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Abstract

Regularization plays a pivotal role when facing the challenge of solving ill-
posed inverse problems, where the number of observations is smaller than the
ambient dimension of the object to be estimated. A line of recent work has
studied regularization models with various types of low-dimensional structures.
In such settings, the general approach is to solve a regularized optimization
problem, which combines a data fidelity term and some regularization penalty
that promotes the assumed low-dimensional/simple structure. This paper provides
a general framework to capture this low-dimensional structure through what we
coin piecewise regular gauges. These are convex, non-negative, closed, bounded
and positively homogenous functions that will promote objects living on low-
dimensional subspaces. This class of regularizers encompasses many popular
examples such as the `1 norm, `1 − `2 norm (group sparsity), nuclear norm,
as well as several others including the `∞ norm. We will show that the set of
piecewise regular gauges is closed under addition and pre-composition by a linear
operator, which allows to cover mixed regularization (e.g. sparse+low-rank), and
the so-called analysis-type priors (e.g. total variation, fused Lasso, trace Lasso,
bounded polyhedral gauges). Our main result presents a unified sharp analysis of
exact and robust recovery of the low-dimensional subspace model associated to
the object to recover from partial measurements. This analysis is illustrated on a
number of special and previously studied cases.

Keywords: Convex regularization, Inverse problems, Piecewise regular gauge,
Model selection, Sparsity, Noise robustness.
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1. Introduction

1.1. Regularization of Linear Inverse Problems

Inverse problems are encountered in various areas throughout science and engineering.
The goal is to provably recover the structure underlying an object x0 ∈ RN , either
exactly or to a good approximation, from the partial measurements

y = Φx0 + w, (1)

where y ∈ RQ is the vector of observations, w ∈ RQ stands for the noise, and Φ ∈ RQ×N
is a linear operator which maps theN -dimensional signal domain onto theQ-dimensional
observation domain. The operator Φ is in general ill-conditioned or singular, so that
solving for an accurate approximation of x0 from (1) is ill-posed.

The situation however changes if one imposes some prior knowledge on the underlying
object x0, which makes the search for solutions to (1) feasible. This can be achieved
via regularization which plays a fundamental role in bringing back ill-posed inverse
problems to the land of well-posedness. We here consider solutions to the regularized
optimization problem

x? ∈ Argmin
x∈RN

1

2
||y − Φx||2 + λJ(x), (Pλ(y))

where the first term translates the fidelity of the forward model to the observations, and
J is the regularization term intended to promote solutions conforming to some notion
of simplicity/low-dimensional structure, that is made precise later. The regularization
parameter λ > 0 is adapted to balance between the allowed fraction of noise level and
regularity as dictated by the prior on x0. Before proceeding with the rest, it is worth
mentioning that although we focus our analysis on the penalized form (Pλ(y)), our
results can be extended with minor adaptations to the constrained formulation, i.e. the
one where the data fidelity is put as a constraint. Note also that we focus our attention
for simplicity to an `2 fidelity, although our analysis caries over to more general smooth
and strongly convex fidelity terms.

When there is no noise in the observations, i.e. w = 0 in (1), the equality-constrained
minimization problem should be solved

x? ∈ Argmin
x∈RN

J(x) subject to Φx = y. (P0(y))

1.2. Gauges and Model Selection

In this paper, we consider the general case where J is a gauge associated to a convex
set C containing the origin as an interior point, or equivalently, that J is a gauge whose
domain is full. In plain words, J is a convex, non-negative, continuous (hence bounded)
and positively homogeneous function (see Section 2.1 for details).

This class of regularizers J include many well-studied ones in the literature. Among
them, one can think of the `1 norm used to enforce sparse solutions [38], the discrete
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total variation semi-norm [35], the `1 − `2 norm to induce block/group sparsity [44],
the nuclear norm for low-rank matrices [16, 8], or bounded polyhedral gauges [41].

The behavior of this class of regularizers is dictated by the geometry of C, which
is nothing in this case but the sublevel set at 1 of J , i.e., C =

{
x ∈ RN : J(x) 6 1

}
,

see Lemma 1. In particular, each point at which C is non-smooth encodes some
low-dimensional subspace model. The regularization J then promotes solutions living
in one of these subspaces. A typical example is that of the `1-norm where the promoted
vectors are sparse, living on low-dimensional subspaces aligned with the axes.

Assuming that the gauges enjoy some piecewise regularity properties, our goal in
this paper is to provide a unified analysis of exact and robust recovery guarantees
of the subspace model underlying the object x0 by solving (Pλ(y)) from the partial
measurements in (Pλ(y)). As a by-product, this entails a control on the ||x? − x0||,
where x? is the unique minimizer of (Pλ(y)).

1.3. Contributions

Our main contributions are as follows.

1.3.1. Subdifferential Decomposability of Gauges

Building upon Definition 5, which introduces the model subspace Tx at x, we provide
an equivalent description of the subdifferential of a bounded gauge at x in Theorem 1.
Such a description isolates and highlights a key property of a regularizing gauge, namely
decomposability. In turn, this property allows to rewrite the first-order minimality
conditions of (Pλ(y)) and (P0(y)) in a convenient and compact way, and this lays the
foundations of our subsequent contributions.

1.3.2. Uniqueness

In Theorem 2, we state a sharp sufficient condition, dubbed the Strong Null Space
Property, to ensure that the solution of (Pλ(y)) or (P0(y)) is unique. In Corollary 1,
we provide a weaker sufficient condition, stated in terms of a dual vector, the existence
of which certifies uniqueness. Putting together Theorem 1 and Corollary 1, Theorem 3
states the sufficient uniqueness condition in terms of a specific dual certificate built
from (Pλ(y)) and (P0(y)).

1.3.3. Piecewise Regular Gauges

In the quest for establishing robust recovery of the subspace model Tx0
, we first need

to quantify the stability of the subdifferential of the regularizer J to local perturbations
of its argument. Thus, to handle such a change of geometry, we introduce the notion
of piecewise regular gauge (see Definition 9).

We show in particular that two important operations preserve piecewise regularity.
In Proposition 8 and Proposition 10, we show that piecewise regularity of gauges is
preserved under addition and pre-composition by a linear operator. Consequently, more
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intricate regularizers can be built starting from simple gauges, e.g. `1-norm, nuclear
norm, etc., which are known to be piecewise regular (see the review given in Section 6).

1.3.4. Exact and Robust Subspace Recovery

This is the core contribution of the paper. Assuming the gauge is piecewise regular, we
show in Theorem 5 that under a generalization of the irrepresentable condition [17], and
with the proviso that the noise level is bounded and the minimal signal-to-noise ratio is
high enough, there exists a whole range of the parameter λ for which problem (Pλ(y))
has a unique solution x? living in the same subspace as x0. In turn, this yields a control
on `2-recovery error within a factor of the noise level, i.e. ||x? − x0|| = O(||w||). In the
noiseless case, the irrepresentable condition implies that x0 is exactly identified by
solving (P0(y)).

1.4. Related Work

In [7], the authors introduced the notion of decomposable norms. In fact, we show that
their regularizers are a very special subclass of ours that corresponds to strong decom-
posability in the sense of the Definition 8, beside symmetry since norms are symmetric
gauges. Moreover, their definition involves two conditions, the second of which turns
out to be an intrinsic property of gauges rather than an assumption; see the discussion
after Proposition 6. Typical examples of (strongly) decomposable norms are the `1,
`1 − `2 and nuclear norms. However, strong decomposability excludes many important
cases. One can think of analysis-type semi-norms since strong decomposability is not
preserved under pre-composition by a linear operator, or the `∞ norm among many
others. The analysis provided in [7] deals only with identifiability in the noiseless case.
Their work was extended in [29] when J is the sum of decomposable norms.

Arguments based on Gaussian width were used in [9] to provide sharp estimates of
the number of generic measurements required for exact and `2-stable recovery of atomic
set models from random partial information by solving a constrained form of (Pλ(y))
regularized by an atomic norm. The atomic norm framework was then exploited in [31]
in the particular case of the group Lasso and union of subspace models. This is however
restricted to the compressed sensing scenario.

A notion of decomposability closely related to that of [7], but different, was proposed
in [27]. There, the authors study `2-stability for this class of decomposable norms with
a general sufficiently smooth data fidelity. This work however only handles norms,
and their stability results require however stronger assumptions than ours (typically a
restricted strong convexity which becomes a type of restricted eigenvalue property for
linear regression with quadratic data fidelity).

In the inverse problems literature, a convergence (stability) rates have been derived
in [5] with respect to the Bregman divergence for general convex regularizations J .
The author in [18] established a stability result for general sublinear functions J . The
stability is however measured in terms of J , and `2-stability can only be obtained if J is
coercive, which, again, excludes a large class of gauges. In [15], a `2-stability result for
decomposable norms (in the sense of [7]) precomposed by a linear operator is proved.
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However, none of these works deals with exact and robust recovery of the subspace
model underlying x0.

1.5. Paper Organization

The outline of the paper is the following. Section 2 gives essential properties of gauges
and their polars, and then fully characterizes the canonical decomposition of the
subdifferential of a gauge with respect to the subspace model at x. Sufficient conditions
ensuring uniqueness of the minimizers to (Pλ(y)) and (P0(y)) are provided in Section 3.
In Section 4, we introduce the notion of a piecewise regular gauge and show that
this property is preserved under addition and pre-composition by a linear operator.
Section 5 is dedicated to our main result, namely theoretical guarantees for exact
subspace recovery in presence of noise, and identifiability in the noiseless case. Section 6
exemplifies our results on several previously studied priors, and a detailed discussion
on the relation with respect to relevant previous work is provided. Some conclusions
and possible perspectives of this work are drawn in Section 7. The proofs of our results
are collected in the appendix.

1.6. Notations and Elements from Convex Analysis

In the following, if T is a vector space, PT denotes the orthogonal projector on T , and

xT = PT (x) and ΦT = Φ PT .

For a subset I of {1, . . . , N}, we denote by Ic its complement, |I| its cardinality. x(I)

is the subvector whose entries are those of x restricted to the indices in I, and Φ(I)

the submatrix whose columns are those of Φ indexed by I. For any matrix A, A∗

denotes its adjoint matrix and A+ its Moore–Penrose pseudo-inverse. We denote the
right-completion of the real line by R = R ∪ {+∞}.

A real-valued function f : RN → R is coercive, if lim||x||→+∞ f(x) = +∞. The

effective domain of f is defined by dom f =
{
x ∈ RN : f(x) < +∞

}
and f is proper

if dom f 6= ∅. We say that a real-valued function f is lower semi-continuous (lsc)
if lim infz→x f(z) > f(x). A function is said sublinear if it is convex and positively
homogeneous.

Let the kernel of a function be denoted Ker f =
{
x ∈ RN : f(x) = 0

}
. Ker f is a

convex cone when f is positively homogeneous.
We now provide some elements from convex analysis that are necessary throughout

this paper. A comprehensive account can be found in [33, 20].

Sets For a non-empty set C ⊂ RN , we denote co (C) the closure of its convex hull.
Its affine hull aff C is the smallest affine manifold containing it, i.e.

aff C =

{
k∑
i=1

ρixi : k > 0, ρi ∈ R, xi ∈ C,
k∑
i=1

ρi = 1

}
.

It is included in the linear hull spanC which is the smallest subspace containing C.
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The interior of C is denoted intC. The relative interior riC of a convex set C is the
interior of C for the topology relative to its affine full.

Functions Let C a nonempty convex subset of RN . The indicator function ιC of C is

ιC(x) =

{
0, if x ∈ C ,

+∞, otherwise.

The Legendre-Fenchel conjugate of a proper, lsc and convex function f is

f∗(u) = sup
x∈dom f

〈u, x〉 − f(x) ,

where f∗ is proper, lsc and convex, and f∗∗ = f . For instance, the conjugate of the
indicator function ιC is the support function of C

σC(u) = sup
x∈C
〈u, x〉 .

σC is sublinear, is non-negative if 0 ∈ C, and is finite everywhere if, and only if, C is a
bounded set.

Let f and g be two functions proper closed convex functions from RN to R. Their
infimal convolution is the function

(f
+
∨ g)(x) = inf

x1+x2=x
f(x1) + g(x2) = inf

z∈RN
f(z) + g(x− z) .

The subdifferential ∂f(x) of a convex function f at x is the set

∂f(x) =
{
u ∈ RN : f(x′) > f(x) + 〈u, x′ − x〉, ∀x′ ∈ dom f

}
.

An element of ∂f(x) is a subgradient. If the convex function f is Gâteaux-differentiable
at x, then its only subgradient is its gradient, i.e. ∂f(x) = {∇f(x)}.

The directional derivative f ′(x, δ) of a lsc function f at the point x ∈ dom f in the
direction δ ∈ RN is

f ′(x, δ) = lim
t↓0

f(x+ tδ)− f(x)

t
.

When f is convex, then the function δ 7→ f ′(x, ·) exists and is sublinear. The subdif-
ferential ∂f(x) is a non-empty compact convex set of RN whose support function is
f ′(x, ·), i.e.

f ′(x, δ) = σ∂f(x)(δ) = sup
η∈∂f(x)

〈η, δ〉.

We also recall the fundamental first-order minimality condition of a convex function:
x? is the global minimizer of a convex function f if, and only if, 0 ∈ ∂f(x).
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2. Geometry of Gauge Regularization

2.1. Gauges and their Polars

Definitions and main properties We start by collecting some important properties
of gauges and their polars. A comprehensive account on them can be found in [33].

We begin with the definition of a gauge.

Definition 1 (Gauge). Let C ⊆ RN be a non-empty closed convex set containing the
origin. The gauge of C is the function γC defined on RN by

γC(x) = inf {λ > 0 : x ∈ λC} .

As usual, γC(x) = +∞ if the infimum is not attained.

Lemma 1.

(i) γC is a non-negative, lsc and sublinear function.

(ii) C is the unique closed convex set containing the origin such that

C =
{
x ∈ RN : γC(x) 6 1

}
.

(iii) γC is bounded if, and only if, 0 ∈ intC, in which case γC is continuous.

(iv) Ker γC = {0}, or equivalently γC is coercive if, and only if, C is compact.

(v) γC is bounded and coercive on dom γC = spanC if, and only if, C is compact and
0 ∈ riC. In particular, γC is bounded and coercive if, and only if, C is compact
and 0 ∈ intC.

