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We study the maximum principle, the existence of eigenvalue and the existence of solution for the Dirichlet problem relative to operators which are fully-nonlinear, elliptic but presenting some singularity or degeneracy which are similar to those of the p-Laplacian, we consider the equations in bounded domains which only satisfy the exterior cone condition.

Introduction

The aim of this paper is to extend the generalized concept of eigenvalue for fully-nonlinear operators, when the bounded domain involved satisfies only the uniform exterior cone condition; we shall also obtain regularity results, and maximum principle in this setting.

Before defining the precise notions described above let us recall that Berestycki, Nirenberg and Varadhan in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF], have proved maximum principle, principal eigenvalue and existence of solution for a Dirichlet problem involving linear uniformly elliptic operators Lu = trA(x)D 2 u + b(x) • ∇u + c(x)u in domains without any regularity condition on the boundary.

In order to do so, they need to define the concept of boundary condition. Hence, using Alexandrov Bakelman Pucci inequality and Krylov-Safonov Harnack's inequality they first prove the existence of u o , a strong solution of trA(x)D 2 u o + b(x) • ∇u o = -1 in Ω, which is zero on the points of the boundary that have some smoothness. Then they define the boundary condition for the Dirichlet problem associated to the full operator L through this function u o . Their paper, which constructs the principal eigenvalue using only the maximum principle, has allowed to generalize the notion of eigenvalue to fully-nonlinear operators, see e.g. [START_REF] Busca | Nonlinear eigenvalues and bifurcation problems for Pucci's operator[END_REF][START_REF] Quaas | On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF][START_REF] Ishii | Demi-eigen values for uniformly elliptic Isaacs op erators[END_REF][START_REF] Juutinen | Principal eigenvalue of a very badly degenerate equation[END_REF][START_REF] Birindelli | Eigenvalue and Maximum principle for fully nonlinear singular operators Advances in Partial Diff[END_REF][START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF][START_REF] Patrizi | The Neumann problem for singular fully nonlinear operators to appear[END_REF].

Here, as in [START_REF] Birindelli | Eigenvalue and Maximum principle for fully nonlinear singular operators Advances in Partial Diff[END_REF][START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF][START_REF] Patrizi | The Neumann problem for singular fully nonlinear operators to appear[END_REF] we shall consider operators that satisfy for some real α > -1 :

(H1) F : Ω × IR N \ {0} × S → IR, and ∀t ∈ IR , µ ≥ 0, F (x, tp, µX) = |t| α µF (x, p, X).

(H2) There exist 0 < a < A, for x ∈ Ω, p ∈ IR N \{0}, M ∈ S, N ∈ S, N ≥ 0 a|p| α tr(N ) ≤ F (x, p, M + N ) -F (x, p, M ) ≤ A|p| α tr(N ). and other "regularity" conditions.

For this class of operators it is not known whether the Alexandrov Bakelman Pucci inequality holds true, hence in our previous works [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF][START_REF] Birindelli | Eigenvalue and Maximum principle for fully nonlinear singular operators Advances in Partial Diff[END_REF] we supposed that ∂Ω was C 2 . The regularity of the boundary in those papers played a crucial role because it allowed to use the distance function to construct sub and super solutions. This was the key step in the proof of the maximum principle. Here, instead, we shall suppose that Ω satisfies only the "uniform exterior" cone condition i.e. There exist ψ > 0 and r > 0 such that for any z ∈ ∂Ω and for an axe through z of direction n,

T ψ = {x : (x -z) • n |z -x| ≤ cos ψ}, T ψ ∩ Ω ∩ B r(z) = {z}.
This cone condition allows to construct some barriers and consequently a function which will play the same role as u o in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF]. In particular we can prove that there exists an eigenfunction ϕ > 0, solution of

F (x, ∇ϕ, D 2 ϕ) + h(x) • ∇ϕ|∇ϕ| α + (V (x) + λ(Ω))ϕ 1+α = 0 in Ω ϕ = 0 on ∂Ω for λ(Ω) = sup{λ, ∃ u > 0 in Ω, F (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α + (V (x) + λ)u 1+α ≤ 0 in Ω}.
Finally in the last section we also define λ e = sup{λ(Ω ), Ω ⊂⊂ Ω , Ω regular and bounded} and λ = sup{λ, ∃ u > 0 in Ω,

F (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α + (V (x) + λ)u 1+α ≤ 0}.
We prove that λ e = λ and that this value is an "eigenvalue" in the sense that there exists some φ e > 0, which satisfies

F (x, ∇φ e , D 2 φ e ) + h(x) • ∇φ e |∇φ e | α + (V (x) + λ e (Ω))φ 1+α e = 0 in Ω φ e = 0 on ∂Ω.
We also prove that for any λ < λ e the maximum principle holds and there exists a solution of the Dirichlet problem when the right hand side is negative.

Observe that λ e ≤ λ, and furthermore if Ω is smooth, the equality holds.

It is an open problem to know if if the equality still holds when Ω satisfies only the exterior cone condition (see the example at the end of section 5). Let us observe that the identity of these values is equivalent to the existence of a maximum principle for λ < λ.

Assumptions on F

The following hypothesis will be considered. For α > -1 , F satisfies :

(H1) F : Ω × IR N \ {0} × S → IR, and ∀t ∈ IR , µ ≥ 0, F (x, tp, µX) = |t| α µF (x, p,

X).

