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Introduction

Flatness is a control-theoretical concept introduced in [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF] and the assets of flatness-based approaches are well-established. A deep insight on flatness along with applications can be found in the book [START_REF] Sira-Ramirez | Differentially Flat Systems[END_REF]. For a flat discrete-time system (linear or nonlinear), the state variable as well as the input of the system can be written as some function of the output (including forward and backward shifts in the output). Such a property is especially interesting both for state reconstruction and control perspectives. Indeed, it is clear from the definition that flatness provides a generic way of reconstructing the state vector despite possibly unknown inputs. Even more is true, flatness is a structural property of a dynamical system and so ensures the existence of an unknown input observer without any a priori structure of the observer.

For control purposes, flatness is also relevant insofar as, given a flat output, the definition of flatness provides in a straightforward manner a constructive way of designing a feedforward control to track a prescribed trajectory of the plant output. This being the case, an important issue related to flatness is the problem of checking whether a given output of a dynamical system is flat or not. Indeed, it is precisely the flat output which will be exclusively used for the design of the controller or the state reconstructor according to the purpose. A first approach consists in trying to directly agree with the definition, that is attempting to express the input and the state vector as a function exclusively involving derivatives of the output in the continuous case or shifts of the output in the discrete-time case. A more relevant approach has been proposed in [START_REF] Levine | Flat output characterization for linear systems using polynomial matrices[END_REF] for continuous linear systems. For nonlinear systems, flat output characterization has been addressed to a much lesser extent. We may refer to the recent work [START_REF] Sako | On an algorithm for checking whether or not a nonlinear discrete-time system is difference flat[END_REF] dealing with flatness of time invariant nonlinear discrete-time systems from a behavioral perspective. In this paper, we propose a characterization for switched linear systems. It is based on the notion of nilpotent semigroups and a complete tractable algorithm is given for checking the conditions. Furthermore, it is shown that the theoretical condition and the corresponding algorithm can be extended to LPV systems with little effort. The layout is as follows. In Section 2, we recall some basics on flatness with a special emphasis on switched linear systems. Section 3 is devoted to the flat output characterization and a description of the corresponding algorithm. An extension to LPV systems is proposed in Section 4. Finally, Section 5 is devoted to illustrative examples.

Preliminaries and Definitions

Throughout this paper, we shall examine switched linear systems in the form

x k+1 = A σ(k) x k + B σ(k) u k y k = C σ(k) x k + D σ(k) u k (1)
The state vector is For any integer n, 1 n refers to the n-dimensional identity matrix and 0 n×m stands for the n × m zero matrix. If irrelevant, the dimension of the zero matrix is omitted and it shall be merely written as 0. We introduce the subsequent vectors and matrices:

x k ∈ R n , the input is u k ∈ R m and the output is y k ∈ R p . All the matrices, namely A σ(k) ∈ R n×n , B σ(k) ∈ R n×m , C σ(k) ∈ R
u k:k+i =      u k u k+1 . . . u k+i      , y k:k+i =      y k y k+1 . . . y k+i      (2) 
I m×r = 1 m 0 m×(m•r) O σ(k:k+i) =      C σ(k) C σ(k+1) A σ(k)
. . .

C σ(k+i) A σ(k+i-1) σ(k)      (3) 
The matrix O σ(k:k+i) involves the transition matrix defined by

A σ(k 1 ) σ(k 0 ) = A σ(k 1 ) A σ(k 1 -1) • • • A σ(k 0 ) if k 1 ≥ k 0 = 1 n if k 1 < k 0
Finally, we recursively define the matrix

M σ(k:k+i) = D σ(k) 0 O σ(k:k+i) B σ(k) M σ(k+1:k+i) (4) with M σ(k:k) = D σ(k)
Let us notice that the notation σ(k : k + i), which points out that the related matrix depends on the sequence {σ(k), . . . , σ(k + i)} is somehow abusive since σ is defined over N and not over N i+1 . However, since it does not induce confusion, such a notation will be used accordingly for the sake of shortness.

