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Françoise Demengel
University of Cergy-Pontoise

1 Introduction

In this paper we give necessary and sufficient conditions for the existence of
solutions of the following equation{

−div(|∇u|p−2∇u) + (g − λ)up−1 = fuq−1, u ≥ 0 in Ω
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded smooth domain of IRN , 1 < p < N , p < q ≤ pN
N−p := p?,

f and g belong to L∞, and λ ∈ IR. By solution of (1.1), we mean a function
u ∈ W 1,p

0 (Ω) satisfying (1.1) in the weak usual sense.

In particular we shall study (1.1) considering the position of λ with respect
to the principal eigenvalue. Precisely, it is well known that the concept of
”eigenvalue” and ”eigenfunction” has been generalized by many authors to
the quasi-linear setting of the p-Laplacian ∆p := div(|∇.|p−2∇.), in particular
let us recall the works of Allegretto and Huang in [2], Anane in [3] and
Lindqvist in [19]. We shall now state their definitions and the principal
properties obtained in the works cited above.
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Definition 1.1 λ1 the first ”eigenvalue” of −div(|∇.|p−2∇.) + g in W 1,p
0 (Ω)

is defined by

λ1 := inf
{ψ∈W 1,p

0 (Ω),|ψ|p=1}
{
∫

Ω
|∇ψ|p +

∫
Ω
g|ψ|p}.

It is by now a classical result that there exists φ, positive in Ω for which
this infimum is achieved. φ is called the ”eigenfunction” corresponding to
λ1.

In particular φ satisfies{
−div(|∇φ|p−2∇φ) + (g − λ1)φp−1 = 0 in Ω
φ = 0 on ∂Ω.

(1.2)

Furthermore φ is simple, i.e. any solution of (1.2) satisfies v = kφ for some
k ∈ IR. In the sequel we will normalize φ in the Lp(Ω) norm.

Clearly for any λ < λ1 the only nonnegative solution of{
−div(|∇u|p−2∇u) + (g − λ)up−1 = 0 in Ω
u = 0 on ∂Ω

(1.3)

is u ≡ 0.
On the other hand λ1 is isolated, i.e. there exists δ > 0 such that for any

λ in (λ1, λ1 + δ) the only solution of (1.3) is u ≡ 0 as well.

Our first results concern some necessary conditions for the existence of
solutions.

Theorem 1.2 Suppose that there exists a nonnegative solution u 6≡ 0 of
equation (1.1). Then

1) For λ < λ1, the set Ω+ defined as

Ω+ := {x ∈ Ω, f(x) > 0}

is nonempty.
2) For λ > λ1, Ω− := {x ∈ Ω, f(x) < 0} 6= ∅ and

∫
Ω fφ

q < 0.
3) For λ = λ1, Ω+ 6= ∅, Ω− 6= ∅ and

∫
Ω fφ

q < 0.

Theorem 1.3 There exists λ′ > λ1 such that there are no non trivial non
negative solutions of equation (1.1) for λ > λ′.
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Theorem 1.4 Suppose that there exists λ̄ > λ1 for which (1.1) possesses a
solution. Then, (1.1) has a solution for λ ∈]λ1, λ̄].

Our next result concerns the existence of solutions of equation (1.1) in the
sub-critical case:

Theorem 1.5 Suppose that Ω+ and Ω− are nonempty, that p < q < p?, and∫
Ω fφ

q < 0. Then there exists δ > 0 such that for λ ∈ (λ1, λ1 + δ) equation
(1.1) has at least two non zero and nonnegative solutions of equation (1.1).
For λ = λ1 there exists at least one solution of (1.1) nonnegative and not
identically zero.

Remark 1: The solutions are obtained as minima of the two variational
problems:

αλ,q = inf
{u∈W 1,p

o (Ω),
∫

Ω
f |u|q=−1}

{
∫

Ω
|∇u|p +

∫
Ω

(g − λ)|u|p}

and
µλ,q = inf

{u∈W 1,p
o (Ω),

∫
Ω
f |u|q=1}

{
∫

Ω
|∇u|p +

∫
Ω

(g − λ)|u|p}.

Indeed, if u ∈ W 1,p
o (Ω) realizes αλ,q (respectively µλ,q), so does |u|, and it is

easy to see that u satisfies:

−div(|∇u|p−2∇u) + (g − λ)up−1 = −αλ,qfuq−1

(respectively

−div(|∇u|p−2∇u) + (g − λ)up−1 = µλ,qfu
q−1).

By a standard scaling argument one obtains two nonnegative solutions of
equation (1.1), one being such that

∫
Ω fu

q > 0 and the other such that∫
Ω fu

q < 0.
For simplicity of notation let αλ := αλ,p? and µλ := µλ,p? .

Theorem 1.6 Suppose that q = p? and that Ω+,Ω− 6= ∅, that λ > λ1 and
that

∫
Ω fφ

p? < 0. Then there exists δ > 0 such that if λ ∈ (λ1, λ1 + δ) there
exists at least one solution of equation (1.1). If moreover,

µλ < K(N, p)−p sup |f |
−p
p? ,

then, there exist at least two non zero solutions of equation (1.1).
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Remark 2: As in the subcritical case, the solutions are obtained as minima
of αλ and µλ.
Remark 3: According to Theorems 1.4 and 1.5 the solutions of equation
(1.1) exist for an interval, (λ1, λ̄). On the other hand for some λ ∈]λ1, λ̄[,
there may be only one solution, because for λ not close to λ1 nothing can be
said about the sign of

∫
Ω fu

q
λ when uλ is a solution obtained by Theorem 1.4.

For p = 2 i.e. the classical Laplacian and 2 < q <
2n

n− 2
problem (1.1)

has been extensively studied when f > 0. Since we are concerned with
the case where f changes sign, let us recall the main results in that case.
Necessary and sufficient conditions for the existence of solutions for (1.1)
have been given by Alama and Tarantello [1], Berestycki, Capuzzo Dolcetta
and Nirenberg [5] and Ouyang [20] in the non coercive case.

Alama and Tarantello in [1] and the authors of the present paper in [6]
have studied the critical case i.e. q = 2n

n−2
. Let us also mention the very

interesting work of Chen and Li in [7].
It is well known that the p-Laplacian appears in many contexts : Non-

Newtonian fluids, nonlinear elasticity and reaction diffusion problems just to
name a few. Indeed equation (1.1) has been extensively studied for general p
and q; in particular for q critical, existence of solutions of problem (1.1) was
studied by Guedda and Veron in [14] for f ≡ 1, g(x) ≡ λ = 0. Demengel
and Hebey in [10] gave existence of variational solutions when f changes sign
and the functional

∫
Ω |∇u|p +

∫
Ω(g − λ)|u|p is coercive i.e. λ < λ1.

In [12], the authors study a similar problem with (g−λ)up−1 replaced by
cteuk−1 with k 6= p.