Lemma 1(ii) is fundamental result of convex analysis that states that there is a
one-to-one correspondence between gauge functions and closed convex sets containing
the origin. This allows to identify sets from their gauges, and vice versa. Recall
that in this paper, we consider a regularizing gauge J associated to a convex set C
containing the origin as an interior point, or equivalently by Lemma 1(i)-(iii), that J is
a non-negative, continuous and sublinear function of full domain.
γC is a norm, having C as its unit ball, if and only if C is bounded with nonempty

interior and symmetric. When C is only symmetric with nonempty interior, then γC
becomes a semi-norm.

Let us now turn to the polar of a convex set and a gauge.

Definition 2 (Polar set). Let C be a non-empty convex set. The set C◦ given by

C◦ =
{
v ∈ RN : 〈v, x〉 6 1 for all x ∈ C

}
is called the polar of C.
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C◦ is a closed convex set containing the origin. When the set C is also closed and
contains the origin, then it coincides with its bipolar, i.e. C◦◦ = C.

We are now in position to define the polar gauge.

Definition 3 (Polar Gauge). The polar of a gauge γC is the function γ◦C defined by

γ◦C(u) = inf {µ > 0 : 〈x, u〉 6 µγ◦C(x),∀x} .

Observe that gauges polar to each other have the property

〈x, u〉 6 γC(x)γ◦C(u) ∀ (x, u) ∈ dom γC × dom γ◦C ,

just as dual norms satisfy a duality inequality. In fact, polar pairs of gauges correspond
to the best inequalities of this type.

Lemma 2. Let C ⊆ RN be a closed convex set containing 0. Then,

(i) γ◦C is a gauge function and γ◦◦C = γC .

(ii) γ◦C = γC◦ , or equivalently

C◦ =
{
x ∈ RN : γ◦C(x) 6 1

}
=
{
x ∈ RN : γC◦(x) 6 1

}
.

(iii) The gauge of C and the support function of C are mutually polar, i.e.

γC = σC◦ and γC◦ = σC .

Gauge and polar calculus We here derive the expression of the gauge function of the
Minkowski sum of two sets, as well as that of the image of a set by a linear operator.
These results play an important role in Section 4.

Lemma 3. Let C1 and C2 be nonempty closed convex sets containing the origin. Then

γC1+C2
(x) = sup

ρ∈[0,1]

ργC1

+
∨ (1− ρ)γC2

(x) .

If x is such that γC1
(x1)+γC2

(x2) is continuous and bounded on {(x1, x2) : x1 + x2 = x},
then

γC1+C2
(x) = inf

z∈RN
max(γC1

(z), γC2
(x− z)) .

Lemma 4. Let C be a closed convex set such that 0 ∈ riC, and D a linear operator.
Then, for every x ∈ Im(D)

γD(C)(x) = inf
z∈Ker(D)

γC(D+x+ z) .

Using Lemma 1(v), one can observe that the infimum is bounded if (D+x+Ker(D))∩
spanC 6= ∅.
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Operator bound

Definition 4. Let J1 and J2 be two gauges defined on two vector spaces V1 and V2,
and A : V1 → V2 a linear map. The operator bound MJ1,J2(A) of A between J1 and
J2 is given by

MJ1,J2(A) = sup
J1(x)61

J2(Ax).

Note that MJ1,J2(A) < +∞ if, and only if AKer(J1) ⊆ Ker(J2). In particular, if
J1 is coercive (i.e. Ker J1 = {0} from Lemma 1(iv)), then MJ1,J2(A) is finite. As
a convention, MJ1,||·||p(A) is denoted as MJ1,`p(A). An easy consequence of this
definition is the fact that for every x ∈ V1,

J2(Ax) 6MJ1,J2(A)J1(x).

We end this section by pointing out that many of the results proved in this paper
can be extended to f -homogenous closed convex functions J , i.e. J(λx) = f(λ)J(x),
∀x and λ > 0 for a positive continuous increasing convex function f on R+. These
are gauge-like functions that can be built from gauges as J = g ◦ γC , where g is a
non-constant non-decreasing and lsc convex function on R+ such that g(λt) = f(λ)g(t).
This construction can be proved from [33, Theorem 15.3]. An important class is that of
positively homogenous functions of degree p, in which case g(t) = tp/p and f(λ) = λp

for 1 6 p <∞. One can show that the main robust recovery result proved in this paper
can be extended to f -homogenous closed convex functions, at the price of modifying
the scaling between the regularization parameter λ and the noise level.

2.2. Model Subspace Associated to a Gauge

Let J our regularizer, i.e. a bounded gauge. We now introduce the model subspace at
a point x.

Definition 5 (Model Subspace). For any vector x ∈ RN , we denote by S̄x the affine
hull of the subdifferential of J at x

S̄x = aff ∂J(x),

and ex the orthogonal projection of 0 onto S̄x

ex = argmin
e∈S̄x

||e||.

We denote
Sx = S̄x − ex = span(∂J(x)− ex) and Tx = S⊥x .

Tx is coined the model subspace of x associated to J .
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When J is Gâteaux-differentiable at x, i.e. ∂J(x) = {∇J(x)}, ex = ∇J(x) and
Tx = RN . On the contrary, when J is not smooth at x, the dimension of Tx is smaller
dimension, and the regularizing gauge J essentially promotes elements living on this
model subspace.

We start by summarizing some key properties of the objects ex and Tx.

Proposition 1. For any x ∈ RN , one has

(i) For every u ∈ S̄x, J(x) = 〈u, x〉.

(ii) ex ∈ Tx ∩ S̄x.

(iii) S̄x =
{
η ∈ RN : ηTx

= ex
}

.

(iv) x ∈ Tx.

In general ex 6∈ ∂J(x), which is the situation displayed on Figure 1. It is worth
noting that the fact that ex ∈ Tx ∩ S̄x holds for any proper convex function, not only
gauges, whereas x ∈ Tx does not hold in general.

0

Sx

S̄x

@J(x)

ex

x

Tx

Figure 1: Illustration of the geometrical elements (Sx, Tx, ex).

From this section until Section 4, we use the `1-`2 and the `∞ norms as illustrative
examples. A more comprehensive treatment is provided in Section 6 completely
dedicated to examples.

Examples

Example 1 (`1-`2 norm). We consider a uniform disjoint partition B of {1, · · · , N},

{1, . . . , N} =
⋃
b∈B

b, b ∩ b′ = ∅, ∀b 6= b′ .

The `1 − `2 norm of x is
J(x) = ||x||B =

∑
b∈B

||xb||.
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The subdifferential of J at x ∈ RN is

∂J(x) =

{
η ∈ RN : ∀b ∈ I, ηb =

xb
||xb||

and ∀g 6∈ I, ||ηg|| 6 1

}
,

where I = {b ∈ B : xb 6= 0}. Thus, the affine hull of ∂J(x) reads

S̄x =

{
η ∈ RN : ∀b ∈ I, ηb =

xb
||xb||

}
.

Hence the projection of 0 onto S̄x is

ex = (N (xb))b∈B

where N (a) = a/||a|| if a 6= 0, and N (0) = 0 and

Sx = S̄x − ex =
{
η ∈ RN : ∀b ∈ I, ηb = 0

}
,

and
Tx = S⊥x =

{
η ∈ RN : ∀b 6∈ I, ηb = 0

}
.

Example 2 (`∞ norm). The `∞ norm is J(x) = ||x||∞ = max
16i6N

|xi|.

For x = 0, ∂J(x) is the unit `1 ball, hence S̄x = Sx = RN , Tx = {0} and ex = 0.
For x 6= 0, we have

∂J(x) = {η : ∀ i ∈ Ic, ηi = 0, 〈η, s〉 = 1, ηisi > 0 ∀ i ∈ I} .

where I = {i ∈ {1, . . . , N} : |xi| = ||x||∞} and s = sign(x), with sign(0) = 0. It is clear
that S̄x is the affine hull of an |I|-dimensional face of the unit `1 ball exposed by the
sign subvector s(I). Thus ex is the barycenter of that face, i.e.

ex = s/|I| and Sx =
{
η : η(Ic) = 0 and 〈η(I), s(I)〉 = 0

}
.

In turn
Tx = S⊥x =

{
α : α(I) = ρs(I) for ρ ∈ R

}
.

2.3. Decomposability Property

The subdifferential of a gauge γC at a point x is completely characterized by the face
of its polar set C◦ exposed by x. Put formally, we have [20]

∂γC(x) = FC◦(x) =
{
η ∈ RN : η ∈ C◦ and 〈η, x〉 = γC(x)

}
,

where FC◦(x) is the face of C◦ exposed by x. The latter is the intersection of C◦ and
the supporting hyperplane

{
η ∈ RN : 〈η, x〉 = γC(x)

}
. The special case of x = 0 has

a much simpler structure; it is the polar set C◦ from Lemma 2(ii)-(iii), i.e.

∂γC(x) =
{
η ∈ RN : γC◦(η) 6 1

}
= C◦.

The following proposition gives an equivalent convenient description of the subdifferen-
tial of the regularizer J = γC at x in terms of a particular supporting hyperplane to
C◦: the affine hull S̄x.

11



Proposition 2. Let J = γC be a bounded gauge. Then for x ∈ RN , one has

∂J(x) = S̄x ∩ C◦.

The antipromoting gauge and its polar Before providing an equivalent description
of the subdifferential of J at x in terms of the geometrical objects ex, Tx and Sx, we
introduce another gauge that plays a prominent role in this description.

Definition 6 (Antipromoting Gauge). Let J be a bounded gauge, and denote C
the associated closed convex set (hence containing the origin in its interior). Let
x ∈ RN \{0} and fx ∈ ri ∂J(x). The antipromoting gauge associated to fx is the gauge
J◦fx = γ∂J(x)−fx .

Since ∂J(x)− fx is a closed (in fact compact) convex set containing the origin, it is
uniquely characterized by the antipromoting gauge J◦fx (see Lemma 1(i)).

The following proposition states the main properties of the gauge J◦fx .

Proposition 3. The antipromoting gauge J◦fx is such that dom J◦fx = Sx, and is
coercive on Sx. Moreover,

J◦fx(η) = inf
τ>0

max(J◦(τfx + η), τ) + ιSx
(η) .

The second claim gives a formula which links J◦f to the polar gauge J◦. But they
are not equal in general unless some additional assumptions are imposed on J , as we
will see shortly in Section 2.4.

We now turn to the gauge polar to the anti-promoting gauge (J◦fx)
◦

= Jfx , where
the last equality is a consequence of Lemma 2(i). Jfx comes into play in several results
in the rest of the paper. The following proposition summarizes its most important
properties.

Proposition 4. The gauge Jfx is such that

(i) Its has a full domain.

(ii) Jfx(d) = Jfx(dS) = supJ◦fx (ηSx )61〈ηSx
, d〉.

(iii) Ker Jfx = Tx and Jfx is coercive on Sx.

(iv) Jfx(d) = J(dSx
)− 〈fSx

, dSx
〉

Let’s derive the antipromoting gauge on the illustrative example of the `∞ norm.
The case of `1 − `2 norm is detailed in Section 2.4.

Example 3 (`∞ norm). Recall from Section 2.2 that for J = || · ||∞, fx = ex = s/|I|,
with s = sign(x). Let Kx = ∂J(x)− ex. It can be straightforwardly shown that in this
case,

Kx =
{
v : ∀ (i, j) ∈ I × Ic, vj = 0, 〈v(I), s(I)〉 = 0, −|I|visi 6 1

}

12



This is rewritten as

Kx = Sx ∩ {v : ∀ i ∈ I, −|I|visi 6 1}︸ ︷︷ ︸
=K′x

.

Thus the antipromoting gauge reads

J◦fx(η) = γKx
(η) = max(γSx

(η), γK′x(η)).

We have γSx
(η) = ιSx

(η) and γK′x(η) = max
i∈I

(−|I|siηi)+, where (·)+ is the positive

part, hence we obtain

J◦fx(η) =

{
max
i∈I

(−|I|siηi)+ if η ∈ Sx
+∞ otherwise.

Therefore the subdifferential of || · ||∞ at x takes the form

∂J(x) =

{
η ∈ RN : ηTx = ex =

s

|I|
and max

i∈I
(−|I|siηi)+ 6 1

}
.

Decomposability of the subdifferential Piecing together the above ingredients yields
a fundamental pointwise decomposition of the subdifferential of the regularizer gauge
J . This decomposability property is at the heart of our results in the rest of the paper.

Theorem 1 (Decomposability). Let J = γC be a bounded gauge. Let x ∈ RN \ {0}
and fx ∈ ri ∂J(x). Then the subdifferential of J at x reads

∂J(x) =
{
η ∈ RN : ηTx

= ex and J◦fx(PSx
(η − fx)) 6 1

}
.

First-order minimality condition Capitalizing on Theorem 1, we are now able to
deduce a convenient necessary and sufficient first-order (global) minimality condition
of (Pλ(y)) and (P0(y)).

Proposition 5. Let x ∈ RN , and denote for short T = Tx and S = Sx. The two
following propositions hold.

(i) The vector x is a global minimizer of (Pλ(y)) if, and only if,

Φ∗T (y − Φx) = λex and J◦fx(λ−1Φ∗S(y − Φx)− PS(fx)) 6 1.

(ii) The vector x is a global minimizer of (P0(y)) if, and only if, there exists a dual
vector α ∈ RQ such that

Φ∗Tα = ex and J◦fx(Φ∗Sα− PS(fx)) 6 1.

13



2.4. Strong Gauge

In this section, we study a particular subclass of gauges that we dub strong gauges.
We start with some definitions.

Definition 7. A bounded regularizing gauge J is separable with respect to T = S⊥ if

∀ (x, x′) ∈ T × S, J(x+ x′) = J(x) + J(x′).

Separability of J is equivalent to the following property on the polar J◦.

Lemma 5. Let J be a bounded gauge. Then, J is separable w.r.t. to T = S⊥ if, and
only if its polar J◦ satisfies

J◦(x+ x′) = max (J◦(x), J◦(x′)) , ∀ (x, x′) ∈ T × S .

