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a b s t r a c t

The rheological behaviour of aqueous suspensions of boehmite (AlO(OH)) modified with different Ce-

salts (Ce(NO3)3, CeCl3, Ce(CH3COO)3 and Ce2(SO4)3) was investigated at a fixed Ce/Al molar ratio (0.05).

Freshly prepared boehmite suspensions were near-Newtonian and time-independent. A shear-sensitive

thixotropic network developed when Ce-salts with monovalent anions were introduced in the nanopar-

ticle sols. The extent of particle aggregation dramatically increased with ageing for Ce(NO3)3 and CeCl3
whereas an equilibrium value was reached with Ce(CH3COO)3. The addition of Ce2(SO4)3 with divalent

anions involved no thixotropy but rather a sudden phase separation.

The combined data set of IRTF and DRIFT spectra indicated that free NOÿ
3 anions of peptized boehmite

adsorb on the nanoparticle surface by H-bond. The introduction of Ce-salts in the boehmite sol led to the

coordination between Ce3+ ions and NOÿ
3 anions adsorbed on boehmite i.e. to [Ce(NO3)4(H2O)x]

ÿ complex.

Such coordination led to a thixotropic behaviour which was lower with Ce(NO3)3 compared to CeCl3 and

Ce(CH3COO)3. In contrast, Ce2(SO4)3 formed insoluble complexes with dissolved aluminium species. The

formation of H-bonded surface nitrate complexes was found to play a decisive role on the particle–par-

ticle interactions and consequently on the rheological behaviour of the sols.

1. Introduction

Colloids with anisotropic shape and nanometre dimensions

present a host of unusual properties that set them apart from

spherical isotropic suspensions. When dispersed in aqueous media,

these systems exhibit high stability against precipitation or phase

separation and interesting phenomena such as streaming birefrin-

gence and thixotropy [1]. These properties, which originate from

the particle orientation and spatial organisation, have been the

subject of intense investigations from both theoretical [2] and

experimental [3] points of view. When concentrated, these sols be-

come progressively less fluid and the rheological response of the li-

quid changes from near-Newtonian (strong repulsive inter-particle

forces) to thixotropic (formation of an inter-particle network) [4,5].

Under flow conditions, this network slowly breaks-down into

smaller aggregates and it builds-up on standing. The existence of

such network reconstruction mechanism is the main difference be-

tween a thixotropic sol and a gel.

Thixotropic effects are exhibited by a large array of colloidal

systems such as paints, clay suspensions, emulsions, bitumes, bio-

logical fluids [6]. For a large-scale production of surface coatings, a

thixotropic sol is highly desirable because its gelling occurs rapidly

enough to prevent the sol running down the vertical surfaces dur-

ing drying process [7,8]. This minimises the caking troubles i.e. for-

mation of a compact hard mass at the bottom of the substrate

when the sol settles down.

Among different colloidal anisotropic suspensions, boehmite

crystallites have received widespread attention due to their use

in numerous applications such as catalysis [9], cosmetics [10]

and paints [11]. Boehmite crystalline structure is planar and

built-up of oriented sheets of octahedral aluminium units con-

nected via hydrogen bonds [12]. Boehmite sols may be prepared

by different ways: by decomposition of aluminium hydroxide

(Al(OH)3) under controlled conditions of temperature and pressure

[13], by precipitation in acid [14] or basic media [15] or by sol–gel

route [16a–d]. The advantages of preparing boehmite by sol–gel

route from metal alkoxides include the high purity of the starting

material, the opportunity to mix different cations at the molecular

level to yield a homogenously doped product, the small size of the

particles in the colloidal sol and the lack of contaminating ionic

byproducts [17].

Rheological studies on isotropic colloidal suspensions of titania

have been performed in our group [18] and the spatial organisation
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of particles has been related to the porosity of the final material

[19]. On the other hand, anisotropic boehmite suspensions have

been investigated in a number of experiments under various con-

ditions of electrolyte content, pH range [20] and peptizing acid

[21]. These experiments show that monovalent anions interact

electrostatically with the superficial charge of particles. As a result

of these interactions, the diffuse part of the double layer is com-

pressed and the repulsions between the particles are reduced. This

leads to particle aggregation and to gel formation when a critical

ionic strength is reached [17]. The addition of divalent anions such

as SO2ÿ
4 , [17,22–24] was found to involve a strong coagulating ef-

fect which is attributed to a higher complexing ability of this anion

with dissolved aluminium species and to the formation of insolu-

ble complexes such as Al2(SO4)(OH)4 [23] or Na[Al13O4(OH)24(-

H2O)12(SO4)4] [22,25]. The presence of such complexes on the

surrounding water also contributes to the progressive reduction

of the diffuse portion of the double layer leading to agglomeration

and/or precipitation.

