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On some partial differential equation for non coercive functional and critical Sobolev exponent

Introduction and results

Let Ω be a bounded smooth domain in IR n , n > 2. We assume that q and f are some continuous functions on Ω which change sign in Ω.

We are interested in the following partial differential equation

-∆u + (q -λ)u = f (x)u 2 -1 , u > 0 in Ω, u = 0 on ∂Ω, (1) 
where λ is a real parameter and 2 = 2n n-2 is the critical exponent for the Sobolev embedding.

Let λ 1 be the principal eigenvalue of -∆ + q in Ω, or equivalently

λ 1 = inf {v∈H 1 0 (Ω), |v| 2 =1} { Ω |∇v| 2 + Ω q|v| 2 }. (2) 
It is well known that there exists φ ≥ 0 which realizes the infimum in [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF]; it satisfies the Euler-Lagrange equation -∆φ + (q -λ 1 )φ = 0, φ ≥ 0 in Ω φ = 0 on ∂Ω

The strict maximum principle implies that φ > 0 in Ω. In the sequel we shall choose φ normalized in L 2 (Ω).

In this paper, we will study the existence of classical solutions of (1) when λ > λ 1 .

In the sub-critical case (i.e. the exponent of u on the right hand side of ( 1) is less than 2 -1) , the problem has been studied by Berestycki, Capuzzo-Dolcetta, and Nirenberg , [START_REF] Berestycki | Problémes Elliptiques indéfinis et Théorème de Liouville non-linéaires[END_REF], [START_REF] Berestycki | Nirenberg Variational methods for indefinite superlinear homogeneous elliptic problems[END_REF] and Alama and Tarantello [START_REF] Alama | On semilinear elliptic equations with indefinite nonlinearities[END_REF] . The same problem (with sub-critical exponent) and the Heisenberg Laplacian has been studied in [START_REF] Birindelli | Cutrì A semi-linear problem for the Heisenberg Laplacian Rend[END_REF]. On another hand the case where λ < λ 1 and the right hand side is critical has been studied by Hebey and Vaugon in [START_REF] Hebey | Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth[END_REF], see also Demengel and Hebey [START_REF] Demengel | On some nonlinear equation involving the p-Laplacian and some critical Sobolev exponent[END_REF] for the p-Laplacian case.

In [START_REF] Alama | On semilinear elliptic equations with indefinite nonlinearities[END_REF], [START_REF] Berestycki | Nirenberg Variational methods for indefinite superlinear homogeneous elliptic problems[END_REF] [6], the authors establish the following necessary condition Theorem 1 Assume that (1) has a solution. Then the following conditions are satisfied:

(i) Ω f φ 2 < 0 if λ > λ 1 (ii) Ω + := {x ∈ Ω, f (x) > 0} = ∅ if λ < λ 1 (iii) Ω + = ∅, Ω -:= {x ∈ Ω, f (x) < 0} = ∅ if λ = λ 1 .
The main result of the present article is the following:

Theorem 2 Let K(n, 2) be the best constant for the Sobolev embedding of H 1 (IR n ) into L 2 (IR n ). We assume that Ω f φ 2 < 0 and that

M 1 = sup { Ω |∇v| 2 + Ω (q-λ 1 )|v| 2 =1,} { Ω f |v| 2 } > K(n, 2) 2 sup f (4)
then there exists a real λ > λ 1 , such that for every λ ∈ [λ 1 , λ [, (1) possesses a solution, and there is no solution for λ > λ .

Remark 1 1. The same problem with q = 0 was considered in [START_REF] Ouyang | On the positive solutions of semilinear equations of ∆u + λu + hu p = 0 on compacts manifolds, part II[END_REF] and [START_REF] Alama | On semilinear elliptic equations with indefinite nonlinearities[END_REF]. In particular in [START_REF] Ouyang | On the positive solutions of semilinear equations of ∆u + λu + hu p = 0 on compacts manifolds, part II[END_REF] Ouyang, through a bifurcation method, proved the existence of a branch of solutions of

-∆u -λu = f u p , u > 0 in Ω u = 0 on ∂Ω (5)
bifurcating on the right from λ 1 under conditions similar to i), ii), iii) in Theorem 1, λ = λ 1 , and for p large (i.e. p ≤ n-6 n-10 if n ≥ 10 and for any p if n ≤ 10). These solutions u(λ) don't coincide with those considered here, since they are "small" and Ω f u(λ) p+1 < 0. On the other hand, for p + 1 sub-critical, through variational methods, he proved the existence of another solution, with λ sufficiently close to λ 1 .