Flatness is closely related to the notions of left invertibility which actually stands for a necessary condition. Roughly speaking, invertibility of a dynamical system is the ability of uniquely determining the input sequence from the output sequence. The works dealing with left invertibility reported in [START_REF] Brockett | The reproducibility of multivariable systems[END_REF] are considered throughout the literature as the pioneering ones. Left invertibility for switched linear systems has been addressed in [START_REF] Vu | Invertibility of switched linear systems[END_REF] for continuous-time systems and in [START_REF] Sundaram | Designing stable inverters and state observers for switched linear systems with unknown inputs[END_REF][START_REF] Millérioux | Proc. of the 10th International Conference on Hybrid Systems: Computation and Control (HSCC'07), volume 44, chapter Invertibility and Flatness of Switched Linear Discrete-time Systems[END_REF] for discrete-time systems. The concept of left inverse systems, related to left invertibility, will play a central role for our purpose. The following definition is in accordance with the papers [START_REF] Sundaram | Designing stable inverters and state observers for switched linear systems with unknown inputs[END_REF][START_REF] Millérioux | Proc. of the 10th International Conference on Hybrid Systems: Computation and Control (HSCC'07), volume 44, chapter Invertibility and Flatness of Switched Linear Discrete-time Systems[END_REF][START_REF] Millérioux | Flatness of switched linear discrete-time systems[END_REF]. Definition 1. A system, with state vector x k , is a left r-delay inverse for (1) if, under identical initial conditions x 0 and identical sequences {σ} 0:∞ , there exists a non negative integer r such that, when driven by y k:k+r , the equalities x k+r = x k and u k+r = u k for all k ≥ 0 are ensured, u k being the output of (1) at time k. The non negative integer r is called the inherent delay.

Let us notice that the terminology of r-delay inverse and inherent delay is borrowed from the work [START_REF] Sain | Invertibility of linear time-invariant dynamical systems[END_REF] which deals with linear systems. Besides, the consideration of the initial condition x 0 stands as a counterpart of the continuous case and the definition of invertibility at point x 0 introduced in [START_REF] Hirschorn | Invertibility of nonlinear control systems[END_REF]. Actually, the initial condition x 0 has been disregarded in [START_REF] Sain | Invertibility of linear time-invariant dynamical systems[END_REF] by assuming that it is zero or that "its effect can be subtracted".

The papers [START_REF] Sundaram | Designing stable inverters and state observers for switched linear systems with unknown inputs[END_REF][START_REF] Millérioux | Proc. of the 10th International Conference on Hybrid Systems: Computation and Control (HSCC'07), volume 44, chapter Invertibility and Flatness of Switched Linear Discrete-time Systems[END_REF][START_REF] Millérioux | Flatness of switched linear discrete-time systems[END_REF] give an explicit form of the left r-delay inverse system for [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF] 

with

P σ(k:k+r) = A σ(k) -B σ(k) I m×r (M σ(k:k+r) ) † O σ(k:k+r) (6) 
The matrix (M σ(k:k+r) ) † is the classical Moore-Penrose generalized inverse of M σ(k:k+r) . The matrices P σ(k:k+r) are called the left-inverse dynamical matrices.

Flatness

Definition 2 ([9]

). A square (p = m) dynamical system is said to be flat if there exists a set of independent variables y k , referred to as flat outputs, such that all system variables can be expressed as a function of the flat output and a finite number of its backward and/or forward shifts. In particular, there exist two functions F and G which obey

x k = F(y k+k F , . . . , y k+k ′ F ) u k = G(y k+k G , . . . , y k+k ′ G ) (7) 
where

k F , k ′ F , k G and k ′ G are Z-valued integers.
The issue of flat output characterization consists in checking whether or not a given output of a dynamical system is flat. Theorem 1 stated in [START_REF] Millérioux | Flatness of switched linear discrete-time systems[END_REF] and recalled below gives a first characterization by considering the left-inverse dynamical system (5).

Theorem 1 ([9]

). An output y k of the system (1) assumed to be square, with left inherent delay r, is a flat output if there exists a positive integer K < ∞ such that, for all sequences in J r+K , the following equality, involving the product of left-inverse dynamical matrices, applies for all k ≥ 0:

P σ(k+K-1:k+K-1+r) P σ(k+K-2:k+K-2+r) • • • P σ(k:k+r) = 0 (8) 
Condition ( 8) only involves matrices (6) of the left r-delay inverse system [START_REF] Brockett | The reproducibility of multivariable systems[END_REF]. Besides, the matrices (6) depend on sequences of modes. Hence, even if σ is arbitrary, the sequences parametrizing two successive matrices involved in the product ( 8) are related to each other. To cope with this constraint without introducing too heavy notations and to make the subsequent technical developments more explicit, it is convenient to define an auxiliary system and to rewrite Theorem 1 accordingly.

Auxiliary system

Let us define the auxiliary system of (1) as the switched linear system given by

q k+1 = Q σ ′ (k) q k (9)
with q k ∈ R n and σ ′ a switching rule defined as follows.

