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Introduction

In this paper we give necessary and sufficient conditions for the existence of solutions of the following equation -div(|∇u| p-2 ∇u) + (g -λ)u p-1 = f u q-1 , u ≥ 0 in Ω u = 0 on ∂Ω,

where Ω is a bounded smooth domain of IR N , 1 < p < N , p < q ≤ pN N -p := p , f and g belong to L ∞ , and λ ∈ IR. By solution of (1.1), we mean a function u ∈ W 1,p 0 (Ω) satisfying (1.1) in the weak usual sense. In particular we shall study (1.1) considering the position of λ with respect to the principal eigenvalue. Precisely, it is well known that the concept of "eigenvalue" and "eigenfunction" has been generalized by many authors to the quasi-linear setting of the p-Laplacian ∆ p := div(|∇.| p-2 ∇.), in particular let us recall the works of Allegretto and Huang in [START_REF] Allegretto | Principal eigenvalues and Sturm comparison via Picone's identity[END_REF], Anane in [START_REF] Anane | Simplicity and isolation of the first eigenvalue of the p-Laplacian with weight C[END_REF] and Lindqvist in [START_REF] Lindqvist | A note on the nonlinear Rayleigh quotient[END_REF]. We shall now state their definitions and the principal properties obtained in the works cited above. 1 Definition 1.1 λ 1 the first "eigenvalue" of -div(|∇.| p-2 ∇.) + g in W 1,p 0 (Ω) is defined by

λ 1 := inf {ψ∈W 1,p 0 (Ω),|ψ|p=1} { Ω |∇ψ| p + Ω g|ψ| p }.
It is by now a classical result that there exists φ, positive in Ω for which this infimum is achieved. φ is called the "eigenfunction" corresponding to λ 1 .

In particular φ satisfies -div(|∇φ| p-2 ∇φ) + (g -λ 1 )φ p-1 = 0 in Ω φ = 0 on ∂Ω.

(1.2) Furthermore φ is simple, i.e. any solution of (1.2) satisfies v = kφ for some k ∈ IR. In the sequel we will normalize φ in the L p (Ω) norm.

Clearly for any λ < λ 1 the only nonnegative solution of

-div(|∇u| p-2 ∇u) + (g -λ)u p-1 = 0 in Ω u = 0 on ∂Ω (1.3) is u ≡ 0.
On the other hand λ 1 is isolated, i.e. there exists δ > 0 such that for any λ in (λ 1 , λ 1 + δ) the only solution of (1.3) is u ≡ 0 as well.

Our first results concern some necessary conditions for the existence of solutions.

Theorem 1.2 Suppose that there exists a nonnegative solution u ≡ 0 of equation (1.1). Then 1) For λ < λ 1 , the set Ω + defined as

Ω + := {x ∈ Ω, f (x) > 0}
is nonempty.

2) For λ > λ 1 , Ω -:= {x ∈ Ω, f (x) < 0} = ∅ and Ω f φ q < 0.

3) For λ = λ 1 , Ω + = ∅, Ω -= ∅ and Ω f φ q < 0.

Theorem 1.3 There exists λ > λ 1 such that there are no non trivial non negative solutions of equation (1.1) for λ > λ .

Theorem 1.4 Suppose that there exists λ > λ 1 for which (1.1) possesses a solution. Then, (1.1) has a solution for λ ∈]λ 1 , λ].

Our next result concerns the existence of solutions of equation (1.1) in the sub-critical case:

Theorem 1.5 Suppose that Ω + and Ω -are nonempty, that p < q < p , and Ω f φ q < 0. Then there exists δ > 0 such that for λ ∈ (λ 1 , λ 1 + δ) equation (1.1) has at least two non zero and nonnegative solutions of equation (1.1).

For λ = λ 1 there exists at least one solution of (1.1) nonnegative and not identically zero.

Remark 1: The solutions are obtained as minima of the two variational problems:

α λ,q = inf {u∈W 1,p o (Ω), Ω f |u| q =-1} { Ω |∇u| p + Ω (g -λ)|u| p } and µ λ,q = inf {u∈W 1,p o (Ω), Ω f |u| q =1} { Ω |∇u| p + Ω (g -λ)|u| p }.
Indeed, if u ∈ W 1,p o (Ω) realizes α λ,q (respectively µ λ,q ), so does |u|, and it is easy to see that u satisfies:

-div(|∇u| p-2 ∇u) + (g -λ)u p-1 = -α λ,q f u q-1 (respectively -div(|∇u| p-2 ∇u) + (g -λ)u p-1 = µ λ,q f u q-1 ). By a standard scaling argument one obtains two nonnegative solutions of equation (1.1), one being such that Ω f u q > 0 and the other such that

Ω f u q < 0.
For simplicity of notation let α λ := α λ,p and µ λ := µ λ,p .

Theorem 1.6 Suppose that q = p and that Ω + , Ω -= ∅, that λ > λ 1 and that Ω f φ p < 0. Then there exists δ > 0 such that if λ ∈ (λ 1 , λ 1 + δ) there exists at least one solution of equation (1.1). If moreover,

µ λ < K(N, p) -p sup |f | -p p ,
then, there exist at least two non zero solutions of equation (1.1).

Remark 2: As in the subcritical case, the solutions are obtained as minima of α λ and µ λ . Remark 3: According to Theorems 1.4 and 1.5 the solutions of equation (1.1) exist for an interval, (λ 1 , λ). On the other hand for some λ ∈]λ 1 , λ[, there may be only one solution, because for λ not close to λ 1 nothing can be said about the sign of Ω f u q λ when u λ is a solution obtained by Theorem 1.4.

For p = 2 i.e. the classical Laplacian and 2 < q < 2n n -2 problem (1.1) has been extensively studied when f > 0. Since we are concerned with the case where f changes sign, let us recall the main results in that case. Necessary and sufficient conditions for the existence of solutions for (1.1) have been given by Alama and Tarantello [START_REF] Alama | On semilinear elliptic equations with indefinite nonlinearities[END_REF], Berestycki, Capuzzo Dolcetta and Nirenberg [START_REF] Berestycki | Nirenberg Problémes Elliptiques indéfinis et Théorème de Liouville non-linéaires[END_REF] and Ouyang [START_REF] Ouyang | On the positive solutions of semilinear equations of ∆u + λu + hu p = 0 on compacts manifolds, part II[END_REF] in the non coercive case. Alama and Tarantello in [START_REF] Alama | On semilinear elliptic equations with indefinite nonlinearities[END_REF] and the authors of the present paper in [START_REF] Birindelli | On some partial differential equation for non coercive functional and critical Sobolev exponent[END_REF] have studied the critical case i.e. q = 2n n-2 . Let us also mention the very interesting work of Chen and Li in [START_REF] Chen | A priori estimates for prescribing scalar curvature equations[END_REF].

