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The quenched limiting distributions
of a one-dimensional random walk in random scenery
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Summary. For a one-dimensional random walk in random scenery (RWRS)
on Z, we determine its quenched weak limits by applying Stranssen [14]’s func-
tional law of iterated logarithm. As a consequence, conditioned on the random
scenery, the one-dimensional RWRS does not converge in law, in contrast with
the multi-dimensional case.
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1. Introduction

Random walks in random sceneries were introduced independently by Kesten and Spitzer [9]
and by Borodin [3, 4]. Let S = (Sn)n≥0 be a random walk in Z

d starting at 0, i.e., S0 = 0 and
(Sn − Sn−1)n≥1 is a sequence of i.i.d. Zd-valued random variables. Let ξ = (ξx)x∈Zd be a field of
i.i.d. real random variables independent of S. The field ξ is called the random scenery. The
random walk in random scenery (RWRS) K := (Kn)n≥0 is defined by setting K0 := 0 and, for
n ∈ N

∗,

Kn :=

n∑

i=1

ξSi . (1.1)

We will denote by P the joint law of S and ξ. The law P is called the annealed law, while the
conditional law P(·|ξ) is called the quenched law.

Limit theorems for RWRS have a long history, we refer to [6] or [7] for a complete review.
Distributional limit theorems for quenched sceneries (i.e. under the quenched law) are however
quite recent. The first result in this direction that we are aware of was obtained by Ben Arous
and Černý [1], in the case of a heavy-tailed scenery and planar random walk. In [6], quenched
central limit theorems (with the usual

√
n-scaling and Gaussian law in the limit) were proved

for a large class of transient random walks. More recently, in [7], the case of the planar random
walk was studied, the authors proved a quenched version of the annealed central limit theorem
obtained by Bolthausen in [2].

In this note we consider the case of the simple symmetric random walk (Sn)n≥0 on Z, the
random scenery (ξx)x∈Z is assumed to be centered with finite variance equal to one and there
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exists some δ > 0 such that E(|ξ0|2+δ) < ∞. We prove that under these assumptions, there is
no quenched distributional limit theorem for K.

Theorem 1. For P-a.e. ξ, under the quenched probability P (. | ξ), the process

K̃n :=
Kn

(2n3/2 log log n)1/2
, n > ee,

does not converge in law. More precisely, for P-a.e. ξ, under the quenched probability P (. | ξ),
the limit points of the law of K̃n, as n→ ∞, under the topology of weak convergence of measures,
are equal to the closure of the laws of random variables in KB, with

KB :=
{∫ M1

m1

f(x)dL1(x) : f ∈ C([m1,M1] → R) such that f(0) = 0,

∫ M1

m1

(ḟ(x))2dx ≤ 1
}
,

(1.2)
where (L1(x), x ∈ R) denotes the family of local times at time 1 of a one-dimensional Brownian
motion B starting from 0 and m1 := inf0≤s≤1Bs, M1 := sup0≤s≤1Bs.

Let us mention that the random set KB directly comes from Strassen [14]’s limiting set. More-
over, ḟ is the derivative of the (random) function f and the precise meaning of

∫M1

m1
f(x)dL1(x)

can be given by the integration by parts and the occupation times formulas:
∫M1

m1
f(x)dL1(x) =

−
∫∞
−∞ L1(x)ḟ(x)dx = −

∫ 1
0 ḟ(Bs)ds.

Instead of Theorem 1, we shall prove that there is no quenched limit theorem for the continuous
analogue of K introduced by Kesten and Spitzer [9] and deduce Theorem 1 by using a strong
approximation for the one-dimensional RWRS. Let us define this continuous analogue: Assume
that B := (B(t))t≥0, W := (W (t))t≥0, W̃ := (W̃ (t))t≥0 are three real Brownian motions starting
from 0, defined on the same probability space and independent of each other. For brevity, we
shall write W (x) :=W (x) if x ≥ 0 and W̃ (−x) if x < 0 and say that W is a two-sided Brownian
motion. We denote by PB , PW the law of these processes. We will also denote by (Lt(x))t≥0,x∈R
a continuous version with compact support of the local time of the process B. We define the
continuous version of the RWRS, also called Brownian motion in Brownian scenery, as

Zt :=

∫ +∞

0
Lt(x)dW (x) +

∫ +∞

0
Lt(−x)dW̃ (x) ≡

∫ +∞

−∞
Lt(x)dW (x).