(H2) There exist 0 < a < A, such that for any

x ∈ Ω, p ∈ IR N \{0}, M ∈ S, N ∈ S, N ≥ 0 a|p| α tr(N ) ≤ F (x, p, M + N ) -F (x, p, M ) ≤ A|p| α tr(N ). ( 2 

.1)

(H3) There exists a continuous function ω, ω(0) = 0 such that for all (x, y) ∈

Ω 2 , ∀p = 0, ∀X ∈ S |F (x, p, X) -F (y, p, X)| ≤ ω(|x -y|)|p| α |X|.
(H4) There exists a continuous function ω with ω(0

) = 0, such that if (X, Y ) ∈ S 2 and ζ ∈ IR + satisfy -ζ I 0 0 I ≤ X 0 0 Y ≤ 4ζ I -I -I I
and I is the identity matrix in IR N , then for all (x, y)

∈ IR N , x = y F (x, ζ(x -y), X) -F (y, ζ(x -y), -Y ) ≤ ω(ζ|x -y| 2 ).
Remark 2.1 When no ambiguity arises we shall sometime write

F [u] to signify F (x, ∇u, D 2 u).
We assume that h and V are some continuous and bounded functions on Ω and h satisfies the following condition (H5) -Either α ≤ 0 and h is Hölder continuous of exponent 1 + α, -or α > 0 and (h(x) -h(y) • x -y) ≤ 0

The solutions that we consider will be taken in the sense of viscosity. For convenience of the reader we state the precise definition.

Definition 2.2

Let Ω be a bounded domain in IR N , then v, bounded and continuous on Ω is called a viscosity super solution (respectively sub-solution) of

F (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α = f (x, u) if for all x 0 ∈ Ω, -Either there exists an open ball B(x 0 , δ), δ > 0 in Ω on which v = cte = c and 0 ≤ f (x, c), for all x ∈ B(x 0 , δ) (respectively 0 ≥ f (x, c))
-Or ∀ϕ ∈ C 2 (Ω), such that v -ϕ has a local minimum on x 0 (respectively a local maximum ) and ∇ϕ(x 0 ) = 0, one has

F (x 0 , ∇ϕ(x 0 ), D 2 ϕ(x 0 )) + h(x 0 ) • ∇ϕ(x 0 )|∇ϕ(x 0 )| α ≤ f (x 0 , v(x 0 )).
(respectively

F (x 0 , ∇ϕ(x 0 ), D 2 ϕ(x 0 )) + h(x 0 ) • ∇ϕ(x 0 )|∇ϕ(x 0 )| α ≥ f (x 0 , v(x 0 )).)
We now recall what we mean by first eigenvalue and some of the properties of this eigenvalue.

For Ω a bounded domain, let

λ(Ω) := sup{λ, ∃ ϕ > 0 in Ω, F [ϕ] + h(x) • ∇ϕ|∇ϕ| α + (V (x) + λ)ϕ 1+α ≤ 0}.
When Ω is a bounded regular set, we proved in [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF] that Theorem 2.3 Suppose that F satisfies (H1)-(H4), that h satisfies (H5), and that V is continuous and bounded. Suppose that Ω is a bounded C 2 domain.

Then there exists ϕ which is a solution of

F [ϕ] + h(x) • ∇ϕ|∇ϕ| α + (V (x) + λ)ϕ 1+α = 0 in Ω ϕ = 0 on ∂Ω.
Moreover ϕ is strictly positive inside Ω and it is Hölder continuous

We now recall some properties of the eigenvalue :

Theorem 2.4 Suppose that Ω is a bounded C 2 domain , and that F , h, and V satisfy the previous assumptions. Suppose that λ < λ and that u satisfies

F (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α + (V (x) + λ)|u| α u ≥ 0 in Ω u ≤ 0 on ∂Ω.
Then u ≤ 0 in Ω.

We now recall the following comparison principle which holds without assumptions on the regularity of the bounded domain Ω, Proposition 2.5 Suppose that β(x, .) is non decreasing and β(x, 0) = 0, that w is an upper semicontinuous sub-solution of

F (x, ∇w, D 2 w) + h(x) • ∇w|∇w| α -β(x, w(x)) ≥ g
and u is a lower semicontinuous supersolution of

F (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α -β(x, u(x)) ≤ f
with g lower semicontinuous, f upper semicontinuous , f < g in Ω and lim sup(w(x j ) -u(x j )) ≤ 0, for all x j → ∂Ω. Then w ≤ u in Ω.

Remark 2.6

The result still holds if β is increasing and f ≤ g in Ω.

The proof is as in [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF]. We also recall the following weak comparison principle.

Theorem 2.7 Suppose that Ω is some bounded open set. Suppose that F satisfies (H1), (H2), and (H4), that h satisfies (H5) and V is continuous and bounded. Suppose that f ≤ 0, f is upper semi-continuous and g is lower semicontinuous with f ≤ g.

Suppose that there exist u and v continuous , v ≥ 0, satisfying

F (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α + V (x)|u| α u ≥ g in Ω F (x, ∇v, D 2 v) + h(x) • ∇v|∇v| α + V (x)v 1+α ≤ f in Ω u ≤ v on ∂Ω.
Then u ≤ v in Ω in each of these two cases: 1) If v > 0 on Ω and either f < 0 in Ω, or g(x) > 0 on every point x such that

f (x) = 0, 2) If v > 0 in Ω, f < 0 in Ω and f < g on Ω.
3 Barriers in non smooth domains

In this section we assume that Ω satisfies the exterior cone condition. More precisely we assume that there exists r and ψ ∈]0, π[ such that for each z ∈ ∂Ω the set Ω ∩ B(z, r) is included in the open cone which, up to change of coordinates can be given by

T ψ = {r ∈]0, r[, 0 ≤ arccos x N r ≤ ψ}
choosing the main direction of the cone to be e N . Indeed, in that case, the exterior of Ω contains at least the set of (x , x N ) with -1 ≤ x N r ≤ cos ψ, r < r. On the operator F we suppose that it satisfies conditions (H1), (H2), (H3) and (H4), while h satisfies (H5).