The decomposability of ∂J(x) as described in Theorem 1 depends on the particular
choice of the map x 7→ fx ∈ ri ∂J(x). An interesting situation is encountered when
ex ∈ ri ∂J(x), in which case, one can just choose fx = ex, hence implying that fSx = 0.
Strong gauges are precisely a class of gauges for which this situation occurs.

In the sequel, for a given model subspace T , we denote T̃ the set of vectors sharing
the same T ,

T̃ =
{
x ∈ RN : Tx = T

}
.

Using positive homogeneity, it is easy to show that Tρx = Tx and eρx = ex ∀ρ > 0.

Thus T̃ is a non-empty cone which is contained in T by Proposition 1(iv).

Definition 8 (Strong Gauge). A strong gauge on T is a bounded gauge J such that

1. For every x ∈ T̃ , ex ∈ ri ∂J(x).

2. J is separable with respect to T and S = T⊥.

The following result shows that the decomposability property of Theorem 1 has a
simpler form when J is a strong gauge.

Proposition 6. Let J be a strong gauge on Tx. Then, the subdifferential of J at x
reads

∂J(x) =
{
η ∈ RN : ηTx

= ex and J◦(ηSx
) 6 1

}
.

When J is in addition a norm, this coincides with the decomposability definition
of [7]. Note however that the last part of assertion (ii) in Proposition 4 is an intrinsic
property of gauges, while it is stated as an assumption in their definition.

Example 4 (`1-`2 norm). Recall the notations of this example in Section 2.2. Since
ex = (N (xb))b∈B ∈ ri ∂J(x), and the `1-`2 norm is separable, it is a strong norm
according to Definition 8. Thus, its subdifferential at x reads

∂J(x) =

{
η ∈ RN : ηTx

= ex = (N (xb))b∈B and max
b6∈I
||ηb|| 6 1

}
.

However, except for N = 2, `∞ is not a strong gauge.
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3. Uniqueness

This section derives sufficient conditions under which the solution of problems (Pλ(y))
and (P0(y)) is unique.

We start with the key observation that although (Pλ(y)) does not necessarily have a
unique minimizer in general, all solutions share the same image under Φ.

Lemma 6. Let x, x′ be two solutions of (Pλ(y)). Then,

Φx = Φx′.

Consequently, the set of the minimizers of (Pλ(y)) is a closed convex subset of the
affine space x+ Ker(Φ), where x is any minimizer of (Pλ(y)). This is also obviously
the case for (P0(y)) since all feasible solutions belong to the affine space x0 + Ker Φ.

3.1. The Strong Null Space Property

The following theorem gives a sufficient condition to ensure uniqueness of the solution
to (Pλ(y)) and (P0(y)), that we coin Strong Null Space Property. This condition
is a generalization of the Null Space Property introduced in [12] and popular in `1

regularization.

Theorem 2. Let x be a solution of (Pλ(y)) (resp. (P0(y))). Denote T = S⊥ = Tx the
associated model subspace. If the Strong Null Space Property holds

∀δ ∈ Ker(Φ) \ {0}, 〈ex, δT 〉+ 〈PS(fx), δS〉 < Jfx(−δS), (NSPS)

then the vector x is the unique minimizer of (Pλ(y)) (resp. (P0(y))).

This result reduces to the one proved in [15] when J is decomposable norm pre-
composed by a linear operator, where decomposability is intended in the sense of [7].
This is covered by our result when specializing it to a strong gauge J . In such a
case, (NSPS) reads

∀δ ∈ Ker(Φ) \ {0}, 〈ex, δTx
〉 < J(−δSx

).

3.2. Dual Certificates

In this section we derive from (NSPS) a weaker sufficient condition, stated in terms of
a dual vector, the existence of which certifies uniqueness.

For some model subspace T , the restricted injectivity of Φ on T plays a central role
in the sequel. This is achieved by imposing that

Ker(Φ) ∩ T = {0}. (CT )

To understand the importance of (CT ), consider the noiseless case where we want to
recover a vector x0 from y = Φx0, whose model subspace is T . Assume that the latter
is known. From Proposition 1(iv), x0 ∈ T ∩ {x : y = Φx}. For x0 to be uniquely
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recovered from y, (CT ) must be verified. Otherwise, if (CT ) does not hold, then any
x0 + δ, with δ ∈ Ker Φ∩T \{0}, is also a candidate solution. Thus, such objects cannot
be uniquely recovered.

We can derive from Theorem 2 the following corollary.

Corollary 1. Let x be a solution of (Pλ(y)) (resp. (P0(y))). Assume that there exists
a dual vector α such that η = Φ∗α ∈ ri(∂J(x)), and (CT ) holds where T = Tx. Then x
is the unique solution of (Pλ(y)) (resp. (P0(y))).

Piecing together Theorem 1 and Corollary 1, one can build a particular dual certificate
for (Pλ(y)), and then state a sufficient uniqueness explicitly in terms of the decomposable
structure of the subdifferential of the regularizing gauge J .

Theorem 3. Let x ∈ RN , and suppose that fx ∈ ri ∂J(x). Assume furthermore
that (CT ) holds for T = Tx and let S = T⊥.

(i) If

Φ∗T (y − Φx) = λex, (2)

J◦fx
(
λ−1Φ∗S(y − Φx)− PS(fx)

)
< 1. (3)

then x is the unique solution of (Pλ(y)).

(ii) If there exists a dual certificate α such that

Φ∗Tα = ex and J◦fx (Φ∗Sα− PS(fx)) < 1.

then x is the unique solution of (P0(y)).

4. Piecewise Regular Gauges

Until now, except of being bounded (i.e. full domain), no other assumption was
imposed on the regularizing gauge J . But, toward the goal os studying robust recovery
by solving (Pλ(y)), more will be needed. This is the main reason underlying the
introduction of a subclass of bounded gauges J for which the mappings x 7→ ex,
x 7→ PSx

(fx) and x 7→ J◦fx exhibit local regularity.

4.1. Piecewise Regular Gauges

Definition 9 (Piecewise Regular Gauge). A bounded gauge J is said to be piecewise
regular (PRG for short) at x ∈ RN , with respect to the mapping x 7→ fx ∈ ri ∂J(x)
and Γ a coercive gauge bounded on Tx = T = S⊥, if there exist three non-negative
reals νx, µx, τx and a real ξx such that for every x′ ∈ T with Γ(x− x′) 6 νx, one has
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Tx = Tx′ (i.e. x′ ∈ T̃ ) and

Γ(ex − ex′) 6 µxΓ(x− x′). (4)

J◦fx(PS(fx − fx′)) 6 τxΓ(x− x′). (5)

sup
u∈S
u 6=0

J◦fx′ (u)− J◦fx(u)

J◦fx(u)
6 ξxΓ(x− x′). (6)

The gauge J is strongly piecewise regular at x ∈ RN if is is piecewise regular at x and
strong (Definition 8) with respect to T .

In plain words, (4),(5) and (6) amount to imposing that J is sufficiently regular

(Lipschitzian-like) on T̃ . Recall from Section 2.4 that T̃ is a non-empty cone and
eρx = ex for all ρ > 0. Thus we have µρx = ρµx. Moreover, one can always impose
µxνx 6 C for some global constant C (but of course νx can be smaller and even zero).

Many well-studied gauges are strongly piecewise regular. One can for instance think
of the `1-norm, the `1 − `2-norm and the nuclear norm. The analysis-`1 regularization
or `∞-norm are however not strong PRG. Piecewise regularity of these examples is
investigated in details in Section 6.

4.2. Operations Preserving Piecewise Regularity

Piecewise regularity is preserved under addition and pre-composition by a linear
operator. It is worth observing that strong piecewise regularity is however not preserved
under the same operations. More precisely, the composition of a strong gauge with a
linear operator is not strong anymore, nor is the gauge of the sum of two strong gauges.

4.2.1. Addition

The following proposition determines the model subspace and the antipromoting gauge
of the sum of two gauges

H = J +G

in terms of those associated to J and G.

Proposition 7. Let J and G be two bounded gauges. Denote T J and eJ (resp. TG

and eG) the model subspace and vector at a point x corresponding to J (resp. G). Then
the subdifferential of H has the decomposability property with

(i) TH = T J ∩ TG, or equivalently SH = (TH)⊥ = span
(
SJ ∪ SG

)
.

(ii) eH = PTH (eJ + eG).

(iii) Moreover, let J◦fJ
x

and G◦fG
x

denote the antipromoting gauges for the pairs (J, fJx ∈
ri ∂J(x)) and (G, fGx ∈ ri ∂G(x)), correspondingly. Then, for the particular choice
of

fHx = fJx + fGx
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we have fHx ∈ ri ∂H(x), and for a given η ∈ SH , the antipromoting gauge of H
reads

H◦fH
x

(η) = inf
η1+η2=η

max(J◦fJ
x

(η1), G◦fG
x

(η2)) .

We now establish piecewise regularity of the sum with the decomposability property
dictated by Proposition 7.

Proposition 8. If J and G are piecewise regular gauges at x with the corresponding
parameters (ΓJ , νJx , µ

J
x , τ

J
x , ξ

J
x ) and (ΓG, νGx , µ

G
x , τ

G
x , ξ

G
x ), then H = J + G is also

piecewise regular at x, for the choice fHx = fJx + fGx and ΓH = max(ΓJ ,ΓG), with the
parameters

νHx = min(νJx , ν
G
x )

µHx = µJxMΓJ ,ΓH (PTH ) + µGx MΓG,ΓH (PTH )

τHx = τJx + τGx + µJxMΓJ ,H◦
fH
x

(PSH∩TJ ) + µGx MΓG,H◦
fH
x

(PSH∩TG)

ξHx = max(ξJx , ξ
G
x ).

4.2.2. Pre-composition by a Linear Operator

Gauges of the form J0 ◦D∗, where J0 is a bounded regularizing gauge, correspond to
the so-called analysis-type regularizers. The most popular example in this class if the
total variation where J0 is the `1 or the `1 − `2 norm, and D∗ = ∇ is a finite difference
discretization of the gradient.

In the following, we denote T = Tx = S⊥ and e = ex the subspace and vector
in the decomposition of the subdifferential of J at a given x ∈ RN . Analogously,
T0 = S⊥0 and e0 are those of the gauge J0 at D∗x. The following proposition details
the decomposability structure of analysis-type gauges.

Proposition 9. Let J0 be a bounded gauge. With the above notation, the subdifferential
of the analysis gauge J = J0 ◦ D∗, which is also bounded, has the decomposability
property with

(i) T = Ker(D∗S0
), or equivalently S = Im(DS0

).

(ii) e = PT De0.

(iii) Moreover, let J◦0,f0,D∗x denote the antipromoting gauge for the pair (J0, f0,D∗x ∈
ri ∂J0(x)). Then, for the particular choice of

fx = Df0,D∗x

we have fx ∈ ri ∂J(x), dom J◦fx = S and for every η ∈ S

J◦fx(η) = inf
z∈Ker(DS0

)
J◦0,f0,D∗x(D+

S0
η + z) .

The infimum can be equivalently taken over Ker(D) ∩ S0.
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Capitalizing on these properties, we now establish that an analysis gauge J = J0 ◦D∗,
where J0 is a PRG, is also piecewise regular.

Proposition 10. If J0 is a bounded piecewise regular gauge at u = D∗x with the
parameters (Γ0, ν0,u, µ0,u, τ0,u, ξ0,u), then J = J0 ◦D∗ is piecewise regular at x, with
the choice fx = Df0,u and Γ any bounded coercive gauge on T , with the parameters

νx =
1

MΓ,Γ0
(D∗)

ν0,u

µx = µ0,uMΓ,Γ0
(PTD)MΓ,Γ0

(D∗)

τx =
(
τ0,uMJ◦0,f0,u

,J◦0,f0,u
(D+

S0
PS D) + µ0,uMΓ0,J◦0,f0,u

(D+
S0

PS D)
)
MΓ,Γ0

(D∗)

ξx = ξ0,uMΓ,Γ0
(D∗) .

5. Exact Model Selection and Identifiability

In this section, we state our main recovery guarantee, which asserts that under appropri-
ate conditions, (Pλ(y)) with a piecewise regular gauge J has a unique solution x? whose
model subspace Tx? = Tx0

, even in presence of noise. Put differently, regularization by
J is able to select the correct model subspace underlying x0.

Beside condition (CTx) stated above, the following Identifiability Criterion will play
a pivotal role.

Definition 10. For x ∈ RN such that (CTx
) holds, we define the Identifiability Criterion

at x as
IC(x) = J◦fx(Φ∗Sx

Φ+,∗
Tx

ex − PSx fx).

Note that if J is a strong gauge on T , then it becomes IC(x) = J◦(Φ∗Sx
Φ+,∗
Tx

ex).
The Identifiability Criterion clearly brings into play the promoted subspace Tx0

and
the interaction between the restriction of Φ to Tx0

and Sx0
. It is a generalization of

the irrepresentable condition that has been studied in the literature for some popular
regularizers, including the `1-norm [17], analysis-`1 [40], and `1-`2 [1]. See Section 6
for a comprehensive discussion.

5.1. Noiseless Identifiability

We begin with the noiseless case, i.e. w = 0 in (1). It turns out that in such a setting,
IC(x0) < 1 is a sufficient condition for identifiability without any any other particular
assumption on the bounded gauge J , such as piecewise regularity. By identifiability,
we mean the fact that x0 is the unique solution of (P0(y)).

Theorem 4. Let x0 ∈ RN and T = Tx0
. We assume that (CT ) holds and IC(x0) < 1.

Then x0 is the unique solution of (P0(y)).
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5.2. Exact Model Selection

It turns out that even in presence of noise in the measurements y according to (1),
condition IC(x0) < 1 characterizes also those vectors where (Pλ(y)) with piecewise
regular gauges provides a robust selection of the model subspace of x0. Our main
contribution is the following theorem.

Theorem 5. Let x0 ∈ RN and T = Tx0
. We suppose that J is a piecewise regular

gauge x0 with the corresponding parameters (Γ, νx0
, µx0

, τx0
, ξx0

). Assume that (CT )
holds and IC(x0) < 1. Then there exist positive constants (AT , BT ) that solely depend
on T and a constant C(x0) such that if w and λ obey

AT
1− IC(x0)

||w|| 6 λ 6 νx0
min

(
BT , C(x0)

)
(7)

the solution x? of (Pλ(y)) with noisy measurements y is unique, and satisfies Tx? = T .
Furthermore, one has

||x0 − x?|| = O
(

max(||w||, λ)
)
.