Consider the mapping φ : J r+1 → H = {1, . . . , J r+1 } that assigns to each possible sequence {σ(k), . . . , σ(k + r)} an integer h from the set H which uniquely identifies the sequence. Then, the switching rule σ ′ is defined as the function from N to H which associates to each integer k ∈ N the quantity

σ ′ (k) = φ(σ(k), . . . , σ(k + r)) ∈ H. The value σ ′ (k)
is the mode of the auxiliary switched linear system (9) and Q σ ′ (k) = P σ(k:k+r) . We denote by Q the set of all the matrices Q h (h ∈ H).

By considering the auxiliary system (9), we are now in a position of reformulating Theorem 1 which turns into Theorem 2. An output y k of the system (1) assumed to be square, with left inherent delay r, is a flat output if there exists a positive integer K < ∞ such that, for all sequences {σ ′ (k), . . . , σ ′ (k+K -1)} ∈ H K , the following equality, involving the product of the dynamical matrices of the auxiliary system (9), applies for all k ≥ 0:

Q σ ′ (k+K-1) Q σ ′ (k+K-2) • • • Q σ ′ (k) = 0 (10)
Proof. The proof is a straightforward consequence of the definition of the auxiliary system.

The point is that the computational cost of the test (10) grows exponentially with respect to the number K of matrices involved in [START_REF] Sain | Invertibility of linear time-invariant dynamical systems[END_REF]. Besides, no upper bound for K is given. Hence, we cannot a priori know how many tests we should perform. Actually, such a condition should not be seen as a characterization but rather as a definition which stipulates that the inverse dynamics of (1) must be trivial. As a result, it should be convenient to propose a new and complete characterization without prohibitive computational cost. It is the purpose of the subsequent sections and an alternative to Theorem 2 will be given. It is based on the notion of nilpotent semigroups. This notion will allow us to derive an algorithm, tractable and with fair complexity, for flat output characterization.

Flat output characterization and nilpotent semigroups

Main result

Let us first recall some basics related to nilpotent semigroups.

Definition 3 (Semigroup). A semigroup S is a set together with an associative internal law.

The semigroup S is said to be finite if it has a finite number of elements. If S is a set of matrices, the associative internal law is the matrix multiplication. Let 0 denote the absorbing element of a semigroup when it exists.

Definition 4 (Nilpotent semigroup). A semigroup S with an absorbing element 0 is said to be nilpotent if there exists an integer t ∈ N * such that the internal law applied to any t elements of S is always equal to 0. The smallest integer t is called the class of nilpotency of S.

If S is a set of matrices, applying the internal law to any t elements of S amounts to performing the product of t matrices of S. The absorbing element is, in this case, the null matrix. Hereafter, the elements of S are the matrices of Q. Theorem 3. If the matrices of Q of the auxiliary system (9) generate a nilpotent semigroup, then y k is a flat output.

Proof. If the matrices of Q of the auxiliary system (9) generate a nilpotent semigroup, by definition, for any t-tuple (h 1 , . . . , h t ) ∈ H t , t being the class of nilpotency of Q, one has

t i=1 Q h i = 0 (11) 
Hence, ( 10) is fulfilled with K = t. As a result, Theorem 2 holds and means that y k is a flat output.

Corollary 1. If the matrices of Q generate a nilpotent semigroup, the integer K is finite and is upper bounded by the dimension n of the system (1).

Proof. If the matrices of Q generate a nilpotent semigroup, the integer K is equal to the class of nilpotency t of the semigroup. The class of nilpotency being actually bounded by the dimension of the matrices involved in the semigroup, K is bounded by the dimension of the matrices of Q, that is precisely n, the dimension of the system (1).

Remark 1. A necessary condition for the matrices of Q to generate a nilpotent semigroup is that all the matrices of Q are nilpotent, that is all their eigenvalues are zero. Indeed, [START_REF] Hirschorn | Invertibility of nonlinear control systems[END_REF] must hold in particular for the t-tuples (h i , . . . , h i ) for all i ∈ {1, . . . , t}. It should be pointed out that it is not sufficient. Indeed, a set of nilpotent matrices may not generate a nilpotent semigroup and the examples are not singular. For instance, consider the following sets of two elements

0 1 0 0 , 0 0 1 0 or   -2 -2 -6 -1 -4 -9 2 2 6   ,   3 1 14 3 -1 10 0 -1 -2  
For each set, both matrices are nilpotent. However, they do not generate a nilpotent semigroup.

Comparative study

The switching rule σ ′ of the auxiliary system ( 9) is constrained. Indeed, since by definition σ ′ (k) = φ(σ(k), . . . , σ(k + r)) and σ ′ (k + 1) = φ(σ(k + 1), . . . , σ(k + r + 1)), it holds that σ ′ (k) and σ ′ (k + 1) depend on the common subsequence {σ(k + 1), . . . , σ(k + r)}. Hence, σ ′ (k) and σ ′ (k + 1) are related one another. Hence, even in the case when the switching rule σ of (1) is arbitrary, given a matrix Q σ ′ (k) = P σ(k:k+r) , the matrix Q σ ′ (k+1) = P σ(k+1:k+1+r) may not take an arbitrary value over Q. To formalize this constraint, it is convenient to introduce a so-called set of feasible transitions.