In [START_REF] Alama | On semilinear elliptic equations with indefinite nonlinearities[END_REF], Alama and Tarantello completed these results by perturbing the bifurcation solution and applying the mountain pass lemma, obtaining in that fashion the second solution, even in the critical case. This requires a condition similar to our condition (4), adapted to the case q = 0.

Our proof is direct. It uses the geometry of the functionals involved and the concentration compactness Lemma, which permits to overcome the lack of compactness.

2. The value K(n, 2) has been computed independently by Aubin in [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF][START_REF] Aubin | Nonlinear Analysis on manifolds-Monge-Ampère Equations[END_REF] and Talenti [START_REF] Talenti | Best constants in Sobolev inequality[END_REF]. It is achieved on functions of the form

u (x) = 2 + |x| 2 1-n 2 and then K(n, 2) 2 = 4 n(n -2)ω 2 n n-1
.

The condition (4) is comparable with the conditions in [START_REF] Hebey | Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth[END_REF], [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF], [START_REF] Demengel | On some nonlinear equation involving the p-Laplacian and some critical Sobolev exponent[END_REF].

Furthermore it is not very restrictive since, in section 3, we prove that one always has

M 1 ≥ K(n, 2) 2 sup f.
3. Let us remark that I λ defined as I λ (u) := Ω |∇u| 2 + Ω (g -λ)u 2 is not coercive on the space H 1 0 . But it is coercive on the hyperplan φ ⊥ as soon as λ is close to λ 1 . Indeed, let v = u -( Ω uφ) φ, where φ is supposed to be normalized. Let us consider the set of eigenfunctions, {φ k } k∈IR (φ 1 = φ) for -∆ + q, which is complete in L 2 . Using the fact that φ is simple, one can write v = k≥2 t k φ k where t k = v, φ k , hence

I λ (v) = k (λ k -λ)t 2 k ≥ (λ 2 -λ)|v| 2 2 (6)
taking λ less than λ 2 , one gets the result.

4. It would be interesting to have a better estimate for λ .

While working on this case, we also considered similar equations for the p-Laplacian. The results we obtained will be published in a forthcoming paper [START_REF] Birindelli | Existence of solutions for semi-linear equations involving the p-Laplacien : the non coercive case[END_REF].

Proof of Theorem 2

The proof of Theorem 2 is based on some variational methods similar to those used in [START_REF] Berestycki | Nirenberg Variational methods for indefinite superlinear homogeneous elliptic problems[END_REF].

One of the key ingredient in the proof of Theorem 2 will be the famous concentration compactness principle of P.L. Lions [START_REF]Lions La méthode de compacité concentration, I et II[END_REF], that we enounce here:

Lemma 1 Let Ω be some bounded open set in IR n , and (u k ) be some sequence in H 1 0 (Ω), which is bounded in H 1 (Ω). Then there exist a subsequence of (u k ), still denoted (u k ) for simplicity, two nonnegative measures µ and ν on Ω, a sequence of points x i in Ω, two sequences of nonnegative reals (µ i ) and (ν i ) and a function

u in H 1 0 , such that |∇u k | 2 µ ≥ |∇u| 2 + i µ i δ x i (the convergence being tight i.e. Ω |∇u k | 2 towards Ω µ,), |u k | 2 ν = |u| 2 + i ν i δ x i (the convergence being tight on Ω i.e. Ω |u k | 2 towards Ω ν ), with the inequality ν 2 2 i ≤ K(n, 2) 2 µ i . (7) 
Remark 2 In the sequel we shall denote the space of bounded measures on Ω by M 1 (Ω). This space will be endowed with the weak topology or the tight one. Recall that the tight convergence is equivalent to weak convergence and convergence of the total variations.

The proof of Theorem 2 is divided in several steps.

Step 1 For large λ > λ 1 (1) has no solution.

Step 2 If there exists a solution for a certain λ > λ 1 , then (1) has a solution for any λ 1 < λ ≤ λ .

Step 3 For λ = λ 1 and for λ > λ 1 sufficiently close to λ 1 there exists a solution to (1) .

In the first two steps, we follow the proofs given in [5][6].