It was proved by Kesten and Spitzer [9] that the process (n−3/4K([nt]))t≥0 weakly converges in
the space of continuous functions to the continuous process Z = (Z(t))t≥0. Zhang [15] (see also
[5, 10]) gave a stronger version of this result in the special case when the scenery has a finite
moment of order 2+ δ for some δ > 0, more precisely, there is a coupling of ξ, S, B and W such
that (ξ,W ) is independent of (S,B) and for any ε > 0, almost surely,

max
0≤m≤n

|K(m)− Z(m)| = o(n
1
2
+ 1

2(2+δ)
+ε

), n→ +∞. (1.3)

Theorem 1 will follow from this strong approximation and the following result.

Theorem 2. PW -almost surely, under the quenched probability P(·|W ), the limit points of the
law of

Z̃t :=
Zt

(2t3/2 log log t)1/2
, t→ ∞,

under the topology of weak convergence of measures, are equal to the closure of the laws of
random variables in KB defined in Theorem 1. Consequently under P(·|W ), as t → ∞, Z̃t does
not converge in law.
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To prove Theorem 2, we shall apply Strassen [14]’s functional law of iterated logarithm applied
to the two-sided Brownian motion W ; we shall also need to estimate the stochastic integral∫
gm1,M1(x)dL1(x) for a bounded Borel function g, this will be done by using the theory of

enlargement of filtrations, see Section 2 for the details.

2. Proofs

At first, we reformule Strassen’s theorem as follows: For a two-sided one-dimensional Brownian
motion (W (t), t ∈ R) starting from 0, define for any λ > ee,

Wλ(t) :=
W (λt)

(2λ log log λ)1/2
, t ∈ R.

Theorem 3 (Strassen). Almost surely, for any s < 0 < r, (Wλ(t), s ≤ t ≤ r) is relatively
compact in the uniform topology and the set of its limit points is Ks,r, with

Ks,r :=
{
f ∈ C([s, r] → R) : f(0) = 0,

∫ r

s
(ḟ(x))2dx ≤ 1

}
.

Proof: For any fixed s < 0 < r, by applying Strassen’s theorem ([14]) to the two-dimensional
rescaled Brownian motion: ( W (λru)√

2λr log log λ
,

W (λ|s|u)√
2λ|s| log log λ

)0≤u≤1, we get that (Wλ(t), s ≤ t ≤ r) is

relatively compact in the uniform topology with Ks,r as the set of limit points. By inverting a.s.
and s, r, we see that there exists an event Ω0 with full probability such that for any ω ∈ Ω0, for
all s < 0 < r integers, (Wλ(t)(ω), s ≤ t ≤ r) is relatively compact in the uniform topology and
the set of its limit points is Ks,r.

Now, let ω ∈ Ω0. We are going to check that for any s < 0 < r, (Wλ(t)(ω), s ≤ t ≤ r) is
relatively compact in the uniform topology and the set of its limit points is Ks,r.

To this end, for any s < 0 < r, let k < 0 < l be integers such that k ≤ s < k+1 ≤ 0 ≤ l− 1 <
r ≤ l. Let d(·, ·) be the distance in the uniform topology: d(f, g) := supa≤t≤b |f(t) − g(t)| for
f, g ∈ C([a, b] → R), which is consistent on a < 0 < b. For any ε > 0, for all large λ ≥ λ0(ε, ω),
d(Wλ(·)(ω),Kk,l) < ε, hence there exists some f ≡ fλ,ω,k,l ∈ Kk,l such that d(Wλ(·)(ω), f) < ε.
Notice that if we denote by g := f1[s,r](·) the restriction of f on [s, r], then g ∈ Ks,r and
d(Wλ(·)(ω), g) < ε, this proves that for any ω ∈ Ω0, all possible limits of (Wλ(t)(ω), s ≤ t ≤ r)
as λ→ ∞ are in Ks,r.