Definition 5. The set Γ(σ ′ (k)) of feasible transitions from a mode σ ′ (k) is the set defined by

Γ(σ ′ (k)) = {h ∈ H : h = φ(σ(k + 1), . . . , σ(k + r + 1)), ∀σ(k + r + 1) ∈ J } (12) 
In other words, Γ(σ ′ (k)) is the set h ∈ H which can be reached when σ(k + r + 1) varies over the whole range J , σ ′ (k) and thus the sequence {σ(k + 1), . . . , σ(k + r)} being imposed. One has Γ(σ ′ (k)) ⊆ H which clearly formalizes that σ ′ is constrained. It is clear that Γ(σ ′ (k)) can never be the empty set. Definition 6. A sequence {h 1 , h 2 , . . .} is said to be admissible if for any i ≥ 1

h i+1 ∈ Γ(h i ) (13) 
Let us introduce the map µ : H → Q which assigns to each integer h ∈ H the matrix Q h ∈ Q. The restriction of µ to a particular subset Γ(h) of H is denoted by µ Γ(h) .

Definition 7. A sequence of matrices {Q h 1 , Q h 2 , . . .} (h i ∈ H) is said to be admissible if for any h i ∈ H Q h i+1 ∈ R(µ Γ(h i ) ) ( 14 
)
where the notation R denotes the range of the function. The following proposition applies: Proposition 1. The conditions [START_REF] Sain | Invertibility of linear time-invariant dynamical systems[END_REF] and [START_REF] Hirschorn | Invertibility of nonlinear control systems[END_REF] are equivalent if and only if

∀h i ∈ H, R(µ Γ(h i ) ) = Q (15)
Proof. The statement (11) ⇒ (10) is always true regardless of the condition (15). Hence, it must be shown that ( 10) implies [START_REF] Hirschorn | Invertibility of nonlinear control systems[END_REF] provided that (15) is fulfilled. The condition ∀h i , R(µ Γ(h i ) ) = Q means that, for any arbitrary mode h i ∈ H, Q h i+1 can be any matrix in Q. Hence, for any t-tuple (h 1 , . . . , h t ), the sequence {Q h 1 , . . . , Q ht } is an admissible sequence for [START_REF] Millérioux | Flatness of switched linear discrete-time systems[END_REF]. Finally, the set of products Q h 1 • • • Q ht for all t-tuples (h 1 , . . . , h t ) coincides with the set of products [START_REF] Sain | Invertibility of linear time-invariant dynamical systems[END_REF] for all k ≥ 0. That completes the proof.

Remark 2. It can be easily seen that ( 15) is always satisfied for at least two particular cases: when the inherent delay r is equal to zero or if it is equal to one and that C does not depend on σ. However, (15) may also apply regardless of the inherent delay. In Section 5, examples will illustrate how and when (15) plays or does not play a role. Such a condition must not be considered as necessary for Theorem 3 to apply.

Computational issues

In this section, we propose an algorithm that allows us to check whether or not a set of matrices generates a nilpotent semigroup that is, whether Theorem 3 is fulfilled. It is motivated by Levitsky's theorem (Theorem 2.1.7 stated in [START_REF] Radjavi | Simultaneous Triangularization[END_REF]).

Theorem 4 (Levitsky's theorem). Any semigroup of nilpotent matrices can be triangularized.

In other words, all the matrices of the same nilpotent semigroup can be rewritten as upper triangular matrices with zeros on the diagonal up to a common change of basis. The consequence of this theorem is central for our purpose. Indeed, determining whether or not the matrices of Q generate a nilpotent semigroup amounts to checking whether or not Q can be simultaneously triangularized. It is a necessary and sufficient condition. The approach we propose to check Theorem 4 and thus Theorem 3 is inspired from the general triangularization method provided in [START_REF] Dubi | An algorithmic approach to simultaneous triangularization[END_REF] and corresponds to Algorithm 1. Some peculiarities that apply to our special case are addressed in order to come up with a complete algorithm for flat output characterization.

The algorithm is expected to return a change of basis S that simultaneously triangularizes the set Q.