Clearly this result asserts that exact recovery of Tx0
from noisy partial measurements

is possible with the proviso that the regularization parameter λ lies in the interval (7).
The value λ should be large enough to reject noise, but small enough to recover the
entire subspace Tx0

. In order for the constraint (7) to be non-empty, the noise-to-signal
level ||w||/νx0

should be small enough, i.e.

||w||
νx0

6
1− IC(x0)

AT
min (BT , C(x0)) .

The constant C(x0) involved in this bound depends on x0 and has the form

C(x0) =
1− IC(x0)

ξx0νx0

H

(
DT µx0

+ τx0

ξx0

)
where H(β) =

β + 1/2

ET β
ϕ

(
2β

(β + 1)2

)
and ϕ(u) =

√
1 + u− 1 .

The constants (DT , ET ) only depend on T . C(x0) captures the influence of the
parameters πx0

= (µx0
, τx0

, ξx0
), where the latter reflect the geometry of the regularizing

gauge J at x0. More precisely, the larger C(x0), the more tolerant the recovery is to
noise. Thus favorable regularizers are those where C(x0) is large, or equivalently where
πx0

has small entries, since H is a strictly decreasing function.

6. Examples of Piecewise Regular Gauges

6.1. Synthesis `1 Sparsity

The regularized problem (Pλ(y)) with J(x) = ||x||1 =
∑N
i=1 |xi| promotes sparse

solutions. It goes by the name of Lasso [38] in the statistical literature, and Basis
Pursuit DeNoising (or Basis Pursuit in the noiseless case) [10] in signal processing.
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The `1 norm is a PRG. The norm J(x) = ||x||1 is a symmetric (bounded) strong
gauge. More precisely, we have the following result.

Proposition 11. J = || · ||1 is a symmetric strong gauge with

Tx =
{
η ∈ RN : ∀j 6∈ I, ηj = 0

}
, Sx =

{
η ∈ RN : ∀i ∈ I, ηi = 0

}
,

ex = sign(x), fx = ex, J◦fx = || · ||∞ + ιSx
,

where I = I(x) = {i : xi 6= 0}. Moreover, it is strongly piecewise regular with

Γ = || · ||∞, νx = (1− δ)min
i∈I
|xi| , δ ∈]0, 1] and µx = τx = ξx = 0.

Relation to previous work. The theoretical recovery guarantees of `1-regularization
have been extensively studied in the recent years. There is of course a huge literature
on the subject, and covering it comprehensively is beyond the scope of this paper. In
this section, we restrict our overview to those works pertaining to ours, i.e., sparsity
pattern recovery in presence of noise.

For instance, an identifiability criterion was introduced in [17]. Let s ∈ {−1, 0,+1}N
and I its support. Suppose that Φ(I) has full column rank, which is precisely (CT ) in
this case. The synthesis identifiability criterion IC`1 of s is defined as

IC`1(s) = ||Φ∗(Ic)Φ
+,∗
(I) s(I)||∞ = max

j∈Ic
|〈Φj , Φ+,∗

(I) s(I)〉|.

From Definition 10 and Proposition 11, one immediately recognizes that IC`1(sign(x)) =
IC(x). The condition IC`1(sign(x)) < 1, also known as the irrepresentable condition
in the statistical literature, was proposed [17] for exact support (and sign) pattern
recovery with `1-regularization from partial noisy measurements. In this respect, this
work can then be viewed as a special instance of ours, as Theorem 5 in this case ensures
recovery of the support pattern.

6.2. Analysis `1 Sparsity

Let D = (di)
P
i=1 be a collection of P atoms di ∈ RN . The analysis semi-norm associated

to D is J(x) = ||D∗x||1 =
∑P
i=1 |〈di, x〉|. Obviously, the synthesis `1-regularization

corresponds to D = Id. Popular examples of analysis-type `1 semi-norms include for
instance the discrete anisotropic total variation [35], the Fused Lasso [39] and shift
invariant wavelets [36].

The analysis `1 semi-norm is a PRG. The semi-norm J(x) = ||D∗x||1 is a symmetric
piecewise regular gauge. This is formalized in the following proposition whose proof is
a straightforward application of Proposition 9, Proposition 10 and Proposition 11.
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Proposition 12. J = ||D∗ · ||1 is a symmetric (bounded) gauge with

Tx = Ker(D∗(Ic))) =
{
η ∈ RN : ∀j 6∈ I, 〈dj , ηj〉 = 0

}
, Sx = Im(DIc),

ex = PKer(D∗
Ic

)D sign(D∗x), fx = D sign(D∗x),

J◦fx(η) = inf
z∈Ker(D(Ic))

||D+
(Ic)η + z||∞, for η ∈ Sx ,

where I = I(x) = {i : 〈di, xi〉 6= 0}. Moreover, it is piecewise regular with parameters

νx = (1− δ)min
i∈I
|〈di, xi〉|, δ ∈]0, 1] and µx = τx = ξx = 0.

Relation to previous work. Some insights on the relation and distinction between
synthesis- and analysis-based sparsity regularizations were first given in [14]. When D
is orthogonal, and more generally when D is square and invertible, the two forms of
regularization are equivalent in the sense that the set of minimizers of one problem
can be retrieved from that of an equivalent form of the other through a bijective
change of variable. It is only recently that theoretical guarantees of `1-analysis sparse
regularization have been investigated, see [40] for a comprehensive review. Among
such a work, the authors in [26] propose a null space property for identifiability in the
noiseless case. The most relevant work to ours here is that of [40], where the authors
prove exact robust recovery of the support and sign patterns under conditions that are
a specialization of those in Theorem 5.

More precisely, let I be the support of D∗x0, and s its sign vector. Denote T =
Tx0

= S⊥ = Ker(D∗Ic), ex0
= sign(D∗x0) = s, e = ex0

= PT Ds, f = fx0
= Ds. From

Definition 10 and Proposition 12, the criterion IC(x0) in this case takes the form

IC(x0) = J◦fx(Φ∗SΦ+,∗
T PT Ds− PS Ds)

= inf
z∈Ker(D(Ic))

||D+
(Ic)

(
Φ∗SΦ+,∗

T PT −PS
)
Ds+ z||∞

= inf
z∈Ker(D(Ic))

||D+
(Ic)

(
(Id− PT )Φ∗Φ PT (Φ∗TΦT )−1 PT −PS

)
Ds+ z||∞

= inf
z∈Ker(D(Ic))

||D+
(Ic)

(
Φ∗Φ PT (Φ∗TΦT )−1 PT −(PT + PS)

)
Ds+ z||∞

= inf
z∈Ker(D(Ic))

||D+
(Ic)

(
Φ∗Φ PT (Φ∗TΦT )−1 PT −Id

)
D(I)s(I) + z||∞ .

Introducing U as a matrix whose columns form a basis of T , IC(x0) can be equivalently
rewritten

IC(x0) = inf
z∈Ker(D(Ic))

||D+
(Ic)

(
Φ∗ΦA[Ic] − Id

)
D(I)s(I) + z||∞ ,

where A[Ic] = U(U∗Φ∗ΦU)−1U∗. We recover exactly the expression of the IC`1−D
introduced in [40].
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6.3. `∞ Antisparsity Regularization

Regularization by the `∞-norm corresponds to taking J(x) = ||x||∞ = max
16i6N

|xi|.
It plays a prominent role in a variety of applications including approximate nearest
neighbor search [21] or vector quantization [24]; see also [37] and references therein.

The `∞-norm is a PRG. The norm J(x) = ||x||∞ is a symmetric piecewise regular
gauge, but unlike the `1-norm, it is not strongly so (except for N = 2). Therefore, in
the following proposition, we rule out the trivial case x = 0.

Proposition 13. J = || · ||∞ is a symmetric (bounded) gauge with

Sx =
{
η : η(Ic) = 0 and 〈η(I), s(I)〉 = 0

}
, Tx =

{
α : α(I) = ρs(I) for ρ ∈ R

}
,

ex =
s

|I|
, fx = ex, J◦fx(η) = max

i∈I
(−|I|siηi)+ for η ∈ Sx ,

where s = sign(x) and I = I(x) = {i : |xi| = ||x||∞}. Moreover, it is piecewise regular
with

Γ = || · ||1, νx = (1− δ)
(
||x||∞ −max

j /∈I
|xj |
)
, δ ∈]0, 1] and µx = τx = ξx = 0.

Relation to previous work. In the noiseless case, i.e. (P0(y)) with J = || · ||∞,
theoretical analysis of `∞-regularization goes back to the 70’s through the work of [6].
[24] provided results that characterize signal representations with small (but not
necessarily minimal) `∞-norm subject to linear constraints. A necessary and sufficient
condition for a vector to be the unique minimizer of (P0(y)) is derived in [25]. The
work of [13] analyzes recovery guarantees by `∞-regularization in a noiseless random
sensing setting.

The authors in [37] analyzed the properties of solutions obtained from a constrained
form of (Pλ(y)) with J = || · ||∞. In particular, they improved and generalized the
bound of [24] on the `∞ of the solution.

The work of [3, 28] studies robust recovery with regularization using a subclass of
polyhedral norms obtained by convex relaxation of combinatorial penalties. Although
this covers the case of the `∞-norm, their notion of support is however, completely
different from ours. We will come back to this work with a more detailed discussion in
Section 6.5.

6.4. Block/Group Sparsity Regularization

Let’s recall from Section 2.2 that B is a uniform disjoint partition of {1, · · · , N},

{1, . . . , N} =
⋃
b∈B

b, b ∩ b′ = ∅, ∀b 6= b′ .

The `1 − `2 norm of x is
J(x) = ||x||B =

∑
b∈B

||xb||.
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This prior has been advocated when the signal exhibits a structured sparsity pattern
where the entries are assumed to be clustered in few non-zero groups; see for instance
[4, 44]. The corresponding regularized problem (Pλ(y)) is known as the group Lasso.

The `1-`2 norm is a PRG. The `1−`2 norm is a symmetric strongly piecewise regular
gauge.

Proposition 14. The `1 − `2 norm associated to the partition B is a symmetric
(bounded) strong gauge with

Tx = {η : ∀j /∈ I, ηj = 0} , Sx = {η : ∀i ∈ I, ηi = 0} ,
ex = (N (xb))b∈B, fx = ex, J◦ = || · ||∞,2 + ιSx ,

where I = I(x) = {b : xb 6= 0}, and N (a) = a/||a|| if a 6= 0, and N (0) = 0. Moreover,
it is strongly piecewise regular with

Γ = || · ||∞,2, νx = (1− δ)min
b∈I
||xb||, δ ∈]0, 1] µx =

√
2

νx
and τx = ξx = 0.

Relation to previous work. Theoretical guarantees of the group Lasso have been
investigated by several authors under different performance criteria; see e.g. [44, 34, 1,
11, 23, 43] to cite only a few. In particular, the author in [1] studies the asymptotic
group selection consistency of the group Lasso in the overdetermined case, under a
group irrepresentable condition. This condition also appears in noiseless identifiability
in the work of [7]. The group irrepresentable condition is nothing but the specialization
to the group Lasso of our condition based on IC(x0). Indeed, using Definition 10
and Proposition 14, and assuming that Φ(I) is full column rank (i.e. (CT ) is fulfilled),
IC(x0) reads

IC(x0) =

∥∥∥∥Φ∗(Ic)Φ
+,∗
(I)

(
xb

||xb||

)
b∈I

∥∥∥∥
∞,2

. (8)

It is worth mentioning that the discrete isotropic total variation in d-dimension,
d > 2, can be viewed as an analysis-type `1 − `2 semi-norm. Piecewise regularity and
theoretical recovery guarantees with such a regularization can be retrieved from those
of this paper using the results on the pre-composition rule given in Section 4.2.2.

6.5. Polyhedral Regularization

A particular case of analysis priors are polyhedral gauges, that are in general not
strongly piecewise regular. The `1 and `∞ norms are special cases of polyhedral priors
(`1 being strongly piecewise regular, while `∞ being only piecewise regular). There
are two alternative ways to define a polyhedral gauge. The H-representation encodes
the gauge through the hyperplanes that support the polygonal facets of its unit level
set. The V -representation encodes the gauge through the vertices that are the extreme
points of this unit level set. We focus here on the H-representation.
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A polyhedral gauge is a PRG. A polyhedral gauge in the H-representation is defined
as

J(x) = max
16i6NH

(〈x, hi〉)+ = J0(H∗x) where J0(u) = max
16i6NH

(ui)+,

and we have defined H = (hi)
NH
i=1 ∈ RN×NH .

Such a polyhedral gauge can also be thought as an analysis gauge as considered in
Section 4.2.2 by identifying D = H. One can then characterize decomposability and
piecewise regularity of J0 and then invoke Proposition 9 and 10 to derive those of J .
This is what we are about to do. In the following, we denote (ai)16i6NH

the standard
basis of RNH .

Proposition 15. J0(u) = max16i6NH
(ui)+ is a (bounded) gauge and,

• If ui 6 0, ∀i ∈ {1, · · · , NH}, then

Su = span
(
ai
)
i∈I0

, Tu = span
(
ai
)
i/∈I0

,

eu = 0, fu = µ
∑
i∈I0

ai, for any 0 < µ < 1,

J◦fu(η) = inf
τ>maxi∈I0 (−ηi)+/µ

max
(
τµ|I0|+

∑
i∈I0

ηi, τ
)

for η ∈ Su ,

where
I0 = {i ∈ {1, · · · , NH} : ui = J0(u) = 0} .

• If ∃i ∈ {1, · · · , NH} such that ui > 0, then

Su =
{
η : η(Ic+) = 0 and 〈η(I+), s(I+)〉 = 0

}
,

Tu =
{
α : α(I+) = µs(I+) for µ ∈ R

}
,

eu =
s

|I+|
, fu = eu, J◦fu(η) = max

i∈I+
(−|I+|ηi)+ for η ∈ Su ,

where

s =
∑
i∈I+

ai and I+ = {i ∈ {1, · · · , NH} : ui = J0(u) and ui > 0} .

Moreover, it is piecewise regular with parameters (assuming I+ 6= ∅)

νu = (1− δ)
(

max
i∈I+

ui − max
j /∈I+,uj>0

uj
)
, δ ∈]0, 1] and µu = τu = ξu = 0.