It remains to check that for any f ∈ Ks,r, infinitely often λ → ∞, (Wλ(t)(ω), s ≤ t ≤ r)
are in the ball centered at f of radius ε. It is enough to check this for all f ∈ Ks,r such that∫ r
s |ḟ(t)|2dt < 1. We may find some function h ∈ Kk,l such that f is the restriction of h on [s, r].

Since infinitely often as λ → ∞, (Wλ(t)(ω), k ≤ t ≤ l) are in the ball centered at h of radius ε,
the desired conclusion follows. �

Next, we recall some properties on Brownian local times: The process x→ L1(x) is a (contin-
uous) semimartingale (by Perkins [12]), moreover, the quadratic variation of x → L1(x) equals
4
∫ x
−∞ L1(z)dz. By Revuz and Yor ([13], Exercice VI (1.28)), for any f locally bounded Borel

function,
1

2

∫
f(x)dL1(x) = −

∫ B1

0
f(u)du+

∫ 1

0
f(Bu)dBu. (2.4)

Recall that m1 = inf0≤t≤1 Bt and M1 = sup0≤t≤1Bt. When f is random but measurable
with respect to σ{m1,M1}, we define

∫
f(x)dL1(x) through (2.4): the integral

∫ 1
0 f(Bu)dBu is

well defined since by the theory of (initial) enlargement of filtration (see e.g. Jeulin and Yor
[8], Mansuy and Yor [11]), B is still a continuous semimartingale with respect to the filtration



4

(σ{Bs, s ≤ t,m1,M1})0≤t≤1 (see the forthcoming (2.11) for the semimartingale decomposition).
Denote by L1(B) := L1(PB, σ{Bs, 0 ≤ s ≤ 1}) and ‖ · ‖1 the L1-norm.

Lemma 4. There exists some constant c1 > 0 such that for any bounded Borel function g :
(a, b, x) ∈ R

3 → ga,b(x) ∈ R, we have

∥∥∥
∫
gm1,M1(x)dL1(x)

∥∥∥
1
≤ c1 sup

a,b,x
|ga,b(x)|.

Proof: Let ‖g‖∞ := supa,b,x |ga,b(x)|. Using (2.4) and observing that ‖
∫ B1

0 gm1,M1(u)du‖1 ≤
‖g‖∞ E

[
|B1|

]
, it is enough to prove that for some positive constant c2,

∥∥∥
∫ 1

0
gm1,M1(Bu)dBu

∥∥∥
1
≤ c2 ‖g‖∞. (2.5)

The difficulty here is the dependence of g on (m1,M1), in particular, there is no L2-isometry
for

∫ 1
0 gm1,M1(Bu)dBu. We need here an (initial) enlargement of filtration (see e.g. Jeulin and

Yor [8], Mansuy and Yor [11]): Let (Ft) be the natural filtration of B and F̃t := σ{M1,m1}∨Ft
for 0 ≤ t ≤ 1. We compute at first the law of (m1,M1) conditioned on Ft: for any measurable
bounded function h : R2 → R and 0 < t < 1,

E

(
h(m1,M1)

∣∣Ft
)

= E

(
h(mt ∧ (Bt + m̂1−t),Mt ∨ (Bt + M̂1−t))

∣∣Ft
)
,

where (m̂1−t, M̂1−t) are independent of Ft and have the same law as (m1−t,M1−t), and x∧ y :=
min(x, y), x ∨ y := max(x, y) for any x, y ∈ R. For any fixed r > 0, the law of (mr, Br,Mr) is
given as follows (cf. Revuz and Yor [13], Exercice III (3.15)): For any a < 0 < b,