It is worth pointing out that different sequences {σ(k), . . . , σ(k + r)} of (1) and so different modes σ ′ (k) = φ(σ(k), . . . , σ(k + r)) of ( 9) might lead to identical matrices Q σ ′ (k) . As a result, Q is a multiset 1 and we should only consider distinct matrices of Q to reduce the computational cost. We denote by L (with L ≤ J r+1 ) the number of distinct matrices of Q and by Z l (l = 1, . . . , L) the elements of the multiset. 

w i ← S 2 • v i 14: S 1 ← S 1 w i 1
The notion of a multiset is a generalization of the notion of a set in which elements are allowed to appear more than once.

15:

S 2 ← matrix whose column vectors are vectors that extend S 1 to a basis 16: S ← (S 1 S 2 ) 17:

I 1 ← 0 i 1 n-i 18: I 2 ← 0 i 1 n-i 19:
S -1 ← inverse of S 20:

for l ← 1 to L do 21:

T l ← I 1 S -1 Z l SI 2 22:
end for 23: end for 24: return S

The following comments are in order:

• Line 1 to Line 5 correspond to the initialization. Matrices T l (l = 1, . . . , L) play the role of the auxiliary variables and are initialized at the beginning with the matrices Z l .

• At most n -1 successive loops from Line 7 to Line 23 are performed as stressed by Corollary 1.

• Line 8 corresponds to the first step of a given loop i. It consists in finding out an eigenvector v i which is common to the matrices T l (l = 1, . . . , L). Consequently, in the first loop, v 1 is a common eigenvector of the matrices Z l . It is worth pointing out that if this step fails in the loop i, it means that the matrices T l (l = 1, . . . , L) do not have any common eigenvector v i and the algorithm stops. From Levitsky's theorem stating a necessary and sufficient condition, it can be concluded that the matrices Z l do not generate a nilpotent semigroup and Theorem 3 is not fulfilled.

• Line 14 describes the fact that the final change of basis S is built column after column. Each new vector v i carried out in the loop v i is added (actually after a change of basis notified at Line 13) resulting in a matrix

S 1 = (v 1 • • • v i ). When i = n then S = (S 1 S 2 )
, S 1 and S 2 resulting from the loop n -1.

• At Line 15, S 1 must be extended to a basis. By extension, it is meant a set of ni vectors w j so that S = (S

1 w 1 • • • w n-i ) is full rank. The matrix S 2 is precisely S 2 = (w 1 • • • w n-i ).
• Line 21 performs the current change of basis S to the matrices Z l . The multiplications by I 1 and I 2 merely correspond to the extraction of a square matrix of dimension ni from the matrix S -1 Z l S that is, the first i rows and columns of S -1 Z l S are removed. A new set of matrices T l is thereby obtained. A new loop can restart from Line 7.

Such an algorithm is quite general. However, the determination of a common eigenvector at Line 8 and the extension to a basis at Line 15 can be particularized to our special context.

Determination of a common eigenvector

According to Remark 1, a necessary condition for the set Q to generate a nilpotent semigroup is that all the matrices Z l are nilpotent, that is all their eigenvalues are zero. The matrices T l (l = 1, . . . , L) are initialized to Z l (l = 1, . . . , L) and they are updated at each loop i through a change of basis S at Line 21 which preserves the eigenvalues. Hence, the eigenvalues of the T l 's are all zero whatever the loop i ≥ 0 is. Consequently, for any v i , (i = 1, . . . , n) and ∀T l ∈ T , T l v i = 0 holds. Hence, v i is a non zero solution of

Rv i = 0 with R =    T 1 . . . T L    ( 16 
)
As a result, v i is a non zero vector of the null space of R denoted ker(R).

Extension to a basis

At Line 15, S 1 must be extended to a basis. We must thereby find out a set of ni vectors w j so that

S = S 1 w 1 • • • w n-i is full rank.
It can be obtained by determining a basis of the kernel of the transpose of S 1 . In other words, S 2 = (w 1 • • • w n-i ) can be any basis of ker(S ′ 1 ) where the symbol ′ stands for transposition.