Step 1. Let x 0 ∈ Ω + and R > 0 such that B(x 0 , R) ⊂ Ω + . Let µ and ψ be respectively the principal eigenvalue and eigenfunction for -∆ with Dirichlet conditions.

-∆ψ -µ ψ = 0 in B(x 0 , R) ψ = 0 on ∂B(x 0 , R).

Suppose that there exists a solution of (1) for λ > ||q|| ∞ + µ . Then since f > 0 in B(x 0 , R), one has

-∆u + (q -λ)u ≥ 0 in B(x 0 , R) u > 0 on ∂B(x 0 , R).
On the other hand, ∂ψ ∂n ≤ 0 on ∂B(x 0 , R) implies

0 ≤ ∂B(x 0 ,R) -u ∂ψ ∂n = B(x 0 ,R) (-u∆ψ + ψ∆u) ≤ B(x 0 ,R) (µ + q -λ)uψ < 0
from which one derives a contradiction.

Step 2 One uses a sub and super solution argument. Namely, let λ > λ 1 , and denote by w a solution for λ = λ . For λ ∈]λ 1 , λ [, w satisfies

-∆w + (q -λ)w ≥ -∆w + (q -λ )w = f w 2 -1 in Ω w = 0 on ∂Ω
and w is a super solution of (1) for λ. On the other hand, if φ is defined by ( 3), φ is a sub solution of (1) as soon as is sufficiently small. Indeed

-∆( φ) + (q -λ)( φ) = (λ 1 -λ) φ ≤ f (x) 2 φ 2
since f is bounded from below. Since by Hopff's maximum principle, φ ≤ w for small enough one obtains that there exists a solution for λ.

Step 3 One defines as in [START_REF] Berestycki | Nirenberg Variational methods for indefinite superlinear homogeneous elliptic problems[END_REF] [6] the following

S λ = {u ∈ H 1 (Ω), I λ (u) = 1}
and for small and positive,

M ,λ = sup u∈S λ { Ω f |u| 2 -} M λ = sup u∈S λ { Ω f |u| 2 }.
Let us observe that according to [START_REF] Berestycki | Nirenberg Variational methods for indefinite superlinear homogeneous elliptic problems[END_REF] [6], S λ = ∅, M ,λ > 0 and M ,λ is achieved by some maximizer u . u can be chosen positive since |u | is a maximizer as well.

The proof that M λ > 0 is identical to the sub-critical case. Furthermore, it is not difficult to see that for

λ ≥ λ 1 , M λ ≥ M λ 1 = M 1 .
Claim 1: The sequences (M ,λ ), (M λ ) and ||u || H 1 (Ω) are bounded uniformly with respect to and λ for small enough and λ close to λ 1 .

Let u be such that

I λ (u) = 1. Remarking that I λ (|u|) = I λ (u) and that ||u || H 1 is bounded if and only if ||(|u |)|| H 1 is, one can assume in what follows that u ≥ 0. Let then v ∈ H 1 o (Ω), v ∈ φ ⊥ , and t ∈ IR such that u = v + tφ, and Ω f u 2 > 0, one gets I λ (v) = 1 + (λ -λ 1 )t 2
and noticing that t = Ω uφ > 0,

Ω f (v + tφ) 2 -≤ t 2 - Ω f φ 2 -+ |f | ∞ 2 2 2 --1 ( Ω |v| 2 -+ + Ω |v|(tφ) 2 --1 ) (8) 
using the mean-value Theorem. Let α = -Ω f |φ| 2 , and 0 be such that Ω f φ 2 -≤ -3α 4 for < 0 . By Young's inequality, there exists some constant

C 1 such that |f | ∞ 2 2 2 --1 Ω v(tφ) 2 --1 ≤ C 1 |v| 2 - L 2 -+ α 4 t 2 - hence for some C 2 positive Ω f (v + tφ) 2 -≤ -α 2 t 2 -+ C 2 |v| 2 - 2 -. (9) 
Using remark 1 on the coerciveness of I λ on φ ⊥ , and

choosing λ ∈ [λ 1 , λ 1 +λ 2 2 ], one has |∇v| 2 2 ≤ I λ (v) + |q -λ| ∞ |v| 2 2 ≤ I λ (v) 1 + 2 |q| ∞ + |λ 2 | |λ 1 -λ 2 | . ( 10 
)
Using Poincaré's inequality and [START_REF] Demengel | Some compactness result for some spaces of functions with bounded derivatives[END_REF], there exists some constant C 3 which does not depend on λ, such that

|v| 2 2 ≤ C 3 (I λ (v)) = C 3 (1 + (λ -λ 1 )t 2 ). (11) 
Finally, through the convexity inequality:

(1 + (λ -λ 1 )t 2 ) 2 - 2 ≤ 2 2 - 2 -1 (1 + (λ -λ 1 ) 2 - 2 t 2 -) ≤ 2 2 2 + 2 2 2 (λ -λ 1 ) 2 - 2 t 2 -.
Then, we choose λ sufficiently close to λ 1 in order to have

2 2 2 C 2 C 2 2 3 |λ -λ 1 | 2 -1 2 ≤ α 4 , and (9) 
becomes

Ω f u 2 -+ t 2 -α 2 ≤ C 2 |v| 2 - 2 -≤ α 4 t 2 -+ C 2 C 2 2 3 2 2 2 .
Finally there exists C 5 independent of and λ such that

Ω f u 2 -+ t 2 -α 4 ≤ C 5 . (12) 
We may choose in (12) u = u , with u = v + t φ, v ∈ φ ⊥ , one obtains that both Ω f u 2 -and t are bounded for λ -λ 1 sufficiently small. More precisely, we have proved that for λ sufficiently close to λ 1 , one has

M ,λ + t 2 -α 4 ≤ C 5 . (13) 
This implies that (M ,λ ) and (t ) are bounded. Using I λ (v ) = 1 + (λ -λ 1 )t 2 , one obtains that (v ) is bounded as well. Finally (u ) is bounded independently of . This ends the proof of claim 1.

Our purpose now is to let go to zero. Since the sequences (u ), (t ), (M ,λ ) are bounded, one can extract from them some subsequences, denoted in the same manner, such that

u u in H 1 (Ω) weakly (14) t → t (15) M ,λ → M λ . ( 16 
)
Let us note that lim →0 M ,λ = M λ ≥ M λ . Indeed, let δ > 0 be given and u ∈ S λ , such that Ω f u 2 ≥ M λ -δ . Then Ω f u 2 -≥ M λ -2δ for small enough. We then deduce that

M λ = limM ,λ ≥ M λ .
Since u satisfies the following partial differential equation

-∆u + (q -λ)u = (M ,λ ) -1 f u 2 --1 in Ω u = 0 on ∂Ω (17)
by passing to the limit when → 0, one has

-∆u + (q -λ)u = (M λ ) -1 f u 2 -1 in Ω u = 0 on ∂Ω. (18) 
The point here is to prove that i) u is not identically zero. ii) M λ = M λ and u is a maximizer for M λ . In order to prove i) let us multiply (17) by u ϕ, where ϕ ∈ D( Ω) and integrate by parts. One obtains

Ω |∇u | 2 ϕ + Ω u ∇u .∇ϕ + Ω (q -λ)u 2 ϕ = M -1 ,λ Ω f u 2 -ϕ. (19) 
Similarly, multiplying (18) by uϕ one gets

Ω |∇u| 2 ϕ + Ω u∇u.∇ϕ + Ω (q -λ)u 2 ϕ = M -1 λ Ω f u 2 ϕ. ( 20 
)
Using the concentration compactness principle as given in Lemma 1 we get that there exist two nonnegative measures, µ and ν, compactly supported in Ω, a numerable set of points x i in Ω, some sequences of nonnegative numbers ν i and µ i , such that

|∇u | 2 µ ≥ |∇u| 2 + i µ i δ x i in M 1 (Ω) tightly |u | 2 ν = |u| 2 + i ν i δ x i in M 1 (Ω) tightly with ν 2 2 * i ≤ K(n, 2) 2 µ i .
Let us observe that Ω u 2 -is bounded and hence, u 2 -converges to some measure ν in M 1 ( Ω) tightly, up to a subsequence. By Hölder's inequality, one has ν ≤ ν. Since one can extract once more a subsequence from u , one can also assume that u converges almost everywhere towards u. By Fatou's lemma, for all ϕ ∈ D( Ω), ϕ ≥ 0, one has Ω |u| 2 ϕ ≤ ν, ϕ , and then ν ≥ |u| 2 . Finally there exists some 0