It is well known that the p-Laplacian appears in many contexts : Non-Newtonian fluids, nonlinear elasticity and reaction diffusion problems just to name a few. Indeed equation (1.1) has been extensively studied for general p and q; in particular for q critical, existence of solutions of problem (1.1) was studied by Guedda and Veron in [START_REF] Guedda | Quasilinear equations involving critical Sobolev exponents[END_REF] for f ≡ 1, g(x) ≡ λ = 0. Demengel and Hebey in [START_REF] Drabek | Multiplicity of positive solutions for some quasi linear elliptic equations in IR N with critical Sobolev exponent[END_REF] gave existence of variational solutions when f changes sign and the functional Ω |∇u| p + Ω (g -λ)|u| p is coercive i.e. λ < λ 1 .

In [START_REF] Garcia Azorero | Peral Alonso Some results about the existence of a second Positive solution in a quasilinar critical problem[END_REF], the authors study a similar problem with (g -λ)u p-1 replaced by cteu k-1 with k = p.

Always for general p but q subcritical the non coercive case was also studied by Drabek and Pohozaev in [11]; they use the fibering method to obtain some existence results for λ close to λ 1 . See also Pohozaev and Veron [START_REF] Pohozaev | Multiple positive solutions of some quasilinear Neumann problems[END_REF] for the Neumann problem.

Finally for q critical, Drabek and Huang studied the problem in IR N [10], while Arioli and Gazzola in [START_REF] Arioli | Some results on p-Laplacian equations with a critical growth term[END_REF] proved existence for solutions changing sign through a linking method.

The above Theorems are the natural extension to the p-Laplacian of the results obtained in [START_REF] Birindelli | On some partial differential equation for non coercive functional and critical Sobolev exponent[END_REF]. Nonetheless the proofs differ from the case p = 2. In particular the proofs of Theorems 1.5 and 1.6 follow the approach taken by Ouyang in [START_REF] Ouyang | On the positive solutions of semilinear equations of ∆u + λu + hu p = 0 on compacts manifolds, part II[END_REF]. Although we should mention that Ouyang treats the sub-critical case and he uses bifurcation technic that don't hold for p = 2.

The outline of the paper is the following. In the next section we prove the necessary conditions (i.e. Theorem 1.2 and 1.3) using among other things Picone's identity for the p-Laplacian (cf Allegretto and Huang [START_REF] Allegretto | Principal eigenvalues and Sturm comparison via Picone's identity[END_REF]). In the third section we prove the existence results first for the sub-critical case and then for the critical case. Finally in the last section we construct some test functions to show that the condition on µ λ of Theorem 1.6 can be satisfied and easily verified.

2 Proofs of Theorem 1.2, 1.3, 1.4.

Let us recall Picone's identity for the p-Laplacian as formulated by Allegretto and Huang in [START_REF] Allegretto | Principal eigenvalues and Sturm comparison via Picone's identity[END_REF]. Suppose that v and w belong to W 1,p (Ω) with v ≥ 0 and w > 0, then

|∇v| p -∇ v p w p-1 • σ(w) ≥ 0 everywhere in Ω, for σ(w) := |∇w| p-2 ∇w.
Moreover if equality holds then w = kv for some constant k ∈ IR. Proof of Theorem 1.2

Since in the case λ < λ 1 the functional

I λ (u) := Ω |∇u| p + Ω (g -λ)|u| p
is coercive the first assertion is obvious. Let us prove 2. Suppose that λ > λ 1 , and let u be a nonnegative solution of (1.1) . Adapting the strict maximum principle of Vasquez, one has u > 0 inside Ω . In addition, from regularity results of [START_REF] Guedda | Local and Global properties of solutions of quasilinear elliptic equations[END_REF], [START_REF]Tolksdorff Regularity for a more general class of quasilinear elliptic equations[END_REF], [START_REF] Lewis | Regularity of the derivatives of solutions to certain degenerate elliptic equations[END_REF], [START_REF] Benedetto | 1+α regularity of weak solutions of degenerate elliptic equations[END_REF], u is C 1,α ( Ω), for every α ∈ [0, 1[. Using once more the strict maximum principle inspired from Hopf's lemma, as given in [START_REF]Vasquez A strong maximum principle for some quasilinear elliptic equations[END_REF], one has the existence of some real > 0 such that φ ≥ u on Ω. As a consequence, one is allowed to multiply the equation (1.1) by (u) 1-q φ q . Integrating by parts on Ω, one obtains

Ω f φ q = Ω σ(u).∇(u 1-q φ q ) + Ω (g -λ)u p-1 u 1-q φ q = (1 -q) Ω |∇u| p φ u q + q Ω (σ(u).∇φ) φ u q-1
+ Ω (g -λ)u p-q φ q .

(2.4)

Now we multiply equation (1.2) by φ q-p+1 u p-q and integrate over Ω;

Ω σ(φ).∇(φ q-p+1 u p-q ) + Ω (g -λ 1 )φ q u p-q = 0 and then (q -p + 1)

Ω |∇φ| p φ u q-p + (p -q) Ω σ(φ).∇u φ u q-p+1 + + Ω (g -λ 1 )φ q u p-q = 0. (2.5) 
Subtracting (2.4) to (2.5) , one gets (q -p + 1)

Ω |∇φ| p φ u q-p + (p -q) Ω σ(φ).∇u φ u q-p+1 -q Ω φ u q-1 ∇φ.σ(u) + (q -1) Ω φ u q |∇u| p + (λ -λ 1 ) Ω φ q u p-q = - Ω f φ q . (2.6)
Now apply Picone's identity as follows

|∇u| p -∇ u p φ p-1 • σ(φ) ≥ 0.
Multiplying it by φ u q and integrating over Ω it becomes

Ω |∇u| p φ u q -p Ω ∇u • σ(φ)u p-q-1 φ q-p+1 + + (p -1) Ω |∇φ| p u p-q φ q-p ≥ 0. (2.7)
Similarly, exchanging the role of u and φ i.e. considering |∇φ| p -∇( φ p u p-1 ) • σ(u) ≥ 0 and multiplying by φ u q-p one gets

Ω |∇φ| p φ u q-p -p Ω φ u q-1
∇φ.σ(u)

+ (p -1) Ω φ u q |∇u| p ≥ 0. (2.8)
Multiply (2.8) by q p and (2.7) by q p -1 their sum gives (q -p + 1)

Ω |∇φ| p φ u q-p + (p -q) Ω ∇u • σ(φ) φ u q-p+1 + -q Ω φ u q-1 ∇φ • σ(u) + (q -1) Ω |∇u| p φ u q ≥ 0. (2.9) 
Substracting (2.9) from (2.6) we obtain

Ω f φ q + (λ -λ 1 )
Ω φ q u p-q ≤ 0.