Always for general p but q subcritical the non coercive case was also
studied by Drabek and Pohozaev in [11]; they use the fibering method to
obtain some existence results for λ close to λ1. See also Pohozaev and Veron
[21] for the Neumann problem.

Finally for q critical, Drabek and Huang studied the problem in IRN [10],
while Arioli and Gazzola in [4] proved existence for solutions changing sign
through a linking method.

The above Theorems are the natural extension to the p-Laplacian of the
results obtained in [6]. Nonetheless the proofs differ from the case p = 2.
In particular the proofs of Theorems 1.5 and 1.6 follow the approach taken
by Ouyang in [20]. Although we should mention that Ouyang treats the
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sub-critical case and he uses bifurcation technic that don’t hold for p 6= 2.

The outline of the paper is the following. In the next section we prove the
necessary conditions (i.e. Theorem 1.2 and 1.3) using among other things
Picone’s identity for the p-Laplacian (cf Allegretto and Huang [2]). In the
third section we prove the existence results first for the sub-critical case and
then for the critical case. Finally in the last section we construct some test
functions to show that the condition on µλ of Theorem 1.6 can be satisfied
and easily verified.

2 Proofs of Theorem 1.2, 1.3, 1.4.

Let us recall Picone’s identity for the p-Laplacian as formulated by Allegretto
and Huang in [2]. Suppose that v and w belong to W 1,p(Ω) with v ≥ 0 and
w > 0, then

|∇v|p −∇
(

vp

wp−1

)
· σ(w) ≥ 0

everywhere in Ω, for σ(w) := |∇w|p−2∇w.
Moreover if equality holds then w = kv for some constant k ∈ IR.

Proof of Theorem 1.2
Since in the case λ < λ1 the functional

Iλ(u) :=
∫

Ω
|∇u|p +

∫
Ω

(g − λ)|u|p

is coercive the first assertion is obvious.
Let us prove 2. Suppose that λ > λ1, and let u be a nonnegative solution

of (1.1) . Adapting the strict maximum principle of Vasquez, one has u > 0
inside Ω . In addition, from regularity results of [13], [23], [17], [9], u is
C1,α(Ω̄), for every α ∈ [0, 1[. Using once more the strict maximum principle
inspired from Hopf’s lemma, as given in [24], one has the existence of some
real ε > 0 such that φ ≥ εu on Ω̄. As a consequence, one is allowed to
multiply the equation (1.1) by (u)1−qφq. Integrating by parts on Ω, one
obtains ∫

Ω
fφq =

∫
Ω
σ(u).∇(u1−qφq) +

∫
Ω

(g − λ)up−1u1−qφq
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= (1− q)
∫

Ω
|∇u|p

(
φ

u

)q
+ q

∫
Ω

(σ(u).∇φ)

(
φ

u

)q−1

+
∫

Ω
(g − λ)up−qφq. (2.4)

Now we multiply equation (1.2) by φq−p+1up−q and integrate over Ω;∫
Ω
σ(φ).∇(φq−p+1up−q) +

∫
Ω

(g − λ1)φqup−q = 0

and then

(q − p+ 1)
∫

Ω
|∇φ|p

(
φ

u

)q−p
+ (p− q)

∫
Ω
σ(φ).∇u

(
φ

u

)q−p+1

+

+
∫

Ω
(g − λ1)φqup−q = 0. (2.5)

Subtracting (2.4) to (2.5) , one gets

(q − p+ 1)
∫

Ω
|∇φ|p

(
φ

u

)q−p
+ (p− q)

∫
Ω
σ(φ).∇u

(
φ

u

)q−p+1

−q
∫

Ω

(
φ

u

)q−1

∇φ.σ(u) + (q − 1)
∫

Ω

(
φ

u

)q
|∇u|p +

(λ− λ1)
∫

Ω
φqup−q = −

∫
Ω
fφq. (2.6)

Now apply Picone’s identity as follows

|∇u|p −∇
(
up

φp−1

)
· σ(φ) ≥ 0.

Multiplying it by
(
φ
u

)q
and integrating over Ω it becomes

∫
Ω
|∇u|p

(
φ

u

)q
− p

∫
Ω
∇u · σ(φ)up−q−1φq−p+1 +

+ (p− 1)
∫

Ω
|∇φ|pup−qφq−p ≥ 0. (2.7)
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Similarly, exchanging the role of u and φ i.e. considering

|∇φ|p −∇(
φp

up−1
) · σ(u) ≥ 0

and multiplying by
(
φ
u

)q−p
one gets

∫
Ω
|∇φ|p

(
φ

u

)q−p
− p

∫
Ω

(
φ

u

)q−1

∇φ.σ(u)

+ (p− 1)
∫

Ω

(
φ

u

)q
|∇u|p ≥ 0. (2.8)

Multiply (2.8) by q
p

and (2.7) by q
p
− 1 their sum gives

(q − p+ 1)
∫

Ω
|∇φ|p

(
φ

u

)q−p
+ (p− q)

∫
Ω
∇u · σ(φ)

(
φ

u

)q−p+1

+

−q
∫

Ω

(
φ

u

)q−1

∇φ · σ(u) + (q − 1)
∫

Ω
|∇u|p

(
φ

u

)q
≥ 0. (2.9)

Substracting (2.9) from (2.6) we obtain∫
Ω
fφq + (λ− λ1)

∫
Ω
φqup−q ≤ 0. (2.10)

When λ > λ1, this implies that
∫

Ω fφ
q < 0 and 2) is proved.

For the proof of 3), let λ = λ1 and let u be a nonnegative solution of
equation (1.1). Multiplying it by u one obtains∫

Ω
|∇u|p +

∫
Ω

(g − λ1)up =
∫

Ω
fuq.

Since the functional Iλ1 is non negative, one has
∫

Ω fu
q ≥ 0. Suppose that it

is zero. Then u would be an eigenfunction for the eigenvalue λ1, which would
imply that fuq−1 = 0. Then u must be zero on a set of positive measure,
which contradicts the fact that u is parallel to φ > 0 in Ω. We have proved
that

∫
Ω fu

q > 0, this implies that Ω+ 6= ∅.
We shall now prove that

∫
Ω fφ

q < 0, this of course implies also that
Ω− 6= ∅.
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From the previous computations in the proof of 2), and precisely from
(2.6) with λ = λ1 and from (2.9), we obtain that

(q − p+ 1)
∫

Ω
|∇φ|p

(
φ

u

)q−p
+ (p− q)

∫
Ω
∇u · σ(φ)

(
φ

u

)q−p+1

−q
∫

Ω

(
φ

u

)q−1

∇φ · σ(u) + (q − 1)
∫

Ω
|∇u|p

(
φ

u

)q
+

= −
∫

Ω
fφq. (2.11)

As a consequence
∫

Ω fφ
q ≤ 0. Suppose by contradiction that

∫
Ω fφ

q = 0,
then the left hand side of the previous identity is zero. Recalling (2.8) and
(2.9)the left hand side is a sum of two nonnegative quantities, hence they
must be both null. Therefore we have obtained that∫

Ω
|∇φ|p

(
φ

u

)q−p
− p

∫
Ω

(
φ

u

)q−1

∇φ.σ(u)

+ (p− 1)
∫

Ω

(
φ

u

)q
|∇u|p = 0 (2.12)

and ∫
Ω
|∇u|p

(
φ

u

)q
−p

∫
Ω
∇u · σ(φ)up−q−1φq−p+1 +

+ (p− 1)
∫

Ω
|∇φ|pup−qφq−p = 0. (2.13)

Clearly (2.12) and (2.13) imply that

|∇u|p −∇
(
up

φp−1

)
· σ(φ) = 0

and

|∇φ|p −∇
(
φp

up−1

)
· σ(u) = 0.