One particularly interesting area in terms of applications is the

use of boehmite as support for the immobilization of rare-earth

metal ions because of its high surface area (�450 m2 gÿ1) [26] cou-

pled with favourable surface properties (hydroxyl groups). Among

rare-earth metal ions, cerium is of particular interest in different

areas including catalysis [27], corrosion protection [28,29], and

diesel fuel applications [30]. In catalysis, cerium has been used as

a promoter in the selective catalytic reduction (SCR) of NOx by

methane improving oxidation of NO while protecting CH4 from

combustion [27]. Furthermore, the incorporation of Ce3+ ions in

mesoporous alumina has been shown to dramatically improve

the thermal stability of the catalyst by reducing sintering [31]. In

corrosion protection of aluminium alloys, it has been reported that

some of the most effective and environmentally friendly corrosion

inhibitors are derived from Ce-salts [28,29]. Ce-doped zirconia

nanoparticles incorporated in a sol–gel matrix of an organoalkox-

ysilane have been demonstrated to act as nanoreservoirs providing

a prolonged release of the inhibitor [32]. Such a phenomenon is be-

lieved to result from the deposition of hydrated cerium oxide on

the cathodic intermetallic particles existing in the aluminium alloy,

contributing thereby to the suppression of the cathodic reaction

[33].

These experiments confirm that cerium ions interact strongly

with oxide nanoparticles. However, most of these investigations

identify neither the molecular structure of nanoparticle surface

complexes nor the bonding mode of cerium salts at the mineral–

water interface. Considerably less attention has been paid to the ef-

fect of cerium on the rheological behaviour of colloidal suspensions

of boehmite, despite the importance of this parameter in the qual-

ity of the coats. In the present study, the spectroscopic data (DRIFT,

ATR and Raman) indicate that [Ce(NO3)4(H2O)x]
ÿ complex ions that

form at the boehmite surface play a decisive role in the rheological

behaviour of the colloidal suspensions. Our results demonstrate

that, according to the type of Ce-salt used, one may considerably

extend the rate of thixotropic structure and the sol viscosity. To

our knowledge, there is no spectroscopic study in the literature

which explains the interplay between the bonding mechanism of

lanthanides on the nanoparticle surface and the rheological behav-

iour of the sols.

2. Experimental section

2.1. Synthesis of boehmite colloids

Boehmite nanoparticles were synthesised by a sol–gel method

reported by Yoldas [16a–d]. The final product was a transparent

suspension of boehmite nanoparticles at pH 4.3. The concentration

of aluminium in the sol was 0.5 mol Lÿ1 as determined by weight

loss on ignition at 1000 °C for 2 h [26]. Subsequently, aliquots of

boehmite suspensions were introduced into 40 mL tubes and dif-

ferent amounts of Ce(NO3)3�6H2O (Acros), CeCl3�7H2O (Acros),

Ce(CH3COO)3�xH2O (Aldrich) and Ce2(SO4)3�xH2O (Aldrich) were

introduced according to a Ce/Al molar ratio fixed for all experi-

ments at 0.05. The mixtures were stirred for 6 h at room tempera-

ture until complete dissolution of the salts. The samples were then

stored at room temperature for 3 days. Xerogels were obtained

after drying 20 mL sols by evaporation at 40 °C for 48 h in an oven.

Powders were grounded before characterisation.

2.2. Characterisation methods

Rheological analyses were performed on freshly-prepared and

3 days-aged samples with a rheometer Anton Paar Physica MCR fit-

ted with a cone and plate device. The dimensions corresponding to

the geometry were 50 mm for the diameter and 1° for the angle.

