} \Phi^{*} \alpha_{F}$ are i.i.d. $\mathscr{N}\left(0,\left\|\alpha_{F}\right\|^{2}\right)$ and so are those of $-\alpha_{S}$ by trivial symmetry of the centered Gaussian. Thus, using a union bound, we get

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{I C}(x) \geqslant 1 \mid\left\|\alpha_{F}\right\| \leqslant \tau\right) & \leqslant \operatorname{Pr}\left(\max _{i \in I}\left(-\left(\alpha_{S_{x}}\right)_{i}\right)_{+} \geqslant 1 /|I| \mid\left\|\alpha_{F}\right\| \leqslant \tau\right) \\
& \leqslant \operatorname{Pr}\left(\max _{i \in I}\left(\left(\alpha_{S_{x}}\right)_{i}\right)_{+} \geqslant 1 /|I| \mid\left\|\alpha_{F}\right\| \leqslant \tau\right) \\
& \leqslant|I| \operatorname{Pr}\left((z)_{+} \geqslant 1 /(\tau|I|)\right) \\
& \leqslant|I| \operatorname{Pr}(z \geqslant 1 /(\tau|I|)) \\
& \leqslant|I| e^{-\frac{1}{2 \tau^{2}|I|^{2}}}
\end{aligned}
$$

Observe that $\left(\alpha_{S}\right)_{i}=0$ for all $i \in I^{c}$. Choosing

$$
\tau=\sqrt{\frac{1}{|I|(Q-N+|I|-t)}}
$$

where we used that $\|e\|=1 / \sqrt{I}$, and inserting in the above probability terms, we get

$$
\begin{gathered}
\operatorname{Pr}\left(\left\|\alpha_{F}\right\| \geqslant \tau\right) \leqslant e^{-\frac{t^{2}}{4(Q-N+|I|)}} \\
\left.\operatorname{Pr}\left(\mathbf{I C}(x) \geqslant 1 \mid\left\|\alpha_{F}\right\| \leqslant \tau\right) \leqslant e^{-\left(\frac{Q-N+|I|-t}{2|I|}-\log (|I| / 2)\right.}\right)
\end{gathered}
$$

Equating the arguments of the exponentials and solving

$$
\frac{t^{2}}{4 q}+\frac{t}{2|I|}-\left(\frac{q}{2|I|}-\log \left(\frac{|I|}{2}\right)\right)=0
$$

for t to get equal probabilities, we get

$$
t=\frac{q}{|I|}\left(\sqrt{1+2|I|\left(1-2 \frac{2|I| \log \left(\frac{|I|}{2}\right)}{q}\right)}-1\right)
$$

where $q=Q-N+|I| \geqslant 1$ by the restricted injectivity assumption. Setting

$$
\beta=\frac{q}{2|I| \log \left(\frac{|I|}{2}\right)}
$$

we get under the bound on Q that $\beta>1$, and

$$
t=2 \beta \log \left(\frac{|I|}{2}\right)\left(\sqrt{1+2|I| \frac{\beta-1}{\beta}}-1\right) .
$$

Inserting t in one of the probability terms, and after basic algebraic rearrangements, we get the probability of success with the expression of the function $f(\beta,|I|)$.