Each of these identities implies that φ is parallel to u. Then u is an eigen-
function. This implies that fuq−1 is identically zero which is a contradiction.

8



Proof of Theorem 1.3.
Let B be a ball on which f > 0, B ⊂⊂ Ω+. Let then (ψ, µ?) be the non

zero and non negative normalized solution, of{
−∆pψ + (−µ?)ψp−1 = 0 in B
ψ = 0 on ∂B.

Suppose that a solution of equation (1.1) exists for λ such that |g|∞+µ? <
λ, u ≥ 0 and non identically zero. On B, by the strict maximum principle
of Vasquez, u > 0. Using Picone’s identity, one has

|∇ψ|p −∇
(
ψp

up−1

)
.σ(u) ≥ 0

in B, hence, integrating over B

0 ≤
∫
B

(µ?)ψp +
∫
B

(g − λ)ψp (2.14)

here, we have used the fact that ψ = 0 on ∂B and the equation verified by
u, since

−∆pu+ (g − λ)up−1 = fuq−1 ≥ 0

on B. (2.14) of course contradicts the choice of λ.

Proof of Theorem 1.4.
Let λ̄ be such that λ1 < λ̄ and take λ ∈]λ1, λ̄[. Let ū be a solution of

(1.1) for λ̄. Then ū is a supersolution of (1.1) for λ. Indeed

−∆pū+ (g − λ)ūp−1 = fūq−1 + (λ̄− λ)ūp−1 ≥ fūq−1

and ū = 0 on the boundary. On another hand, taking ε small enough, εφ is
a subsolution, since

−∆p(εφ) + (g − λ)(εφ)p−1 = (λ1 − λ)εp−1φp−1 ≤ fεq−1φq−1,

(using p < q and (λ1 − λ)εp−1φp−1 < 0). Moreover, using strong maximum
principle of Vasquez and regularity results, one can choose ε small enough in
order to have ū ≥ εφ. Finally we use the following Proposition, whose proof
can be found in the appendix and is a mere adaptation of the classical sub
and super solution for p = 2. (see e.g. [15], see also [22]):
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Proposition 2.1 Suppose that f(x, t) = a(x)|t|q−2t + b(x)|t|p−2t with 1 <
p < q with a and b two continuous and bounded functions on Ω Suppose that
ū is a weak supersolution for −∆pu + f(x, u), ū = 0 on ∂Ω, and that u is a
weak subsolution with u = 0 on ∂Ω. Suppose that there exists some constant
c and C such that

−∞ < c ≤ u ≤ ū ≤ C < +∞

Then, there exists a solution u between u and ū

Using this Proposition with f(x, u) = (g − λ)up−1 − fuq−1, and u = εφ, one
obtains that there exists a solution which is such that

εφ ≤ u ≤ ū.

3 Existence of solutions

Proof of Theorem 1.5
This proof is inspired by the arguments used in [20]. We begin with the

subcritical case. Suppose that q < p?. Let us recall the following notations:

λ?q = inf
{u∈W 1,p

0 (Ω), |u|pp=1,
∫

Ω
fuq=0}

{
∫

Ω
|∇u|p +

∫
Ω

(g − λ1)|u|p}

αλ,q = inf
{u,
∫

Ω
f |u|q=−1}

{
∫

Ω
|∇u|p +

∫
Ω

(g − λ)|u|p} (3.15)

and
µλ,q = inf

{u,
∫

Ω
f |u|q=1}

{
∫

Ω
|∇u|p +

∫
Ω

(g − λ)|u|p}. (3.16)

Let Iλ(u) :=
∫

Ω |∇u|p +
∫

Ω(g − λ)|u|p.
We will prove the following facts

1. λ?q > 0.

2. For λ ∈]λ1, λ1 + λ?q[, αλ,q < 0 and it is achieved; αλ1,q = 0.

3. For λ ∈]λ1, λ1 + λ?q[, µλ,q > 0 and it is achieved. Moreover µλ1,q > 0.
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Proof of 1.
By the definition of λ1, λ?q ≥ 0. Suppose by contradiction that λ?q = 0.

Let (un) be a minimizing sequence. Since |∇|un|| = |∇un|, one can assume
that un ≥ 0. Since |un|p = 1 and

∫
Ω |∇un|p+

∫
Ω(g−λ1)upn → 0, then

∫
Ω |∇un|p

is bounded; hence (un) is bounded in W 1,p
0 . Extracting from it a subsequence

and passing to the limit, one gets that there exists some u ≥ 0, weak limit
of (un) in W 1,p(Ω), such that∫

Ω
|∇u|p +

∫
Ω

(g − λ1)up ≤ 0. (3.17)

Clearly (3.17) implies that∫
Ω
|∇u|p +

∫
Ω

(g − λ1)up = 0.

and then u is an eigenfunction for λ1 and then it is parallel to φ. Moreover
u ∈ W 1,p

0 ,
∫
Ω |u|p = 1 and

∫
Ω fu

q = 0, which contradicts the assumption∫
Ω fφ

q < 0. Finally λ?q > 0.

Proof of 2.
In order to prove that αλ,q < 0 for λ > λ1, let us take, as an admissible

function, v =
φ

(−
∫
Ω fφ

q)
1
q

. We then have

αλ,q ≤ Iλ(v) =
1

(−
∫

Ω fφ
q)

p
q

Iλ(φ) =
1

(−
∫

Ω fφ
q)

p
q

(λ1 − λ) < 0.

Now we will check that
αλ,q > −∞.

If not, there would exist a subsequence (ui), ui ≥ 0 for all i, such that∫
Ω fu

q
i = −1 and Iλ(ui)→ −∞. Clearly |ui|p → +∞ since

lim
∫

Ω
(g − λ)upi ≤ αλ,q.

Let wi =
ui
|ui|p

. One has
∫

Ω fw
q
i → 0, and (wi) is bounded in W 1,p

0 (Ω), since

|wi|p = 1 and
∫

Ω
|∇wi|p +

∫
Ω

(g − λ)wpi =
Iλ(ui)

|ui|pp
≤ 0 implies

∫
Ω
|∇wi|p ≤ |g − λ|∞.
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Then, there exists a subsequence still denoted (wi), such that wi ⇀ w weakly
in W 1,p(Ω). Observe that∫

Ω
|w|p = 1 and Iλ(w) ≤ 0.