(2.10)

When λ > λ 1 , this implies that Ω f φ q < 0 and 2) is proved.

For the proof of 3), let λ = λ 1 and let u be a nonnegative solution of equation (1.1). Multiplying it by u one obtains

Ω |∇u| p + Ω (g -λ 1 )u p = Ω f u q .
Since the functional I λ 1 is non negative, one has Ω f u q ≥ 0. Suppose that it is zero. Then u would be an eigenfunction for the eigenvalue λ 1 , which would imply that f u q-1 = 0. Then u must be zero on a set of positive measure, which contradicts the fact that u is parallel to φ > 0 in Ω. We have proved that Ω f u q > 0, this implies that Ω + = ∅.

We shall now prove that Ω f φ q < 0, this of course implies also that Ω -= ∅.

From the previous computations in the proof of 2), and precisely from (2.6) with λ = λ 1 and from (2.9), we obtain that (q -p + 1)

Ω |∇φ| p φ u q-p + (p -q) Ω ∇u • σ(φ) φ u q-p+1 -q Ω φ u q-1 ∇φ • σ(u) + (q -1) Ω |∇u| p φ u q + = - Ω f φ q . (2.11)
As a consequence Ω f φ q ≤ 0. Suppose by contradiction that Ω f φ q = 0, then the left hand side of the previous identity is zero. Recalling (2.8) and (2.9)the left hand side is a sum of two nonnegative quantities, hence they must be both null. Therefore we have obtained that

Ω |∇φ| p φ u q-p -p Ω φ u q-1 ∇φ.σ(u) + (p -1) Ω φ u q |∇u| p = 0 (2.12)
and

Ω |∇u| p φ u q -p Ω ∇u • σ(φ)u p-q-1 φ q-p+1 + + (p -1) Ω |∇φ| p u p-q φ q-p = 0. (2.13)
Clearly (2.12) and (2.13) imply that

|∇u| p -∇ u p φ p-1 • σ(φ) = 0 and |∇φ| p -∇ φ p u p-1 • σ(u) = 0.
Each of these identities implies that φ is parallel to u. Then u is an eigenfunction. This implies that f u q-1 is identically zero which is a contradiction.

Proof of Theorem 1.3.

Let B be a ball on which f > 0, B ⊂⊂ Ω + . Let then (ψ, µ ) be the non zero and non negative normalized solution, of

-∆ p ψ + (-µ )ψ p-1 = 0 in B ψ = 0 on ∂B.
Suppose that a solution of equation (1.1) exists for λ such that |g| ∞ +µ < λ, u ≥ 0 and non identically zero. On B, by the strict maximum principle of Vasquez, u > 0. Using Picone's identity, one has

|∇ψ| p -∇ ψ p u p-1 .σ(u) ≥ 0 in B, hence, integrating over B 0 ≤ B (µ )ψ p + B (g -λ)ψ p (2.14)
here, we have used the fact that ψ = 0 on ∂B and the equation verified by u, since

-∆ p u + (g -λ)u p-1 = f u q-1 ≥ 0 on B. (2.

14) of course contradicts the choice of λ.

Proof of Theorem 1.4.

Let λ be such that λ 1 < λ and take λ ∈]λ 1 , λ[. Let ū be a solution of (1.1) for λ. Then ū is a supersolution of (1.1) for λ. Indeed

-∆ p ū + (g -λ)ū p-1 = f ūq-1 + ( λ -λ)ū p-1 ≥ f ūq-1
and ū = 0 on the boundary. On another hand, taking small enough, φ is a subsolution, since

-∆ p ( φ) + (g -λ)( φ) p-1 = (λ 1 -λ) p-1 φ p-1 ≤ f q-1 φ q-1 ,
(using p < q and (λ 1 -λ) p-1 φ p-1 < 0). Moreover, using strong maximum principle of Vasquez and regularity results, one can choose small enough in order to have ū ≥ φ. Finally we use the following Proposition, whose proof can be found in the appendix and is a mere adaptation of the classical sub and super solution for p = 2. (see e.g. [START_REF] Hebey | Introduction à l'Analyse Non Linéaire sur les variétés Diderot Editeurs[END_REF], see also [START_REF] Struwe | Variational Methods[END_REF]):

Proposition 2.1 Suppose that f (x, t) = a(x)|t| q-2 t + b(x)|t| p-2 t with 1 < p < q with a and b two continuous and bounded functions on Ω Suppose that ū is a weak supersolution for -∆ p u + f (x, u), ū = 0 on ∂Ω, and that u is a weak subsolution with u = 0 on ∂Ω. Suppose that there exists some constant c and C such that

-∞ < c ≤ u ≤ ū ≤ C < +∞
Then, there exists a solution u between u and ū Using this Proposition with f (x, u) = (g -λ)u p-1 -f u q-1 , and u = φ, one obtains that there exists a solution which is such that

φ ≤ u ≤ ū.

Existence of solutions

Proof of Theorem 1.5 This proof is inspired by the arguments used in [START_REF] Ouyang | On the positive solutions of semilinear equations of ∆u + λu + hu p = 0 on compacts manifolds, part II[END_REF]. We begin with the subcritical case. Suppose that q < p . Let us recall the following notations:

λ q = inf {u∈W 1,p 0 (Ω), |u| p p =1, Ω f u q =0} { Ω |∇u| p + Ω (g -λ 1 )|u| p } α λ,q = inf {u, Ω f |u| q =-1} { Ω |∇u| p + Ω (g -λ)|u| p } (3.15) and µ λ,q = inf {u, Ω f |u| q =1} { Ω |∇u| p + Ω (g -λ)|u| p }. (3.16) Let I λ (u) := Ω |∇u| p + Ω (g -λ)|u| p .
We will prove the following facts 1. λ q > 0.

