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Consensus-based Distributed Estimation of Laplacian Eigenvalues of

Undirected Graphs

Thi Minh Dung Tran and Alain Y. Kibangou

Abstract— In this paper, we present a novel algorithm for
estimating eigenvalues of the Laplacian matrix associated with
the graph describing the network topology of a multi-agent
system or a wireless sensor network. As recently shown, the
average consensus matrix can be written as a product of
Laplacian based consensus matrices whose stepsizes are given
by the inverse of the nonzero Laplacian eigenvalues. Therefore,
by solving the factorization of the average consensus matrix,
we can infer the Laplacian eigenvalues. We show how solving
such a matrix factorization problem in a distributed way. In
particular, we formulate the problem as a constrained consen-
sus problem. The proposed algorithm does not require great
resources in both computation and storage. This algorithm
can also be viewed as a way for decentralizing the design
of finite-time average consensus protocol recently proposed in
the literature. Eventually, the performance of the proposed
algorithm is evaluated by means of simulation results.

I. INTRODUCTION

In order to model and analyze networks of agents or

sensors, it is now well established to resort to algebraic

graph theory that provides powerful tools and abstractions.

In particular, the network topology is generally represented

by means of graphs where vertices represent agents whereas

edges represent the existence of an interaction between them.

Several features of a given network are captured by the graph

Laplacian matrix. A comprehensive survey on properties of

Laplacian of undirected graphs can be found in [1]. For ex-

ample, the second smallest eigenvalue of a Laplacian matrix,

i.e., the graph algebraic connectivity of the graph, which can

be retrieved from the spectrum of the graph, is known to have

the main role in the convergence time of various distributed

algorithms. It is also a critical parameter that influences the

performance and robustness properties of dynamical systems

operating over an information network. From the spectrum

of the graph Laplacian matrix we can also infer bounds on

the graph diameter and state the connectedness of the graph.

In the recent literature devoted to multi-agent dynamic

systems and wireless sensor networks, several issues are

formulated as consensus problems, which consist in de-

signing a network protocol based on the local information

obtained by each agent, such that all agents finally reach

an agreement on certain quantities of interest. The network

protocol is an interaction rule, which ensures that the whole

group can achieve a consensus on the shared data in a

distributed manner, i.e. without the coordination of a central

authority. In the study of consensus problems, the speed of
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convergence is an important index for assessing the proposed

protocols. When using Laplacian based consensus matrices,

it has been shown that, for speeding up the convergence in

an average consensus problem, the optimal consensus matrix

is associated with both the largest and the smallest nonzero

Laplacian eigenvalues [2]. More recently, it has been shown

that all the spectrum of the Laplacian matrix can also be

used for designing consensus matrices in order to achieve

average consensus in a finite number of steps [3], [4].

Therefore, computing the eigenvalues of the Laplacian ma-

trix is an important issue. Unfortunately, this information, up

to now, can be obtained only by centralized algorithms where

a global knowledge about the network topology is available.

However, during the current decade, various studies have

been carried out on decentralized algorithms for estimating

the Laplacian eigenvalues.

For instance in [5], the second smallest Laplacian eigen-

value was estimated by resorting to a decentralized power

iteration method. In [6] and [7], Fast Fourrier Transform

(FFT) based methods were suggested. In these works, the

idea is to make the state of each agent oscillates only at

frequencies corresponding to the eigenvalues of the network

topology. The problem is then mapped into a signal process-

ing one that can be efficiently and independently solved by

each agent in applying the FFT algorithm. The approach in

[6] involved twice communication burden compared to that

in [7]. However, both methods inherit on the limitations of

the FFT algorithm. In particular, the resolution of the esti-

mated eigenvalues is strongly dependent on that of the FFT

method and the accuracy depends on the amount of stored

data. In contrast, in [8], the authors resort to an algebraic

method using observability properties of the network. With

this method, the eigenvalues of the network matrix can be

recovered by solving a local eigenvalue decomposition on an

appropriately constructed matrix of observed data. However,

this method is only applicable to networks having nodes with

sufficient storage and computation capabilities.

In this paper, motivated by the results in [3], we propose

a novel algorithm for estimating the Laplacian eigenvalues.