This contradicts the definition of λ, since
∫

Ω fw
q = 0 and λ ∈]λ1, λ1 + λ?q[.

We have proved that αλ,q > −∞.
We shall now see that αλ,q is achieved. Let (un), un ≥ 0 be a minimizing

sequence for αλ,q i.e. ∫
Ω
|∇un|p +

∫
Ω

(g − λ)upn → αλ,q,∫
Ω
fuqn = −1.

Let us prove first that |un|p is bounded. If not, one can argue as previously

by considering wn =
un
|un|p

. It is easy to see that (wn) converges weakly in

W 1,p(Ω), up to a subsequence, towards some function w ≥ 0 which satisfies∫
Ω fw

q = 0, |w|p = 1 and∫
Ω
|∇w|p +

∫
Ω

(g − λ)wp = 0.

This contradicts the definition of λ. Hence
∫

Ω |un|p is bounded, and so is∫
Ω |∇un|p. By extracting from (un) a subsequence, one obtains that there

exists u ∈ W 1,p
0 , u ≥ 0, such that

∫
Ω fu

q = −1 and by lower semi-continuity
of the semi-norm |∇u|p with respect to the weak topology,∫

Ω
|∇u|p +

∫
Ω

(g − λ)up ≤ αλ,q.

Finally using the definition of αλ,q, u is a minimizer for αλ,q, hence it is a
nonzero solution of

−div(|∇u|p−2∇u) + (g − λ)up−1 = −αλ,qfuq−1.

Proof of 3.
Acting as we did for αλ,q one can prove that µλ,q > −∞. We are now

going to check that µλ,q is achieved.
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Indeed, let un be a sequence such that un ≥ 0,∫
Ω
|∇un|p +

∫
Ω

(g − λ)upn → µλ,q,∫
Ω
fuqn = 1.

Suppose that |un|p →∞. Then considering wn =
un
|un|p

one gets, by passing

to the limit that there exists w ≥ 0, a weak limit of (wn) in W 1,p(Ω), such
that ∫

Ω
|∇w|p +

∫
Ω

(g − λ)wp ≤ 0

and
∫
Ω fw

q = 0, which contradicts the assumption λ ∈]λ1, λ1 + λ?q[. Then
(un) is bounded and we pass to the limit to obtain∫

Ω
|∇u|p +

∫
Ω

(g − λ)up = µλ,q

and
∫

Ω fu
q = 1. Hence µλ,q is achieved.

For λ = λ1, µλ1,q ≥ 0, but since it is achieved, if µλ1,q = 0, we would have
an eigenfunction u such that

∫
Ω fu

q = 1, which contradicts the assumptions.
Then µλ1,q > 0.

For λ > λ1 let uq ≥ 0 which realizes the minimum in µλ,q. Then :

−∆puq + (g − λ)up−1
q = µλ,qfu

q−1
q .

Using the procedure of the proof of Theorem 1.2 for uq, inequality (2.10)
becomes

µλ,q

∫
Ω
fφq + (λ− λ1)

∫
Ω
φqup−qq ≤ 0.

Using
∫

Ω fφ
q < 0 and λ− λ1 > 0, one gets µλ,q > 0.

Let us now state and prove some results concerning αλ,q and µλ,q.

Lemma 3.1 The following convergences hold:

lim
λ→λ1

αλ,q = αλ1,q = 0, (3.18)

lim
λ→λ1

µλ,q = µλ1,q (3.19)
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Lemma 3.2 1. λ?p? ≥ limq→p?λ
?
q ≥ limq→p?λ

?
q := λ? > 0.

2. For λ1 ≤ λ < λ1 + λ?, then 0 ≤ limq→p?µλ,q ≤ limq→p?µλ,q ≤ µλ(=
µλ,p?).

3. For λ close to λ1, αλ(= αλ,p?) > −∞ and limq→p?αλ,q ≤ αλ.

Proof of Lemma 3.1
Suppose by contradiction that (3.18) does not hold, then there exist some

number α < 0 and a sequence of λ ∈ IR, λ → λ1, and (uλ) ⊂ W 1,p
o (Ω) such

that ∫
Ω
|∇uλ|p +

∫
Ω

(g − λ)|uλ|p ≤ α.

Moreover one can assume that uλ ≥ 0. If (uλ) is bounded, we may extract
from it a subsequence weakly convergent to some u ∈ W 1,p

0 , such that∫
Ω
|∇u|p +

∫
Ω

(g − λ1)up ≤ α < 0,

which is absurd.
On the other hand if (uλ) diverges we can normalize it and then we obtain

a sequence (wλ) such that
∫

Ω |wλ|p = 1. By extracting a subsequence, there
exists w ≥ 0, such that

∫
Ω |w|p = 1,

∫
Ω fw

q = 0 and∫
Ω
|∇w|p +

∫
Ω

(g − λ1)wp ≤ 0.

This would imply that w is parallel to φ which is absurd since
∫

Ω fφ
q < 0.

Let us now prove (3.19). Let us define µ̄q := limλ→λ1µλ,q. One already
has µ̄q ≤ µλ1,q. Let uλ which satisfies uλ ≥ 0 and

−∆puλ + (g − λ)up−1
λ = µλ,qfu

q−1
λ (3.20)∫

Ω
fuqλ = 1.

As we did above , one can prove that (uλ) is bounded in the W 1,p norm. By
extracting a subsequence, one gets by passing to the limit when λ→ λ1∫

Ω
|∇u|p +

∫
Ω

(g − λ1)up ≤ µ̄q

and u ≥ 0,
∫
Ω fu

q = 1. This clearly implies that µ̄q ≥ µλ1,q and gives the
required result.
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Proof of Lemma 3.2
Let us prove 1, and first that limq→p?λ

?
q > 0. Since λ?q is achieved, let

uq ≥ 0 be a solution of∫
Ω
|∇uq|p +

∫
Ω

(g − λ1)upq = λ?q

|uq|p = 1 and
∫
Ω fu

q = 0. Suppose by contradiction that limq→p?λ
?
q = 0.

Then, by extracting from (uq) a subsequence, one gets by passing to the
limit when q tends to p?:∫

Ω
|∇u|p +

∫
Ω

(g − λ1)up ≤ 0

and |u|p = 1. Since Iλ1 is coercive,
∫

Ω |∇u|p +
∫

Ω(g − λ1)up = 0, and the se-
quence

∫
Ω |∇uq|p tends to

∫
Ω |∇u|p. Hence uq tends to u strongly in W 1,p(Ω),

and finally
∫
Ω fu

p? = limq→p?
∫

Ω fu
q
q = 0. This is a contradiction since φ is

simple and
∫
Ω fφ

p? < 0. As a consequence λ? > 0.
We now prove that λ? ≤ λ?p? . Indeed, let u ≥ 0 be a C1 function, such

that
∫

Ω fu
p? = 0, |u|p = 1, and

Iλ1(u) ≤ λ?p? + ε.