The minimum distance between plate and truncated cone was

0.05 mm. Rheograms were recorded at 20 °C with shear-rate being

stepwise increased and decreased over the range of 1–1000 sÿ1

over a total time period of 300 s for both the increasing and

decreasing shear-rate sweeps. The thixotropic structure that devel-

ops in Ce-modified boehmite suspensions was evaluated by mea-

suring the area enclosed between the up- and down- curves in

the shear-stress vs. shear-rate data. Herschel Bulkley’s rheological

model was adopted to fit the downward flow curve of the hysther-

esis loop and to estimate the rheological parameters of freshly-pre-

pared (t0) and 3 days-aged (t3d) sols. Zeta potential measurements

were collected with a Zetasizer nano ZS 90 Malvern equipped dis-

posable capillary cells. All measurements were done at 25 °C, with

a scattering angle of 90°. Powder X-ray diffraction (PXRD) data

were collected on a Bruker D4 Endeavor X-ray diffractometer in a

Bragg Brentano configuration with Cu Ka radiation source at

40 kV and 40 mA. Scans were run over the angular domain

10° < 2h < 80° with a step size of 0.016°. Crystalline boehmite

was identified by comparing the experimental diffraction patterns

to Joint Committee on Powder Diffraction Standards (JCPDS) pow-

der diffraction file. Transmission electron microscopy (TEM) obser-

vations were performed with a JEOL-JEM-1400 microscope

operating at 120 kV at medium magnification. Fourier transformed

infrared spectra were collected in the 4000–400 cmÿ1 range with a

resolution 4 cmÿ1 on the Bucker Vector 22 spectrophotometer cou-

pled with OPUS software. Powders were compacted in KBr lattice

(1% by weight). Diffuse Reflectance Infrared Fourier Transform

(DRIFT) analyses were performed in a Perkin–Elmer 1760 X spec-

trometer equipped with Deuterated Triglycine Sulphate (DTGS)

detector. The ATR–FTIR spectra were recorded using a Nicolet

510P Nexus spectrophotometer equipped with DTGS detector.

Boehmite was deposited on a Germanium crystal. The deposited

suspension was allowed to dry under N2 atmosphere.

3. Results

3.1. Characterisation of boehmite crystallites

Fig. 1 shows a typical TEM micrograph of boehmite nanoparti-

cles which appear as anhedral laths. A closer look at these laths re-

veals that they are built-up of smaller plate-like particles which

show a local packing. A mesoporous structure is formed through

the aggregation of these laths. XRD diffraction pattern (inset) re-

veals that particles are comprised of crystalline boehmite (JCPDS

card no 21-1307) whose structure corresponds to an orthorhombic

unit cell (space group number 63, Amam) [34].



The unit cell of boehmite (Fig. 2) consists of two double layers of

AlO4(OH)2 aluminium-centred distorted octahedra. Hydroxyl

groups are located at the outer surface of the double layers and

they interact to hold the layers together.

Fig. 3 shows a representative FTIR spectrum of air-dried boehm-

ite xerogels recorded in the 4000–400 cmÿ1 region. The vibration

modes of boehmite are assigned in agreement with Fripiat [35]

and Colomban [36]. In addition to the vibration modes of boehmite

shown on the figure, the broad bands at 3409 and 1630 cmÿ1 are

assigned to the stretching and bending vibration modes of ad-

sorbed water. The peak at 1380 cmÿ1 corresponds to free NOÿ
3 an-

ions from HNO3 added for peptization [37]. This peak was not

observed in the boehmite peptized with HCl (spectrum not

shown).

3.2. Flow behaviour of boehmite suspensions modified with

Ce(CH3COO)3

Boehmite suspensions modified or not with Ce(CH3COO)3 were

submitted to rheological measurements in order to investigate the

extent of particle aggregation. Fig. 4 shows shear-stress vs. shear-

rate (a) and apparent viscosity vs. shear-rate (b) curves for boehm-

ite and Ce(CH3COO)3-modified boehmite. Freshly prepared Ce-free

boehmite presents a near-Newtonian behaviour since shear-stress

vs. shear-rate curve is near linear passing through the origin. This

sol displays a constant value of viscosity (1.5 mPa s) over the entire

range of shear-rates (0–1000 sÿ1). On the other hand, the addition

of Ce(CH3COO)3 induces a shear-thinning thixotropic behaviour, i.e.

the viscosity decreases with increasing shear-rate and the flow-

curve presents an hysteresis loop. Such a thixotropic behaviour is

typical of disc-shape nanoparticles [38]. It describes a reversible

transition from a flowable fluid to a solid-like elastic gel [39]. Un-

der flow conditions, the structure of this gel slowly breaks-down

into smaller aggregates and the viscosity decreases over time. On

standing, the network builds-up and viscosity increases.