P

(
a ≤ mr < Mr ≤ b,Br ∈ dx

)/
dx =

∞∑

k=−∞

(
pr(x+2k(b−a))−pr(x−2b+2k(b−a))

)
=: Υr,a,b(x),

(2.6)

with pr(x) := (2πr)−1/2e−x
2/(2r). Integrating on x ∈ [a, b] gives that

φr(a, b) := P

(
a ≤ mr < Mr ≤ b

)
=

∞∑

k=−∞
(−1)k

∫ b+k(b−a)

a+k(b−a)
pr(x)dx. (2.7)

Therefore for any fixed r > 0,

P

(
mr ∈ da,Mr ∈ db

)
= ψr(a, b)dadb, a < 0 < b,

with

ψr(a, b) :=

∞∑

k=−∞
(−1)k

(
k(k + 1)p′r(b+ k(b− a))− k(k − 1)p′r(a+ k(b− a))

)

= 2

∞∑

k=−∞
(−1)kk(k + 1)p′r(b+ k(b− a)), (2.8)

where p′r(x) = −x
r pr(x) denotes the derivative of pr(x) with respect to x. Plainly, ψr(a, b) is

continuous on (a, b, r) for a < 0 < b and r > 0. We can show that ψr(a, b) > 0 for any a < 0 < b

and r > 0, see Remark 5.
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It follows that for any 0 < t < 1,

E

(
h(m1,M1)

∣∣Ft
)

=

∫

a<0<b
dadbψ1−t(a, b)h(mt ∧ (Bt + a),Mt ∨ (Bt + b))

= I1 + I2 + I3 + I4,

with

I1 :=

∫ mt

−∞
dx

∫ ∞

Mt

dyψ1−t(x−Bt, y −Bt)h(x, y),

I2 :=

∫ mt

−∞
dx

∫ Mt−Bt

0
dbψ1−t(x−Bt, b)h(x,Mt),

I3 :=

∫ 0

mt−Bt

da

∫ Mt−Bt

0
dbψ1−t(a, b)h(mt,Mt) = φ1−t(mt −Bt,Mt −Bt)h(mt,Mt),

I4 :=

∫ 0

mt−Bt

da

∫ ∞

Mt

dyψ1−t(a, y −Bt)h(mt, y).

Let us adopt the following notation: for any f ∈ C1((−∞, 0)× (0,∞) → R),

∇f(a, b) := ∂f

∂a
+
∂f

∂b
.

Define for a < 0 < b,

ψ(1)
r (a, b) :=

∫ 0

a
dxψr(x, b), ψ(2)

r (a, b) :=

∫ b

0
ψr(a, y)dy. (2.9)

Then I2 =
∫mt

−∞ dxψ
(2)
1−t(x−Bt,Mt −Bt)h(x,Mt) and by Ito’s formula,

dI2 = −
[ ∫ mt

−∞
dx∇ψ(2)

1−t(x−Bt,Mt −Bt)h(x,Mt)
]
dBt + f.v.,

where here and in the sequel, f.v. denotes some finite variation process. Similarly,

dI1 = −
[ ∫ mt

−∞
dx

∫ ∞

Mt

dy∇ψ1−t(x−Bt, y −Bt)h(x, y)
]
dBt + f.v.,

dI3 = −
[
∇φ1−t(mt −Bt,Mt −Bt)h(mt,Mt)

]
dBt + f.v.,

dI4 = −
[ ∫ ∞

Mt

dy∇ψ(1)
1−t(mt −Bt, y −Bt)h(mt, y)

]
dBt + f.v..