Relation to previous work. As stated in the case of `∞-norm, the work of of [3]
considers robust recovery with a subclass of polyhedral norms but his notion of support
is different from ours. The work [30] studies numerically some polyhedral regularizations.
Again in a compressed sensing scenario, the work of [9] studies a subset of polyhedral
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regularizations to get sharp estimates of the number of measurements for exact and
`2-stable recovery. The closest work to ours is that reported in [41], where theoretical
recovery guarantees by polyhedral regularization were provided under similar conditions
to ours and with the same notion of support as considered above. However only bounded
coercive polyhedral gauges were considered there.

6.6. Nuclear Norm Regularization

The nuclear norm, or trace norm, has been proposed as an effective convex relaxation
for rank minimization problems to provably recover low-rank matrices [8, 32]. The
nuclear norm of a N1 ×N2 rank-r matrix x is defined as J(x) = ||x||∗ = || diag(Σ)||1,
where x = UΣV ∗ is a reduced singular value decomposition (SVD) of x, with diag(Σ) =
(σi)16i6r the singular values, U (N1 × r) and V (N2 × r) are the matrices of left and
right singular vectors.

The nuclear norm is a PRG. In the following, we show that the nuclear norm is a
symmetric strongly piecewise regular gauge.

Proposition 16. The nuclear norm is a symmetric strong gauge with

Sx =
{
U∗⊥CV⊥ : C ∈ R(N1−r)×(N2−r)

}
,

Tx =
{
UA∗ +BV ∗ : A ∈ RN2×r, B ∈ RN1×r

}
=
{
Z ∈ R(N1−r)×(N2−r) : U∗⊥ZV⊥ = 0

}
,

ex = UV ∗, fx = ex, J◦(x) = max
i

σi + ιSx
,

where U⊥, V⊥ span the orthogonal of the ranges of U, V . Moreover, it is strongly
piecewise regular with parameters

νx =
1

4
min
i∈I
|σi|, µx =

1

νx
and τx = ξx = 0.

I can be observed that dim(Tx) = r(N1 +N2− r) and dim(Sx) = N1N2−dim(Tx) =
N1N2 − r(N1 +N2) + r2.

Relation to previous work. The work in [2] defines an irrepresentabilty condition
for the nuclear norm. This irrepresentability condition is assumed in [2] to establish
asymptotic rank consistency of nuclear norm minimization in the overdetermined
case. Similarly to (8), this condition can be shown to be equivalent to our condition
IC(x0) < 1, when specialized to the case of the nuclear norm. Note also that [2]
provides a proof of the PRG property of the nuclear norm (Proposition 16). In their
unified framework, the work [32] derives tight bounds on the number of Gaussian
measurements needed for exact and robust recovery by nuclear norm minimization.
The work of [32] complements these results, using the irrepresentable condition tailored
to the nuclear norm, to get tight bounds for noiseless identifiability.

Let us also point out that the recent work of [19] considers an analysis-type form of
the nuclear norm, the so-called trace Lasso. However no recovery guarantees (with or
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without noise) were given. In fact, combining Proposition 16 and the results on the
pre-composition rule given in Section 4.2.2, one can establish piecewise regularity and
derive theoretical recovery guarantees for the trace Lasso.

7. Conclusion

In this paper, we introduced the notion of piecewise regular gauge as a generic convex
regularization framework, and presented a unified view of to derive exact and robust
recovery guarantees for a large class of convex regularizations. In particular, we
provided sufficient conditions ensuring uniqueness of the minimizer to both (Pλ(y))
and (P0(y)), whose byproduct is to guarantee exact recovery of the original object x0

in the noiseless case by solving (P0(y)). In presence of noise, sufficient conditions were
given to certify exact recovery of the model subspace underlying x0. As shown in the
considered examples, these results encompass a variety of cases extensively studied in
the literature (e.g. `1, analysis `1, `1 − `2, nuclear norm), as well as less popular ones
(inf, polyhedral).

Appendices

A. Proofs of Section 2

Proof of Lemma 1. (i)-(iii) are obtained from [20, Theorem V.1.2.5]. (iv) is obtained by
combining [20, Corollary V.1.2.6 and Proposition IV.3.2.5]. (v): the second statement
follows by combining (iii)-(iv), while the first part is the second one written in dom γC =
aff C = spanC since 0 ∈ C.

Proof of Lemma 2. (i) follows from [33, Theorem 15.1]. (ii) [33, Corollary 15.1.1] or
[20, Proposition V.3.2.4]. (iii) [33, Corollary 15.1.2] or [20, Proposition V.3.2.5].

Proof of Lemma 3. We have from Lemma 2 and calculus rules on support functions,

γ(C1+C2)◦ = σC1+C2
= σC1

+ σC2
.

Thus
(C1 + C2)◦ = {u : σC1

(u) + σC2
(u) 6 1} .
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This yields that

γC1+C2(x) = σ(C1+C2)◦(x)

= σσC1
(u)+σC2

(u)61

= sup
σC1

(u)+σC2
(u)61

〈u, x〉

= sup
ρ∈[0,1]

sup
σC1

(u)6ρ,σC2
(u)61−ρ

〈u, x〉

= sup
ρ∈[0,1]

σσC1
(u)6ρ

+
∨ σσC2

(u)61−ρ(x)

= sup
ρ∈[0,1]

ρσσC1
(u)61

+
∨ (1− ρ)σσC2

(u)61(x)

= sup
ρ∈[0,1]

ρσC◦1
+
∨ (1− ρ)σC◦2 (x)

= sup
ρ∈[0,1]

σρC◦1
+
∨ σ(1−ρ)C◦2 (x)

= sup
ρ∈[0,1]

ργC1

+
∨ (1− ρ)γC2

(x) ,

which is the first assertion.
The last identity can be rewritten

γC1+C2
(x) = sup

ρ∈[0,1]

inf
x1+x2=x

ργC1
(x1) + (1− ρ)γC2

(x2) .

Under the boundedness and continuity assumption of the lemma, the objective in the
sup inf is a continuous bounded concave-convex function on [0, 1]×{(x1, x2) : x1 + x2 = x}.
Since the latter sets are non-empty, closed and convex, and [0, 1] is obviously bounded,
we have from using [33, Corollary 37.3.2]

γC1+C2
(x) = inf

z∈RN
sup
ρ∈[0,1]

ργC1
(z) + (1− ρ)γC2

(x− z)

= inf
z∈RN

max(γC1(z), γC2(x− z)) .

Proof of Lemma 4. It is immediate to see that D(C) is a closed convex set containing
the origin. Moreover, we have Im(D∗) ∩ dom(σC) 6= ∅, since the origin is in both of
them. Thus, using [20, Theorem X.2.1.1] and Lemma 2, we have

γ(D(C))◦ = σD(C) =
(
ιD(C)

)∗
= σC ◦D∗ .

Now, as by assumption 0 ∈ riC, we have 0 ∈ ri(C◦), and therefore Im(D∗)∩ ri(C◦) 6= ∅.
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By virtue of [20, Theorem X.2.2.3] and Lemma 2, we get

γD(C)(x) = σ(D(C))◦(x)

= σσC◦D∗(u)61(x)

=
(
ισC(w)61 ◦D∗

)∗
(x)

= inf
v
σσC(w)61(v) s.t. Dv = x

= inf
z∈Ker(D)

σσC(w)61(D+x+ z)

= inf
z∈Ker(D)

σσC(w)61(D+x+ z)

= inf
z∈Ker(D)

γC(D+x+ z) .

Proof of Proposition 1.

(i) Each element of S̄x can be written as u =
∑k
i=1 ρiηi, for k > 0, where ηi ∈

∂J(x) and
∑k
i=1 ρi = 1. By Fenchel identity applied to the gauge J , and using

Lemma 2(iii), we have

〈x, ηi〉 = J(x) + ιC◦(ηi), ∀i .

Since ηi ∈ ∂J(x) ⊆ C◦, we get

〈x, ηi〉 = J(x), ∀i ,

Multiplying by ρi and summing this identity over i and using the fact that∑k
i=1 ρi = 1 we obtain the desired result.

(ii) This is due to the fact that ex is the orthogonal projection of 0 on the affine space
S̄x. It is therefore an element of S̄x ∩ (S̄x − ex)⊥, i.e. ex ∈ S̄x ∩ Tx.

(iii) This is straightforward from the fact that Sx =
{
η ∈ RN : ηTx

= 0
}

, S̄x = Sx+ex
and ex ∈ Tx from (ii).

(iv) For any v ∈ Sx, we have v + ex ∈ S̄x since ex ∈ S̄x. Thus applying (i), we get
〈x, ex + v〉 = J(x) and 〈x, ex〉 = J(x). Combining both identities implies that
〈x, v〉 = 0, ∀v ∈ Sx, or equivalently that x ∈ S⊥x = Tx.

Proof of Proposition 2. Let x ∈ RN . We have

∂J(x) = FC◦(x) = H ∩ C◦,

where H =
{
η ∈ RN : 〈η, x〉 = J(x)

}
is the supporting hyperplane of C◦ at x. By

Proposition 1(i), we have
S̄x = aff ∂J(x) ⊆ H,

29



which implies that
S̄x ∩ C◦ ⊆ H ∩ C◦.

The converse inclusion is true since ∂J(x) = H ∩ C◦ ⊆ S̄x.

Proof of Proposition 3. The first assertion follows from Lemma 1(v) since 0 ∈ ri(∂J(x)−
fx). Let’s now turn to the second part. Since fx ∈ ri ∂J(x) ⊂ S̄x, Proposition 1 implies
that fx = PSx(fx) + PTx(fx) = PSx(fx) + ex. Hence, using Proposition 2, we get

∂J(x)− fx = (C◦ − fx) ∩ (S̄x − fx)

= (C◦ − fx) ∩ (Sx − {PSx
(fx)})

= (C◦ − fx) ∩ Sx .

We therefore obtain

J◦f (η) = γ(C◦−fx)∩Sx
(η)

= max(γC◦−fx(η), γSx(η))

= max(γC◦−fx(η), ιSx(η))

= γC◦−fx(η) + ιSx(η) .

At this stage, Lemma 3 does not apply straightforwardly since 0 ∈ C◦ but fx 6= 0 in
general. However, proceeding as in the proof of that lemma, we arrive at

γC◦+{−fx}(η) = sup
ρ∈[0,1]

ρJ◦
+
∨ (1− ρ)σ{−fx}◦(η)

where, from Definition 2, {−fx}◦ = {η : 〈η, fx〉 > −1}, which indeed contains the
origin as an interior point. Continuing from the last equality, we get

γC◦+{−fx}(η) = sup
ρ∈[0,1]

ρJ◦
+
∨ (1− ρ)γ{−fx}◦◦(η)

= sup
ρ∈[0,1]

ρJ◦
+
∨ (1− ρ)γco({−fx}∪{0})(η)

= sup
ρ∈[0,1]

ρJ◦
+
∨ (1− ρ)γ{−µfx: µ∈[0,1]}(η) .

It is easy to see that

γ{−µfx: µ∈[0,1]}(−η) =

{
τ if η ∈ τfx, τ ∈ R+ ,

+∞ otherwise .

Thus

γC◦+{−fx}(η) = sup
ρ∈[0,1]

inf
τ>0

ρJ◦(τfx + η) + (1− ρ)τ .
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Recalling that J◦ is a bounded gauge, hence continuous, the objective in the sup inf
fulfills the assumption of the second assertion of Lemma 3, whence we get

γC◦+{−fx}(η) = inf
τ>0

max(J◦(τfx + η), τ) .

Proof of Proposition 4. The gauge Jfx is the support function of the set

Kx
def.
= ∂J(x)− fx =

{
η ∈ RN : J◦fx(η) 6 1

}
⊂ Sx ,

where the inclusion follows from Proposition 3.

(i) Since Kx is a bounded set, its support function is also bounded [20, Proposi-
tion V.2.1.3]. It follows that dom Jfx = RN .

(ii) We have

Jfx(d) = sup
η∈Kx

〈η, d〉 = sup
J◦fx (η)61

〈η, d〉 = sup
J◦fx (ηSx )61

〈ηSx
, d〉

= sup
η∈Kx

〈η, dTx
〉+ 〈η, dSx

〉 = sup
η∈Kx

〈η, dSx
〉

= Jfx(dSx
) ,

where we used the fact that 〈η, dTx
〉 = 0 on Kx.

(iii) As a consequence of (ii), Jfx(dTx) = 0. Clearly, Tx ⊂ Ker(Jfx) and Jfx is constant
along all affine subspaces parallel to Tx. But, since 0 ∈ riKx, excluding the origin,
the supremum in Jfx is always attained at some nonzero η ∈ Kx ⊂ Sx. Thus
Jfx(d) > 0 for all d such that d /∈ Tx. This shows that actually Ker(Jfx) = Tx.
In particular, this yields that on Sx, the gauge Jfx is coercive.

(iv) Using some calculus rules with support functions and assertion (ii), we have

Jfx(d) = Jfx(dSx
) = σ(C◦+{−fx})∩Sx

(dSx
)

= co
(
inf(σC◦+{−fx}(dSx

), σS(dSx
))
)

= co
(
inf(σC◦+{−fx}(dSx

), ιT (dSx
))
)

= σC◦+{−fx}(dSx
)

= σC◦(dSx
)− 〈PSx

(fx), dSx
〉

= J(dSx
)− 〈PSx

(fx), dSx
〉 .

Proof of Theorem 1. We embark from

∂J(x) =
{
η ∈ RN : η ∈ C◦ and 〈η, x〉 = J(x)

}
.
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Invoking Proposition 1, we get that for every η ∈ ∂J(x), ηTx
= ex, and PTx

(fx) = ex.
It remains now to uniquely characterize the part of the subdifferential lying in Sx,
i.e. ∂J(x)− ex. Since fx ∈ ri ∂J(x), we have from the one-to-one correspondence of
Lemma 1(i) and the definition of the antipromoting gauge,

η ∈
{
η ∈ RN : J◦fx(ηSx

− PSx
(fx)) 6 1

}
⇐⇒ ηSx

− PSx
(fx) ∈ ∂J(x)− fx

⇐⇒ ηSx
∈ ∂J(x)− ex

⇐⇒ η ∈ ∂J(x) .