The formation of such a gel results from the attractive interac-

tions between particles. According to Derjaguin, Landau, Verwey,

and Overbeek (DLVO) theory [40], when van der Waals attractive

forces dominate, the particles form either reversible aggregates

(controlled by physical forces) or irreversible agglomerates (arising

from chemical reactions) [41]. We will see in what follows that

depending on the type of counterion used, these two types of inter-

actions can occur in boehmite sols.

3.3. The influence of type of cerium salt

In this section we consider different Ce-salts (Ce(NO3)3, CeCl3,

Ce(CH3COO)3 and Ce2(SO4)3) to highlight the effect of the counter-

ion on the boehmite particle aggregation and on the network for-

mation. In all experiments, the Ce/Al molar ratio was fixed at 0.05.
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Fig. 1. TEM micrograph and XRD pattern (inset) of boehmite crystallites (JCPDS

card no. 21-1307).

Fig. 2. Drawing of c-AlO(OH) boehmite structure.

Fig. 3. FTIR spectra of boehmite xerogel.



Fig. 5 shows the shear-stress vs. shear-rate curves for freshly

prepared (a) and aged (b) boehmite sols modified with the four

Ce-salts. As described previously, boehmite suspensions are ini-

tially (at t0) highly stabilized by repulsive forces between the par-

ticles and present a near-Newtonian behaviour.

Upon addition of Ce(NO3)3 and CeCl3, a slight hysteresis loop is

observed indicating the beginning of the structure formation. On

the other hand, Ce(CH3COO)3 develops a strong shear-thinning

thixotropic behaviour immediately after being introduced in the

nanoparticle sol. The flow curve of this sol is characterised by a

large hysteresis loop, indicating strong adhesive interactions be-

tween particles.

Apparent viscosities measured at 1000 sÿ1 follow the same

trend as the thixotropy, increasing in the order: Ce(NO3)3
(2.21 mPa s) < Ce2(SO4)3 (6.48 mPa s) < CeCl3 (9.33 mPa s) < -

Ce(CH3COO)3 (23.29 mPa s) (Table 1). When the suspensions were

aged for 3 days, the apparent viscosity of non-modified boehmite

was not changed and its flow-behaviour was time-independent

(Fig. 5b). On the other hand, the flow curves of Ce-modified sam-

ples, except Ce2(SO4)3, denoted a strong thixotropic behaviour.

All those sols presented an increased shear-thinning behaviour

which was more pronounced with Ce(CH3COO)3 and CeCl3 com-

pared to Ce(NO3)3. In contrast, Ce2(SO4)3 showed no hysteresis loop

and the viscosity further decreased to 5.94 mPa s after keeping the

sol at rest for 3 days.

It is well-known that sulphates have stronger interactions with

boehmite compared to nitrates and chlorides [23]. Such coordina-

tion generally leads to a chemical agglomeration that follows the

particle aggregation [5]. Agglomeration is most likely to occur in

our Ce2(SO4)3-modified boehmite system. Indeed, all sols prepared

with Ce2(SO4)3 were white in colour and settled down at rest

whereas those prepared with the other salts were transparent

and stable.

The hysteresis area in the shear-stress vs. shear-rate data is ex-

pressed in J mÿ3 sÿ1 and represents the physical energy per unit

volume applied to the suspension per unit time to breakdown

and build-up the internal structure [5,42,43]. Fig. 6 provides a com-

parison of the thixotropic structure that forms in boehmite sols

modified with different Ce-salts at t0 and t3d. At t0, Ce(NO3)3- and

CeCl3-modified boehmite show a low degree of thixotropy similar

to boehmite. The addition of Ce(CH3COO)3 involved a strong
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Fig. 4. Shear-stress vs. shear-rate (a) and viscosity vs. shear-rate curves (b) for Ce-free (s) and Ce(CH3COO)3-modified boehmite (d).