2. For λ ∈]λ 1 , λ 1 + λ q [, α λ,q < 0 and it is achieved; α λ 1 ,q = 0.

3. For λ ∈]λ 1 , λ 1 + λ q [, µ λ,q > 0 and it is achieved. Moreover µ λ 1 ,q > 0.

Proof of 1.

By the definition of λ 1 , λ q ≥ 0. Suppose by contradiction that λ q = 0. Let (u n ) be a minimizing sequence. Since

|∇|u n || = |∇u n |, one can assume that u n ≥ 0. Since |u n | p = 1 and Ω |∇u n | p + Ω (g-λ 1 )u p n → 0, then Ω |∇u n | p is bounded; hence (u n ) is bounded in W 1,p 0 .
Extracting from it a subsequence and passing to the limit, one gets that there exists some u ≥ 0, weak limit of (u n ) in W 1,p (Ω), such that

Ω |∇u| p + Ω (g -λ 1 )u p ≤ 0.
(3.17)

Clearly (3.17) implies that

Ω |∇u| p + Ω (g -λ 1 )u p = 0.
and then u is an eigenfunction for λ 1 and then it is parallel to φ. Moreover u ∈ W 1,p 0 , Ω |u| p = 1 and Ω f u q = 0, which contradicts the assumption Ω f φ q < 0. Finally λ q > 0.

Proof of 2.

In order to prove that α λ,q < 0 for λ > λ 1 , let us take, as an admissible

function, v = φ (-Ω f φ q ) 1 q
. We then have

α λ,q ≤ I λ (v) = 1 (-Ω f φ q ) p q I λ (φ) = 1 (-Ω f φ q ) p q (λ 1 -λ) < 0.
Now we will check that α λ,q > -∞.

If not, there would exist a subsequence (u i ), u i ≥ 0 for all i, such that

Ω f u q i = -1 and I λ (u i ) → -∞. Clearly |u i | p → +∞ since lim Ω (g -λ)u p i ≤ α λ,q . Let w i = u i |u i | p
. One has Ω f w q i → 0, and (w i ) is bounded in W 1,p 0 (Ω), since

|w i | p = 1
and

Ω |∇w i | p + Ω (g -λ)w p i = I λ (u i ) |u i | p p ≤ 0 implies Ω |∇w i | p ≤ |g -λ| ∞ .
Then, there exists a subsequence still denoted (w i ), such that w i w weakly in W 1,p (Ω). Observe that

Ω |w| p = 1 and I λ (w) ≤ 0.
This contradicts the definition of λ, since Ω f w q = 0 and λ ∈]λ 1 , λ 1 + λ q [. We have proved that α λ,q > -∞.

We shall now see that α λ,q is achieved. Let (u n ), u n ≥ 0 be a minimizing sequence for α λ,q i.e.

Ω |∇u n | p + Ω (g -λ)u p n → α λ,q , Ω f u q n = -1.
Let us prove first that |u n | p is bounded. If not, one can argue as previously by considering

w n = u n |u n | p
. It is easy to see that (w n ) converges weakly in W 1,p (Ω), up to a subsequence, towards some function w ≥ 0 which satisfies Ω f w q = 0, |w| p = 1 and

Ω |∇w| p + Ω (g -λ)w p = 0.
This contradicts the definition of λ. Hence Ω |u n | p is bounded, and so is

Ω |∇u n | p .
By extracting from (u n ) a subsequence, one obtains that there exists u ∈ W 1,p 0 , u ≥ 0, such that Ω f u q = -1 and by lower semi-continuity of the semi-norm |∇u| p with respect to the weak topology,

Ω |∇u| p + Ω (g -λ)u p ≤ α λ,q .
Finally using the definition of α λ,q , u is a minimizer for α λ,q , hence it is a nonzero solution of -div(|∇u| p-2 ∇u) + (g -λ)u p-1 = -α λ,q f u q-1 .

Proof of 3.

Acting as we did for α λ,q one can prove that µ λ,q > -∞. We are now going to check that µ λ,q is achieved. Indeed, let u n be a sequence such that u n ≥ 0,

Ω |∇u n | p + Ω (g -λ)u p n → µ λ,q , Ω f u q n = 1. Suppose that |u n | p → ∞. Then considering w n = u n |u n | p
one gets, by passing to the limit that there exists w ≥ 0, a weak limit of (w n ) in W 1,p (Ω), such that

Ω |∇w| p + Ω (g -λ)w p ≤ 0
and Ω f w q = 0, which contradicts the assumption λ ∈]λ 1 , λ 1 + λ q [. Then (u n ) is bounded and we pass to the limit to obtain

Ω |∇u| p + Ω (g -λ)u p = µ λ,q
and Ω f u q = 1. Hence µ λ,q is achieved. For λ = λ 1 , µ λ 1 ,q ≥ 0, but since it is achieved, if µ λ 1 ,q = 0, we would have an eigenfunction u such that Ω f u q = 1, which contradicts the assumptions. Then µ λ 1 ,q > 0.

For λ > λ 1 let u q ≥ 0 which realizes the minimum in µ λ,q . Then :

-∆ p u q + (g -λ)u p-1 q = µ λ,q f u q-1 q .

Using the procedure of the proof of Theorem 1.2 for u q , inequality (2.10) becomes µ λ,q

Ω f φ q + (λ -λ 1 ) Ω φ q u p-q q ≤ 0.
Using Ω f φ q < 0 and λ -λ 1 > 0, one gets µ λ,q > 0.

Let us now state and prove some results concerning α λ,q and µ λ,q .

Lemma 3.1 The following convergences hold:

lim λ→λ 1 α λ,q = α λ 1 ,q = 0, (3.18) lim λ→λ 1 µ λ,q = µ λ 1 ,q (3.19) Lemma 3.2
1. λ p ≥ lim q→p λ q ≥ lim q→p λ q := λ > 0.

2. For λ 1 ≤ λ < λ 1 + λ , then 0 ≤ lim q→p µ λ,q ≤ lim q→p µ λ,q ≤ µ λ (= µ λ,p ).

3. For λ close to λ 1 , α λ (= α λ,p ) > -∞ and lim q→p α λ,q ≤ α λ .

Proof of Lemma 3.1 Suppose by contradiction that (3.18) does not hold, then there exist some number α < 0 and a sequence of λ ∈ IR, λ → λ 1 , and

(u λ ) ⊂ W 1,p o (Ω) such that Ω |∇u λ | p + Ω (g -λ)|u λ | p ≤ α.
Moreover one can assume that u λ ≥ 0. If (u λ ) is bounded, we may extract from it a subsequence weakly convergent to some u ∈ W 1,p 0 , such that

Ω |∇u| p + Ω (g -λ 1 )u p ≤ α < 0,
which is absurd.