If there exists an infinite sequence q → p?, such that
∫

Ω fu
q = 0, one has

the desired result. If not, there exists an infinite sequence q → p? such that
either

∫
Ω fu

q > 0 for all q, or
∫

Ω fu
q < 0 for all q. Suppose that we are in

the first case and define α(q) =

∫
Ω fu

q∫
Ω fu

q −
∫

Ω fφ
q
. Then α(q) ∈ [0, 1], and

α(q)→ 0 when q → p?. Let us define

vq = (α(q)φq + (1− α(q))uq)
1
q .

By the regularity properties of φ and u, vq belongs to W 1,p
0 (Ω), vq ≥ 0 and∫

Ω fv
q
q = 0 by the choice of α(q). Moreover it is easy to check that vq tends

to u in W 1,p(Ω) strongly. As a consequence

λ?q(1 + o(1)) ≤ λ?q(
∫

Ω
vpα) ≤

∫
Ω
|∇vα|p +

∫
Ω

(g − λ1)vpα ≤ λ?p? + ε+ o(1)
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when q → p?.This implies that λ? ≤ λ?p? . Suppose now that there exists a
sequence q → p? such that

∫
Ω fu

q < 0. Let u0 be nonnegative in C1(Ω̄), such
that

∫
Ω fu

q
0 > 0 and define

vα = (α(q)uq0 + (1− α(q))uq)
1
q ,

where α(q) =

∫
Ω fu

q∫
Ω fu

q −
∫
Ω fu

q
0

. One concludes as in the case
∫

Ω fu
q > 0.

To prove 2., let ε > 0 be given and let u be such that u ≥ 0,
∫

Ω fu
p? = 1

and
Iλ(u) ≤ µλ + ε.

Then for q close to p?,
∫

Ω fu
q > 1

2
and taking vq =

u

(
∫

Ω fu
q)

1
q

, one gets, for q

sufficiently close to p∗,

µλ,q ≤ Iλ(vq) ≤ µλ + 2ε.

We will prove 3. by contradiction. Hence suppose that there exists a
sequence λn → λ1 and a sequence (un), un ≥ 0 such that

∫
Ω fu

p?

n = −1

and Iλn(un) ≤ −n. Clearly |un|p → +∞. Then defining wn =
un
|un|p

, and

extracting a subsequence from it, one gets that there exists w ≥ 0 such that

Iλ1(w) ≤ 0.

This in fact implies that strong convergence holds and then
∫

Ω fw
p? = 0,

which contradicts |w|p = 1 and φ is simple.

Before giving the proof of Theorem 1.6 let us recall one of the key ingre-
dients employed herein i.e. the famous concentration compactness principle
of P.L. Lions[18]:

Lemma 3.3 Let Ω be some bounded open set in IRn, and (uk) be some se-
quence in W 1,p

o (Ω), which is bounded in W 1,p(Ω). Then there exist a subse-
quence of (uk), still denoted (uk) for simplicity, two nonnegative measures µ

16



and ν on Ω, a sequence of points xi in Ω, two sequences of nonnegative real
numbers µi and νi and a function u in W 1,p

o (Ω), such that

|∇uk|p ⇀ µ ≥ |∇u|p +
∑
i

µiδxi

(the convergence being tight on Ω i.e.
∫

Ω |∇uk|p →
∫

Ω µ,),

|uk|p
?

⇀ ν = |u|p? +
∑
i

νiδxi

(the convergence being tight on Ω i.e.
∫

Ω |uk|p
? →

∫
Ω ν ), with the inequality

νi ≤ K(n, p)
p?

p µi. (3.21)

Proof of Theorem 1.6
First part.

We prove the existence of solutions for αλ and for λ sufficiently close to
λ1. According to Lemma 3.1 above, lim

λ→λ1

αλ = 0. One takes λ sufficiently

close to λ1 in order to have −αλ < K(N, p)−p(sup |f |)
−p
p? , and λ < λ1 + λ?.

Let (uq), uq ≥ 0 be a solution for the problem defining αλ,q.
Claim: (uq)q is bounded in Lp.

Suppose that it is not true. Then, proceeding as in the proof of Theorem
1.5, there would exist a sequence (wq) such that wq ≥ 0, |wq|p = 1, and∫

Ω
|∇wq|p +

∫
Ω

(g − λ)wpq ≤ 0. (3.22)

Extracting from (wq) a subsequence one obtains that there exists w, weak
limit of wq in W 1,p such that w ≥ 0, |w|p = 1, and∫

Ω
|∇w|p +

∫
Ω

(g − λ)wp ≤ 0.

If
∫

Ω fw
p? = 0, this contradicts the assumption λ < λ1 + λ? ≤ λ1 + λ?p? . If∫

Ω fw
p? > 0, Iλ(w) ≥ µλ(

∫
Ω fw

p?)
p
p? > 0, and since µλ ≥ 0 one would obtain

that µλ = 0 = Iλ(w), and using lower semi-continuity for the weak topology

Iλ(w) ≤ limq→p?Iλ(wq) ≤ 0.
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Finally Iλ(w) = limq→p?Iλ(wq) and then
∫

Ω |∇wq|p →
∫

Ω |∇w|p, strong con-
vergence holds in fact, hence

∫
Ω fw

p? = limq→p?
∫

Ω fw
q
q = 0, which is a con-

tradiction of the assumption
∫

Ω fw
p? > 0.

Finally suppose that
∫
Ω fw

p? < 0. Then, applying P.L. Lions’ concen-
tration compactness lemma recalled above, one gets that there exists two
bounded and nonnegative measures µ and ν on Ω, some countable set of
points (xi) in Ω, and some sequence of non-negative numbers (µi) and (νi),
which satisfy, up to a subsequence

|∇wq|pp ⇀ µ ≥ |∇w|pp +
∑
i

µiδxi (3.23)

|wq|q ⇀ ν = |w|p? +
∑
i

νiδxi . (3.24)

Passing to the limit in (3.22), in the equality
∫

Ω fw
q
q = −1

|uq |qp
, and using (3.23)

and (3.24), one obtains
Iλ(w) ≤ −

∑
i

µi,∫
Ω
fwp

?

+
∑
i

νif(xi) = 0.

On the other hand, using
∫
Ω fw

p? < 0, one has

αλ(−
∫

Ω
fwp

?

)
p
p? ≤ Iλ(w) ≤ −

∑
i

µi.

Hence, ∑
i

µi ≤ −αλ(
∑
i

νif(xi))
p
p?