Fig. 5. Shear-stress vs. shear-rate curves for freshly prepared (a) and 3 days-aged

(b) suspensions of boehmite modified with different cerium salts.

Table 1

Apparent viscosities measured at 1000 sÿ1 in Ce-free and Ce-modified boehmite

suspensions at t0 and t3d.

Boehmite sample gt0 (mPa s) gt3d (mPa s)

Ce-free 1.52 ± 0.03 1.53 ± 0.03

Ce(NO3)3 2.21 ± 0.04 16.09 ± 0.32

CeCl3 9.33 ± 0.19 17.23 ± 0.34

Ce(CH3COO)3 23.29 ± 0.47 19.72 ± 0.39

Ce2(SO4)3 6.48 ± 0.13 5.94 ± 0.12



increase of the thixotropic structure from 3.5 (Ce-free) to

1900 J mÿ3 sÿ1 (with Ce(CH3COO)3). Upon ageing for 3 days, Ce-

free boehmite showed a time-independent behaviour since no

thixotropic structure developed in this sol. Interestingly, the com-

parison between Ce(NO3)3 and CeCl3 indicates that the thixotropic

structure increases a little with the first salt (from 20 to

850 J mÿ3 sÿ1) whereas this evolution is significant with the latter

one (from 120 to 3500 J mÿ3 sÿ1). On the other hand, a high thixo-

tropic structure (1900 J mÿ3 sÿ1) is reached suddenly with Ce(CH3-

COO)3 from the early introduction of this salt in boehmite sol and it

increases up to 3100 J mÿ3 sÿ1 at t3d.

Studies in literature show that very high values of thixotropy

(about 2000 and 6000 J mÿ3 sÿ1) can be attained with 20% w/w

gibbsite (Al (OH)3) particles when potassium and sodium cations

are introduced respectively in the sol. Such rheological behaviour

was attributed to the strong interactions between those cations

and negatively charged particles [5].

We then applied Herschel Bulkley’s rheological model [44] to

estimate the rheological parameters at t0 and t3d. This model is

written as:

r ¼ r0 þ K _cn

where r is the shear-stress, K is the consistency coefficient, _c is the

applied shear-rate, r0 is the yield-stress when _c approaches zero

and beyond which material begins to flow, n is the flow behaviour

index. The results obtained by this model showed the best fitting

performance (hR2i = 0.9999) when compared to the model of Bing-

ham [45]. For Ce2(SO4)3 modified boehmite, the Herschel Bulkley’s

model was not well-adapted to describe the rheological behaviour

of this sol (fitting coefficient hR2i � 0.988). The results on the mod-

elling of this system are therefore not presented in the following.

Table 2 shows the values of the parameters computed from the

analysed suspensions. In Ce-free boehmite and in boehmite modi-

fied with the three Ce-salts, the yield stress (r0) is negligible

(<2 mPa at t0 and <36 mPa at t3d). This is consistent with the fact

that the shear-thinning behaviour in these systems becomes visi-

ble from the early beginning of the applied yield-stress.

More evident differences between Ce(NO3)3, CeCl3 and Ce(CH3-

COO)3 can be observed from the value of the coefficient of consis-

tency K. At t0, K significantly increases with Ce(CH3COO)3 as

compared to Ce(NO3)3 and CeCl3, whereas at t3d, Ce(NO3)3 and

CeCl3 present the most rapid evolution. For Ce(CH3COO)3 and

Ce2(SO4)3, K decreases with ageing, following the same trend as

the apparent viscosity (Table 1). On the other hand, n decreases

after addition of Ce-salts, indicating that sols become less fluid.

In literature, K has not been reported for boehmite suspensions.

The only data we have found concern dispersions of laponite [4a]

which present a consistency coefficient about 2000 times higher

(3.71 Pa sn vs. 1.57 mPa sn) compared to boehmite. This may be ex-

plained by the high capacity of laponite dispersions to form a vis-

coelastic gel due to the creation of house-of-cards structures [4a].

Such structures result from edge-to-face attractions between neg-

ative charges along the sides and positive charges along the edges

of laponite [2a]. Indeed, the phase diagram of laponite [4a] indi-

cates a sol–gel transition at about 2% w/w laponite while boehmite,

at this concentration, is very fluid and non-thixotropic.