Local barriers

Under the exterior cone condition we are going to construct a local barrier i.e. for any z ∈ ∂Ω, a supersolution in a neighborhood of z, of

F [v] + h(x) • ∇v|∇v| α ≤ -1, such that c|x -z| γ ≤ v(x) ≤ C|x -z| γ for some γ ∈ (0, 1]
and for some constant c and C which depend on ψ, a, A, γ, r. This barrier is constructed on the model of those given by Miller for the Pucci operators in [START_REF] Miller | Extremal barriers on cones with Phragmen-Lindelöf theorems and other applications[END_REF].

We define v = |x -z| γ ϕ(θ)

where θ = arccos x N -z N |x-z|
. Without loss of generality, we suppose that z = 0. We suppose first that h ≡ 0 and, at the end of the proof, we will say which are the changes that need to be done when h ≡ 0 . We shall first show that there exists ϕ a solution of some differential linear equation such that v is a super solution of

F (x, ∇v, D 2 v) ≤ -b
where b is a positive constant that depends only on ψ, γ, r o and the structural constant of the operator. It will be useful for the following to observe that 1

≥ x N r ≥ cos ψ on the considered set. Let x = (x 1 , • • • , x N ) = (x , x N ). Let r = |x| and r = |x |.
We shall also use the following notation X = (x , 0).

One has: ∇v = γr γ-2 xϕ(θ) + r γ ϕ (θ)∇θ and

D 2 v = r γ-2 ϕγ I + (γ -2) r 2 x ⊗ x +r γ-2 ϕ r 2 D 2 θ + γ(∇θ ⊗ x + x ⊗ ∇θ) +r γ-2 ϕ r 2 ∇θ ⊗ ∇θ .
We now suppose that ϕ ≥ 0, ϕ ≤ 0 and ϕ ≤ 0 then

M + a,A (D 2 v) ≤ r γ-2 ϕγM + a,A I + (γ -2) r 2 x ⊗ x + + ϕ M - a,A (r 2 D 2 θ + γ(∇θ ⊗ x + x ⊗ ∇θ)) + ϕ M - a,A (r 2 ∇θ ⊗ ∇θ
) . Since we need to find the eigenvalues of the above matrices let us remark that

∇θ = 1 r ( x N x r 2 -e N ) = x ⊥ r 2 with x ⊥ = x N r X -r e N = cot θx - r 2 r e N .
In particular x ⊥ • x = 0 and |x ⊥ | = r. We obtain

M + a,A I + (γ -2) r 2 x ⊗ x = A(N -1) + a(γ -1) M - a,A (r 2 ∇θ ⊗ ∇θ) = ar 2 |∇θ| 2 = a M - a,A (γ(∇θ ⊗ x + x ⊗ ∇θ)) = γ|∇θ|r(a -A) = γ(a -A).
To complete the calculation we need to compute

D 2 θ = - 1 r 2 X r ⊗ x N x r 2 -e N + + 1 r 1 r 2 e N ⊗ x - 2x N r 4 x ⊗ x + x N r 2 I = - x N (r ) 3 r 2 X ⊗ X + + 1 r r 2 X ⊗ e N + e N ⊗ X + x N e N ⊗ e N -2 x N r 2 x ⊗ x + x N I .
To estimates the eigenvalues of r 2 D 2 θ we shall use the following facts and notations:

I N -1 indicate the identity (N -1) × (N -1) matrix,

I = I N -1 0 0 0 , I = I + e N ⊗ e N , x ⊗ x = X ⊗ X + x N (X ⊗ e N + e N ⊗ X ) + x 2 N e N ⊗ e N . Then r 2 D 2 θ = x N r - 1 (r ) 2 X ⊗ X + I + x N r (2 -2 x 2 N r 2 )e N ⊗ e N + 1 r (1 -2 x 2 N r 2 )(X ⊗ e N + e N ⊗ X ) -2 x N r 1 r 2 X ⊗ X . One has M - a,A x N r - 1 r 2 X ⊗ X + I + x N r (2 -2 x 2 N r 2 )e N ⊗ e N ≥ -A x - N r (N -1) ≥ -A(N -1)(cot ψ) - and, using |2x N r | r 2 ≤ 1, M - a,A (-2 x N r 1 r 2 X ⊗ X ) ≥ -2 A|x N |r r 2 ≥ -A.
From this one gets that

M - a,A (r 2 D 2 θ) ≥ -A (N -1)(cot ψ) -+ 1 +M - a,A ( 1 r (1 -2 x 2 N r 2 )(X ⊗ e N + e N ⊗ X ) ≥ -|1 -2 x 2 N r 2 |A -A (N -1)(cot ψ) -+ 1 ≥ -A -A (N -1)(cot ψ) -+ 1 ≥ -A (N -1)(cot ψ) -+ 2
where we have used that |1 -2

x 2 N r 2 | ≤ 1.
Putting everything together we have obtained:

M + a,A (D 2 v) ≤ r γ-2 (ϕγ(A(N -1) + a(γ -1)) -ϕ A(N -1)(cot ψ) -+ 2) + γ(A -a) + aϕ ≤ r γ-2 (ϕγ(A(N -1) + a(γ -1)) -ϕ A((N -1)(cot ψ) -+ 2) + γ(A -a) + aϕ . Defining β = A((N -1)(cot ψ) -+ 2) + γ(A -a) we shall choose ϕ such that aϕ -βϕ + ϕγA(N -1) = 0
and such that for θ in some interval [0, ψ]:

ϕ > 0, ϕ ≤ 0, ϕ ≤ 0.
Indeed, for γ sufficiently close to zero in order that β 2 > 4γ (N -1)A a , the solutions are given by ϕ

= C 1 e σ 1 θ + C 2 e σ 2 θ
with σ 1 and σ 2 being the positive constants

σ 1 = 1 2 β + β 2 -4γ (N -1)A a σ 2 = 1 2 β -β 2 -4γ (N -1)A a .
Observe that σ 1 and σ 2 are both positive, one also has σ 1 > σ 2 . We prove that for γ small enough, one can find a solution ϕ such that on [0, ψ], ϕ ≥ 1, ϕ ≤ 0 and ϕ ≤ 0. We choose C 1 < 0 and C 2 > 0 with

C 1 σ 1 + C 2 σ 2 = 0 C 1 e σ 1 ψ + C 2 e σ 2 ψ = 1.
This system has a solution because for γ small enough

e (σ 2 -σ 1 )ψ ≥ e -βψ ≥ 4γ(N -1)A aβ 2 ≥ 1 -1 - 4γ(N -1)A aβ 2 ≥ β -β 2 -4γ(N -1)A a β ≥ β -β 2 -4γ(N -1)A a β + β 2 -4γ(N -1)A a = σ 2 σ 1 .
We now deduce from this that ϕ ≤ 0, and ϕ ≤ 0 on [0, ψ]. Indeed the assumption implies that ϕ (0) = 0. Then, for θ > 0,

ϕ (θ) = C 1 σ 1 e σ 1 θ + C 2 σ 2 e σ 2 θ ≤ (C 1 σ 1 + C 2 σ 2 )e σ 1 θ = 0.
One also has

ϕ (0) = C 1 σ 2 1 + C 2 σ 2 2 = -C 2 σ 1 σ 2 + C 2 σ 2 2 ≤ 0 and for θ > 0 ϕ (θ) = C 1 σ 2 1 e σ 1 θ + C 2 σ 2 2 e σ 2 θ ≤ e σ 1 θ (C 1 σ 2 1 + C 2 σ 2 2 ).
Let us note that

1 ≤ ϕ(θ) ≤ ϕ(0) =: C 1 + C 2 = C 2 (1 - σ 2 σ 1 )
and

|ϕ (θ)| ≤ |ϕ (ψ)| = C 2 σ 2 (e σ 1 ψ-σ 2 ψ ). Let C ψ = sup(ϕ 2 + (ϕ ) 2 ) α 2 .
We have obtained that

F (x, ∇v, D 2 v) ≤ |∇v| α M + a,A (D 2 v) ≤ γ α r (γ-1)α (ϕ 2 + (ϕ ) 2 ) α 2 M + a,A (D 2 v) ≤ -aγ 2+α (1 -γ)ϕr (γ-1)α+γ-2 (ϕ 2 + (ϕ ) 2 ) α 2 ≤ -aγ 2+α C ψ r γ(α+1)-α-2 .
We now consider the case h = 0. The above computations give

F (x, ∇v, D 2 v) + h(x) • ∇v|∇v| α ≤ -C ψ r γ(α+1)-α-2 γ 2+α aϕ +|h| ∞ (γr γ-1 ) 1+α sup(|ϕ| 2 + (ϕ ) 2 ) 1+α 2 < - C ψ r γ(α+1)-α-2 γ 2+α a 2 ≤ - C ψ r γ(α+1)-α-2 o γ 2+α a 2 := -b for r ≤ r o := inf(r, γa C 1 α ψ |h|∞
) . This ends the proof.

Remark 3.1

In the same manner one can construct a local barrier by below, i.e. some continuous non positive function w z such that w z (z) = 0 which in the cone is a sub-solution of

F [w z ] + h(x) • ∇w z |∇w z | α ≥ 1.

Global barriers and existence.

In all this section we shall suppose that Ω satisfies the exterior cone condition, F satisfies conditions (H1) to (H4) and h satisfies (H5).The global barrier constructed below will allow to prove the following existence result. Proposition 3.2 There exists u o a nonnegative viscosity solution of

F (x, ∇u o , D 2 u o ) + h(x) • ∇u o |∇u o | α = -1 in Ω u o = 0 on ∂Ω (3.1)
which is γ Hölder continuous.

This Proposition 3.2 will be the first step in the proof of the maximum principle and the construction of the principal eigenfunction for non smooth bounded domains.