REFERENCES

D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp. Living on the edge: A geometric theory of phase transitions in convex optimization. arXiv preprint arXiv:1303.6672, 2013.
J.-P. Aubin and H. Frankowska. Set-Valued Analysis. Modern Birkhauser Classics. Birkhauser, 2009.
F. Bach. Consistency of the group lasso and multiple kernel learning. The Journal of Machine Learning Research, 9:1179-1225, 2008.
F. Bach. Consistency of trace norm minimization. The Journal of Machine Learning Research, 9:1019-1048, 2008.
F. Bach. Structured sparsity-inducing norms through submodular functions. Proc. Advances in Neural Information Processing Systems (NIPS), 2010.
S. Bakin. Adaptive regression and model selection in data mining problems. PhD thesis, Australian National University, 1999.
M. Burger and S. Osher. Convergence rates of convex variational regularization. Inverse Problems, 20(5):1411, 2004.
J. A. Cadzow. Algorithm for the minimum-effort problem. IEEE Trans. Autom. Control., 16(1):60-63, Feb 1971.
E. Candès and B. Recht. Simple bounds for recovering low-complexity models. Mathematical Programming, pages 1-13, 2012.
V. Chandrasekaran, B. Recht, P. Parrilo, and A. Willsky. The convex geometry of linear inverse problems. Foundations of Computational mathematics, 12(6):805-849, Dec. 2012.
S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM journal on scientific computing, 20(1):33-61, 1999.
C. Chesneau and M. Hebiri. Some theoretical results on the grouped variables lasso. Mathematical Methods of Statistics, 17(4):317-326, 2008.
D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47(7):2845-2862, 2001.
D.L. Donoho and J. Tanner. Counting the faces of randomly-projected hypercubes and orthants, with applications. Discrete \& computational geometry, 43(3):522-541, 2010.
M. Elad, P. Milanfar, and R. Rubinstein. Analysis versus synthesis in signal priors. Inverse problems, 23(3):947, 2007.
M. J. Fadili, G. Peyré, S. Vaiter, C-A. Deledalle, and J. Salmon. Stable recovery with analysis decomposable priors. In Proc. SampTA, 2013.
J.-J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE Transactions on Information Theory, 50(6):1341-1344, 2004.
M. Grasmair. Linear convergence rates for tikhonov regularization with positively homogeneous functionals. Inverse Problems, 27(7):075014, 2011.
W.L. Hare and A.S. Lewis. Identifying active constraints via partial smoothness and prox- regularity. J. Convex Anal., 11(2):251-266, 2004.
J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis And Minimization Algorithms, volume I and II. Springer, 2001.
H. Jégou, T. Furon, and J.-J. Fuchs. Anti-sparse coding for approximate nearest neighbor search. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, pages 2029-2032. IEEE, 2012.
C. Lemaréchal, F. Oustry, and C. Sagastizábal. The u-lagrangian of a convex function. Trans. Amer. Math. Soc., 352(2):711-729, 2000.
A. S. Lewis. Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization, 13(3):702-725, 2002.
A. S. Lewis and S. Zhang. Partial smoothness, tilt stability, and generalized hessians. SIAM Journal on Optimization, 23(1):74-94, 2013.
H. Liu and J. Zhang. Estimation consistency of the group lasso and its applications. Journal of Machine Learning Research, 5:376-383, 2009.
Y. Lyubarskii and R. Vershynin. Uncertainty principles and vector quantization. Information Theory, IEEE Transactions on, 56(7):3491-3501, 2010.
O. Mangasarian and B. Recht. Probability of unique integer solution to a system of linear equations. European Journal of Operational Research, 214(1):27-30, 2011.
S. Nam, M.E. Davies, M. Elad, and R. Gribonval. The cosparse analysis model and algorithms. Applied and Computational Harmonic Analysis, 34(1):30?-56, 2013.
S. Negahban, P. Ravikumar, M.J. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. arXiv preprint arXiv:1010.2731, 2010.
G. Obozinski and F. Bach. Convex relaxation for combinatorial penalties. arXiv preprint arXiv:1205.1240, 2012.
S. Oymak, A. Jalali, M. Fazel, Y.C. Eldar, and B. Hassibi. Simultaneously structured models with application to sparse and low-rank matrices. arXiv preprint arXiv:1212.3753, 2012.
S. Petry and G. Tutz. Shrinkage and variable selection by polytopes. Journal of Statistical Planning and Inference, 142(1):48-64, 2012.
N. Rao, B. Recht, and R. Nowak. Signal recovery in unions of subspaces with applications to compressive imaging. arXiv preprint arXiv:1209.3079, 2012.
R.T. Rockafellar. Convex analysis, volume 28. Princeton University Press, 1996.
V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In Proceedings of the International Conference on Machine Learning (ICML), volume 104, 2008.
L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259-268, 1992.
G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides. SIAM Journal on Numerical Analysis, 42(2):686-713, 2004.
C. Studer, W. Yin, and R.G. Baraniuk. Signal representations with minimum ℓ_{∞}-norm. In Proc. 50th Ann. Allerton Conf. on Comm. Control, and Computing (Allerton), 2012.
R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B. Methodological, 58(1):267-288, 1996.
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(1):91-108, 2004.
S. Vaiter, G. Peyré, C. Dossal, and M. J. Fadili. Robust sparse analysis regularization. IEEE Transactions on Information Theory, 59(4):2001-2016, 2013.
S. Vaiter, G. Peyré, and J. Fadili. Model consistency of partly smooth regularizers. Technical report, Preprint Hal-00987293, 2014.
S. Vaiter, G. Peyré, and M. J. Fadili. Robust polyhedral regularization. In Proc. SampTA, 2013.
F. Wei and J. Huang. Consistent group selection in high-dimensional linear regression. Bernoulli, 16(4):1369-1384, 2010.
S. J. Wright. Identifiable surfaces in constrained optimization. SIAM Jounal Control Optimisation, 31(4):1063-1079,

52 of 52

1993.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49-67, 2005.
H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J. Royal Statistical Soc. B, 67(2):301320, 2005.