In order to evaluate the surface properties of Ce-modified

boehmite suspensions, Zeta potential (f potential) measurements

were then conducted in freshly prepared and 3 days-aged sols (Ta-

ble 3). Zeta potential reflects the particle surface charge. It is

known that the point of zero charge (PZC) of boehmite is near 9

[46,47]. For the sols synthesised at pH 4.3 (Ce-free boehmite), par-

ticles carry a positive charge (f = + 29 mV) which is attributed to

the adsorption of H+ ions on the Al-OH groups and to the formation

of Al-(OH2)
+ species. This charge is partially compensated by the

counterions (NOÿ
3 ) that are released in the aqueous phase during

peptization. In the presence of Ce-salts, f potential decreases sig-

nificantly (f = 0.5–3 mV) as the Ce-salts cover the surface of the

particles and it takes negative values upon ageing. Moreover,

depending on the nature of Ce-salt used, the pH of boehmite sus-

pensions varies. At t0, pH increases slightly from 4.3 (for Ce-free

boehmite) to 4.4 (with Ce(NO3)3) and to 4.5 (with CeCl3). This in-

crease is more significant with Ce2(SO4)3 (pH = 5.5) and with

Ce(CH3COO)3 (pH = 5.5).

From these results, it appears that the addition of Ce-salts

strongly affects the surface properties of boehmite and the rheo-

logical behaviour of the sol. In order to improve the understanding

of surface chemistry controlling the processes occurring at boehm-

ite–water interface, spectroscopic investigations were conducted

in the following.

3.4. Spectroscopic investigations

DRIFT analyses were performed to obtain information about the

bonding mode of Ce3+ ions at the boehmite–water interface. DRIFT

spectroscopy provides an alternative to transmission infrared spec-

Fig. 6. Thixotropic structure formation at t0 (s) and t3d (d) represented by the area

of hysteresis loop in shear stress vs. shear rate curve in the five colloidal boehmite

suspensions.

Table 2

Rheological parameters computed from Herschel Bulkley’s rheological model in Ce-

free and Ce-modified boehmite suspensions. r0 is the yield stress when the applied

shear rate _c approaches zero, K is the coefficient of consistency and n is the flow

behaviour index.

Boehmite sample r0 (mPa) K (mPa sn) n (–) hR2i (–)

Ce-free-t0 1.08 ± 0.55 1.57 ± 0.02 0.989 ± 0.002 0.99999

Ce(NO3)3-t0 1.34 ± 0.65 3.73 ± 0.19 0.930 ± 0.007 0.99997

CeCl3-t0 1.44 ± 0.49 9.77 ± 0.37 0.882 ± 0.003 0.99998

Ce(CH3COO)3-t0 2.35 ± 0.75 78.54 ± 1.23 0.814 ± 0.002 0.99999

Ce-free-t3d 1.04 ± 0.75 1.70 ± 0.08 0.966 ± 0.007 0.99991

Ce(NO3)3-t3d 3.18 ± 0.12 18.58 ± 0.68 0.882 ± 0.003 0.99998

CeCl3-t3d 20.61 ± 1.65 38.84 ± 1.04 0.867 ± 0.004 0.99996

Ce(CH3COO)3-t3d 35.55 ± 2.11 73.37 ± 1.71 0.806 ± 0.003 0.99997

Table 3

f potential and pH of boehmite and Ce-modified boehmite measured at t0 and t3d.

Boehmite

Sample

f potential at t0
(mV)

f potential at t3d
(mV)

pH at

t0

pH at

t3d

Ce-free 29 29 4.3 4.3

Ce(NO3)3 0.5 ÿ3.2 4.4 4.8

CeCl3 1 ÿ2.2 4.5 4.8

Ce(CH3COO)3 3 ÿ2.8 5.5 5.6

Ce2(SO4)3 1 ÿ2.5 5.5 5.6



troscopy (FTIR) in that the integrity of the sample surface is en-

sured because no pressure is applied during sample preparation.

