Automated Detection and Fine Segmentation of Defects Signature in Pipelines using US Thickness Images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Automated Detection and Fine Segmentation of Defects Signature in Pipelines using US Thickness Images

Clément Fouquet
  • Fonction : Auteur
  • PersonId : 943342
ICI
Aymeric Histace
Connectez-vous pour contacter l'auteur
ICI
Leila Meziou
  • Fonction : Auteur
  • PersonId : 892398
ICI
Patrick Duvaut
  • Fonction : Auteur
  • PersonId : 943343
ICI

Résumé

This contribution introduces a robust and content oriented detector of interest zones for defect localization in oil pipeline intelligent inspection achieving good perfomances toward complexity ratio. The method self-processes the multidimensional data collected by a pipeline inspection device equipped with many ultrasonic sensors (up to 512). It introduces a new content oriented usage of the EM algorithm, adapted to fit the very peculiar nature of the data to first isolate candidates zone, followed with a segmentation step to both get fine contours of defects and reject false alarms. Obtained performances in terms of specificity and sensibility show that the proposed approach is compatible with a routine utilization by specialists.
Fichier non déposé

Dates et versions

hal-00842600 , version 1 (08-07-2013)

Identifiants

  • HAL Id : hal-00842600 , version 1

Citer

Clément Fouquet, Aymeric Histace, Leila Meziou, Patrick Duvaut. Automated Detection and Fine Segmentation of Defects Signature in Pipelines using US Thickness Images. The 12th International Conference for Non-Destructive Testing : "Application of Contemporary Non-Destructive Testing in Engineering", Sep 2013, Ljubljana, Slovenia. pp.105-112. ⟨hal-00842600⟩
66 Consultations
0 Téléchargements

Partager

More