Complexity

All the operations can easily be performed by software involving the usual built-in functions. As an example, we give the corresponding Matlab source in Listing 1 of the Appendix. The complexity of the condition (8) in Theorem 1 is O(J r+K Kn 3 ). The problem lies in that the complexity is exponential with respect to the number of matrices K involved in the product, which can be large. Let us estimate the computational cost of the flat output characterization approach stated in Theorem 3 and so based on nilpotent semigroups. To this end, let us examine Algorithm 1. Considering a given loop, the most complex operations are performed at Lines 8, 15, 19 and 21. Lines 8 and 15 consist in determining the kernel of a matrix. It is usually based on a singular value decomposition of a R a×b matrix for which the usual algorithms have complexity with O(4ab 2 +8b 3 ) exist. Line 19 which involves a matrix inversion can resort to algorithms with complexity O(n 3 ). Line 21 is a change of basis. The multiplications by I 1 and I 2 can be omitted since the effect is merely to extract a square matrix of dimension ni from the matrix S -1 Z l S so it can be done much more efficiently than by a matrix multiplication. Therefore, the two operations to be considered are the two matrix multiplications of Z l by S and S -1 . Matrix multiplications have complexity at most O(n 3 ). Therefore, the complexity of Lines 20 to 22 is O(Ln 3 ) (or O(J r+1 n 3 ) if we consider the upper bounding L ≤ J r+1 due to the consideration of the multiset). This part of the code is the one with the largest complexity. The operations are repeated over at most n loops (the maximum class of nilpotency according to Corollary 1). Therefore, the global complexity of Algorithm 1 related to Theorem 3 is O(J r+1 n 4 ). It is clearly an improvement insofar as the complexity is no longer exponential with respect to the parameter K. Let us notice that the exponential complexity with respect to the inherent delay r is structural and cannot be circumvented.

As it turns out, the results can be interestingly extended to LPV systems as shown in the following.

Extension to LPV systems

The flat output characterization based on nilpotent semigroups for LPV systems is valuable for two major reasons. First, flat output characterization of LPV systems has never been addressed so far in the literature. Secondly, the characterization through Theorem 1 cannot conveniently be done numerically for LPV systems since that requires checking an infinite number of possible products. Indeed, σ taking values in a continuum, the number of sequences {σ} in Theorem 1 or sequences {σ ′ } in Theorem 2 would be infinite. The system (1) can be viewed as an LPV system as soon as we consider that the switching rule σ is replaced by a function which takes values in a continuum. If so, the sets J , H, Γ(σ ′ (k)), Q must be considered as uncountable sets. The r-delay inverse system (5), the auxiliary system (9) together with the mapping φ still make sense as soon as σ ′ is considered as a function, similarly to σ, taking values in a continuum. Besides and most importantly, it turns out that both the semigroups (Definition 3) and the nilpotent semigroups (Definition 4) are still well defined for an uncountable set S. As a result, Theorem 3 still applies.

On the other hand, Levitsky's Theorem, which allows for checking whether Theorem 3 is fulfilled, applies for any semigroup, including semigroups with infinite cardinality, which is especially the case for LPV systems. It is recalled that Levitsky's theorem asserts that "Q generates a nilpotent semigroup if the matrices of Q can be simultaneously triangularized". The point is that we cannot perform a simultaneous triangularization of an infinite number of matrices. However, such a problem can be handled by noticing that it is equivalent to checking whether the matrix Q σ ′ (k) can be triangularized with a change of basis that does not depend on σ ′ (k). From this consideration and by combining Theorem 3 and Theorem 4, the following theorem holds for characterizing flat outputs of LPV systems Theorem 5. If the matrix Q σ ′ (k) of the auxiliary system (9) can be triangularized independently of σ ′ (k), then y k is a flat output.

Algorithm 1 still applies up to some minor modifications. The loops at Line 2 and Line 20 can be removed or equivalently, L can be set to L = 1. Besides, the determination of a common eigenvector at Line 8, that is the search for a non zero vector v i of ker(R) as explained in Subsection 3.3.1 turns into the search for a non zero vector v i of ker(T 1 ) (since L = 1 and so R = T 1 ) independent of σ ′ (k). Line 8 has to be replaced by 8: v i ← One eigenvector of T 1 independent of σ ′ (k)

Illustrative examples

Example 1: practical example

We consider the dynamics of a vehicle2 described by the usual nonlinear state-space equations [START_REF] Guzzella | Vehicle propulsion systems : introduction to modeling and optimization[END_REF].

ẋ1 (t) = x 2 (t), ẋ2 (t) = u(t)C mot mR - 1 2 ρC x S m x 2 (t) 2 (17) 
m is the mass of the vehicle. x 1 and x 2 denote respectively the position and the velocity of the vehicle. C mot is the torque over the wheel delivered by the motor. The input u(t) ∈ [0; 1] is the duty cycle of the driving period during which the engine is on. Therefore u(t)C mot is the average torque over the wheel. R is the radius of the wheel. S is the frontal area of the vehicle. The aerodynamic drag coefficient C x and the air density ρ characterize the aerodynamic frictions. The nonlinear discrete-time state space model with state variables x

k and x

k denoting respectively the position and the velocity at time k read

x (1) k+1 = x (1) k + T k x (2) k (18) x (2) k+1 = x (2) k + T k C mot u k mR -T k 1 2 ρC x S m (x (2) k ) 2 (19) 
In such an embedded control application, the sampling period is a strictly positive time-varying quantity that can be scheduled in order to reduce the processor load.