The global barrier is given in Proposition 3.3 For all z ∈ ∂Ω, there exists a continuous function

W z on Ω, such that W z (z) = 0, W z > 0 in Ω \ {z} which is a super solution of F (x, ∇W z , D 2 W z ) + h(x) • ∇W z |∇W z | α ≤ -1 in Ω. ( 3.2) 
Proof: We argue on the model of [START_REF] Crandall | Existence results for boundary problems for uniformly elliptic and parabolic fully-nonlinear equation[END_REF]. Choose any point y / ∈ Ω and r 1 such that 2r

1 < d(y, ∂Ω). Let G 1 (x) = 1 r σ 1 -1 |x-y| σ then F [G 1 ] + h(x) • ∇G 1 |∇G 1 | α ≤ σ 1+α |x -y| -(σ+1)α-σ-2 (AN -(σ + 2)a +|h| ∞ |x -y|) ≤ -(r 1 ) -σ(α+1)-α-2 σ 1+α AN 4 as soon as σ + 2 > sup( 4AN a , 2|h| ∞ diamΩ a ). Moreover 1 r σ 1 ≥ G 1 (x) ≥ 2 σ -1 (2r 1 ) σ in Ω. Defining G = r γ o r σ 1 2 G 1 , one gets that G ≤ r γ o 2 .
We denote by w z (x) = |z -x| γ ϕ(θ) some local barrier associated to the point z ∈ ∂Ω as constructed in the previous section. Let

V z (x) = min(G(x), w z ).
Since the infimum of two super-solution is a super solution, V z is a super-solution of

F [V z ] + h(x) • ∇V z |∇V z | α ≤ sup - C ψ r γ(α+1)-α-2 o γ 2+α a 2 , - r γ o 2 (r 1 ) -σ(α+1)-α-2 σ 1+α AN 4 ≡ -κ 1+α .
Hence W z = Vz κ will be the super-solution of (3.3).

Remark 3.4 Observe that, since G > 0 in Ω there exists δ such that W z (x) = wz(x) κ

if |x -z| < δ. Furthermore, by the uniform exterior cone condition there exists

C w > 0 such that if |x -z| < δ W z (x) ≤ C w |x -z| γ ,
where C w depends on γ, r o and ψ and is independent of z ∈ ∂Ω. Remark 3.5 Using Remark 3.1 one can also construct a continuous function

W z on Ω, such that W z (z) = 0, W z < 0 in Ω \ {z} which is a sub-solution of F (x, ∇W z , D 2 W z ) + h(x) • ∇W z |∇W z | α ≥ 1 in Ω. (3.3)
In the next proposition we shall see that existence of global barriers allows to prove Hölder's regularity for solutions in non smooth domains: Proposition 3.6 Let H j be a sequence of bounded open regular sets such that H j ⊂ H j ⊂ H j+1 , j ≥ 1, whose union equals Ω. Let u j be a sequence of bounded solutions of

F (x, ∇u j , D 2 u j ) + h(x) • ∇u j |∇u j | α = f j in H j u j = 0 on ∂H j .
with f j uniformly bounded. Then, for γ ∈ (0, 1) given in the previous construction, there exist C independent of j such that

|u j (x) -u j (y)| ≤ C|x -y| γ
for all x, y ∈ Ω.

Proof: Since ∂H j is C 2 , it satisfies the exterior sphere condition and a fortiori the exterior cone condition. Since the H j converge to Ω which satisfies the exterior cone condition, we can choose exterior cones with opening ψ and height r o which do not depend on j.

Using the global barriers of Proposition 3.3 and the comparison principle in H j , one easily has that, for any z ∈ ∂H j ,

u j ≤ |f j | 1 1+α ∞ W z , in H j . Let ∆ δ = {(x, y) ∈ H 2 j such that |x -y| < δ}. Let C = max{ 2|u|∞ δ γ , C w |f j | 1 1+α
∞ }, we want to prove that for δ small enough, and for any (x, y) ∈ ∆ δ u j (x) -u j (y) ≤ C|x -y| γ .

(3.4)

In the first step we prove it on the boundary of ∆ δ . Indeed if |x -y| = δ it is immediate from the definition of C. Suppose hence that x ∈ H j and y ∈ ∂H j , with |x -y| ≤ δ. Then, using Remark 3.4, for δ sufficiently small

u j (x) ≤ |f j | 1 1+α ∞ W y (x) ≤ C w |f j | 1 1+α ∞ |x -y| γ .
The second step is to check that the inequality (3.4) holds inside ∆ δ . This is done exactly as in the smooth case (see [START_REF] Ishii | Viscosity solutions of Fully-Nonlinear Second Order Elliptic Partial Differential Equations[END_REF][START_REF] Birindelli | Eigenvalue and Maximum principle for fully nonlinear singular operators Advances in Partial Diff[END_REF]) using hypothesis (H2) and (H3).

Proof of Proposition 3.2. Let H j be a sequence of bounded open regular sets such that H j ⊂ H j ⊂ H j+1 , j ≥ 1, with the union equals to Ω.

Let u j for j ≥ 1 be the solution of

F (x, ∇u j , D 2 u j ) + h(x) • ∇u j |∇u j | α = -1 in H j u j = 0 on ∂H j .
Using the global barriers of Proposition 3.3 and the comparison principle in H j one easily has that

u j ≤ W z in H j .
As a consequence, (u j ) j≥1 is a bounded and increasing sequence -in the sense that u j ≥ u j-1 on H j-1 -. Using Proposition 3.6, the sequence (u j ) j is uniformly γ-Hölder continuous. As a consequence, on any compact set J ⊂ Ω, one gets that (u j ) j converges uniformly to some u o which satisfies

F (x, ∇u o , D 2 u o ) + h(x) • ∇u o |∇u o | α = -1.
Furthermore u o equals 0 on the boundary since, by passing to the limit in the previous inequality

u o ≤ W z ,
for all z ∈ ∂Ω. We have also obtained that u o is γ Hölder continuous.