≤ νi ≤ ν i such that ν = |u| 2 + i νi δ x i .
One then obtains, by passing to the limit in ( 19)

µ, ϕ + Ω u∇u.∇ϕ+ Ω (q-λ)|u| 2 ϕ = 1 M λ Ω f |u| 2 ϕ + i νi f (x i )ϕ(x i ) . (21) 
Subtracting (20) from (21) one gets

(µ -|∇u| 2 , ϕ = M -1 λ i νi f (x i )ϕ(x i ) ( 22 
)
which implies that, if µ = µ ac + µ S is the Lebesgue decomposition of µ in its absolutely continuous part and a singular one, µ ac = |∇u| 2 and µ S = i μi δ

x i = M -1 λ i νi f (x i )δ x i , hence µ i ≤ μi = M -1 λ νi f (x i ). ( 23 
)
Clearly if f (x i ) ≤ 0 then µ i = 0 and therefore νi = 0.

Observe that

1 M λ Ω f u 2 = I λ (u) = I λ (v) + (λ 1 -λ)t 2 ≥ (λ 1 -λ)t 2 .

Let us define

B = M 1 + K(n, 2) 2 sup f (x) 2 .
By assumption one has

M 1 > B > K(n, 2) 2 sup f (x).
From claim 1, we know that |t| ≤ K a constant independent of λ. Suppose that |λ -λ 1 | is sufficiently small in order to have M

2 2 1 (1 + (λ - λ 1 )K 2 ) 2 2 -1 > B 2 2
. Passing to the limit in the definition of M ,λ , one has

Ω f u 2 + i ν i f (x i ) = M λ and then i ν i f (x i ) ≤ M λ (1 + (λ -λ 1 )t 2 ) (24)
then, using (4), lemma 1, ( 7) and the definition of B,

μi ≤ ν i f (x i ) M λ (1 + (λ -λ 1 )t 2 ) 1-2 2 ν i f (x i ) M λ (1 + (λ -λ 1 )t 2 ) 2 2 (1 + (λ -λ 1 )t 2 ) ≤ K(n, 2) 2 sup f 2 2 B 2 2
μi ≤ β μi for some β < 1. This implies that μi = 0 and then ν i = 0. Finally, Mλ = Ω f u 2 , u is a minimizer and M λ = M λ . This ends the proof of Theorem 2.

Corollary

Under the assumptions Ω f φ 2 < 0 and

M λ 1 > K(n, 2) 2 sup f , then for λ > λ 1 , λ → λ 1 , M λ → M λ 1 = M 1 .
Moreover, from any sequence (u λ ) λ of maximizers, one can extract a sequence which converges strongly towards a maximizer for λ 1 . Proof Clearly, M λ 1 ≤ M λ for every λ > λ 1 . Let (u λ ) be a sequence of maximizers obtained by Theorem 2, for λ > λ 1 sufficiently close to λ 1 . By the inequality [START_REF] Hebey | Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth[END_REF] one gets that (u λ ) is uniformly bounded in H 1 with respect to λ. Extracting a subsequence from (M λ ) and (u λ ), one obtains that u λ w which satisfies

-∆w + (q -λ 1 )w = 1 M 1 f w 2 -1
where

M 1 = lim M λ ≥ M λ 1 .
Arguing as in the previous proof, one gets that w cannot be zero, and by the positiveness of

I λ 1 , one has Ω f w 2 ≥ 0. Since Ω f u 2 λ = M λ → M 1 = Ω f w 2 + i ν i f (x i ), then for every i, ν i f (x i ) ≤ M 1 .
Proceeding as we already did in the proof of Theorem 2

µ i = ν i f (x i ) M 1 ≤ ν i f (x i ) M 1 1-2 2 ν i f (x i ) M 1 2 2
≤ βµ i where β < 1. Finally one gets that µ i = ν i = 0, Ω f w 2 = 1, w is a maximizer for M λ 1 , and M λ 1 = M 1 . Moreover, there is strong convergence of u λ towards w.