The equations (19) can be rewritten as [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF]. The state space matrices read

A σ(k) = 1 σ (1) k 0 σ (2) k , B σ(k) = 0 σ (3) k , D σ(k) = 0 with σ (1) k = T k , σ (2) 
k = 1 -T k 1 2 ρCxS m x (2) 
k and σ

k = T k Cmot mR . (3) 
The sampling period T k and the velocity lies in a bounded range so that σ(k) = (σ

(1) k , σ (2) k , σ (3) k ) the left-inverse system (5) are the matrices Q σ ′ (k) = P σ(k:k+1) = A σ(k) - B σ(k) C σ(k+1) A σ(k+1) A σ(k) which read Q σ ′ (k) = 1 σ (1) k -(σ (1) k+1 ) -1 -(σ (1) k+1 ) -1 σ (1) k If σ (1) 
k takes values in a continuum, the set Q is uncountable. As it turns out, Algorithm 1 fails and so Theorem 5 is not fulfilled. And yet, as proved above, y k is a flat output. By the way, Theorem 2 is fulfilled, [START_REF] Sain | Invertibility of linear time-invariant dynamical systems[END_REF] being checked here by working out the product symbolically. This is explained by the fact that condition (15) of Proposition 1 is not satisfied. Indeed, let σ * (k), σ * (k +1) and σ * (k +2) be respectively the actual modes at times k, k +1 and k+2. The set Γ(σ ′ (k)) of feasible transitions from the mode σ ′ (k) to the mode σ

′ (k + 1) is the set {σ(k + 1) = σ * (k + 1), σ(k + 2) = σ * (k + 2), σ(k + 3) ∈ Σ}. Thus, Q σ ′ (k+1) cannot be any matrix of Q since σ (1) k+1 is imposed in Q σ ′ (k+1) .
Finally, let us consider the situation when the sampling period is constant. Thus, it holds that σ

(1) k = σ (1) k+1 = σ * for all k. In such a case, the matrix Q σ ′ (k) reads Q σ ′ (k) = 1 σ * -(σ * ) -1 -1
Hence, the set Q generates a nilpotent semigroup with class of nilpotency t = 2 and we infer that y k is a flat output for the LPV system (19), σ

k still being time-varying.

Further example: a switching system

Consider the switched linear system of the form (1). The dimension is n = 4, the switching rule σ, not detailed here, is assumed to deliver arbitrary sequences and the number of modes is J = 3. According to the mode, the state space matrices numerically read

A 1 =     -1 -0.5 -0.5 0 1 1.5 1.5 0 1 0.5 0.5 1 1 0 1 0     , A 2 =     -1 -1 -1 -0.5 1 2 2 0.5 1 1 1 1.5 1 0 1 0     , A 3 =     -1 -2.5 -2.5 -2 1 3.5 3.5 2 1 2.5 2.5 3 1 0 1 0     B 1 = B 2 = B 3 = 0 0 0 1 T C 1 = C 2 = C 3 = 2 1 1 0 D 1 = D 2 = D 3 = 0
For SISO systems, the inherent delay r can be inferred by merely figuring out that D i = 0 for all i ∈ {1, 2, 3}, C i B j = 0 for all (i, j) ∈ {1, 2, 3} 2 and C i A j B l = 0 for all (i, j, l) ∈ {1, 2, 3} 3 . Therefore, r = 2. Let us derive the corresponding auxiliary system as defined in Section 2.2. To this end, we must define the mapping φ. 

Further example: an LPV system

In this example, we consider (1) as an LPV system where σ(k) takes values in a continuum.

The state space matrices read

A σ(k) =     0 1 0 0 1 0 1 0 0 0 0 1 σ (1) k σ (2) k 1 0     , B σ(k) =     0 0 1 0     , C σ(k) = 1 0 1 0 , D σ(k) = 0
Since it is a SISO system, the inherent delay r can be inferred by merely figuring out that for all σ(k), D σ(k) = 0 and C σ(k+1) B σ(k) = 1 = 0. Therefore, the inherent delay is r = 1. The matrix Q σ ′ (k) = P σ(k:k+1) = A σ(k) -BCA σ(k) reads 

Q σ ′ (k) =    

Conclusion

We have provided a condition to characterize flat outputs of switched linear discrete-time systems. The condition is based on the notion of nilpotent semigroups. A complete and tractable recursive algorithm has been provided to perform the characterization. It stops after a finite number of steps bounded by the dimension of the system. Next, an extension to LPV discrete-time systems has been done. This paper gives a serious alternative to an existing computationally prohibitive approach which was merely derived from the definition of flatness.