Remark 3.7

In the same manner it is possible to prove that there exists u o a non positive γ-Hölder continuous solution of

F (x, ∇u o , D 2 u o ) + h(x) • ∇u o |∇u o | α = 1 in Ω u o = 0 on ∂Ω, with u o ≥ W z for all z ∈ ∂Ω.
Corollary 3.8 Given f ∈ C(Ω) there exists u a γ-Hölder continuous viscosity solution of

F (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α = f in Ω, u = 0 on ∂Ω (3.5) with |u(x)| ≤ |f | 1 1+α ∞ sup(u o (x), -u o (x)). Furthermore if f ≤ 0, u ≥ 0.
Proof Let z j be a sequence of solutions on H j of

F (x, ∇z j , D 2 z j ) + h(x) • ∇z j |∇z j | α = f in H j , z j = 0 on ∂H j .
By the comparison principle on

H j , u o |f | 1 1+α ∞ ≤ z j ≤ u o |f | 1 1+α
∞ . Using Proposition 3.6, the sequence (z j ) is uniformly γ Hölder continuous and then z j converges on every compact set in Ω to a solution z which is γ Hölder continuous.

If f ≤ 0, each z j is non-negative, which implies that z ≥ 0. Using the inequality

|z j | ∞ ≤ |f | 1 1+α
∞ u o in H j , one gets the final inequality by passing to the limit . Remark 3.9 Observe that the existence of u o and z solutions of (3.1) and (3.6) can be done via Perron's method adapted to viscosity solutions. In particular choosing u = sup{v, subsolution of (3.6) satisfying, |f |

1 1+α ∞ (W ) ≤ v ≤ |f | 1 1+α ∞ W }
where W is the lower semi-continuous envelope of inf z∈∂Ω W z and (W ) is the upper semi continuous envelope of sup z∈∂Ω W z (The definition of viscosity solution is then intended in the sense of semi-continuous viscosity solutions, see [START_REF] Birindelli | Eigenvalue and Maximum principle for fully nonlinear singular operators Advances in Partial Diff[END_REF]). Remark 3.10 When V is some continuous, bounded and non positive function in Ω then u o is a supersolution of

F (x, ∇u o , D 2 u o ) + h(x) • ∇u o |∇u o | α + V (x)u o |u o | α = -1.
This implies that for any f ≤ 0 there exists u solution of Proof. For each z ∈ ∂Ω we know that

F (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α + V (x)u|u| α = f in Ω, u = 0 on ∂Ω (3.6) and u(x) ≤ |f | 1 1+α ∞ u o (x).
u o ≤ W z , in Ω.
Let δ > 0 then for all z ∈ ∂Ω there exists r z such that for x ∈ B(z, r z ) ∩ Ω

W z (x) ≤ δ.
Since ∂Ω is compact one can extract from ∪B(z, r z ) a finite covering, say ∪ i≤k B(z i , r z i ). Let then K be a compact set such that

Ω \ K ⊂ ∪ i≤k B(z i , r z i ).
We have

u o ≤ W = inf z i ,i≤k W z i ,
and then u o ≤ δ in Ω \ K. This ends the proof.

Corollary 3.12 ∀M > 0, there exists K compact subset of Ω, large enough, such that λ(Ω \ K) > M.

Proof. Let δ be such that 1 δ 1+α ≥ M + |V | ∞ , and let K be large enough in order that sup

Ω\K |u o | ≤ δ.
Then

F [u o ] + h(x) • ∇u o |∇u o | α + (M + V (x))u 1+α o = -1 + (M + V (x))u 1+α o ≤ 0
in Ω \ K, and since u o is positive one gets that λ(Ω \ K) ≥ M .

Maximum principle

Definition 3. [START_REF] Lions | Bifurcation and optimal stochastic control[END_REF] We shall say that lim sup x→∂Ω w(x) ≤ 0 if for all > 0 there exists K compact in Ω, large enough in order that sup Ω\K w ≤ Proposition 3.14 Let β(x, •) be a nondecreasing continuous function such that β(x, 0) = 0. Suppose that w is uppersemicontinuous and bounded by above and satisfies

F (x, ∇w, D 2 w) + h(x) • ∇w|∇w| α -β(x, w) ≥ 0
with lim sup w(x j ) ≤ 0 for all x j → ∂Ω. Then w ≤ 0 in Ω.

Remark 3.15 If β is increasing then the result holds without requiring any regularity on the bounded domain Ω. In that case one can use comparison principle in Proposition 2.5.

Proof:

We assume by contradiction that w > 0 somewhere in Ω. Let x be a point in Ω such that w(x) > 0, and let γ > 0 be such that γu o (x) < w(x). The function w -γu o is uppersemicontinuous, bounded by above and it admits a strictly positive maximum value in Ω. Indeed, let < w(x)-γuo(x)

2

. Let K be compact and large enough, in order that x ∈ K and such that w(x) ≤ in Ω \ K. Then (w -γu o )(x) ≤ in Ω \ K. As a consequence w -γu o achieves its maximum inside K. The end of the proof is the same as in the case of regular sets : Introduce ψ j (x, y) = w(x) -γu o (y) -j q |x -y| q and then one can prove as in [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF], that for j large enough, ψ j achieves its maximum on (x j , y j ) inside Ω × Ω, (more precisely in K × K), and that there exists (X j , Y j ) in S 2 such that (j|x j -y j | q-2 (x j -y j ), X j ) ∈ J 2,+ w(x j )

(j|x j -y j | q-2 (x j -y j ), -Y j ) ∈ J 2,-γu o (y j )
Moreover one can choose x j = y j for j large enough, as it is done in [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF].