By distributively solving the factorization of the average

consensus matrix, we show that the Laplacian eigenvalues

can be computed as the inverse of the stepsizes in each

estimated factor, where these factors are constrained to

be structured as Laplacian based consensus matrices. We

formulate a constrained optimization problem that can be

solved in a distributed way by means of a gradient descent

algorithm. The problem, as formulated herein, can be viewed

as a consensus problem with equality constraints.



The remainder of this paper is organized as follows: in

Section II, we first formulate the problem under study. Then,

a gradient descent algorithm is derived in Section III for solv-

ing a constrained optimization problem. The performance of

the proposed algorithm is evaluated in Section IV by means

of simulation results before concluding the paper.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we first recall some graph and matrix

properties that will be useful in the derivations carried out

in the sequel. Then, we formulate the problem to be studied.

A. Matrix Khatri-Rao Product

Given two matrices A ∈ RI×F , B ∈ RJ×F with the same

number of columns, the Khatri-Rao product A⊙B ∈ RIJ×F

is defined as:

A⊙B := [a1 ⊗b1 · · ·aF ⊗bF ] = B






diag1(A)
...

diagI(A)




 (1)

where a f is the f th column of A, similarly for b f , and

⊗ denotes the Kronecker product of two column vectors,

whereas diagi(A) stands for the diagonal matrix built with

the ith row of A. The Khatri-Rao product can be viewed as

a column-wise Kronecker product. Its main property, which

will be used herein, is related to the vectorization operation

of a given matrix:

vec(Adiag(d)BT ) = (B⊙A)d. (2)

where the vec(.) operator stacks the columns of its matrix

argument in a vector and d∈RF×1. Therefore we can deduce

the following identity:

Adiag(d)b = (bT ⊙A)d. (3)

B. Average consensus Problems

Through out this paper, we consider a connected undi-

rected graph G = (V,E), where V = {1,2, . . .N} is the set

of vertices of graph G, and E ⊂ V ×V is the set of edges.

Vertices V are nodes in a network connected according to E.

The neighbors of node i are denoted by Ni = { j ∈V : (i, j)∈
E}. We denote by A the adjacency matrix of the graph. Its

entries ai, j being equal to one if (i, j)∈E and zero elsewhere.

The graph Laplacian L is defined as the matrix with entries

li, j given by: li, j =

{

∑n
k=1,k 6=i ai,k, if j = i,

−ai, j, elsewhere.

For an undirected graph G, the graph Laplacian L is

symmetric and positive semidefinite. Its eigenvalues, λ1 6

λ2 6 . . . 6 λN , contain very significant information about the

topology of the graph G. In particular, we have λ1 = 0 that

admits 1, an N-length all ones column-vector, as eigenvector.

Additionally, the graph G is said to be connected if the

eigenvalue λ1 = 0 is simple.

For each node i ∈ V , let xi(t) denotes the value of node

i at time-step t. Define x(t) = [x1(t),x2(t), ...,xN(t)]T , where

N is the number of nodes in the network. Average consensus

algorithms can be seen as the distributed solution of an

optimization algorithm whose goal is the minimization of

the disagreement between the nodes in the network [9]. In

other words, average consensus resort to minimizing the cost

function

ΦG(x) = xT Lx =
1

2
∑

(i, j)∈E

(x j − xi)
2. (4)

Using a steepest descent method, the following linear itera-

tion scheme is obtained:

xi(t) = xi(t −1)+α ∑
j∈Ni

(x j(t −1)− xi(t −1)) (5)

that can be written in matrix form as:

x(t) = (IN −αL)x(t −1). (6)

By appropriately selecting the stepsize α , all nodes converge

asymptotically to the same value that is the average of the

initial ones:

lim
t→∞

x(t) =
1

N
11T x(0).