Fig. 7 A presents DRIFT spectra of Ce-free (a) and Ce-modified

boehmite (b–e) in the range 1800–900 cmÿ1. FTIR spectra of the

four Ce-salts as solid (B) and ATR spectra of Ce-salts solubilised

in aqueous media (C) are added for comparison (except chloride

which is IR inactive). In Ce-free boehmite sample (A, a), the stretch-

ing vibration of free NOÿ
3 species from peptization appeared at

Fig. 7. DRIFT spectra (A) of boehmite (a) modified with different cerium salts: Ce(NO3)3 (b), CeCl3 (c), Ce(CH3COO)3 (d) and Ce2(SO4)3 (e). FTIR spectra of the four salts as solid

(B) and ATR spectra in solution (C).



1380 cmÿ1. This band is also observed in the spectrum of Ce(NO3)3
aqueous solution (C, b) which contains the hydrated cerium com-

plex [Ce(H2O)x]
3+ and free nitrate anion. Upon addition of Ce(NO3)3

in the peptized boehmite sol (A, b), the band at 1380 cmÿ1 under-

goes splitting into two bands, at 1460 and 1345 cmÿ1, indicating a

symmetry decrease of the anion. This can be compared with the

presence of the two main characteristic vibrations of coordinated

nitrate anions observed at 1467 and 1347 cmÿ1 in the spectrum

of pure Ce(NO3)3 as a solid (B, b). Similarly to Ce(NO3)3, the spectra

of CeCl3–(A, c), Ce(CH3COO)3–(A, d) and Ce2(SO4)3–(A, e) modified

boehmite show the same splitting. So, we propose that a great por-

tion of NOÿ
3 anions from peptization was coordinated with Ce3+

ions.

It is well-known that trivalent lanthanide ions, in their most

stable state, give rise to high coordination number complexes

and particularly in water where 8 to 11 chemical bonds are usually

observed for simple complexes [48]. On the other hand, nitrate an-

ion may exhibit two coordination modes (monodentate or biden-

tate) on a metal centre. Following this coordination different

anionic complexes, such as [Ce(NO3)4(H2O)x]
ÿ, which are in inter-

action with the boehmite nanoparticles, can form. Compared to ni-

trate and chloride, the sample containing acetate (A, d) present

additional bands at 1550 and 1413 cmÿ1 which are also observed

with this salt as solid (B, d) and in solution (C, d). In the case of

Ce2(SO4)3, the spectrum (A, e) is more flattened and the vibration

bands of boehmite are less distinct and broader compared to the

three other Ce-salts. However, even in this sample, it is evident

that the peak at 1380 cmÿ1 assigned to NOÿ
3 anions undergoes

splitting indicating that cerium exists in a coordinated state on

the boehmite surface. The broadening of the spectra in the region

from 1180 to 1000 cmÿ1 is probably due to the presence of numer-

ous peaks from Ce2(SO4)3 as solid in this region (B, e).

In attempt to obtain complementary information concerning

the interactions between cerium and nitrate ions in solution,

ATR–FTIR and Raman spectra were also collected in Ce-modified

boehmite sols. Unfortunately the bands of water and butanol

(which forms during hydrolysis of the aluminium tri-sec-butoxide)

overlap the vibration bands of boehmite. The only information we

have derived from Raman was a strong intensification of the band

at 1050 cmÿ1 (vibration of NOÿ
3 anions) in the sample prepared

with Ce(NO3)3. The other spectra did not provide accurate informa-

tion to distinguish the behaviour of various salts.

4. Discussion

Due to their high reactivity towards water, aluminium alkox-

ides hydrolyse very rapidly in aqueous medium and nanoparticles

form aggregates which precipitate. Peptization by means of an

inorganic acid (HNO3) is used to break down these large aggregates

into small aggregates and primary particles of boehmite. The final

result is a clear suspension which contains primary crystalline par-

ticles dispersed in water [16a].

The rheological data indicate that a high shear-sensitive thixo-

tropic structure develops in boehmite sols upon introduction of Ce-

salts. While as-synthesised boehmite suspensions are near-Newto-

nian and time-independent, Ce-modified boehmite sols exhibit in-

creased viscosity, shear-thinning behaviour and thixotropy (Figs. 4

and 5). The thixotropic structure further increases when those sols

are aged for 3 days.

The rate of structure formation in Ce-modified boehmite sols

appears to be strongly dependant on the type of counterion used.