3 About the condition (4). Test functions.

In this section, we follow the ideas developped in [START_REF] Demengel | On some nonlinear equation involving the p-Laplacian and some critical Sobolev exponent[END_REF]. However, we give some details of the proof for completeness sake. We assume from now on that n > 4. We first prove that

M λ 1 ≥ K(n, 2) 2 sup f.
Let δ > 0 be given, suppose that f achieves its supremum on a point x 0 inside Ω and let u be defined as

u (x) = ( 2 + |x -x 0 | 2 ) 1-n 2 .
Suppose that R is small enough to have f > sup f -δ on B(x 0 , 2R) and choose ϕ ∈ D(B(x 0 , 2R)), ϕ = 1 on B(x 0 , R), 0 ≤ ϕ ≤ 1. Finally define v = u ϕ. Then

I λ 1 (v ) = IR n |∇(u ϕ)| 2 + IR n (q -λ 1 )(u ϕ) 2 ≤ IR n |∇u | 2 + B(x 0 ,2R)\B(x 0 ,R) u 2 |∇ϕ| 2 + 2|∇u ||∇ϕ| + Ω (q -λ 1 )(u ϕ) 2 ≤ (n -2) 2 ω n-1 2 ∞ 0 r n+1 dr ( 2 + r 2 ) n + B(x 0 ,2R)\B(x 0 ,R) u 2 |∇ϕ| 2 + + 2 B(x 0 ,2R)\B(x 0 ,R) |∇u ||∇ϕ| + Ω (|q| ∞ + |λ 1 |)C|u | 2 2 ≤ C 1 2-n + o( 2-n ) ( 25 
)
where

C 1 = ω n-1 (n -2) 2 2 +∞ 0 r n+1 dr (1 + r 2 ) n = ω n-1 (n -2) 2 2 Γ( n+3 2 )Γ( n-1 2 ) n! .
On the other hand

Ω f |v | 2 ≥ (f (x 0 ) -δ) B(x 0 ,R) |u ϕ| 2 ≥ (f (x 0 ) -δ)C 2 -n + O( -1 ) (26) 
where

C 2 = ω n-1 2 ∞ 0 r n-1 dr (1 + r 2 ) n = ω n-1 2 Γ( n 2 )Γ( n 2 + 1) n! . Since C 1 C 2 2 2
= K(n, 2) -2 one gets that

I λ 1 (v ) ( Ω f |v | 2 ) 2 2 ≤ K(n, 2) -2 (sup f -δ) 2 2
which implies the desired result, since δ is arbitrary. Let us introduce, for n > 4 + 2j,

α n,j = ω n-1 +∞ 0 r 2j+n-1 dr (1 + r 2 ) n-2 = ω n-1 2 Γ( n 2 + j)Γ( n 2 -j -1) (n -2)! and for n > 2k β n,k = ω n-1 +∞ 0 r 2k+n-1 dr (1 + r 2 ) n = ω n-1 2 Γ(k + n 2 )Γ(n + 1 -k 2 ) n! .
We have the following result Theorem 3 Suppose that n > 4, that q and f are smooth functions, and suppose that f achieves its maximum on an interior point x 0 . Let also k f and k q be the integers defined by

k q = inf{j ≥ 0, ∆ j (q -λ 1 )(x 0 ) = 0} k f = inf{k ≥ 1, ∆ k (f )(x 0 ) = 0}.
Then one has M λ 1 > K(n, 2) 2 sup f in each one of the following situations

1. If n > 2k q + 4, k f = k q + 1 and α n,kq (2k q )! ∆ kq (q -λ 1 )(x 0 ) - n -2 n β n,k f f (x 0 )(2k f )! ∆ k f f (x 0 ) < 0 2. If k f > k q + 1 and ∆ kq (q -λ 1 )(x 0 ) < 0. 3. If n > 2k f and k q > k f , and ∆ k f f (x 0 ) > 0.
Remark 3 When q = 0 the condition in 1) becomes if λ 1 > 0, and if

k f = 1 -α n,0 λ 1 - n -2 2n β n,1 ∆f (x 0 ) f (x 0 ) < 0
and no condition when k f ≥ 2, which is exactly the condition given in [START_REF] Alama | On semilinear elliptic equations with indefinite nonlinearities[END_REF].