Proof of Proposition 5. This is a convenient rewriting of the fact that x is a global
minimizer if, and only if, 0 is a subgradient of the objective function at x.

(i) For problem (Pλ(y)), this is equivalent to

1

λ
Φ∗(y − Φx) ∈ ∂J(x).

Projecting this relation on T and S yields the desired result.

(ii) Let’s turn to problem (P0(y)). We have at any global minimizer x

0 ∈ ∂J(x) + Φ∗N{α: α=y}(Φx)

where N{α: α=y}(x) is the normal cone of the constraint set {α : α = y} at x,
which is obviously the whole space RQ. Thus, this monotone inclusion is equivalent
to the existence of α ∈ RQ such that

Φ∗α ∈ ∂J(x) .

Projecting again this on T and S proves the assertion.

Proof of Lemma 5. Let J = γC , x ∈ T and x′ ∈ S.
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⇒: By virtue of Lemma 2, we have

J◦(x+ x′) = sup
u∈C
〈x+ x′, u〉

= sup
J(u)61

〈x+ x′, u〉

= sup J(uT + uS) 6 1〈x, uT 〉+ 〈x′, uS〉
= sup J(uT ) + J(uS) 6 1〈x, uT 〉+ 〈x′, uS〉
= sup
ρ∈[0,1]

sup
J(uT )6ρ,J(uS)61−ρ

〈x, uT 〉+ 〈x′, uS〉

= sup
ρ∈[0,1]

ρ sup
J(uT )61

〈x, uT 〉+ (1− ρ) sup
J(uS)61

〈x′, uS〉

= sup
ρ∈[0,1]

ρ sup
v∈C∩T

〈x, v〉+ (1− ρ) sup
wC∩T

〈x′, w〉

= sup
ρ∈[0,1]

ρσC∩T (x) + (1− ρ)σC∩S(x′)

= max(σC∩T (x), σC∩S(x′)) .

Since
σC∩T (x) = co (inf(σC(x), ιS(x))) = σC(x) = J◦(x)

and
σC∩S(x′) = co (inf(σC(x′), ιT (x′))) = σC(x′) = J◦(x′) ,

the implication follows.
⇐: Using again Lemma 2, we get

J(x+ x′) = sup
u∈C◦

〈x+ x′, u〉

= sup
J◦(uT +uS)61

〈x, uT 〉+ 〈x′, uS〉

= sup
max(J◦(uT ),J◦(uS))61

〈x, uT 〉+ 〈x′, uS〉

= sup
J◦(uT )61,J◦(uS)61

〈x, uT 〉+ 〈x′, uS〉

= sup
v∈C◦∩T

〈x, v〉+ sup
w∈C◦∩S

〈x′, w〉

= σC◦∩T (x) + σC◦∩S(x′)

= co (inf(σC◦(x), ιS(x))) + co (inf(σC◦(x
′), ιT (x′)))

= σC◦(x) + σC◦(x
′)

= J(x) + J(x′) .

This concludes the proof.

Proof of Proposition 6. Let J = γC . We only need to show that J◦ex(ηSx
) = J◦(ηSx

).
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This follows from Proposition 3, Lemma 5 and Lemma 2(ii). Indeed,

J◦ex(ηSx) = inf
τ>0

max(J◦(τex + ηSx), τ) from Proposition 3,

= inf
τ>0

max(τJ◦(ex), J◦(ηSx
), τ) from Lemma 5,

= inf
τ>0

max(J◦(ηSx
), τ) from ex ∈ ∂J(x) ⊂ C◦,

= J◦(ηSx) .

B. Proofs of Section 3

Proof of Lemma 6. Let x1, x2 be two (global) minimizers of (Pλ(y)). Suppose that
Φx1 6= Φx2. Define xt = tx1 + (1 − t)x2 for any t ∈ (0, 1). By strict convexity of
u 7→ ||y − u||22, one has

1

2
||y − Φxt||22 <

t

2
||y − Φx1||22 +

1− t
2
||y − Φx2||22.

Since J is convex, we get

J(xt) 6 tJ(x1) + (1− t)J(x2).

Combining these two inequalities contradicts the fact that x1, x2 are global minimizers
of (Pλ(y)).

Proof of Theorem 2. To prove this theorem, we need the following lemmata.

Lemma 7. Let C be a non-empty closed convex set and f a proper lsc convex function.
Let x be a minimizer of minz∈C f(z). If

f ′(x, z − x) > 0 ∀z ∈ C, z 6= x ,

then, x is the unique solution of f on C.

Proof. We first show that t 7→ (f(x+ t(z − x))− f(z)) /t is non-decreasing on (0, 1].
Indeed, let g : [0, 1]→ R a convex function such that g(0) = 0. Let (t, s) ∈ (0, 1]2 with
s > t. Then,

g(t) = g (s(t/s)) = g (s(t/s) + (1− t/s)0)

6 t
g(s)

s
+ (1− t/s)g(0)

= t
g(s)

s
,
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which proves that t ∈ (0, 1] 7→ g(t)
t is non-decreasing on (0, 1]. Since f is convex,

applying this result shows that the function

t ∈ (0, 1] 7→ g(t) = f(x+ t(z − x))− f(z)

is such that g(0) = 0 and g(t)/t is non-decreasing.
Assume now that that f ′(x, z − x) > 0. Then, for every x ∈ C,

g(1) = f(z)− f(x) > f ′(x, z − x) > 0, ∀z ∈ C, z 6= x ,

which is equivalent to x being the unique minimizer of f on C.

We now compute the directional derivative of a bounded gauge J .

Lemma 8. The directional derivative J ′(x, δ) at point x ∈ RN in the direction δ reads

J ′(x, δ) = 〈ex, δTx
〉+ 〈PSx

(fx), δSx
〉+ Jfx(δSx

).

Proof. This comes directly from the structure of Jfx . Indeed, one has

Jfx(δSx) = Jfx(δ) Using Proposition 4(ii)

= sup
η∈∂J(x)−{fx}

〈η, δ〉

= −〈δ, fx〉+ sup
η∈∂J(x)

〈η, d〉

= −〈δ, fx〉+ J ′(x, δ)

= −〈ex, δTx
〉 − 〈PSx

(fx), δSx
〉+ J ′(x, δ) .

We are now in position to show Theorem 3. We provide the proof for (Pλ(y)). That
of (P0(y)) is similar.

Let x be a solution of (Pλ(y)). According to Lemma 6, the set of minimizers of
(Pλ(y)) readsM⊆ x+Ker(Φ), which is a convex set. We can therefore rewrite (Pλ(y))
as

min
z∈M

J(z).

Invoking Lemma 7 with C =M, x is thus the unique minimizer if

∀δ ∈ Ker(Φ) \ {0}, J ′(x, δ) > 0.

Using Lemma 8 and the fact that Ker(Φ) is a subspace, this is equivalent to

∀δ ∈ Ker(Φ) \ {0}, 〈ex, δT 〉+ 〈PS(fx), δS〉 < Jf (−δS).

which is (NSPS).
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Proof of Corollary 1. Using [20, Theorem V.2.2.3], we know that

η ∈ ri(∂J(x))⇔ J ′(x, δ) > 〈η, δ〉 ∀δ such that J ′(x, δ) + J ′(x,−δ) > 0.

Applying this with η = Φ∗α ∈ ri(∂J(x)), and using Lemma 8, we obtain

Φ∗α ∈ ri(∂J(x))⇔ J ′(x, δ) > 〈α, Φδ〉 ∀δ such that Jfx(δ) + Jfx(−δ) > 0.

Moreover, since Jfx and Ker(Jfx) = Tx = T from Proposition 4(iii), and (CT ) holds,
we get

Φ∗α ∈ ri(∂J(x))⇔ J ′(x, δ) > 〈α, Φδ〉 ∀δ /∈ T
⇒ J ′(x, δ) > 0 ∀δ ∈ Ker(Φ).

We conclude using Theorem 2.

Proof of Theorem 3.

(i) Let the dual vector α = (y − Φx)/λ, and η = Φ∗α ∈ ∂J(x) by Theorem 1(i). We
then observe that

η ∈
{
η ∈ RN : J◦fx(ηS − PS(fx)) < 1

}
⇐⇒ ηS − PS(fx) ∈ ri(∂J(x)− {fx})
⇐⇒ η ∈ ri(∂J(x)) .

Thus, applying Corollary 1 with such a dual vector yields the assertion.

(ii) The proof is similar to (i) except that we invoke Theorem 1(ii).

C. Proofs of Section 4

Proof of Proposition 7.

(i) First, we have
∂H(x) = ∂J(x) + ∂G(x),

Let SJ = span(∂J(x)−ηJ ) and SG = span(∂G(x)−ηG), for any pair ηJ ∈ ∂J(x)
and ηG ∈ ∂G(x). Choosing ηH = ηJ + ηG ∈ ∂H(x) we have

SH = span(∂H(x)− ηH)

= span
(
(∂J(x)− ηJ)+(∂G(x)− ηG)

)
= span

(
span(∂J(x)− ηJ)+ span(∂G(x)− ηG)

)
= span(SJ ∪ SG).

As a consequence we have TH = (SH)⊥ = T J ∩ TG.
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(ii) Moreover, since TH⊥SJ ∪ SG we have from Proposition 1(iii) that

eH = PTH (∂H(x)) = PTH (∂J(x)+∂G(x))

= PTH (eJ + PSJ ∂J(x) + eG + PSG ∂G(x))

= PTH (eJ + eG).

(iii) As fJx ∈ ri ∂J(x) and fGx ∈ ri ∂G(x), it follows from [33, Corollary 6.6.2] that

fHx = fJx + fGx ∈ ri ∂J(x) + ri ∂G(x) = ri (∂J(x) + ∂G(x)) = ri ∂H(x) .

The antipromoting gauge associated to H is then

H◦fH
x

= γ∂H(x)−fH
x

= γ(∂J(x)−fJ
x )+(∂G(x)−fG

x ) ,

which is coercive and bounded on SH according to Proposition 3. Invoking
Lemma 3, we get the desired result since for any ρ > 0,

u 7→ ρJ◦fJ
x

(u) + (1− ρ)G◦fG
x

(η − u) = ργ∂J(x)−fJ
x

(u) + (1− ρ)γ∂G(x)−fG
x

(η − u)

is bounded and continuous on SJ ∩ (SG + η), for η ∈ SH = span(SJ + SG) by (i).

Proof of Proposition 8. In the following, all operator bounds that appear are finite
owing to the coercivity assumption on the involved gauges in Definition 9 of a PRG.

It is straightforward to see that the function ΓH = max(ΓJ ,ΓG) is indeed a gauge,
which is bounded and coercive on TH = T J ∩ TG. Moreover, given that both J and G
are PRG at x with corresponding parameters νJx and νGx , we have with the advocated
choice of ΓH and νHx ,

ΓJ(x− x′) 6 νJx and ΓG(x− x′) 6 νGx ,

for every ∀x′ ∈ THx such that ΓH(x− x′) 6 νHx . It follows that:

• Since J and G are both PRG, then we have T Jx = T Jx′ and TGx = TGx′ , and thus
by Proposition 7(i)

THx = T Jx ∩ TGx = T Jx′ ∩ TGx′ = THx′ = TH .

• µHx -stability: we have from Proposition 7(ii)

ΓH(eHx − eHx′) = ΓH
(
PTH (eJx + eGx − eJx′ − eGx′)

)
6 ΓH

(
PTH (eJx − eJx′)

)
+ ΓH

(
PTH (eGx − eGx′)

)
6MΓJ ,ΓH (PTH ) ΓJ

(
eJx − eJx′

)
+MΓG,ΓH (PTH ) ΓG

(
eGx − eGx′

)
6
(
µJxMΓJ ,ΓH (PTH ) + µGx MΓG,ΓH (PTH )

)
ΓH(x− x′) ,

where we used µJx - and µGx -stability of J and G in the last inequality.
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• τHx -stability: the fact that SJ ⊆ SH and SG ⊆ SH and subadditivity of gauges
lead to

H◦fH
x

(
PSH (fHx − fHx′ )

)
= H◦fH

x

(
PSJ (fJx − fJx′) + PSG(fGx − fGx′) + PSH (eJx − eJx′) + PSH (eGx − eGx′)

)
6 H◦fH

x

(
PSJ (fJx − fJx′)

)
+H◦fH

x

(
PSG(fGx − fGx′)

)
+H◦fH

x

(
PSH (eJx − eJx′)

)
+H◦fH

x

(
PSH (eGx − eGx′)

)
. (9)

According to Proposition 7(iii), we have

H◦fH
x

(
PSJ (fJx − fJx′)

)
= inf
η1+η2=PSJ (fJ

x−fJ
x′ )

max(J◦fJ
x

(η1), G◦fG
x

(η2)) .

Since dom J◦fJ
x

= SJ , (η1, η2) = (PSJ (fJx − fJx′), 0) is a feasible point of the last

problem, and we get

H◦fH
x

(
PSJ (fJx − fJx′)

)
6 J◦fJ

x

(
PSJ (fJx − fJx′)

)
.

Moreover, as eJx , e
J
x′ ∈ T J (see Proposition 1(ii)) and SJ ⊆ SH , we have

min
η1∈TJ ,η2SJ ,η1+η2∈SH

||η1 + η2 − (eJx − eJx′)||2

= min
η1∈TJ ,η2SJ ,η1+η2∈SH

||η1 − (eJx − eJx′)||2 + ||η2||2

= min
η1∈TJ ,η2SJ ,η1∈SH

||η1 − (eJx − eJx′)||2 + ||η2||2

= min
η1∈SH∩TJ

||η1 − (eJx − eJx′)||2 .

That is
PSH (eJx − eJx′) = PSH∩TJ (eJx − eJx′) .

Thus
H◦fH

x

(
PSH (eJx − eJx′)

)
6MΓJ ,H◦

fH
x

(PSH∩TJ )ΓJ
(
eJx − eJx′

)
.