It has been shown in [3] and [4] that the average consensus

matrix can be factored as

1

∏
t=D

Wt =
1

N
11T , (7)

where Wt = ϑtIN + αtL, ϑt and αt being parameters to

be designed. In [3], the solution was given by ϑt = 1 and

αt =− 1
λt+1

, λt being a nonzero Laplacian eigenvalue. Owing

to the above factorization, average consensus can then be

reached in D steps, D being the number of distinct nonzero

Laplacian eigenvalues:

x(D) =
1

∏
t=D

Wtx(0) =
1

N
11T x(0) for all x(0) ∈ RN . (8)

C. Problem statement

From the results above, we can note that by factorizing

the average consensus matrix, while constraining the factor

matrices to be in the form IN − αtL, we can deduce the

eigenvalues of the Laplacian matrix as the inverse of αt .

Now, we first state the uniqueness of such a factorization in

the following lemma:

Lemma 1: Let λ2, · · · ,λD+1 6= 0 be the D distinct nonzero

eigenvalues of the graph Laplacian matrix L, then, up to

permutation, the sequence {αi}i=1,··· ,D, with αi = 1
λi+1

, i =
1,2, · · · ,D, is the unique sequence allows getting the minimal

factorization of the average consensus matrix as 1
N

11T =

∏D
i=1(IN −αiL).

Proof: Let us consider the following factorization of

the average consensus matrix: 1
N

11T =
θ

∏
i=1

(IN −αiL). The

Laplacian matrix L being symmetric, then:

L = U∆∆∆UT ,UT U = IN ,UUT = IN

where ∆∆∆ = diag(λ1,λ2, · · · ,λN) and U = ( 1√
N

1 Ũ) with

Ũ
T

Ũ = IN−1 and Ũ
T

1 = 0. Therefore, the above factorization



can be rewritten as:

U(
θ

∏
i=1

(IN −αi∆∆∆))UT =
1

N
11T

or equivalently:

U(
θ

∏
i=1

(IN −αi∆∆∆))UT = Udiag(1 0 · · ·0)UT . (9)

From equation (9), we can see that
θ

∏
i=1

(1−αiλ1) = 1, that is

always fulfilled since λ1 = 0. In addition, we have:

θ

∏
i=1

(1−αiλ j) = 0, j = 2, · · · ,N. (10)

Taking into account the multiplicities of the eigenvalues,

we only have D distinct equations. It is obvious that the

D equalities above are fulfilled only if 1/αi belong to the

Laplacian spectrum and if there are at least D distinct

αi. Therefore, the Laplacian spectrum implies the minimal

factorization of the average consensus matrix.

Our goal is to design a protocol for estimating the Laplacian

eigenvalues of a given undirected graph in a distributed

manner. More precisely, a novel algorithm is derived by

making use of the Lagrange method to solve a distributed

constrained optimization problem.

III. DISTRIBUTED ESTIMATION OF LAPLACIAN

EIGENVALUES THROUGH DISTRIBUTED FACTORIZATION

OF THE AVERAGE CONSENSUS MATRIX

Given an initial input-output pair {x(0), x̄}, with x̄ =
1
N

11T x(0) and an initial guess of the minimal number of

factors D, the matrix factorization problem (8) is equivalent

to minimize the cost function:

E(W) = ‖x(D)− x̄‖2

that can also be rewritten as

E(W) =

∥
∥
∥
∥
∥

1

∏
t=D

Wtx(0)− x̄

∥
∥
∥
∥
∥

2

, (11)

where D is the number of steps before reaching average

consensus and Wt = IN −αtL.

Note that there is no need for a central node for setting the

initial input-output pair. Indeed, such a pair can be obtained

after running a standard average consensus algorithm. Each

node has to keep in memory its own initial value xi(0) and

the final consensus value x̄.

Solving the factorization problem (11) consists in finding

the sequence of stepsizes {αt}t=1,··· ,D. It is obvious that αt

are global parameters. To relax these constraints, we define

the factor matrices as Wt = IN −ΛΛΛtL, where ΛΛΛt = diag(ααα t),
ααα t = [αt,1,αt,2, . . . ,αt,N ], t = 1,2, . . . ,D. We reformulate the

problem above as a constrained consensus problem, that is to

compute the sequence of stepsizes {ααα t} so that αt,1 = αt,2 =
. . . = αt,N .