It follows that if we denote by Xt := E

(
h(m1,M1)

∣∣Ft
)

for 0 ≤ t < 1, then X is a martingale
and

dXt = Q̇t(h)dBt,

where Q̇t(h) :=
∫
R2 Q̇t(dxdy)h(x, y) with

Q̇t(dx, dy) := −
[
1(x<mt)1(Mt<y)∇ψ1−t(x−Bt, y −Bt)

]
dxdy −

−
[
1(x<mt)∇ψ

(2)
1−t(x−Bt,Mt −Bt)

]
dx⊗ δMt(dy)−

−
[
∇φ1−t(mt −Bt,Mt −Bt)

]
δmt(dx)⊗ δMt(dy)−

−
[
1(y>Mt)∇ψ

(1)
1−t(mt −Bt, y −Bt)

]
δmt(dx) ⊗ dy.
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On the other hand, we may re-write Xt =
∫
R2 Qt(dxdy)h(x, y) with

Qt(dx, dy) :=
[
1(x<mt)1(Mt<y)ψ1−t(x−Bt, y −Bt)

]
dxdy +

+
[
1(x<mt)ψ

(2)
1−t(x−Bt,Mt −Bt)

]
dx⊗ δMt(dy) +

+
[
φ1−t(mt −Bt,Mt −Bt)

]
δmt(dx)⊗ δMt(dy) +

+
[
1(y>Mt)ψ

(1)
1−t(mt −Bt, y −Bt)

]
δmt(dx)⊗ dy.

Then we have Q̇t(dxdy) = ̺t(x, y)Qt(dxdy) with the density ̺t(x, y) given by

̺t(x, y) := −1(x<mt)1(Mt<y)∇ logψ1−t(x−Bt, y −Bt)

−1(x<mt,y=Mt)∇ logψ
(2)
1−t(x−Bt,Mt −Bt)

−1(x=mt,y=Mt)∇ log φ1−t(mt −Bt,Mt −Bt)

−1(x=mt,y>Mt)∇ logψ
(1)
1−t(mt −Bt, y −Bt). (2.10)

The theory of enlargement of filtrations says that

Bt = B̃t +

∫ t

0
̺s(m1,M1)ds, 0 ≤ t < 1, (2.11)

with B̃ a Brownian motion with respect to (F̃t).
By Cauchy-Schwarz’ inequality and the L2-isometry for B̃, we get that

E

∣∣∣
∫ 1

0
gm1,M1(Bs)dB̃s

∣∣∣ ≤
√

E

∫ 1

0
g2m1,M1

(Bs)ds ≤ ‖g‖∞,

which in view of (2.11) imply that

E

∣∣∣
∫ 1

0
gm1,M1(Bs)dBs

∣∣∣ ≤ ‖g‖∞
(
1 + E

(∫ 1

0
|̺s(m1,M1)|ds

))
.

Then (2.5) follows once we have checked that

E

(∫ 1

0
|̺s(m1,M1)

∣∣ds
)
<∞. (2.12)

To prove (2.12), we use (2.10) and write

̺t(m1,M1) = J1(t) + J2(t) + J3(t) + J4(t),

with obvious definitions of Ji, 1 ≤ i ≤ 4. Notice that {m1 < mt} = {m̂1−t < mt − Bt} and
{Mt < M1} = {M̂1−t > Mt − Bt} where m̂·, M̂· are the minimum and maximum processes of
B̂s := Bs+t−Bs, s ≥ 0. Recalling that ψ1−t(a, b) are the densities of (m̂1−t, M̂1−t), we have that

E

[
|J1(t)|

]
= E

[
1(m1<mt)1(Mt<M1)

∣∣∇ logψ1−t(m1 −Bt,M1 −Bt)
∣∣
]

= E

∫ mt−Bt

−∞
da

∫

Mt−Bt

db
∣∣∇ψ1−t(a, b)

∣∣.

Elementary computations show that for any r > 0,

∇ψr(a, b) = 2
∑

k∈Z
(−1)kk(k + 1)p

′′

r (b+ k(b− a)),
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where p
′′

r (x) = (−1
r +

x2

r2 )pr(x) is the second order derivative of pr(·). Bounding all terms by its
absolute values, we get that

E

[
|J1(t)|

]
≤ 2E

∫ mt−Bt

−∞
da

∫ ∞

Mt−Bt

db
∑

k∈Z
|k(k + 1)|1 + (b+ k(b− a))2

(1− t)2
p1−t(b+ k(b− a)).