One has then using (H2), (H4) and the decreasing properties of β,

0 ≤ F (x j , j|x j -y j | q-2 (x j -y j ), X j ) + h(x j ) • |x j -y j | (q-1)(α+1)-1 (x j -y j ) -β(x j , w(x j )) ≤ F (y j , j|x j -y j | q-2 (x j -y j ), -Y j ) + h(y j ) • |x j -y j | (q-1)(α+1)-1 (x j -y j ) +o(1) ≤ -γ 1+α + o(1)
a contradiction since γ > 0.

Existence of an eigenfunction

We recall that V is some bounded and continuous function and that λ(Ω) is defined as :

λ(Ω) = sup{λ, ∃ ϕ > 0 in Ω, F [ϕ] + h(x) • ∇ϕ|∇ϕ| α + (V (x) + λ)ϕ 1+α ≤ 0}.
Theorem 4.1 Let Ω be a bounded domain which satisfies the uniform exterior cone condition, F satisfies condition (H1) to (H4) and h satisfies (H5). There exists a positive function φ solution of

F (x, ∇φ, D 2 φ) + h(x) • ∇φ|∇φ| α + (V (x) + λ(Ω))φ 1+α = 0 in Ω φ = 0 on ∂Ω,
which is γ-Hölder continuous.

Proof : Let H j be a sequence of regular subsets of Ω, strictly increasing, with union Ω. One has for µ j = λ(H j ) the existence of an eigenfunction φ j > 0 in H j , assume that sup φ j = 1. Let µ = lim µ j ≥ λ(Ω). (Note that the sequence (µ j ) is decreasing).

Since the φ j are uniformly bounded, we can apply Proposition 3.6 with f j = (V (x)+µ j )φ 1+α j and we obtain that the sequence (φ j ) j is uniformly Hölder continuous. Up to a subsequence, the sequence (φ j ) converges to φ a nonnegative solution of

F (x, ∇φ, D 2 φ) + h(x) • ∇φ|∇φ| α + (V (x) + µ)φ 1+α = 0.
We have to prove that φ is not identically zero.

Let K 1 be a compact set of Ω, such that λ(Ω \ K 1 ) > µ 1 = λ(H 1 ) > λ(Ω), this is possible according to Corollary 3.12.

Let δ be small enough in order that

( λ(Ω \ K 1 ) + |V | ∞ )δ 1+α < 1.
According to Proposition 3.11, there exists K 2 , a compact regular set, such that

K 1 ⊂ K 2 and sup Ω\K 2 u o < δ. Furthermore λ(H j \ K 2 ) ≥ λ(Ω \ K 1 ) > λ(Ω).
We observe that u o satisfies in Ω \ K 2 , (hence also in H j \ K 2 ) :

F (x, ∇u o , D 2 u o ) + h(x) • ∇u o |∇u o | α + ( λ(Ω \ K 1 ) + |V | ∞ )u 1+α o ≤ 0
which implies in particular that

F (x, ∇u o , D 2 u o ) + h(x) • ∇u o |∇u o | α + ( λ(H j ) + V )u 1+α o ≤ 0. On ∂(H j \ K 2 ) φ j ≤ 1 ≤ 1 inf K 2 u o u o ,
hence using the comparison principle Theorem 2.7 on the set

H j \ K 2 , one gets that φ j ≤ 1 inf K 2 u o u o in H j \ K 2 . (4.1) Let K 3 which contains K 2 such that in Ω \ K 3 , u o ≤ inf K 2 uo 2
, then

φ j ≤ 1 2 in Ω \ K 3 .
This implies that sup K 3 φ j = 1, and hence sup K 3 φ = 1.

In particular we have obtained that φ is not zero and by the strict maximum principle φ > 0 in Ω. Furthermore µ ≤ λ(Ω) and hence µ = λ(Ω).

Passing to the limit in (4.1) we also get that φ is zero on the boundary.

Other maximum principle and eigenvalues

In all the results of this section we still assume that Ω satisfies the uniform exterior cone condition and F and h satisfy (H1) to (H5). We define

λ e = sup{ λ(Ω ), Ω ⊂⊂ Ω , Ω C 2 and bounded} and λ = sup{λ, ∃ ϕ > 0 in Ω, F [ϕ] + h(x) • ∇ϕ|∇ϕ| α + (V (x) + λ)ϕ 1+α ≤ 0}.
In this section we are going to prove that λ e = λ and that it is an "eigenvalue" in the sense that there exists some φ e > 0, which satisfies

F (x, ∇φ e , D 2 φ e ) + h(x) • ∇φ e |∇φ e | α + (V (x) + λ e )φ 1+α e = 0 in Ω φ e = 0 on ∂Ω.
Observe that clearly λ e ≤ λ, and furthermore if Ω is smooth, the equality holds.

The case where Ω is non smooth is open even though we expect this to be true, comforted in this thought by the example at the end of this section. The identity of these values is equivalent to the existence of a maximum principle for λ < λ.

Let us start with the following maximum principle Proposition 5.1 For λ < λ, if w is a sub solution of

F (x, ∇w, D 2 w) + h(x) • ∇w|∇w| α + (V (x) + λ)w 1+α ≥ 0 satisfying w(x) ≤ 0 on ∂Ω then w ≤ 0 in Ω.
Sketch of the proof : Let ϕ > 0 on Ω, such that

F [ϕ] + h(x) • ∇ϕ|∇ϕ| α + (V (x) + λ)ϕ 1+α ≤ 0.
Suppose that w > 0 somewhere, since ϕ > 0 on Ω one can define γ = sup x∈Ω w ϕ and follow the proof of [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF] to derive a contradiction. Remark 5.2 Observe that for λ < λ, we don't know if the maximum principle holds when Ω is not smooth because for supersolutions satisfying ϕ > 0 in Ω we don't know if sup x∈Ω w ϕ is bounded. Proposition 5.3 There exists φ e > 0 which satisfies

F [φ e ] + h(x) • ∇φ e |∇φ e | α + (V (x) + λ e )φ 1+α e = 0 in Ω φ e = 0
on ∂Ω.