For distributively carrying out the factorization of the

average consensus matrix as factors of Laplacian based

consensus matrices, the idea is to minimize the disagreement

between neighbors on the stepsizes αt while ensuring that the

factorization of the average consensus matrix is achieved.

Such a factorization is assessed by constraining the values

of the nodes after D iterations of the consensus algorithm to

be equal to the average of the initial values:

min
αααt∈RN×1,t=1,2,...,D

1

2

D

∑
t=1

∑
i∈V

∑
j∈Ni

(αt, j −αt,i)
2, (12)

subject to x(D) = x̄.

Similarly to (4), we can rewrite the problem (12) as

follows:

min
αααt∈RN×1,t=1,2,...,D

1

2

D

∑
t=1

αααT
t Lααα t , (13)

subject to x(D) = x̄.

The constrained optimization problem (13) can then be per-

formed as an unconstrained optimization problem by means

of a Lagrange method with a Lagrange function defined as

follows:

H(ααα1:D,y) =
1

2

D

∑
t=1

αααT
t Lααα t +yT (x(D)− x̄), (14)

where y ∈ RN×1 stands for the Lagrange multipliers.

The problem (14) can be viewed as D consensus problems

to be solved simultaneously with a constraint that provides

a kind of external reference to be tracked.

The solution of this unconstrained optimization problem

can be obtained iteratively by using a gradient descent

method:

ααα t [k +1] = ααα t [k]−β
∂H(ααα1:D,y)

∂ααα t [k]
,

y[k +1] = y[k]+ µ(xD[k]− x̄),

where β and µ stand for the stepsizes of the gradient descent

method. Note that to avoid misunderstanding between time-

step D and iteration k, we denote x(D) as xD.

In order to derive the corresponding distributed algorithm,

we now state the following technical lemma:

Lemma 2: The derivatives of the cost function H(ααα1:D,y)
defined in (13) can be computed as follows:

∂H(ααα1:D,y)

∂ααα t

= Lααα t −diag−1(ααα t)diag(xt−1 −xt)δδδ t , (15)

where

δδδ D = y and δδδ t−1 = Wtδδδ t , t = 1, . . . ,D. (16)

Proof: The consensus network being a linear system

we know that x(t) = Wtx(t −1), therefore we can explicitly

write the output according to the weighting matrix of interest,

i.e. x(D) = WDx(D− 1) and x(D) = ∏t+1
j=D W jWtx(t − 1),



t = 1, · · · ,D−1. The cost function can be written as:

H(ααα1:D,y)

=
1

2

D

∑
t=1

αααT
t Lααα t +yT (

t+1

∏
i=D

WiWtxt−1 − x̄)

=
1

2

D

∑
t=1

αααT
t Lααα t +yT (

t+1

∏
i=D

Wi(IN −diag(ααα t)Lxt−1 − x̄)

=
1

2

D

∑
t=1

αααT
t Lααα t +yT (

t+1

∏
i=D

Wixt−1 − x̄)

−yT
t+1

∏
i=D

Widiag(ααα t)Lxt−1).

Now, using the property (3) of the Khatri-Rao product, we

get:

H(ααα1:D,y)

=
1

2

D

∑
t=1

αααT
t Lααα t +yT (

t+1

∏
i=D

Wixt−1 − (xT
t−1LT ⊙

t+1

∏
i=D

Wi)ααα t − x̄).

Therefore, we can easily deduce that

∂H(ααα1:D,y)

∂ααα t

= Lααα t − (xT
t−1LT ⊙

t+1

∏
i=D

Wi)
T y.

Taking the symmetry of the consensus matrices into account,

we get:

∂H(ααα1:D,y)

∂ααα t

= Lααα t −diag(xT
t−1LT )T

D

∏
i=t+1

Wiy

= Lααα t −diag(Lxt−1)
D−2

∏
i=t+1

WiWD−1 WDy
︸ ︷︷ ︸

δδδ D−1

= Lααα t −diag(Lxt−1)
D−2

∏
i=t+1

Wi WD−1δδδ D−1
︸ ︷︷ ︸

δδδ D−2

= Lααα t −diag(Lxt−1)δδδ t .