Finally∑
i

µi ≤ −αλ
∑
i

(νif(xi))
p
p? ≤ −αλ sup |f |

p
p?K(N, p)p

∑
i

µi ≤ δ
∑
i

µi

for some δ < 1. One obtains that µi = 0 and then νi = 0, as well as∫
Ω fw

p? = 0, which contradicts the assumption.
As a consequence the claim is proved i.e. (uq) is bounded in Lp.
Furthermore, since

αλ,q ≥ (λ1 − λ)
∫

Ω
|uq|p
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the sequence αλ,q is bounded too. Let us denote by ᾱ the limit of a subse-
quence. Clearly ᾱ ≤ αλ. Since (uq), (uq ≥ 0) is bounded, one may extract a
subsequence such that uq ⇀ u in W 1,p. Let us recall that uq satisfies:{

−∆puq + (g − λ)up−1
q = −αλ,qfuq−1

q ,∫
Ω fu

q
q = −1

(3.25)

Let us denote by σ the weak limit of a subsequence in L
p

(p−1) (Ω) of σq :=
|∇uq|p−1∇uq. Then, passing to the limit in equation (3.25) one gets u ≥ 0
and

−div(σ) + (g − λ)up−1 = −ᾱfup?−1. (3.26)

Using again P.L. Lions’ concentration lemma, there exist two bounded
and nonnegative measures µ and ν on Ω̄, some countable sets of points (xi)
in Ω, and some sequence of nonnegative numbers (µi) and (νi), which satisfy,
up to a subsequence

|∇uq|pp ⇀ µ ≥ |∇u|pp +
∑
i

µiδxi tightly on Ω,

|uq|q ⇀ ν = |u|p? +
∑
i

νiδxi , tightly on Ω.

Let us multiply equation (3.25) (resp. equation (3.26)) by uqϕ (resp. uϕ),
for a function ϕ in D(Ω). One obtains∫

Ω
|∇uq|pϕ+

∫
Ω
σq · ∇ϕuq +

∫
Ω

(g − λ)upqϕ = −αλ,q
∫

Ω
fuqqϕ (3.27)

and∫
Ω

(σ · ∇u)ϕ+
∫

Ω
(σ · ∇ϕ)u+

∫
Ω

(g − λ)upϕ = −ᾱ
∫

Ω
fup

?

ϕ. (3.28)

By passing to the limit in (3.27), one gets∫
Ω
µϕ+

∫
Ω

(σ·∇ϕ)u+
∫

Ω
(g−λ)upϕ = −ᾱ(

∫
Ω
fup

?

ϕ+
∑
i

νif(xi)ϕ(xi)). (3.29)

Subtracting (3.28) from (3.29) one obtains∫
Ω

(µ− σ · ∇u)ϕ = −ᾱ(
∑
i

νif(xi)ϕ(xi)). (3.30)
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Using Lebesgue decomposition of µ := µac+µs, where µac is the absolutely
continuous part of µ, one derives

|∇u|p ≤ µac = σ · ∇u, (3.31)∑
i

µiδxi ≤ µs = −ᾱνif(xi)δxi . (3.32)

Suppose first that xi is such that f(xi) ≤ 0, then µi = νi = 0.

On the other hand, passing to the limit in equation (3.27) and using lower
semi-continuity one has

Iλ(u) ≤ ᾱ < 0.

If
∫

Ω fu
p? = 0 this contradicts the assumption λ ∈]λ1, λ1+λ?p? [. If

∫
Ω fu

p? > 0
one also gets a contradiction, since

0 ≤ µλ(
∫

Ω
fup

?

)
p
p∗ ≤ Iλ(u).

Suppose that
∫
Ω fu

p? < 0, then using (3.31) and (3.28) one has

αλ(−
∫

Ω
fup

?

)
p
p? ≤ Iλ(u) ≤ −ᾱ

∫
Ω
fup

? ≤ −αλ
∫

Ω
fup

?

.

From this, one obtains that −
∫

Ω fu
p? ≤ 1.

On the other hand the identity∫
Ω
fup

?

+
∑
i

νif(xi) = −1

yields to
∑
i νif(xi) ≤ 0, and since we are in the case f(xi) ≥ 0 we get

νif(xi) = 0 for all i. Using (3.32) one obtains that
∫

Ω fu
p? = −1 and µi = 0.

We have then

αλ ≤
∫

Ω
|∇u|p +

∫
Ω

(g − λ)up ≤
∫

Ω
σ.∇u+

∫
Ω

(g − λ)up = ᾱ ≤ αλ

which implies that ᾱ = αλ, σ.∇u = |∇u|p, the convergence of ∇uq is strong
in W 1,p(Ω) and αλ is achieved.
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Second part. Since limλ→λ1 αλ = αλ1 = 0, one can choose λ sufficiently close
to λ1 in order to have

αλ > −
(
sup |f |

p
p?K(N, p)p

)
.

Now let uq be a function for which µλ,q is achieved, uq ≥ 0.

Claim: (uq) is bounded in Lp when q goes to p?.
Suppose on the contrary that |uq|p tends to infinity. Then, defining wq =

uq
|uq|p

, one obtains that wq tends, up to a subsequence, to a function w ∈

W 1,p
0 (Ω), w ≥ 0 which satisfies |w|p = 1, and∫

Ω
|∇w|p +

∑
i

µi +
∫

Ω
(g − λ)wp ≤ 0,

∫
Ω
fwp

?

+
∑
i

νif(xi) = 0

where (µi) and (νi) are as in the first part.
Suppose first that

∫
Ω fw

p? = 0. Then one gets a contradiction with the
conditions on λ since ∫

Ω
|∇w|p +

∫
Ω

(g − λ)wp ≤ 0.

Suppose that
∫

Ω fw
p? > 0. Then by the definition of µλ one would obtain

that
µλ(

∫
Ω
fwp

?

)
p
p? ≤ |∇w|p +

∫
Ω

(g − λ)wp ≤ 0

Since µλ ≥ 0, this may happen only if µλ = 0, and in the same time Iλ(w) =
0. Then, coming back to the previous inequalities, one has

Iλ(w) = 0 ≤ limq→p?Iλ(wq) ≤ 0

hence Iλ(wq) → Iλ(w), and strong convergence holds. This implies that∫
Ω fw

p? = limq→p?
∫
Ω fw

q
q = 0, which contradicts the assumption

∫
Ω fw

p? >
0.

Suppose finally that
∫
Ω fw

p? < 0, then one can write

αλ(−
∫

Ω
fwp

?

)
p
p? ≤

∫
Ω
|∇w|pp +

∫
Ω

(g − λ)wp ≤ −
∑
i

µi
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and then

∑
i

µi ≤ (−αλ)
(∑

i

νi|f(xi)|
) p

p?

≤ (−αλ)
(∑

i

ν
p
p?

i |f(xi)|
p
p?

)
≤ (−αλ) sup |f |

p
p?
∑
i

µiK(N, p)p

≤ δ
∑
i

µi

for some δ < 1. Finally one has µi = 0 for all i and then νi = 0. Then∫
Ω fw

p? = 0 which is absurd, as we remarked before. We have obtained that
(uq) is bounded. This proves the claim.

Let β = 1
2

(
K(N, p)−p sup |f |

−p
p? − µλ1

)
and suppose that λ is sufficiently

close to λ1 in order to ensure that

|αλ| < β.