In the above sum
∑

k∈Z, we decompose as
∑

k≥1 and
∑

k≤−2. By changing B to −B, it is

easy to see that the two sums
∑

k≥1 and
∑

k≤−2 give the same contribution in E

[ ∫
da

∫
db
]
. It

follows that

E

[
|J1(t)|

]
≤ 4E

∫ mt−Bt

−∞
da

∫ ∞

Mt−Bt

db
∑

k≥1

k(k + 1)
1 + (b+ k(b− a))2

(1− t)2
p1−t(b+ k(b− a))

=
4

(1− t)2

∫ ∞

0
dx(1 + x2)p1−t(x)E

[ ∞∑

k=1

k

∫ mt−Bt

−∞
da1(ka≥(k+1)(Mt−Bt)−x)

]

≤ 4

(1− t)2

∫ ∞

0
dx(1 + x2)p1−t(x)E

[
1(x≥Mt−mt)

x2

Mt −mt

]
,

where the above equality follows from a change of variable x = b+ k(b − a). If we denote by γ·
a Brownian motion independent of B, then for any 0 < t < 1,

E

[
|J1(t)|

]
≤ 4

(1− t)2
E

[
1(γ1−t≥Mt−mt)

(1 + γ21−t) γ
2
1−t

Mt −mt

]
,

which is continuous for t ∈ (0, 1), behaves as c3√
t
as t→ 0 (with c3 := 4E[1(γ1>0)(1+γ

2
1)γ

2
1 ]E[

1
M1−m1

])

and converges to 0 as t ↑ 1 (since 1
M1−m1

has finite moments of any order and ). Consequently,
∫ 1

0
E

[
|J1(t)|

]
dt <∞.

The other terms J2(t), J3(t), J4(t) can be estimated in the same way: By symmetry,
∫ 1
0 E

[
|J4(t)|

]
dt =∫ 1

0 E
[
|J2(t)|

]
dt. For J2(t), we observe that for any 0 < t < 1 and a < 0 < b,

ψ
(2)
1−t(a, b)da = P

(
m1−t ∈ da,M1−t ≤ b

)
.

It follows that

E

[
|J2(t)|

]
= E

[
1(m1<mt)1(Mt=M1)

∣∣∇ logψ
(2)
1−t(m1 −Bt,Mt −Bt)

∣∣
]

= E

[
1(m̂1−t<mt−Bt)1(M̂1−t≤Mt−Bt)

∣∣∇ logψ
(2)
1−t(m̂1−t,Mt −Bt)

∣∣
]

= E

∫ mt−Bt

−∞
da

∣∣∇ψ(2)
1−t(a,Mt −Bt)

∣∣. (2.13)

By (2.9) and (2.8),
∂ψ

(2)
1−t

∂a (a, b) =
∫ b
0
∂ψ1−t

∂a (a, y)dy = 2
∑

k∈Z(−1)k+1k2
(
p′1−t(b + k(b − a)) −

p′1−t(−ka)
)
= 2

∑
k∈Z(−1)k+1k2p′1−t(b+ k(b− a)), by the asymmetry of p′1−t(·). Hence,

∇ψ(2)
1−t(a, b) =

∂ψ
(2)
1−t
∂a

(a, b) +
∂ψ

(2)
1−t
∂b

(a, b) = 2
∑

k∈Z
(−1)k k p′1−t(b+ k(b− a)).
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It follows that
∫ mt−Bt

−∞
da

∣∣∇ψ(2)
1−t(a, b)

∣∣ ≤ 2
∑

k∈Z

∫ mt−Bt

−∞
da|k p′1−t(b+ k(b− a))|

= 2
∑

k∈Z,k 6=0

p1−t(b+ k(b− (mt −Bt))).