Proof of Proposition 5.3.

Let Ω j be a decreasing sequence of regular open bounded domains which contain Ω. Let φ j be some positive eigenfunction for Ω j such that |φ j | ∞ = 1, which exists according to the results in [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF].

Using the comparison principle Proposition 2.5, one has that for all z ∈ ∂Ω j

φ j ≤ (|V | ∞ + λ(Ω j ))W j z
where W j z is a global barrier for Ω j . As in Remark 3.4, W j z satisfies W j z (x) ≤ C|x -z| γ with C independent of j and z, since the Ω j converge to Ω which satisfies the uniform exterior cone condition. This implies that for > 0 there exists K compact in Ω, large enough in order that sup j sup Ω j \K φ j ≤ .

In particular φ j has the property that if

d(K, ∂Ω j ) < C 1 γ sup Ω j \K φ j (x) ≤ .
Let K be a compact set in Ω such that d(K, ∂Ω) < . Since the distance is continuous, for j large enough d(K, ∂Ω j ) < and then sup

Ω j \K φ j (x) ≤ .
In particular one can take a compact K large enough in Ω in order that sup

Ω j \K φ j ≤ 1 2
and then the supremum of φ j is achieved in K.

By the uniform estimates in Proposition 3.6 the sequence (φ j ) j is uniformly γ-Hölder on K and one can then extract from (φ j ) j a subsequence such that φ j converges to some function φ e which is such that |φ e | L ∞ (K) = 1. By compacity φ e is a solution of Moreover φ e > 0 in Ω, and the estimate

φ j ≤ C inf z∈∂Ω j W j z
gives, by passing to the limit, that φ e = 0 on the boundary of Ω.

Corollary 5.4 λ e = λ

Proof: Suppose by contradiction that λ e < λ, then by the maximum principle one would obtain that φ e ≤ 0.

We now present some existence result for the Dirichlet problem. Furthermore u ≥ 0 and it is γ-Hölder continuous.

Proof. For K = 2|V | ∞ + |λ|, let u n be the sequence of solutions of

F [u n+1 ] + h(x) • ∇u n+1 |∇u n+1 | α + (V (x) + λ -K)u 1+α n+1 = f -Ku α+1 n
in Ω u n+1 = 0 on ∂Ω with u 1 = 0; u n exists by Remark 3.10. The sequence (u n ) n is increasing by the comparison principle in Proposition 2.5. Arguing as in [START_REF] Birindelli | Eigenvalue and Maximum principle for fully nonlinear singular operators Advances in Partial Diff[END_REF] one can prove that the sequence is bounded, using the maximum principle of Proposition 3.14. Furthermore there exists a constant C such that u n ≤ Cu o .

Passing to the limit, which we can do thanks to the Hölder's regularity given in Propostion 3.6, we get the required solution.

Remark 5.6 The validity of the maximum principle for λ < λ(Ω) is equivalent to λ e = λ(Ω) and to the existence of a solution for the Dirichlet problem (5.1) for any λ < λ(Ω).

We are now going to show that in a square it is possible to define an operator such that λ e = λ(Ω). Let This yields λ e = λ + for any square. We now consider Ω a smooth domain such that

Ω -:=] π, π(1 -)[×] π, π(1 -)[⊂ Ω ⊂ Ω.
Hence λ e (Ω -) = λ + (Ω -) ≥ λ(Ω ) ≥ λ(Ω) ≥ λ + (Ω).

Passing to the limit we get the result.
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 311 The function u o in Proposition 3.2 satisfies also : ∀δ, there exists K, a compact set in Ω such that sup Ω\K |u o | ≤ δ.
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  (x, ∇φ e , D 2 φ e ) + h(x) • ∇φ e |∇φ e | α + (V (x) + λ e (Ω))φ 1+α e = 0 in Ω.
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 55 Let λ < λ e then for any function f ≤ 0 and continuous there exists u a viscosity solution ofF (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α + (V (x) + λ)u 1+α = f in Ω u = 0on ∂Ω.(5.1)
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  [m] = am if m < 0 Am if m ≥ 0.We define the following operator:G : S → IR G(M ) = F (M 11 ) + F (M 22 ). and Ω =]0, π[×]0, π[.It is easy to see that G satisfies conditions (F1) and (F2) with α = 0. A simple calculation proves that λ + (Ω) = 2a is an eigenvalue corresponding to the positive eigenfunction φ(x, y) = sin x sin y, satisfying:G(D 2 φ) + λ + (Ω)φ = 0 in Ω φ = 0 on ∂Ω.We want to prove thatλ + (Ω) = λ e (Ω) = λ(Ω).Indeed, by definition and by maximum principle for λ e λ e (Ω) ≤ λ + (Ω) ≤ λ(Ω).We first check that λ + (Ω) = λ e .Let Ω =] -π, π(1 + )[×] -π, π(1 + )[ each containing Ω, hence by definition of λ e :λ + (Ω ) ≤ λ e (Ω).An explicit computation using scaling allows to compute λ + (Ω ), and gives lim →0 λ + (Ω ) = λ + (Ω).