  p×n and D σ(k) ∈ R p×m belong to the respective finite sets of cardinality J: A = {A 1 , . . . , A J }, B = {B 1 , . . . , B J }, C = {C 1 , . . . , C J } and D = {D 1 , . . . , D J }. At a given time k, the mode is delivered by a switching function σ: k ∈ N -→ σ(k) ∈ {1, . . . , J} = J . A sequence of modes (also called a path) over an interval of time [k 1 , k 2 ], that is {σ(k 1 ), . . . , σ(k 2 )}, is denoted by {σ} k 1 :k 2 .For a given switching rule σ, the set of corresponding mode sequences over an interval of time [k, k + T ] belongs to J T +1 . Let U be the space of input sequences over the time interval [0, ∞) and Y the corresponding output space. At time k, for each initial state x k ∈ R n , when the system (1) is driven by the input sequence {u} k:k+T = {u k , . . . , u k+T } ∈ U , for a mode sequence {σ} k:k+T , {x(x k , σ, u)} k:k+T refers to the solution of (1) in the interval of time [k, k + T ] starting from x k and {y(x k , σ, u)} k:k+T ∈ Y refers to the corresponding output sequence in the same interval of time [k, k + T ].

2 : 9 :

 29 for l=1 to L do 3:T l ← Z l 4: end for 5: S 2 ← 1 n ; S 1 ← 0 n×0 6: ⊲ Triangularization 7: for i ← 1 to n -1 do 8: v i ← One eigenvector common to the matrices {T l }, l = 1, . . . , L if v i does not exist then

  The number of possible sequences over any interval of time [k : k + r] is J r+1 = 3 2+1 = 27 andφ({1, 1, 1}) = 1 • • • φ({1, 1, 2}) = 2 φ({3, 3, 1}) = 25 φ({1, 1, 3}) = 3 φ({3, 3, 2}) = 26 • • • φ({3, 3, 3}) = 27The set Γ of feasible transitions obeysΓ(1) = {1, 2, 3} • • • Γ(2) = {4, 5, 6} Γ(26) = {23, 24, 25} • • • Γ(27) = {25, 26, 27}It turns out that Q has only L = 3 distinct matrices denoted Z l (l = 1, 2, 3) and thus is viewed here as a multiset. The matrices numerically read µ(Γ(1)) = • • • = µ(Γ(27)) = Q and so, Proposition 1 is fulfilled. Finally, it turns out that Algorithm 1 succeeds and returns the following change of basis S -0.3780 -0.1543 0.5774 -0.7071 -0.3780 -0.1543 0As a consequence, based on Theorem 3 and Theorem 4, we conclude that y k is a flat output. To end up with this example, let us compare the complexities. The complexity of the condition of Theorem 2 would be O(J r+K Kn 3 ) = O(3 2+3 3 • 3 3 ) = O(1594323) while the complexity of the approach derived from Theorem 3 is O(J r+1 n 4 ) = O(3 2+1 3 4 ) = O(2187).

  It turns out that Theorem 5 is fulfilled with a triangularization basis S which numerically reads

It is actually the prototype developed by the Research Center for Automatic Control of Nancy which is annually involved in the European Shell Eco-Marathon race in the category Plug-in (battery) category

lies in a hypercube Σ = Σ 1 × Σ 2 × Σ 3 . The range of Σ i (i = 1, 2, 3) is determined with respect to the minimum and maximum value of the sampling period T k and of the velocity x [START_REF] Sira-Ramirez | Differentially Flat Systems[END_REF] k . Whether the sets Σ 1 and Σ 3 are uncountable or countable ones according to the sampling period scheduling strategy, the system can be viewed as an LPV system or a mixed switched linear/LPV system. We consider first the velocity x (2) as the measured output. Thus,

The system being a SISO one and since, for all σ(k) ∈ Σ, D σ(k) = 0 and for all (σ(k), σ(k

k which clearly never vanishes, the inherent delay is r = 1. The set Q of the dynamical matrices of the left-inverse system (5) are the matrices

Since Q 1 is not nilpotent, neither Theorem 5 nor Theorem 2 are fulfilled and y k is not a flat output. Now, we consider the position x (1) as the measured output. Thus,

In such a case, y k is a flat output. Indeed, Definition 2 is satisfied with [START_REF] Sundaram | Designing stable inverters and state observers for switched linear systems with unknown inputs[END_REF] which reads

Let us notice that even for a small system, directly applying the definition is not trivial and becomes prohibitive when the dimension grows up. The system being a SISO one, from