On the other hand if (u λ ) diverges we can normalize it and then we obtain a sequence (w λ ) such that Ω |w λ | p = 1. By extracting a subsequence, there exists w ≥ 0, such that Ω |w| p = 1, Ω f w q = 0 and

Ω |∇w| p + Ω (g -λ 1 )w p ≤ 0.
This would imply that w is parallel to φ which is absurd since Ω f φ q < 0.

Let us now prove (3.19). Let us define μq := lim λ→λ 1 µ λ,q . One already has μq ≤ µ λ 1 ,q . Let u λ which satisfies u λ ≥ 0 and

-∆ p u λ + (g -λ)u p-1 λ = µ λ,q f u q-1 λ (3.20) Ω f u q λ = 1.
As we did above , one can prove that (u λ ) is bounded in the W 1,p norm. By extracting a subsequence, one gets by passing to the limit when λ → λ 1 Ω |∇u| p + Ω (g -λ 1 )u p ≤ μq and u ≥ 0, Ω f u q = 1. This clearly implies that μq ≥ µ λ 1 ,q and gives the required result.

Proof of Lemma 3.2 Let us prove 1, and first that lim q→p λ q > 0. Since λ q is achieved, let u q ≥ 0 be a solution of

Ω |∇u q | p + Ω (g -λ 1 )u p q = λ q |u q | p = 1
and Ω f u q = 0. Suppose by contradiction that lim q→p λ q = 0. Then, by extracting from (u q ) a subsequence, one gets by passing to the limit when q tends to p :

Ω |∇u| p + Ω (g -λ 1 )u p ≤ 0 and |u| p = 1. Since I λ 1 is coercive, Ω |∇u| p + Ω (g -λ 1
)u p = 0, and the sequence Ω |∇u q | p tends to Ω |∇u| p . Hence u q tends to u strongly in W 1,p (Ω), and finally Ω f u p = lim q→p Ω f u q q = 0. This is a contradiction since φ is simple and Ω f φ p < 0. As a consequence λ > 0.

We now prove that λ ≤ λ p . Indeed, let u ≥ 0 be a C 1 function, such that Ω f u p = 0, |u| p = 1, and

I λ 1 (u) ≤ λ p + .
If there exists an infinite sequence q → p , such that Ω f u q = 0, one has the desired result. If not, there exists an infinite sequence q → p such that either Ω f u q > 0 for all q, or Ω f u q < 0 for all q. Suppose that we are in the first case and define α(q) = Ω f u q Ω f u q -Ω f φ q . Then α(q) ∈ [0, 1], and α(q) → 0 when q → p . Let us define

v q = (α(q)φ q + (1 -α(q))u q ) 1 q .
By the regularity properties of φ and u, v q belongs to W 1,p 0 (Ω), v q ≥ 0 and Ω f v q q = 0 by the choice of α(q). Moreover it is easy to check that v q tends to u in W 1,p (Ω) strongly. As a consequence

λ q (1 + o(1)) ≤ λ q ( Ω v p α ) ≤ Ω |∇v α | p + Ω (g -λ 1 )v p α ≤ λ p + + o(1)
when q → p .This implies that λ ≤ λ p . Suppose now that there exists a sequence q → p such that Ω f u q < 0. Let u 0 be nonnegative in C 1 ( Ω), such that Ω f u q 0 > 0 and define

v α = (α(q)u q 0 + (1 -α(q))u q ) 1 q ,
where α(q) = Ω f u q Ω f u q -Ω f u q 0 . One concludes as in the case Ω f u q > 0.

To prove 2., let ε > 0 be given and let u be such that u ≥ 0, Ω f u p = 1 and

I λ (u) ≤ µ λ + ε.
Then for q close to p , Ω f u q > 1 2 and taking

v q = u ( Ω f u q ) 1 q
, one gets, for q sufficiently close to p * , µ λ,q ≤ I λ (v q ) ≤ µ λ + 2ε.

We will prove 3. by contradiction. Hence suppose that there exists a sequence λ n → λ 1 and a sequence (u n ), u n ≥ 0 such that Ω f u p n = -1 and

I λn (u n ) ≤ -n. Clearly |u n | p → +∞. Then defining w n = u n |u n | p
, and extracting a subsequence from it, one gets that there exists w ≥ 0 such that

I λ 1 (w) ≤ 0.
This in fact implies that strong convergence holds and then Ω f w p = 0, which contradicts |w| p = 1 and φ is simple.

Before giving the proof of Theorem 1.6 let us recall one of the key ingredients employed herein i.e. the famous concentration compactness principle of P.L. Lions [START_REF]Lions La méthode de compacité concentration, I et II[END_REF]:

Lemma 3.3
Let Ω be some bounded open set in IR n , and (u k ) be some sequence in W 1,p o (Ω), which is bounded in W 1,p (Ω). Then there exist a subsequence of (u k ), still denoted (u k ) for simplicity, two nonnegative measures µ and ν on Ω, a sequence of points x i in Ω, two sequences of nonnegative real numbers µ i and ν i and a function u in W 1,p o (Ω), such that

|∇u k | p µ ≥ |∇u| p + i µ i δ x i (the convergence being tight on Ω i.e. Ω |∇u k | p → Ω µ,), |u k | p ν = |u| p + i ν i δ x i
(the convergence being tight on Ω i.e. Ω |u k | p → Ω ν ), with the inequality

ν i ≤ K(n, p) p p µ i . (3.21)
Proof of Theorem 1.6 First part.

We prove the existence of solutions for α λ and for λ sufficiently close to λ 1 . According to Lemma 3.1 above, lim λ→λ 1 α λ = 0. One takes λ sufficiently close to λ 1 in order to have -α λ < K(N, p) -p (sup |f |) -p p , and λ < λ 1 + λ . Let (u q ), u q ≥ 0 be a solution for the problem defining α λ,q . Claim: (u q ) q is bounded in L p .