Similar reasoning leads to the following bounds

H◦fH
x

(
PSG(fGx − fGx′)

)
6 G◦fG

x

(
PSG(fGx − fGx′)

)
,

H◦fH
x

(
PSH (eGx − eGx′)

)
6MΓJ ,H◦

fH
x

(PSH∩TG)ΓG
(
eGx − eGx′

)
.
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Having this, we can continue to bound (9) as

H◦fH
x

(
PSH (fHx − fHx′ )

)
6 J◦fJ

x

(
PSJ (fJx − fJx′)

)
+G◦fG

x

(
PSG(fGx − fGx′)

)
+MΓJ ,H◦

fH
x

(PSH∩TJ )ΓJ
(
eJx − eJx′

)
+MΓJ ,H◦

fH
x

(PSH∩TG)ΓG
(
eGx − eGx′

)
6 τJx ΓJ(x− x′) + τGx ΓG(x− x′) + µJxMΓJ ,H◦

fH
x

(PSH∩TJ )ΓJ (x− x′)

+ µGx MΓG,H◦
fH
x

(PSH∩TG)ΓG (x− x′)

6

(
τJx + τGx + µJxMΓJ ,H◦

fH
x

(PSH∩TJ ) + µGx MΓG,H◦
fH
x

(PSH∩TG)

)
ΓH(x− x′) ,

where the last two inequalities J and G follow from µJx -, τJx -, µGx - and τGx - stability
of J and G.

• ξHx -stability: Proposition 7(iii) again yields that for any η ∈ SH

H◦fH
x′

(η) = inf
η1+η2=η

max(J◦fJ
x′

(η1), G◦fG
x′

(η2))

6 max(J◦fJ
x′

(η̄1), G◦fG
x′

(η̄2))

for any feasible (η̄1, η̄2) ∈ SJ × SG ∩ {(η1, η2 : η1 + η2 = η}. Now both J and G
are PRG, hence respectively ξJx - and ξGx -stable. Therefore, with the form of ΓH

we have

J◦fJ
x′

(η̄1) 6 (1 + ξJxΓJ(x− x′))J◦fJ
x

(η̄1) 6 βJ◦fJ
x

(η̄1)

G◦fG
x′

(η̄2) 6 (1 + ξGx ΓG(x− x′))G◦fG
x

(η̄2) 6 βG◦fG
x

(η̄2) ,

where β = 1 + max
(
ξJx , ξ

G
x

)
ΓH(x− x′). Whence we get

max(J◦fJ
x′

(η1), G◦fG
x′

(η2)) 6 βmax(J◦fJ
x

(η̄1), G◦fG
x

(η̄2)) .

Taking in particular

(η̄1, η̄2) ∈ Argmin
η1+η2=η

max(J◦fJ
x

(η1), G◦fG
x

(η2))

we arrive at

H◦fH
x′

(η) 6 β inf
η1+η2=η

max(J◦fJ
x

(η1), G◦fG
x

(η2)) = βH◦fH
x

(η) .

This completes the proof.

Proof of Proposition 9.
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(i) One has ∂J = D ◦∂J0 ◦D∗, hence S = DS0 = Im(DS0
) and T = S⊥ = Ker(D∗S0

).

(ii) As S = DS̄0 = De0 + S, we get rom Proposition 1

e ∈ argmin
z∈S̄

||z|| = argmin
z−De0∈S

||z|| = De0 + argmin
h∈S

||h+De0||

= De0 + PS(−De0) = (Id− PS)De0 = PT De0 .

(iii) With such a choice of fx, we have

f0,D∗x ∈ ri ∂J0(D∗x)⇒ Df0,D∗x ∈ D ri ∂J0(D∗x)

⇐⇒ fx ∈ riD∂J0(D∗x) ⇐⇒ fx ∈ ri ∂J(x) .

We follow the same lines as in the proof of Lemma 4, where we additionally invoke
Proposition 4(ii) to get

Jfx(d) = σ∂J(x)−fx(d)

= σD(∂J0(D∗x)−f0,D∗x)(d)

= σ∂J0(D∗x)−f0,D∗x(D∗d)

= J0,f0,D∗x(D∗d)

= J0,f0,D∗x(D∗S0
d) .

Note that Jfx is indeed constant along affine subspaces parallel to Ker(D∗S0
) =

S⊥ = T . We now get that for every η ∈ S = Ker(D+
S0

)⊥

J◦fx(η) = σJfx (d)61(η)

= σJ0,f0,D∗x (D∗S0
d)61(η)

=
(
ιJ0,f0,D∗x (w)61 ◦D∗S0

)∗
(η)

= inf
v
σJ0,f0,D∗x (w)61(v) s.t. DS0v = η

= inf
z∈Ker(DS0

)
J◦0,f0,D∗x(D+

S0
η + z) .

The infimum is bounded and is attained necessarily at some z ∈ Ker(DS0
)∩S0 6= ∅

since dom J◦0,f0,D∗x = S0 and Im(D+
S0

) = Im(D∗S0
) ⊂ S0. Moreover, Ker(DS0

) ∩
S0 = Ker(D) ∩ S0.

Proof of Proposition 10. In the following, all operator bounds that appear are finite
owing to the coercivity assumption on the involved gauges in Definition 9 of a PRG.

• Let x′ such that

Γ(x− x′) 6 1

MΓ,Γ0
(D∗)

ν0,D∗x.
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Hence,
Γ0(D∗x−D∗x′) 6MΓ,Γ0

(D∗)Γ(x− x′) 6 ν0,D∗x

As J0 is a PRG at D∗x, we have T0,D∗x = T0,D∗x′ = T0 and consequently, using
Proposition 9(i), Tx = Ker(D∗S0,D∗x

) = Ker(D∗S0,D∗x′
) = Tx′ = T = S⊥.

• µx-stability: we now have

Γ(ex − e′x) = Γ(PT D(e0,D∗x − e0,D∗x′)) Proposition 9(ii)

6MΓ0,Γ(PT D)Γ0(e0,D∗x − e0,D∗x′)

6 µ0,D∗xMΓ0,Γ(PT D)Γ0(D∗x−D∗x′) using µ0,D∗x-stability of J0

6 µ0,D∗xMΓ0,Γ(PT D)MΓ,Γ0
(D∗)Γ(x− x′).

• τx-stability: since f0,D∗x ∈ ∂J0(D∗x) and f0,D∗x′ ∈ ∂J0(D∗x′), one has

f0,D∗x − f0,D∗x′ = PS0(f0,D∗x − f0,D∗x′) + e0,D∗x − e0,D∗x′ .

Thus, subadditivity yields

J◦fx(PS(fx − fx′)) = J◦fx(PS D(f0,D∗x − f0,D∗x′))

6 J◦fx(PS DPS0(f0,D∗x − f0,D∗x′)) + J◦fx(PS D(e0,D∗x − e0,D∗x′)).

Using Proposition 9(iii) and τ0,D∗x-stability of J0, we get the following bound on
the first term

J◦fx(PS DPS0
(f0,D∗x − f0,D∗x′))

= inf
z∈Ker(D)∩S0

J◦0,f0,D∗x(D+
S0

PS DPS0
(f0,D∗x − f0,D∗x′) + z)

6 J◦0,f0,D∗x(D+
S0

PS DPS0(f0,D∗x − f0,D∗x′))

6MJ◦0,f0,D∗x
,J◦0,f0,D∗x

(D+
S0

PS D)J◦0,f0,D∗x(PS0
(f0,D∗x − f0,D∗x′))

6 τ0,D∗xMJ◦0,f0,D∗x
,J◦0,f0,D∗x

(D+
S0

PS D)Γ0(D∗x−D∗x′)

6 τ0,D∗xMJ◦0,f0,D∗x
,J◦0,f0,D∗x

(D+
S0

PS D)MΓ,Γ0(D∗)Γ(x− x′).

Now, combining Proposition 9(iii) and µ0,D∗x-stability of J0, we obtain the
following bound on the second term

J◦fx(PS D(e0,D∗x − e0,D∗x′)) 6 J◦0,f0,D∗x(D+
S0

PS D(e0,D∗x − e0,D∗x′))

6MΓ0,J◦0,f0,D∗x
(D+

S0
PS D)Γ0(e0,D∗x − e0,D∗x′)

6 µ0,D∗xMΓ0,J◦0,f0,D∗x
(D+

S0
PS D)MΓ,Γ0

(D∗)Γ(x− x′).

Combining these inequalities, we arrive at

J◦fx(PS(fx − fx′)) 6
(
τ0,D∗xMJ◦0,f0,D∗x

,J◦0,f0,D∗x
(D+

S0
PS D)

+ µ0,D∗xMΓ0,J◦0,f0,D∗x
(D+

S0
PS D)

)
MΓ,Γ0(D∗)Γ(x− x′),

whence we get τx-stability.
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• ξx-stability: from Proposition 9(iii), we can write for any η ∈ S

J◦fx′ (η) = inf
z∈Ker(D)∩S0

J◦f0,D∗x′ (D
+
S0
η + z)

6 J◦f0,D∗x′ (D
+
S0
η + z̄)

for any z̄ ∈ Ker(D) ∩ S0.

Owing to ξ0,D∗x-stability of J0, and since D+
S0
η ∈ S0, we have for any feasible

z̄ ∈ Ker(D) ∩ S0

J◦f0,D∗x′ (D
+
S0
η + z̄) 6 (1 + ξ0,D∗xΓ0(D∗x−D∗x′)) J◦0,f0,D∗x(D+

S0
η + z̄) .

Taking in particular

z̄ ∈ Arginf
z∈Ker(D)∩S0

J◦0,f0,D∗x(D+
S0
η + z)

we get the bound

J◦fx′ (η) 6 (1 + ξ0,D∗xΓ0(D∗x−D∗x′)) inf
z∈Ker(D)∩S0

J◦0,f0,D∗x(D+
S0
η + z)

= (1 + ξ0,D∗xΓ0(D∗x−D∗x′)) J◦fx′ (η)

= (1 + ξ0,D∗xMΓ,Γ0(D∗)Γ(x− x′)) J◦fx′ (η) ,

where we used again Proposition 9(iii) in the first equality.

D. Proofs of Section 5

Proof of Theorem 4. This is a straightforward consequence of Theorem 3(ii) by con-
structing an appropriate dual certificate from IC(x0). Denote e = ex0 , f = fx0 and
S = T⊥. Taking the dual vector α = Φ+,∗

T e, we have on the one hand

Φ∗TΦ+,∗
T e = e

since e ∈ Im(Φ∗T ).
On the other hand,

J◦f (Φ∗SΦ+,∗
T e− PS f) = IC(x0) < 1.

Proof of Theorem 5. To lighten the notation, we let ε = ||w||, ν = νx0
, µ = µx0

, τ =
τx0

, ξ = ξx0
, f = fx0

.
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The strategy is to construct a vector which is the unique solution to

min
x∈T

1

2
||y − Φx||2 + λJ(x) , (PTλ (y))

and then to show that it is actually the unique solution to (Pλ(y)) under the assumptions
of Theorem 5.

The following lemma gives a convenient implicit equation satisfied by the unique
solution to (PTλ (y)).

Lemma 9. Let x0 ∈ RN and denote T = Tx0
. Assume that (CT ) holds. Then (PTλ (y))

has exactly one minimizer x̂, and the latter satisfies

x̂ = x0 + Φ+
Tw − λ(Φ∗TΦT )−1ẽ where ẽ ∈ PT (∂J(x̂)). (10)

Proof. Assumption (CT ) implies that the objective in (PTλ (y)) is strongly convex on
the feasible set T , whence uniqueness follows immediately. By a trivial change of
variable, (PTλ (y)) be also rewritten in the unconstrained form

x̂ = argmin
x∈RN

1

2
||y − ΦTx||2 + λJ(PT x) .

Thus, using Proposition 5(i), x̂ has to satisfy

Φ∗T (y − ΦT x̂) + λẽ = 0,

for any ẽ ∈ PT (∂J(x̂)). Owing to the invertibility of Φ on T , i.e. (CT ), we obtain (10).

We are now in position to prove Theorem 5. This is be achieved in three steps:

Step 1: We show that in fact Tx̂ = T .

Step 2: Then, we prove that x̂ is the unique solution of (Pλ(y)) using Theorem 3.

Step 3: We finally exhibit an appropriate regime on λ and ε for the above two
statements to hold.

Step 1: Subspace equality. By construction of x̂ in (PTλ (y)), it is clear that Tx̂ ⊆ T .
The key argument now is to use that J is PRG at x0, and to show that

Γ(x0 − x̂) 6 ν, (11)

which in turn will imply subspace equality, i.e. Tx̂ = T (see Definition 9).
We have from (10) and subadditivity that

Γ(x0 − x̂) 6 Γ(−Φ+
Tw) + λΓ((Φ∗TΦT )−1ẽ)

6MΓ,Γ((Φ∗TΦT )−1) {Γ(−Φ∗Tw) + λΓ(ẽ)}
6MΓ,Γ((Φ∗TΦT )−1)

{
M`2,Γ(Φ∗T )ε+ α0λ

}
. (12)
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where α0 = Γ(ẽ). Consequently, to show that (11) is verified, it is sufficient to prove
that

Aε+Bλ 6 ν, (C1)

where we set the positive constants

A =MΓ,Γ((Φ∗TΦT )−1)M`2,Γ(Φ∗T ),

B = α0MΓ,Γ((Φ∗TΦT )−1).

Suppose for now that (C1) holds and consequently, Tx̂ = T . Then decomposability
of J on T (Theorem 1) implies that

ê = PTx̂
(∂J(x̂)) = PT (∂J(x̂)) = ẽ,

where we have denote ê = ex̂. Thus (10) yields the following implicit equation

x̂ = x0 + Φ+
Tw − λ(Φ∗TΦT )−1ê. (13)

Step 2: x̂ is the unique solution of (Pλ(y)). Recall that under condition (C1), J is
decomposable at x̂ and x0 with the same model subspace T . Moreover, (13) is nothing
but condition (2) in Theorem 3 satisfied by x̂. To deduce that x̂ is the unique solution
of (Pλ(y)), it remains to show that (3) holds i.e.,

J◦
f̂

(λ−1Φ∗S(y − Φx̂)− f̂S) < 1. (14)

where we use the shorthand notations f̂ = fx̂ and f̂S = PS f̂ .
Under condition (C1), the ξ-stability property (6) of J at x0 yields

J◦
f̂

(λ−1Φ∗S(y − Φx̂)− f̂S) 6
(
1 + ξΓ(x0 − x̂)

)
J◦f (λ−1Φ∗S(y − Φx̂)− f̂S). (15)

Furthermore, from (13), we can derive

λ−1Φ∗S(y − Φx̂)− f̂S = Φ∗SΦ+,∗
T ê+ λ−1Φ∗SQTw − f̂S , (16)

where QT = Id− ΦTΦ+
T = PKer(Φ∗T ). Inserting(16) in (15), we obtain

J◦
f̂

(λ−1Φ∗S(y − Φx̂)− f̂S) 6
(
1 + ξΓ(x0 − x̂)

)
J◦f (Φ∗SΦ+,∗

T ê+ λ−1Φ∗SQTw − f̂S).