Let (uq) be a sequence of nonnegative minimizers for µλ,q, uq ≥ 0. Then

−∆puq + (g − λ)up−1
q = µλ,qfu

q−1
q (3.33)∫

Ω
fuqq = 1.

By the previous computations, the sequence (uq) is bounded in Lp, and since
(µλ,q) is bounded too, (uq) is in fact bounded in W 1,p. Let us extract from
it a subsequence such that

uq ⇀ u

in W 1,p weakly. Let us denote by γ the limit of some subsequence of µλ,q.
One has γ ≤ µλ ≤ µλ1 .

Acting as we did in the first part, one gets

−div(σ) + (g − λ)up−1 = γfup
?−1, (3.34)

denoting by σ a weak limit of |∇uq|p−1∇uq in L
p

p−1 (Ω).
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Multiplying equation (3.33) (respectively (3.34)) by uqϕ (respectively by
uϕ) with ϕ ∈ D(Ω) and integrating over Ω, introducing measures µ and ν as
in the concentration compactness lemma one gets

µac − σ.∇u = 0∑
i

µiδi ≤ µs = γ
∑
i

νif(xi)δi. (3.35)

This last identity yields that γ cannot be zero: if it was, one would have
µi = 0, hence νi = 0, and in the same time,∫

Ω
|∇u|p +

∫
Ω

(g − λ)up = 0

and ∫
Ω
fup

?

= 1.

This is impossible, since for example, one has supposed that λ is not an
eigenvalue. Then γ > 0. Moreover, if xi is such that f(xi) < 0, then µi = 0,
and so is νi. Since one has

|∇u|p ≤ µac = σ.∇u,

coming back to (3.34), one gets∫
Ω
|∇u|p +

∫
Ω

(g − λ)up ≤
∫

Ω
σ · ∇u+

∫
Ω

(g − λ)up = γ
∫

Ω
fup

?

.

On another hand the identity∫
Ω
fup

?

+
∑
i

νif(xi) = 1

implies that
∑
i νif(xi) ≤ 1 if

∫
Ω fu

p? ≥ 0. Suppose now that
∫

Ω fu
p? < 0.

Then νf =
∑
i νif(xi) > 1. In the same time one has

αλ(−
∫

Ω
fup

?

)
p
p? ≤

∫
Ω
|∇u|p +

∫
(g − λ)up ≤ γ

∫
Ω
fup

?

and then

νf ≤ 1 +

(
−α
γ

) 1

1− p
p?

.
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As seen before if f(xi) < 0, µi = 0, hence νi = 0. If f(xi) ≥ 0, the previous

calculations imply that for all i, νif(xi) ≤ 1 +

(
−α
γ

) 1

1− p
p?

. Finally

µi ≤ γ


νif(xi)

1 +

(
−α
γ

) 1

1− p
p?


1 +

(
−α
γ

) 1

1− p
p?



≤ γ


νif(xi)

1 +

(
−α
γ

) 1

1− p
p?


1− p

p?


νif(xi)

1 +

(
−α
γ

) 1

1− p
p?



p
p? 1 +

(
−α
γ

) 1

1− p
p?



≤ γ

1 +

(
−α
γ

) 1

1− p
p?

1− p
p?

K(N, p)p sup |f |
p
p? µi

≤ γ

(
1 +
−α
γ

)
K(N, p)p sup |f |

p
p? µi

≤ K(N, p)p sup |f |
p
p? µi(γ − α)

≤ δµi (3.36)

for some δ < 1. As a consequence µi = 0 and then νi = 0. Finally∫
Ω
fup

?

= 1,

µλ ≤
∫

Ω
|∇u|p +

∫
Ω

(g − λ)|u|p ≤
∫

Ω
σ.∇u+

∫
Ω

(g − λ)|u|p ≤ γ

hence µλ = γ, |∇u|p = σ.∇u = µ, the convergence is strong, and u is a
minimizer for µλ.

Remark 3.4 We have also obtained that µλ > 0.

Corollary 3.5 Suppose that
∫

Ω fφ
p? < 0 and that there exists a minimizer

for λ = λ1, then there exist at least two minimizers for λ > λ1, and λ
sufficiently close to λ1.
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Proof
Suppose that there exists a minimizer u1 for the problem with λ = λ1.

Then

inf
{u∈W 1,p

0 (Ω),
∫

Ω
f |u|p?=1}

{
∫

Ω
|∇u|pp +

∫
Ω

(g − λ)up} ≤ Iλ(u1) < Iλ1(u1)

= inf Iλ1(u)

≤ 1

K(N, p)p sup f(x)
p
p?
.

As a consequence, using Theorem 1.6 one obtains that Iλ has a minimizer.

4 Estimates and test functions

Let x0 ∈ RN and r = |x−x0| the euclidean distance from x0 to x. For p > 1
given, p real such that p < N , we define the function uε by

uε(x) = (ε+ rp/p−1)1−N/p

and the function vε by

vε(x) = (ε+ rp/p−1)1−N/pφ(r)

where φ : R→ R, nonnegative and smooth, is such that φ(r) = 1 for r ≤ δ/4
and φ(r) = 0 for r ≥ δ, δ > 0 small. Recall here that

u1(x) = (1 + rp/p−1)1−N/p

realizes the best constant for the embedding of W 1,p(RN) in Lp
?
(RN). Let

also a and f be smooth functions defined in a neighborhood Ω of x0. We
assume in what follows that f > 0 in Bx0(δ), and that Bx0(δ) ⊂ Ω. For
u ∈ W 1,p

0 (Ω), we set

I(u) =

∫
Ω |∇u|pdx+

∫
Ω(g(x)− λ1)|u|pdx

(
∫

Ω f(x)|u|p?dx)
p
p?

.

We also introduce
kg = 0 if g(x0) < λ1
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kg = inf{j ∈ N, / j ≥ 1 and ∆jg(x0) < 0} if not

kf = inf{j ∈ N?, /∆jf(x0) < 0}

with the convention that kg = +∞ (resp. kf = +∞) if the corresponding set
above is empty. Here ∆j = ∆j−1 ◦∆, j ≥ 1, where ∆ is the usual Laplacian.
When N > p2, we define as in [10], [6]

k = sup{m ∈ N/N > p2 + 2m(p− 1)}

and for j integer, we set

αN,j =
Γ(j + 1

2
)Γ(1

2
)N−1(2j +N)

Γ(j + N
2

+ 1)

and

α̃p,Nj =
αN,j
(2j)!

∫ ∞
0

rN+2j−1dr(
1 + r

p
(p−1)

)N−p
β̃p,Nj =

αN,j
(2j)!

(N − p)p

(p− 1)p−1

∫ ∞
0

rN+2j−1dr(
1 + r

p
(p−1)

)N .
Note that α̃p,Nj exists as soon as N > p2 + 2j(p− 1), that β̃p,Nj exists as soon

as N > 2j(p − 1). One can find the explicit values of α̃p,Nj , β̃p,Nj in [10],
Lemma 7.