Since xt = (IN − diag(ααα t)L)xt−1, we can deduce that

Lxt−1 = diag−1(ααα t)(xt−1 − xt). Hence, diag(Lxt−1) =
diag−1(ααα t)diag(xt−1 −xt). As a consequence,

∂H(ααα1:D,y)

∂ααα t

= Lααα t −diag−1(ααα t)diag(xt−1 −xt)δδδ t .

Applying the results of Lemma 2, the updating scheme of

the optimization algorithm is as follows:

ααα t [k +1] = ααα t [k]−β
∂H(ααα1:D,y)

∂ααα t [k]

= (IN −βL)ααα t [k]+βdiag−1(ααα t)diag(xt−1 −xt)δδδ t ,
(17)

y[k +1] = y[k]+ µ(xD[k]− x̄). (18)

The proposed distributed algorithm can then be described as

follows:

Algorithm 1: Distributed estimation of Laplacian eigen-

values

1) Initialization:

• Number of steps D,

• Initial input-output values {xi(0), x̄i}, i = 1, · · · ,N,

with x̄ = 1
N

N

∑
i=1

xi(0) obtained from a standard av-

erage consensus algorithm.

• Random initial stepsizes ααα t(0), t = 1, . . . ,D and

initial Lagrange multipliers yi(0), i = 1, · · · ,N
• Learning rate: 0 < β ,µ < 1;

2) Set k = 0;

a) Set k := k +1,

b) Lagrange multiplier:

δD,i[k] = yi[k].

c) Propagate the Lagrange multipliers for

t = D, · · · ,2:

δt−1,i[k] = δt,i[k]+ ∑
j∈Ni

(δt, j[k]−δt,i)[k].

d) Finite-time average consensus steps:

i) x0,i[k] = xi(0).
ii) For t = 1,2, · · · ,D, each node sends a message

mi,t [k] containing its current local value xt,i[k],
and the local stepsize αt,i[k].

iii) After receiving the messages m j,t [k] from its

neighbors j ∈ Ni, each node i carries out the

following updates:

xt,i = xt−1,i +αt,i[k] ∑
j∈Ni

(xt−1, j − xt−1,i),

αt,i[k +1] = αt,i[k]−β ( ∑
j∈Ni

(αt, j[k]−αt,i[k]))

−βδt,i[k] ∑
j∈Ni

(xt−1, j[k]− xt−1,i[k]).

e) Update the Lagrange multiplier

yi[k +1] = yi[k]+ µ(xD,i[k]− x̄i).

f) Return to 2a or stop the iterations if a stopping

criterion is reached.

3) Each node deduce the Laplacian eigenvalues as λt,i =
1

αt,i[k+1] .

This algorithm can also be viewed as a way for decentral-

izing the design of the finite-time average consensus protocol

proposed in [3]. The convergence of this Lagrange method

has been well studied in the literature [10]. Convergence to a

local minimum is guaranteed if we pick appropriate constants

β , µ in the interval of (0,1).

IV. SIMULATION RESULTS

In this section, we evaluate the efficiency of the proposed

distributed algorithm by considering two different examples.

The performance is evaluated by means of the mean square

error between actual and desired values of nonzero Laplacian

eigenvalues:

MSE =
1

DN

D

∑
t=1

N

∑
i=1

(λt,i − λ̂t,i)
2.



In addition, we also check the results of the distributed

factorization of the average consensus matrix. Then, based

on Lemma 1, we can conclude on the correctness of the

estimation of the Laplacian eigenvalues.

Fig. 1. Network graphs

A. Example 1

The network considered in this first example con-

tains 5 nodes whose interactions are modeled with

the graph depicted in Figure 1 (left). The corre-

sponding Laplacian matrix L admits the following

spectrum:{0,1.382,2.382,3.618,4.618} . Therefore the num-

ber of nonzero distinct eigenvalues, that is also the number of

steps in the finite-time average consensus protocol, is D = 4.

According to the specifications of Algorithm 1, each node

randomly initialized its stepsize parameters α1,i, α2,i, α3,i and

α4,i. These initial values are drawn from a uniform distribu-

tion on the unit interval. The algorithm is stopped when the

local disagreement Figure 2 depicts the MSE according to the

number of iterations of the proposed distributed algorithm.