Using the elementary fact: for any x > 0 and r > 0,
∑

k∈Z,k 6=0

pr(kx) ≤ 2

∫ ∞

0
pr(tx)dt =

1

x
, (2.14)

we deduce from (2.13) that for any 0 < t < 1,

E

[
|J2(t)|

]
≤ E

( 1

Mt −mt

)
=

1√
t
E

( 1

M1 −m1

)
.

Hence ∫ 1

0
E

[
|J2(t)|

]
dt <∞.

Finally for J3(t), we have that

E

[
|J3(t)|

]
= E

[
1(m1=mt)1(Mt=M1)

∣∣∇ log φ1−t(mt −Bt,Mt −Bt)
∣∣
]

= E

[
1(m̂1−t≥mt−Bt)1(M̂1−t≤Mt−Bt)

∣∣∇ log φ1−t(mt −Bt,Mt −Bt)
∣∣
]

= E

[∣∣∇φ1−t(mt −Bt,Mt −Bt)
∣∣
]
. (2.15)

Recalling (2.7). Elementary computations yield that

∇φ1−t(a, b) =
∑

k∈Z
(−1)k

[
p1−t(b+ k(b− a))− p1−t(a+ k(b− a))

]
= 2

∑

k∈Z
(−1)kp1−t(b+ k(b− a)).

Hence |∇φ1−t(a, b)| ≤ 2p1−t(a) + 2p1−t(b) + 2
∑

j∈Z,j 6=0 p1−t(j(b − a)) ≤
√

8
π(1−t) +

2
b−a . It

follows that

E

[
|J3(t)|

]
≤

√
8

π(1− t)
+ 2E

( 1

Mt −mt

)
≤

√
8

π(1− t)
+

2√
t
E

( 1

M1 −m1

)
.

Therefore
∫ 1
0 E

[
|J3(t)|

]
dt <∞, which completes the proof of (2.12). Then Lemma 4 follows. �

Remark 5. Recall that ψr(a, b) is the density of (mr,Mr) (cf. (2.8)). To check that ψr(a, b) > 0,
M. Lifshits suggested to use the following integration equation: For any a < 0 < b and any
r > s > 0, by the Markov property at s,

ψr(a, b) =

∫ b

a
P

(
Bs ∈ dx, a < ms < Ms < b

)
ψr−s(a− x, b− x)

=

∫ b

a
Υs,a,b(x)ψr−s(a− x, b− x) dx, (2.16)

by using the notation in (2.6). Elementary computations show that for any s > 0 and a < 0 < b,

Υs,a,b(x) ≥ ps(x)− ps(2b− x)− ps(x− 2a), ∀ a < x < b,
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which implies that for any a < 0 < b and 0 < s < a2 ∧ b2,
Υs,a,b(0) ≥ (1− 2e−2)ps(0) > 0. (2.17)

If ψr(a, b) = 0, then by the continuity of Υs,a,b(·) and ψr−s(·, ·), we deduce from (2.16) that
ψr−s(a, b) = 0 for any 0 < s < a2 ∧ b2 ∧ r. By iterating this procedure, we would get that
ψv(a, b) = 0 for all 0 < v < r; but this contradicts with the fact that for any fixed a < 0 < b,

ψv(a, b) ∼ 4
2b − a

v
pv(2b− a) + 4

b− 2a

v
pv(b− 2a), v → 0,

which is positive for all small v. Hence ψr(a, b) > 0 for any r > 0 and a < 0 < b.

Remark 6. If we enlarge the filtration only with M1, it was known that (see Jeulin and Yor [8])

Bt = B̂t +

∫ t

0

ds√
1− s

(
1(Ms<M1)

M1 −Bs√
1− s

− 1(Ms=M1)k(
M1 −Bs√

1− s
)
)
, 0 ≤ t < 1,

with B̂ a Brownian motion in the filtration (Ft ∨ σ{M1})0≤t≤1 and k(x) := e−
x2

2
1∫ x

0 dre−r2/2
.

Let

Hλ :=

∫
Wλ(y)dL1(y), with Wλ(y) =

W (λy)

(2λ log log λ)1/2
, y ∈ R.