Suppose that it is not true. Then, proceeding as in the proof of Theorem 1.5, there would exist a sequence (w q ) such that w q ≥ 0, |w q | p = 1, and

Ω |∇w q | p + Ω (g -λ)w p q ≤ 0. (3.22)
Extracting from (w q ) a subsequence one obtains that there exists w, weak limit of w q in W 1,p such that w ≥ 0, |w| p = 1, and

Ω |∇w| p + Ω (g -λ)w p ≤ 0.
If Ω f w p = 0, this contradicts the assumption λ < λ

1 + λ ≤ λ 1 + λ p . If Ω f w p > 0, I λ (w) ≥ µ λ ( Ω f w p ) p p
> 0, and since µ λ ≥ 0 one would obtain that µ λ = 0 = I λ (w), and using lower semi-continuity for the weak topology

I λ (w) ≤ lim q→p I λ (w q ) ≤ 0.
Finally I λ (w) = lim q→p I λ (w q ) and then Ω |∇w q | p → Ω |∇w| p , strong convergence holds in fact, hence Ω f w p = lim q→p Ω f w q q = 0, which is a contradiction of the assumption Ω f w p > 0.

Finally suppose that Ω f w p < 0. Then, applying P.L. Lions' concentration compactness lemma recalled above, one gets that there exists two bounded and nonnegative measures µ and ν on Ω, some countable set of points (x i ) in Ω, and some sequence of non-negative numbers (µ i ) and (ν i ), which satisfy, up to a subsequence

|∇w q | p p µ ≥ |∇w| p p + i µ i δ x i (3.23) |w q | q ν = |w| p + i ν i δ x i . (3.24) 
Passing to the limit in (3.22), in the equality Ω f w q q = -1 |uq| q p , and using (3.23) and (3.24), one obtains

I λ (w) ≤ - i µ i , Ω f w p + i ν i f (x i ) = 0.
On the other hand, using Ω f w p < 0, one has

α λ (- Ω f w p ) p p ≤ I λ (w) ≤ - i µ i .
Hence,

i µ i ≤ -α λ ( i ν i f (x i )) p p Finally i µ i ≤ -α λ i (ν i f (x i )) p p ≤ -α λ sup |f | p p K(N, p) p i µ i ≤ δ i µ i
for some δ < 1. One obtains that µ i = 0 and then ν i = 0, as well as Ω f w p = 0, which contradicts the assumption. As a consequence the claim is proved i.e. (u q ) is bounded in L p . Furthermore, since

α λ,q ≥ (λ 1 -λ) Ω |u q | p
the sequence α λ,q is bounded too. Let us denote by ᾱ the limit of a subsequence. Clearly ᾱ ≤ α λ . Since (u q ), (u q ≥ 0) is bounded, one may extract a subsequence such that u q u in W 1,p . Let us recall that u q satisfies:

-∆ p u q + (g -λ)u p-1 q = -α λ,q f u q-1 q , Ω f u q q = -1 (3.25) 
Let us denote by σ the weak limit of a subsequence in L p (p-1) (Ω) of σ q := |∇u q | p-1 ∇u q . Then, passing to the limit in equation (3.25) one gets u ≥ 0 and

-div(σ) + (g -λ)u p-1 = -ᾱf u p -1 . (3.26) 
Using again P.L. Lions' concentration lemma, there exist two bounded and nonnegative measures µ and ν on Ω, some countable sets of points (x i ) in Ω, and some sequence of nonnegative numbers (µ i ) and (ν i ), which satisfy, up to a subsequence

|∇u q | p p µ ≥ |∇u| p p + i µ i δ x i tightly on Ω, |u q | q ν = |u| p + i ν i δ x i , tightly on Ω.
Let us multiply equation (3.25) (resp. equation (3.26)) by u q ϕ (resp. uϕ), for a function ϕ in D(Ω). One obtains

Ω |∇u q | p ϕ + Ω σ q • ∇ϕu q + Ω (g -λ)u p q ϕ = -α λ,q Ω f u q q ϕ (3.27) 
and

Ω (σ • ∇u)ϕ + Ω (σ • ∇ϕ)u + Ω (g -λ)u p ϕ = -ᾱ Ω f u p ϕ. (3.28) 
By passing to the limit in (3.27), one gets

Ω µϕ+ Ω (σ•∇ϕ)u+ Ω (g-λ)u p ϕ = -ᾱ( Ω f u p ϕ+ i ν i f (x i )ϕ(x i )). (3.29) Subtracting (3.28) from (3.29) one obtains Ω (µ -σ • ∇u)ϕ = -ᾱ( i ν i f (x i )ϕ(x i )). (3.30) 
Second part. Since lim λ→λ 1 α λ = α λ 1 = 0, one can choose λ sufficiently close to λ 1 in order to have

α λ > -sup |f | p p K(N, p) p .
Now let u q be a function for which µ λ,q is achieved, u q ≥ 0.

Claim: (u q ) is bounded in L p when q goes to p . Suppose on the contrary that |u q | p tends to infinity. Then, defining w q = u q |u q | p , one obtains that w q tends, up to a subsequence, to a function w ∈ W 1,p 0 (Ω), w ≥ 0 which satisfies |w| p = 1, and

Ω |∇w| p + i µ i + Ω (g -λ)w p ≤ 0, Ω f w p + i ν i f (x i ) = 0
where (µ i ) and (ν i ) are as in the first part. Suppose first that Ω f w p = 0. Then one gets a contradiction with the conditions on λ since

Ω |∇w| p + Ω (g -λ)w p ≤ 0.
Suppose that Ω f w p > 0. Then by the definition of µ λ one would obtain that µ λ (

Ω f w p ) p p ≤ |∇w| p + Ω (g -λ)w p ≤ 0
Since µ λ ≥ 0, this may happen only if µ λ = 0, and in the same time I λ (w) = 0. Then, coming back to the previous inequalities, one has I λ (w) = 0 ≤ lim q→p I λ (w q ) ≤ 0 hence I λ (w q ) → I λ (w), and strong convergence holds. This implies that Ω f w p = lim q→p Ω f w q q = 0, which contradicts the assumption Ω f w p > 0.

Suppose finally that Ω f w p < 0, then one can write

α λ (- Ω f w p ) p p ≤ Ω |∇w| p p + Ω (g -λ)w p ≤ - i µ i
and then

i µ i ≤ (-α λ ) i ν i |f (x i )| p p ≤ (-α λ ) i ν p p i |f (x i )| p p ≤ (-α λ ) sup |f | p p i µ i K(N, p) p ≤ δ i µ i
for some δ < 1. Finally one has µ i = 0 for all i and then ν i = 0. Then Ω f w p = 0 which is absurd, as we remarked before. We have obtained that (u q ) is bounded. This proves the claim.