We can note a globally monotonic behavior.
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Fig. 2. Mean square error (MSE) between the actual and desired values
of Laplacian eigenvalues of the 5-nodes graph

After convergence, the obtained values of the stepsizes

are: {0.7236,0.4198,0.2764,0.2165}. With these values, we

can check that perfect factorization of average consensus

matrix is obtained. The respective inverses of these values

correspond to the Laplacian eigenvalues since α1 = 1
1.382

,

α2 = 1
2.382

, α3 = 1
3.618

, α4 = 1
4.618

.

Figure 3 depicts the trajectories of each node for each

values of λt , t = 1,2,3,4. We can note that the nodes achieve

consensus and the consensus values are exactly equal to

Laplacian eigenvalues. Therefore,
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Fig. 3. Nodes trajectories converging to the nonzero distinct eigenvalues
of the graph Laplacian matrix

B. Example 2

Now, let us consider the graph depicted in Figure 1 (right).

The associated graph Laplacian matrix L admits the

following spectrum: {0,1,2,3,3,5}. As for the previous

example the number of factors of the average consensus

matrix is (D = 4). The MSE and the nodes trajectories for

each value of αt are depicted in Figures 4 and 5 respectively.
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Fig. 4. Mean square error (MSE) between the actual and desired values
of Laplacian eigenvalues of the 6-nodes graph

We can note that the nodes reach consensus on the

inverse of Laplacian eigenvalues leading to the following

factorization of the average consensus matrix:

(IN −0.2L)(IN −0.5L)(IN −L)(IN −0.3333L) =
1

6
11T .

Let us analyze the nodes trajectories during few first iter-

ations by considering Figure 6 that depicts these trajecto-

ries αt , t = 1,2,3,4 (instead of the Laplacian eigenvalues

illustrated in Figure 3). We can note that after starting the

estimation process with random initial values the nodes

attempt to reach an agreement on common values before

tracking the actual inverse Laplacian eigenvalues. Such an
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Fig. 5. Nodes trajectories for the 6-nodes graph
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Fig. 6. First iterations of estimation of the inverses of Laplacian eigenval-
ues.

observation implies that the stopping criterion should not

be focused on the local disagreement but also on the error

between the desired output x̄ and the current one.

C. Discussion

In the simulation results presented herein we have im-

plicitly assumed that D is known. We can make such an

assumption if the graph is assumed to be distance regular or

if it is a path. Indeed, for distance regular graphs D is equal to

the diameter of the graph [11] while for a path with N nodes

D is equal to N−1 (all the eigenvalues are simple). However,

in general only bounds exist. More precisely, we know that

diameter(G) ≤ D ≤ N − 1. Both N and diameter(G) can

be computed in a distributed way [12]. The knowledge of

the bounds on D can then be carried out without a central

node. However, according to Lemma 1, we know that the

factorization problem cannot be solved if D is lower than

the actual number of distinct nonzero Laplacian eigenvalues.

Therefore, the estimated parameters should contain the actual

values else the algorithm does not converge. Then, the

question is: how retrieving the actual inverse of Laplacian

eigenvalues from a larger set of estimated parameters? This

question is still under investigation.

Slowness of the estimation process is also to be pointed

out. However, this behavior is also observed in FFT based

methods using the wave equation [7].

V. CONCLUSION

In this paper, we have proposed a way for distributively

estimating Laplacian eigenvalues of an undirected graph.

Based on a recent result showing that the average consensus

matrix can be factored in D Laplacian based consensus

matrices, where D stands for the number of nonzero distinct

Laplacian eigenvalues, we have shown how carrying out

such a factorization in a fully distributed way. The proposed

solution results on a distributed solution of a constrained

consensus problem. The efficiency of the proposed method

has been evaluated by means of simulations. However several

issues should be considered in future works. First, the conver-

gence proof of the proposed method is to be stated. Second,

without strict a priori knowledge of D, as in distance regular

graphs, methods for retrieving the Laplacian eigenvalues in a

set of estimated parameters are to be designed. Third, speed

of convergence should be improved by adding memory for

instance.
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