By using (2.4), it is easy to check that PW -almost surely, Hλ ∈ L1(B) ≡ L1(PB, σ{Bs, 0 ≤
s ≤ 1}). Write dL1(ξ, η) for the distance in L1(B) for any ξ, η ∈ L1(B).

Lemma 7. P(dW )-almost surely,

dL1(Hλ,KB) → 0, as λ→ ∞,

where KB is defined in (1.2). Moreover, PW -almost surely for any ξ ∈ KB, lim infλ→∞ d(Hλ, ξ) =
0.

It easy to see that KB ⊂ L1(B), since by Cauchy-Schwarz’ inequality,
( ∫M1

m1
f(x)dL1(x)

)2 ≤( ∫
L1(x)

2dx
)( ∫M1

m1
(ḟ(x))2dx

)
≤ supx L1(x) ∈ Lp(B) for any p > 0.

Proof: Let ε > 0. Applying Theorem 3 to s = m1 and r =M1, we get that PW -a.s. for all large
λ ≥ λ0(W ), there exists a (random) function f ≡ fλ ∈ Km1,M1 such that supm1≤x≤M1

|Wλ(x)−
f(x)| ≤ ε. Let g(x) := Wλ(x) − f(x). Notice that supm1≤x≤M1

|g(x)| ≤ ε, and conditioned on

W , g is measurable with respect to σ{m1,M1}. By Lemma 4,
∥∥∥
∫
g(x)dL1(x)

∥∥∥
1
≤ c1ε. Hence

dL1(Hλ,KB) → 0. The another part of the Lemma is again a consequence of Strassen’s law of
iterated logarithm (Theorem 3) and Lemma 4. �

We now are ready to give the proof of Theorems 2 and 1.

Proof of Theorem 2. Firstly, we remark that by Brownian scaling, PW -a.s.,

Zt

t3/4
(d)
= −

∫ M1

m1

1

t1/4
W (

√
ty)dL1(y). (2.18)

In fact, by the change of variables x = y
√
t, we get

∫ +∞

−∞
Lt(x)dW (x) =

√
t

∫ +∞

−∞

(
Lt(y

√
t)√

t

)
dW (y

√
t)
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which has the same distribution as
√
t

∫ +∞

−∞
L1(y)dW (y

√
t)

from the scaling property of the local time of the Brownian motion. Since (L1(x))x∈R is a
continuous semi-martingale, independent from the process W , from the formula of integration
by parts, we get that PW -a.s.,

√
t

∫ +∞

−∞
L1(y)dW (y

√
t) = −t3/4

∫ M1

m1

(
W (

√
ty)

t1/4

)
dL1(y),

yielding (2.18). Theorem 2 follows from Lemma 7. �

Proof of Theorem 1. We use the strong approximation of Zhang [15] : there exists on a
suitably enlarged probability space, a coupling of ξ, S, B and W such that (ξ,W ) is independent
of (S,B) and for any ε > 0, almost surely,

max
0≤m≤n

|K(m)− Z(m)| = o(n
1
2
+ 1

2(2+δ)
+ε

), n→ +∞. (2.19)

From the independence of (ξ,W ) and (S,B), we deduce that for P-a.e. (ξ,W ), under the
quenched probability P(.|ξ,W ), the limit points of the laws of K̃n and Z̃n are the same ones.
Now, by adapting the proof of Theorem 2, we have that for P-a.e. (ξ,W ), under the quenched
probability P(.|ξ,W ), the limit points of the laws of Z̃n, as n→ ∞, under the topology of weak
convergence of measures, are equal to the closure of the laws of random variables in KB . It gives
that for P-a.e. (ξ,W ), under the quenched probability P(.|ξ,W ), the limit points of the laws of
K̃n, as n→ ∞, under the topology of weak convergence of measures, are equal to the closure of
the laws of random variables in KB and Theorem 1 follows. �

Acknowledgments. We are grateful to Mikhail Lifshits for Remark 5.
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