Proposition 4.1 Suppose that 1 < p2 < Nand that f and g are C∞(Ω). For
ε > 0 sufficiently small,

I(vε) <
1

K(N, p)pf(x0)
p
p?

in each of the following cases

• 1. k ≥ kg, kf > kg + p
2
, and ∆kg(g(x0)− λ1) < 0.

• 2. k ≥ kg, kf < kg + p
2
, and ∆kff(x0) > 0.

• 3. k ≥ kg, kf = kg+ p
2
, and α̃p,nkg (∆kg(g(x0)−λ1)f(x0)−β̃p,nkf ∆kff(x0) <

0
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• 4. k ≤ kg, kf ≤ k + p
2
, and ∆kff(x0) > 0.

For example, the following corollary presents particular situations which
enclose the results in the case where p = 2 obtained in [6], see also [1] in the
case p = 2 and g = 0:

Corollary 4.2 Suppose that 1 < p2 < n. For ε > 0 small, one has that

I(vε) <
1

K(N, p)pf(x0)1− p
N

in each of the following situations

• 1. 1 < p < 2 and g(x0) < λ1.

• 2. p = 2 and 8(N−1)
(N−2)(N−4)

(g(x0)− λ1)f(x0)−∆f(x0) < 0.

• 3. p > 2 and g(x0) = λ1, ∆g(x0) = ∆f(x0) = 0 and ∆2f(x0) > 0.

As a consequence of Proposition 4.1 One obtains that if f achieves its
supremum on an interior point x0 such that one of the situations described
in 1. 2. 3. 4. occurs, then, there exists a solution to equation 1.1 for λ = λ1

and for λ close to λ1.
We do not give the proofs of Proposition 4.1 and Corollary 4.2 , because

they are very technical and are already written in [10], in the coercive case.
One must just replace in [10] the function a by the function g − λ1.

5 Appendix

As mentioned in the introduction, in this appendix we want to prove the
following

Proposition 2.1 Suppose that f(x, t) = a(x)|t|q−2t + b(x)|t|p−2t with 1 <
p < q, and a and b two continuous and bounded functions on Ω. Suppose
that ū is a weak supersolution for −∆pu + f(x, u) ū = 0 on ∂Ω, and that
u is a weak subsolution with u = 0 on ∂Ω. Suppose that there exists some
constant c and C such that

−∞ < c ≤ u ≤ ū ≤ C < +∞
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Then, there exists a solution u between u and ū

Proof We follow the method of E. Hebey in [?].
Let k be choosen in order that the function

H(x, t) = f(x, t) + k|t|p−2t

be increasing on [infx∈Ω u, supx∈Ω u]. Let u1 be the solution of the variational
problem

inf
u∈W 1,p

0 (Ω)

1

p

∫
Ω
|∇u|p +

k

p

∫
Ω
|u|p −

∫
Ω
H(x, u)u.

The solution u1 is unique and satisfies the following partial differential equa-
tion

−∆pu1 + k|u1|p−2u1 = H(x, u)

and in particular

−∆pu1 + k|u1|p−2u1 ≤ −∆pu+ k|u|p−2u

and by the comparison principle one gets that u1 ≤ u. On the other hand
by the monotonicity properties of H

−∆pu1 + k|u1|p−2u1 = H(x, u) ≥ H(x, u ≥ −∆pu+ k|u|p−2u

and then
u1 ≥ u.

Finally u1 is a supersolution since

−∆pu1 + k|u1|p−2u1 = H(x, u) ≥ H(x, u1),

hence
u ≤ u1 ≤ u.

Iterating this process, one obtains the existence of a decreasing sequence un
of supersolutions and

u ≤ un ≤ u,

with
−∆pun + k|un|p−2un = H(x, un−1).
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The sequence is, then, simply convergent and furthermore un is bounded in
W 1,p since it is bounded in L∞ and∫

Ω
|∇un|p + k

∫
Ω
|un|p−

∫
Ω
H(x, un−1)un ≤

∫
Ω
|∇u|p + k

∫
Ω
|u|p−

∫
Ω
H(x, u)u.

Extracting from it a subsequence one gets that there exists u such that
un ⇀ u in W 1,p weakly. Let σ be a weak limit of |∇un|p−2∇un in Lp

′
. It

satisfies
−divσ + k|u|p−2u = H(x, u).

Multiplying this by u and integrating by parts one gets∫
Ω
∇u.σ + k

∫
Ω
|u|p =

∫
Ω
H(x, u)u.

and on another hand passing to the limit in the equation satisfied by un,
multiplied by un, one has

lim
∫

Ω
|∇un|p + k

∫
Ω
|u|p =

∫
Ω
H(x, u)u.

We have obtained that ∫
Ω
σ.∇u = lim

∫
Ω
|∇un|p.

By using lower semicontinuity for the weak topology,

|
∫

Ω
σ.∇u| ≤ lim(

∫
Ω
|∇un|p)

p
p−1 (

∫
|∇u|p)

1
p

and then
lim

∫
Ω
|∇un|p ≤ lim(

∫
Ω
|∇un|p)

p
p−1 (

∫
|∇u|p)

1
p

hence
lim(

∫
Ω
|∇un|p)

1
p ≤ (

∫
Ω
|∇u|p)

1
p .

Since the other inequality is always true, one obtains that the convergence is
strong, σ = |∇u|p−2∇u, and u is a solution.
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Sci. Paris Sér. I Math. 317, 945-950, (1993).

[6] I. Birindelli, F. Demengel On some partial differential equation for
non coercive functional and critical Sobolev exponent, Differential Inte-
gral Equations 15 (2002) 823-837.

[7] W. Chen, C.Li A priori estimates for prescribing scalar curvature
equations, Ann. of Math. 48 (1997), 47-92.

[8] F. Demengel, E. Hebey On some nonlinear equation involving the
p-Laplacian and some critical Sobolev exponent, Adv. Differential Equa-
tions 3 (1998), no. 4, 533-574.

[9] Di Benedetto C1+α regularity of weak solutions of degenerate elliptic
equations, Non Linear Anal. Vol.7, 8, pp 827-850, 1983.

[10] P. Drabek, Y. X. Huang Multiplicity of positive solutions for some
quasi linear elliptic equations in IRN with critical Sobolev exponent J.
Differential Equations, 140 (1997) 106-132.

30



[11] P. Drabek, S. Pohozaev Positive solutions for the pLaplacian : Ap-
plication of the fibrering method, Proc. Roy. Soc. Edinburgh, 127 A,
703-726, (1997).

[12] J. Garcia Azorero, I. Peral Alonso Some results about the existence
of a second Positive solution in a quasilinar critical problem , Indiana
University Math. Journal; Vol.43, 3, (1994) p. 941-957.

[13] M. Guedda, L. Veron, Local and Global properties of solutions of
quasilinear elliptic equations, J. Differential Equations, 76 (1988), 159-
189.

[14] M. Guedda, L. Veron, Quasilinear equations involving critical Sobolev
exponents, Nonlinear Anal. 13 (1989), 879-902.
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