Proof of Theorem 3. Suppose that δ > 0 is such that B(x 0 , 2δ) ⊂⊂ Ω and let ϕ be some smooth function, compactly supported in B(x 0 , 2δ) whose value is 1 on a neighborhood of x 0 . Let

u (r) = ( 2 + r 2 ) 1-n 2
and let v be defined as v = u ϕ Suppose that J is the biggest integer such that n > 2J + 4 and let η = 2J + 2, one can write

| IR n |∇(u ϕ)| 2 - IR n |∇u | 2 | ≤ c -n+2 ∞ δ r n+1 dr (1 + r 2 ) n ≤ C -n+2+η +∞ 0 r η+n+1 dr (1 + r 2 ) n
this last integral being convergent. Using the definition of η, one gets that

| IR n |∇(u ϕ)| 2 - IR n |∇u | 2 | = O( -n+4+2J ).
Let us now treat the term IR n (q -λ 1 )v 2 = IR n (q -λ 1 )(u ϕ) 2 .

We remark that for all j such that j ≤ J one has

| IR n r 2j (u ϕ) 2 - IR n r 2j u 2 | = o( n+2J-4 ).
Using a Taylor expansion around x 0 for f and Lemma 6 in [START_REF] Demengel | On some nonlinear equation involving the p-Laplacian and some critical Sobolev exponent[END_REF], one gets

IR n f (u ϕ) 2 = f (x 0 ) IR n (u ϕ) 2 + k≤[ n 2 ]
β k,n ∆ k f (x 0 )

IR n r 2k (u ϕ) 2 + O( n-2[ n 2 ] ) = f (x 0 )C 2 -n + k≤[ n 2 ] ∆ (k) f (x 0 )β k,n 2k-n + O( -n+2[ n 2 ] ) ( IR n f (u ϕ) 2 ) 2 2 = (f (x 0 )C 2 -n ) 2 2   1 + k≤[ n 2 ] β k,n ∆ k f (x 0 ) f (x 0 )C 2 2k + o( 2[ n 2 ] )   .
Suppose that k f ≤ [ n 2 ], then the sum above may be reduced, say

( IR n tf (u ϕ) 2 ) 2 2 = (f (x 0 )c 2 -n ) 2 2 (1 + β k f ,n ∆ k f f (x 0 ) f (x 0 )c 2 2k f + o( 2k f ))
where

β k,n = ω n-1 ∞ 0 u 2k+n-1
(1 + u 2 ) n du. Suppose that n > 2k q + 4, and 2k f > 2k q + 2, then one may write

I λ 1 (v ) ( f v 2 ) 2 2 = c 1 (f (x 0 )c 2 ) 2 2 
(1 + 2kq+4 α kq,n ∆ kq q(x 0 ) + o( 2kq+4 ))(1 + o( 2kq+4 )).

As a consequence, the first nonzero term which appears in this development is the term with ∆ kq q(x 0 ). Since in this calculation c 1 (f (x 0 )c 2 )

2 2
is nothing else that K(n, 2) -2 (sup f ) 2 2 , the result follows as soon as ∆ kq q(x 0 ) < 0. Suppose that n > 2k f and 2k q + 4 > 2k f then

I λ 1 (v ) ( f v 2 ) 2 2 = c 1 (f (x 0 )c 2 ) 2 2 1 + o( 2k f )(1 - 2 2 β k,n ∆ k f f (x 0 ) 2k f f (x 0 )C 2 + o( 2k f )) < K(n, 2) -2 f (x 0 ) 2 2
as soon as ∆ k f f (x 0 ) > 0.

Finally suppose that n > 2k q + 4 = 2k f + 2, then the first nonzero term in the expansion above are of the same order at the numerator and the denominator. Then the result follows as soon as ∆ kq (q -λ 1 )(x 0 )α kq,n -2 2

∆ k f f (x 0 )β k f ,n f (x 0 )C 2 < 0.
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Indeed, this difference can be majorized (up to a constant) by 2j-4+n ∞ δ u 2j+n-1 (1 + u 2 ) n-2 du.

Let η be such that n -4 -2j > η > 2(J -j), then one may write

where the constant C is given by the rest of some convergent integral.

Then, using a Taylor expansion around x 0 , one gets that

and then

where

Here we have used the technical Lemma 6 in [START_REF] Demengel | On some nonlinear equation involving the p-Laplacian and some critical Sobolev exponent[END_REF], which basically says that the integrals over odd order terms in the Taylor expansion are zero.

Let us now treat the denominator. Let K be the greatest integer such that n > 2K, let us see that for all k ≤ K

Indeed the difference above can be majorized by

hence by choosing η such that n -2k > η > 2(K -k), one gets