Moreover, subadditivity yields

J◦f (Φ∗SΦ+,∗
T ê+ λ−1Φ∗SQTw − f̂S) 6 J◦f (Φ∗SΦ+,∗

T e− fS) + J◦f (Φ∗SΦ+,∗
T (ê− e))

+ J◦f (PS(f − f̂)) + J◦f (λ−1Φ∗SQTw). (17)

We now bound each term of (17). In the first term, one recognizes

J◦f (Φ∗SΦ+,∗
T e− fS) 6 IC(x0). (18)

44



Appealing to the µ-stability property, we get

J◦f (Φ∗SΦ+,∗
T (ê− e)) 6MΓ,J◦f

(−Φ∗SΦ+,∗
T )Γ(e− ê)

6 µMΓ,J◦f
(−Φ∗SΦ+,∗

T )Γ(x0 − x̂). (19)

From τ -stability, we have

J◦f (fS − f̂S) 6 τΓ(x0 − x̂). (20)

Finally, we use a simple operator bound to get

J◦f (λ−1Φ∗SQTw) 6
1

λ
M`2,J◦f

(Φ∗SQT )ε. (21)

Following the same steps as for the bound (12), except using ẽ = ê here, gives

Γ
(
x0 − x̂)

)
6MΓ,Γ((Φ∗TΦT )−1)

{
M`2,Γ(Φ∗T )ε+ λΓ(ê)

}
. (22)

Plugging inequalities (18)-(22) into (15) we get the upper-bound

J◦
f̂

(Φ∗SΦ+,∗
T ê+ λ−1Φ∗SQTw − f̂S)

6 (1 + ξΓ(x0 − x̂))
(
IC(x0) + Γ (x0 − x̂)

(
µMΓ,J◦f

(−Φ∗SΦ+,∗
T ) + τ

)
+

1

λ
M`2,J◦f

(Φ∗SQT )ε
)

6 (1 + ξ(c1ε+ λc2))
(
IC(x0) + (c1ε+ λc2)µ̄+

1

λ
c4ε
)
< 1,

where we have introduced

µ̄ = µc3 + τ and α1 = Γ(ê) = Γ(ẽ) = α0

and
c1 = A, c2 = α1MΓ,Γ((Φ∗TΦT )−1),

c3 = MΓ,J◦f
(−Φ∗SΦ+,∗

T ), c4 = M`2,J◦f
(Φ∗SQT ).

If is then sufficient that

(1 + ξ(c1ε+ λc2))
(
IC(x0) + (c1ε+ λc2)µ̄+

1

λ
c4ε
)
< 1, (23)

for (3) in Theorem 3 to be in force.
In particular, if

Cε 6 λ

holds for some constant C > 0 to be fixed later, then inequality (23) is true if

P (λ) = aλ2 + bλ+ c > 0 where

 a = −ξµ̄ (c1/C + c2)
2

b = −(c1/C + c2) (ξIC(x0) + ξc4/C + µ̄)
c = 1− IC(x0)− c4/C

.

(24)
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Let us set the value of C to

C =
2c4

1− IC(x0)
,

which, for 0 6 IC(x0) < 1, it ensures that c = 1−IC(x0)
2 is bounded and positive, and

thus, the polynomial P has a negative and a positive root λmax equal to

λmax =
b

2a
ϕ
(
−4

ac

b2

)
,

 a = −ξµ̄((1− IC(x0))c1/(2c4) + c2)2

b = −((1− IC(x0))c1/(2c4) + c2) (µ̄+ (1 + IC(x0))ξ/2)
c = (1− IC(x0))/2

=
µ̄+ (1 + IC(x0))ξ/2

ξµ̄((1− IC(x0))c1/c4 + 2c2)
ϕ

(
2ξ(1− IC(x0))µ̄

(µ̄+ (1 + IC(x0))ξ/2)2

)
>

1− IC(x0)

ξ
H(µ̄/ξ),

where

ϕ(β) =
√

1 + β − 1, and H(β) =
β + 1/2

β(c1/c4 + 2c2)
ϕ

(
2β

(β + 1)2

)
.

To get the above lower-bound on λmax, we used that ϕ is increasing (in fact strictly)
and concave on R+ with ϕ(1) = 0, and that IC(x0) ∈ [0, 1[. Consequently, we can
conclude that the bounds

2c4
1− IC(x0)

ε 6 λ 6
1− IC(x0)

ξ
H(µ̄/ξ) (C2)

imply condition (23), which in turn yields (14).

Step 3: (C1) and (C2) are in agreement. It remains now that show the compatibility
of (C1) and (C2), i.e. to provide appropriate regimes of λ and ε such that both
conditions hold simultaneously. We first observe that (C1) and the left-hand-side
of (C2) both hold for λ fulfilling

λ 6 C0ν where C0 =

(
A

2c4
+B

)−1

6

(
1− IC(x0)

2c4
A+B

)−1

.

This updates (C2) to the following ultimate range on λ

2c4
1− IC(x0)

ε 6 λ 6 min

(
C0ν,

1− IC(x0)

ξ
H(µ̄/ξ)

)
.

Now in order to have an admissible non-empty range for λ, the noise level ε must be
upper-bounded as

ε 6
1− IC(x0)

2c4
min

(
C0ν,

1− IC(x0)

ξ
H(µ̄/ξ)

)
.
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Finally, the constants provided in the statement of the theorem (and subsequent
discussion) are as follows

AT = 2c4, BT = C0, DT = c3, and ET = c1/c4 + 2c2 ,

which completes the proof.

E. Proofs of Section 6

Proof of Proposition 11. The subdifferential of || · ||1 reads

∂|| · ||1(x) =
{
η ∈ RN : η(I) = sign(x(I)) and ||η(Ic)||∞ 6 1

}
.

The expressions of Sx, Tx, ex and fx follow immediately. Since ex ∈ ri ∂|| · ||1(x) and || · ||1
is separable, it follows from Definition 8 that the `1-norm is a strong gauge. Therefore
J◦fx = J◦ = || · ||∞, and Proposition 6 specializes to the stated subdifferential.

Turning to piecewise regularity, let x′ ∈ T , i.e. I(x′) ⊆ I(x), and assume that

||x− x′||∞ 6 νx = (1− δ)min
i∈I
|xi| , δ ∈]0, 1] .

This implies that ∀i ∈ I(x), |x′i| > νx−||x−x′||∞ > 0, which in turn yields I(x′) = I(x),
and thus Tx′ = Tx. Since the sign is also locally constant on the restriction to T of the
`∞-ball centered at x of radius νx, one can choose µx = 0. Finally τx = ξx = 0 because
fx = ex.

Proof of Proposition 13. The proof of the first part was given Section 2.2 and Sec-
tion 2.3 where the `∞-norm example was considered.

It remains to show piecewise regularity. Let x′ ∈ T , and assume that

||x− x′||1 6 νx = (1− δ)
(
||x||∞ −max

j /∈I
|xj |
)
, δ ∈]0, 1] .

This means that x′ lies in the relative interior of the `1-ball (relatively to T ) centered at
x of radius ||x||∞−max

j /∈I
|xj |. Within this ball, the support and the sign pattern restricted

to the support are locally constant, i.e. I(x) = I(x′) and sign(x(I(x))) = sign(x′(I(x′))).
Thus Tx′ = Tx = T and ex′ = ex, and from the latter we deduce that µx = 0. As
fx = ex we also conclude that τx = ξx = 0, which completes the proof.

Proof of Proposition 14. Again, the proof of the first part was given Section 2.2 and
Section 2.4 where the `1 − `2-norm example was handled.

Let x′ ∈ T , i.e. I(x′) ⊆ I(x), and νx = (1− δ)min
b∈I
||xb||, δ ∈]0, 1]. First, observe that

the condition
||x− x′||∞,2 = max

b∈B
||xb − x′b|| 6 νx
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ensures that for all b ∈ I

||x′b|| > ||xb|| − ||xb − x′b|| > νx − ||x− x′||∞,2 > 0,

and thus I(x′) = I(x), i.e. Tx′ = Tx. Moreover, since the gauge is strong, one has
τx = ξx = 0. To establish the µx-stability we use the following lemma.

Lemma 10. Given any pair of non-zero vectors u and v where, ||u − v|| 6 ρ||u||, for
0 < ρ < 1, we have ∥∥∥∥ u

||u||
− v

||v||

∥∥∥∥ 6 Cρ
||u− v||
||u||

,

where Cρ =
√

2
ρ

√
1−

√
1− ρ2 ∈]1,

√
2[.

Proof. Let d = v − u and β = 〈u, d〉
||u||||d|| ∈ [−1, 1]. We then have the following identities∥∥∥∥ u

||u||
− v

||v||

∥∥∥∥2

= 2− 2
〈u, v〉
||u||||v||

= 2− 2
||u||2 + ||u||||d||β

||u||
√
||u||2 + ||d||2 + 2||u||||d||β

, (25)

for non-zero vectors u and d, the unique maximizer of (25) is β? = −||d||/||u||. Note
that the assumption ||d||/||u|| 6 ρ < 1 assures β? to comply with the admissible range of
β and further, the argument of the square root will be always positive. Now, inserting
β? in (25), using concavity of

√
· on R+, and that ||d||/||u|| 6 ρ, we can deduce the

following bound∥∥∥∥ u

||u||
− v

||v||

∥∥∥∥2

6 2− 2

√
1− ||d||

2

||u||2
= 2− 2

√(
1− ||d||2

ρ2||u||2

)
+
||d||2
ρ2||u||2

(1− ρ2)

6 2− 2

((
1− ||d||2

ρ2||u||2

)
+
||d||2

ρ2||u||2
√

1− ρ2

)
= 2− 2

(
1− 1−

√
1− ρ2

ρ2

||d||2

||u||2

)

= 2
1−

√
1− ρ2

ρ2

||d||2

||u||2
.

By definition of νx, we have (1 − δ)||xb|| > νx, for δ ∈]0, 1], ∀b ∈ I, and thus
||xb − x′b|| 6 νx 6 (1− δ)||xb||. Lemma 10 then applies, and it follows that, ∀b ∈ I

||N (xb)−N (x′b)|| 6 Cρ
||x′b − xb||
||xb||

6 Cρ
||x′b − xb||

νx
,

and therefore we get

||N (x)−N (x′)||∞,2 6
Cρ
νx
||x′ − x||∞,2,
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which implies µx-stability for µx = Cρ/νx.

Proof of Proposition 15. In general, the subdifferential of J0 reads

∂J0(u) =


∑
i∈I

ρisia
i : ρ ∈ ΣI , si ∈


{1} if ui > 0

[0, 1] if ui = 0

{0} if ui < 0

 ,

where ΣI is the canonical simplex in R|I|, and I = {i ∈ {1, · · · , NH} : (xi)+ = J0(x)}.

• If ui 6 0, ∀i ∈ {1, · · · , NH}, the above expression becomes

∂J0(u) =

{∑
i∈I0

ρisia
i : ρ ∈ ΣI0 , si ∈ [0, 1]

}
,

where I0 = {i ∈ {1, · · · , NH} : ui = J0(u) = 0}. Equivalently, ∂J0(u) is the
intersection of the unit `1 ball and the positive orthant on R|I0|. The expressions
of Su, Tu and eu then follow immediately. ∂J0(u) then contains eu = 0, but not
in its relative interior. Choosing any fu as advocated, we have fu ∈ ri ∂J0(u).
To get the antipromoting gauge, we some calculus rules on gauges and apply
Lemma 3 to get

J◦fu(η(I0)) = inf
τ>0, τ(fu)i>−ηi ∀i∈I0

max(||τfu + η||1, τ) ,

where the extra-constraints on τ come from the fact that ∂J0(u) is in the positive
orthant, and the `1 norm is the gauge of the unit `1-ball. We then have

J◦fu(η(I0)) = inf
τ>0, µτ>maxi∈I0 −ηi

max(τ
∑
i∈I0

(
µai + ηi

)
, τ)

= inf
τ>maxi∈I0 (−ηi)+/µ

max(τµ|I0|+
∑
i∈I0

ηi, τ) .

• Assume now that ui > 0 for at least one i ∈ {1, · · · , NH}. In such a case,
J0(u) = ||u||∞, and the subdifferential becomes

∂J0(u) = ΣI+ ,

where I+ {i ∈ {1, · · · , NH} : ui = J0(u) and ui > 0}. The forms of Su, Tu,
eu, fu and the antipromoting gauge can then be retrieved from those of the
`∞-norm with s(I+) = 1 and s(Ic+) = 0.

For piecewise regularity, the parameters are derived following the same lines as for
the `∞-norm. Let u′ ∈ T , and assume that

||u− u′||1 6 νu = (1− δ)
(

max
i∈I+

ui − max
j 6∈I+,uj>0

uj

)
,
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for δ ∈]0, 1]. This means that x′ lies in the relative interior of the `1-ball (relatively to
T ) centered at x of radius

max
i∈I+

ui − max
j 6∈I+,uj>0

uj = ||u||∞ − max
j 6∈I+,uj>0

|uj |

Within this set, one can observe that the set I+ associated to u is constant. Moreover,
the sign pattern is also constant leading to the fact that Tu′ = Tu = T . Hence, we
deduce as in the `∞-case that µu = τu = ξu = 0.

Proof of Proposition 16. The subdifferential of the nuclear norm is a classical result in
convex analysis of spectral functions, see e.g. [42, 22]. The expressions of the subspaces
Tx, Sx and ex follow immediately. Since the nuclear norm is a strong gauge, we get
from Proposition 6 that the antipromoting gauge is the spectral norm.

Let’s turn to piecewise regularity. The proof is a straightforward adaptation of the
arguments in [2, Proposition 16]. The latter result was stated for the spectral norm,
but remains valid for the nuclear norm.
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