Let β = 1 2 K(N, p) -p sup |f | -p p
-µ λ 1 and suppose that λ is sufficiently close to λ 1 in order to ensure that

|α λ | < β.
Let (u q ) be a sequence of minimizers for µ λ,q , u q ≥ 0. Then -∆ p u q + (g -λ)u p-1 q = µ λ,q f u q-1 q (3.33)

Ω f u q q = 1.
By the previous computations, the sequence (u q ) is bounded in L p , and since (µ λ,q ) is bounded too, (u q ) is in fact bounded in W 1,p . Let us extract from it a subsequence such that u q u in W 1,p weakly. Let us denote by γ the limit of some subsequence of µ λ,q . One has γ ≤ µ λ ≤ µ λ 1 .

Acting as we did in the first part, one gets

-div(σ) + (g -λ)u p-1 = γf u p -1 , (3.34) 
denoting by σ a weak limit of |∇u q | p-1 ∇u q in L p p-1 (Ω).

Multiplying equation (3.33) (respectively (3.34)) by u q ϕ (respectively by uϕ) with ϕ ∈ D(Ω) and integrating over Ω, introducing measures µ and ν as in the concentration compactness lemma one gets

µ ac -σ.∇u = 0 i µ i δ i ≤ µ s = γ i ν i f (x i )δ i . (3.35)
This last identity yields that γ cannot be zero: if it was, one would have µ i = 0, hence ν i = 0, and in the same time,

Ω |∇u| p + Ω (g -λ)u p = 0 and Ω f u p = 1.
This is impossible, since for example, one has supposed that λ is not an eigenvalue. Then γ > 0. Moreover, if x i is such that f (x i ) < 0, then µ i = 0, and so is ν i . Since one has |∇u| p ≤ µ ac = σ.∇u, coming back to (3.34), one gets

Ω |∇u| p + Ω (g -λ)u p ≤ Ω σ • ∇u + Ω (g -λ)u p = γ Ω f u p .
On another hand the identity

Ω f u p + i ν i f (x i ) = 1 implies that i ν i f (x i ) ≤ 1 if Ω f u p ≥ 0. Suppose now that Ω f u p < 0. Then ν f = i ν i f (x i ) > 1.
In the same time one has

α λ (- Ω f u p ) p p ≤ Ω |∇u| p + (g -λ)u p ≤ γ Ω f u p and then ν f ≤ 1 + -α γ 1 1- p p .
As seen before if f (x i ) < 0, µ i = 0, hence ν i = 0. If f (x i ) ≥ 0, the previous calculations imply that for all i, ν i f (

x i ) ≤ 1 + -α γ 1 1- p p . Finally µ i ≤ γ        ν i f (x i ) 1 + -α γ 1 1- p p          1 + -α γ 1 1- p p   ≤ γ        ν i f (x i ) 1 + -α γ 1 1- p p        1-p p        ν i f (x i ) 1 + -α γ 1 1- p p        p p   1 + -α γ 1 1- p p   ≤ γ   1 + -α γ 1 1- p p   1-p p K(N, p) p sup |f | p p µ i ≤ γ 1 + -α γ K(N, p) p sup |f | p p µ i ≤ K(N, p) p sup |f | p p µ i (γ -α) ≤ δµ i (3.36)
for some δ < 1. As a consequence µ i = 0 and then ν i = 0. Finally

Ω f u p = 1, µ λ ≤ Ω |∇u| p + Ω (g -λ)|u| p ≤ Ω σ.∇u + Ω (g -λ)|u| p ≤ γ hence µ λ = γ, |∇u| p = σ.∇u = µ,
the convergence is strong, and u is a minimizer for µ λ .

Remark 3.4

We have also obtained that µ λ > 0.

Corollary 3.5 Suppose that Ω f φ p < 0 and that there exists a minimizer for λ = λ 1 , then there exist at least two minimizers for λ > λ 1 , and λ sufficiently close to λ 1 .

k g = inf{j ∈ N, / j ≥ 1 and ∆ j g(x 0 ) < 0} if not k f = inf{j ∈ N , /∆ j f (x 0 ) < 0}
with the convention that k g = +∞ (resp. k f = +∞) if the corresponding set above is empty. Here ∆ j = ∆ j-1 • ∆, j ≥ 1, where ∆ is the usual Laplacian.

When N > p 2 , we define as in [START_REF] Drabek | Multiplicity of positive solutions for some quasi linear elliptic equations in IR N with critical Sobolev exponent[END_REF], [START_REF] Birindelli | On some partial differential equation for non coercive functional and critical Sobolev exponent[END_REF] k = sup{m ∈ N/N > p 2 + 2m(p -1)} and for j integer, we set

α N,j = Γ(j + 1 2 )Γ( 1 2 ) N -1 (2j + N ) Γ(j + N 2 + 1) and αp,N j = α N,j (2j) 
! ∞ 0 r N +2j-1 dr 1 + r p (p-1) N -p βp,N j = α N,j (2j) 
! (N -p) p (p -1) p-1 ∞ 0 r N +2j-1 dr 1 + r p (p-1)
N .

Note that αp,N j exists as soon as N > p 2 + 2j(p -1), that βp,N j exists as soon as N > 2j(p -1). One can find the explicit values of αp,N j , βp,N j in [10], Lemma 7.

Proposition 4.1 Suppose that 1 < p 2 < N and that f and g are C ∞ (Ω). For > 0 sufficiently small,

I(v ) < 1 K(N, p) p f (x 0 ) p p
in each of the following cases

• 1. k ≥ k g , k f > k g + p 2 , and ∆ kg (g(x 0 ) -λ 1 ) < 0. • 2. k ≥ k g , k f < k g + p 2 , and ∆ k f f (x 0 ) > 0. • 3. k ≥ k g , k f = k g + p 2 , and αp,n kg (∆ kg (g(x 0 )-λ 1 )f (x 0 )-βp,n k f ∆ k f f (x 0 ) < 0 • 4. k ≤ k g , k f ≤ k + p
2 , and ∆ k f f (x 0 ) > 0. For example, the following corollary presents particular situations which enclose the results in the case where p = 2 obtained in [START_REF] Birindelli | On some partial differential equation for non coercive functional and critical Sobolev exponent[END_REF], see also [START_REF] Alama | On semilinear elliptic equations with indefinite nonlinearities[END_REF] in the case p = 2 and g = 0:

Corollary 4.2 Suppose that 1 < p 2 < n. For > 0 small, one has that

I(v ) < 1 K(N, p) p f (x 0 ) 1-p N in each of the following situations • 1. 1 < p < 2 and g(x 0 ) < λ 1 . • 2. p = 2 and 8(N -1) (N -2)(N -4) (g(x 0 ) -λ 1 )f (x 0 ) -∆f (x 0 ) < 0. • 3. p > 2 and g(x 0 ) = λ 1 , ∆g(x 0 ) = ∆f (x 0 ) = 0 and ∆ 2 f (x 0 ) > 0.
As a consequence of Proposition 4.1 One obtains that if f achieves its supremum on an interior point x 0 such that one of the situations described in 1. 2. 3. 4. occurs, then, there exists a solution to equation 1.1 for λ = λ 1 and for λ close to λ 1 .

We do not give the proofs of Proposition 4.1 and Corollary 4.2 , because they are very technical and are already written in [START_REF] Drabek | Multiplicity of positive solutions for some quasi linear elliptic equations in IR N with critical Sobolev exponent[END_REF], in the coercive case. One must just replace in [START_REF] Drabek | Multiplicity of positive solutions for some quasi linear elliptic equations in IR N with critical Sobolev exponent[END_REF] the function a by the function g -λ 1 .

Appendix

As mentioned in the introduction, in this appendix we want to prove the following Proposition 2.1 Suppose that f (x, t) = a(x)|t| q-2 t + b(x)|t| p-2 t with 1 < p < q, and a and b two continuous and bounded functions on Ω. Suppose that ū is a weak supersolution for -∆ p u + f (x, u) ū = 0 on ∂Ω, and that u is a weak subsolution with u = 0 on ∂Ω. Suppose that there exists some constant c and C such that Finally u 1 is a supersolution since

-∆ p u 1 + k|u 1 | p-2 u 1 = H(x, u) ≥ H(x, u 1 ), hence u ≤ u 1 ≤ u.
Iterating this process, one obtains the existence of a decreasing sequence u n of supersolutions and u ≤ u n ≤ u, with -∆ p u n + k|u n | p-2 u n = H(x, u n-1 ).

The sequence is, then, simply convergent and furthermore u n is bounded in W Since the other inequality is always true, one obtains that the convergence is strong, σ = |∇u| p-2 ∇u, and u is a solution.

- 1

 1 ∞ < c ≤ u ≤ ū ≤ C < +∞ Then, there exists a solution u between u and ū Proof We follow the method of E. Hebey in [?].Let k be choosen in order that the functionH(x, t) = f (x, t) + k|t| p-2 t be increasing on [inf x∈Ω u, sup x∈Ω u]. Let u 1 be the solution of the variational problem inf u∈W , u)u.The solution u 1 is unique and satisfies the following partial differential equation-∆ p u 1 + k|u 1 | p-2 u 1 = H(x, u)and in particular-∆ p u 1 + k|u 1 | p-2 u 1 ≤ -∆ p u + k|u| p-2 uand by the comparison principle one gets that u 1 ≤ u. On the other hand by the monotonicity properties of H -∆ p u 1 + k|u 1 | p-2 u 1 = H(x, u) ≥ H(x, u ≥ -∆ p u + k|u| p-2 u and then u 1 ≥ u.

  and on another hand passing to the limit in the equation satisfied by u n , multiplied by u n , one has limΩ |∇u n | p + k Ω |u| p = Ω H(x, u)u.We have obtained that Ω σ.∇u = lim Ω |∇u n | p . By using lower semicontinuity for the weak topology, | Ω σ.∇u| ≤ lim( Ω |∇u n | p ) p p-1 ( |∇u| p )

  1,p since it is bounded in L ∞ and Extracting from it a subsequence one gets that there exists u such that u n u in W 1,p weakly. Let σ be a weak limit of|∇u n | p-2 ∇u n in L p . It satisfies -divσ + k|u| p-2 u = H(x, u).Multiplying this by u and integrating by parts one gets

Ω |∇u n | p + k Ω |u n | p -Ω H(x, u n-1 )u n ≤ Ω |∇u| p + k Ω |u| p -Ω H(x, u)u. Ω ∇u.σ + k Ω |u| p = Ω H(x, u)u.
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Using Lebesgue decomposition of µ := µ ac +µ s , where µ ac is the absolutely continuous part of µ, one derives

On the other hand, passing to the limit in equation (3.27) and using lower semi-continuity one has

If Ω f u p = 0 this contradicts the assumption λ ∈]λ 1 , λ 1 +λ p [. If Ω f u p > 0 one also gets a contradiction, since

Suppose that Ω f u p < 0, then using (3.31) and (3.28) one has

From this, one obtains that -Ω f u p ≤ 1.

On the other hand the identity

yields to i ν i f (x i ) ≤ 0, and since we are in the case f (x i ) ≥ 0 we get ν i f (x i ) = 0 for all i. Using (3.32) one obtains that Ω f u p = -1 and µ i = 0. We have then

which implies that ᾱ = α λ , σ.∇u = |∇u| p , the convergence of ∇u q is strong in W 1,p (Ω) and α λ is achieved.

Proof

Suppose that there exists a minimizer u 1 for the problem with λ = λ 1 . Then inf

As a consequence, using Theorem 1.6 one obtains that I λ has a minimizer.

Estimates and test functions

Let x 0 ∈ R N and r = |x -x 0 | the euclidean distance from x 0 to x. For p > 1 given, p real such that p < N , we define the function u by

and the function v by v (x) = ( + r p/p-1 ) 1-N/p φ(r)

where φ : R → R, nonnegative and smooth, is such that φ(r) = 1 for r ≤ δ/4 and φ(r) = 0 for r ≥ δ, δ > 0 small. Recall here that u 1 (x) = (1 + r p/p-1 ) 1-N/p realizes the best constant for the embedding of W 1,p (R N ) in L p (R N ). Let also a and f be smooth functions defined in a neighborhood Ω of x 0 . We assume in what follows that f > 0 in B x 0 (δ), and that B x 0 (δ) ⊂ Ω. For u ∈ W 1,p 0 (Ω), we set I(u) = Ω |∇u| p dx + Ω (g(x) -λ 1 )|u| p dx ( Ω f (x)|u| p dx) p p .

We also introduce k g = 0 if g(x 0 ) < λ 1