The rheological data recorded in Ce(NO3)3, CeCl3, Ce(CH3COO)3,

and Ce2(SO4)3 systems indicate that the shear-stress vs. shear-rate

profiles are similar with the first three anions and differ with SO2ÿ
4 .

The particle network that forms at t0 with Ce(NO3)3 and CeCl3 is

relatively weak (Fig. 5a). Ageing the sols for 3 days, involves a

repulsive to adhesive transition in the particle–particle interac-

tions. As a result of these adhesive interactions, an hysteresis loop

develops in the shear-stress vs. shear-rate curves (Fig. 5b) the area

of which reflects the degree of thixotropy of the sol. The evolution

of the thixotropic structure was fast with Ce(NO3)3 and still much

faster with CeCl3. In contrast, Ce(CH3COO)3 presented a high thixo-

tropic structure at t0, suddenly after introduction of this salt, but

the degree of thixotropy of the sol did not increase significantly

with ageing.

It is generally accepted that, in the presence of inert electrolyte,

particles bond together when the range of double layer repulsive

interactions is sufficiently reduced to permit particles to approach

one another to the point where the van der Waals attractive forces

dominate [17]. The effect of the anion size from neutral salts has

been investigated on aqueous suspensions of boehmite [17] and

goethite (a-FeOOH) by potentiometric titrations [49]. It was found

that gels form predominantly with monovalent anions when a crit-

ical ionic strength is reached, the value of which increases with

increasing the size of the anion. In both studies, the data were ex-

plained using the idea that smaller anions are more efficient at

approaching the surface of the particles than larger ones. As a re-

sult, the surface charge is screened and the diffuse portion of the

double layer is compressed leading to a decrease of the interparti-

cle repulsion.

In our systems, CH3COO
ÿ has the smallest ionic radius

(Ri = 0.217 nm, Table 4) and its negative charge is concentrated

on the two oxygen atoms. In aqueous solution, this anion is very

strongly hydrogen bonded, so contributing to the negative enthal-

py of hydration (ÿ425 kJ molÿ1). This generates a thick hydration

shell of ordered water molecules.

In agreement with the results of Gieselmann and Anderson [17],

our data indicate that the slightly smaller CH3COO
ÿ anion is more

effective at shielding the surface charge that develops on boehmite

particles than the larger NOÿ
3 (Ri = 0.223 nm) and Clÿ

(Ri = 0.224 nm) anions. This results in a strong decrease of the

interparticle repulsion with Ce(CH3COO)3 and in the development

of adhesive interactions leading to aggregation of particles in a

highly thixotropic network.

However, the evolution of the thixotropic structure can not be

explained only by the dimension of the counterions. Thus, we note

that, although the hydrated ionic radii of nitrate and chloride ions

are very close, a huge difference is observed in the evolution of the

thixotropic structure of these sols (Fig. 6). This evolution is much

stronger with CeCl3 compared to Ce(NO3)3. Such behaviour has

been observed also by other authors and may be explained by

non-DLVO interactions, i.e. structured forces generated by the ad-

sorbed layer of hydrated Clÿ ions (also called solvation forces)

[52]. The thickness of these adsorbed layers follows the same order

as the hydration enthalpy of the two ions, Clÿ

(ÿ365 kJ molÿ1) > NOÿ
3 (ÿ312 kJ molÿ1) and the degree of coagula-

tion of particles also follows this order.

The apparent viscosity measured at 1000 sÿ1 with Ce(CH3COO)3
was reduced after 3 days from 23.29 to 19.72 mPa s. This behav-

iour is similar to what has been observed with gibbsite suspen-

sions. Gibbsite nanoparticle agglomeration has been shown to

Table 4

Values of ionic radius and hydration enthalpy at 25 °C of the studied counterions

[50,51].

Counterion Hydrated radius Rh (nm) Hydration enthalpy (kJ molÿ1)

NOÿ
3 0.223 ÿ312

Clÿ 0.224 ÿ365

CH3COO
ÿ 0.217 ÿ425

SO2ÿ
4

0.273 ÿ1035



occur in two steps: firstly via reversible aggregation due to physical

forces, followed by irreversible chemical cementation [5]. In the

Ce(CH3COO)3 system, such behaviour may be explained by the fact

that if the chemical agglomeration of the aggregates becomes sig-

nificant, the total number of reversible particle–particle interac-

tions may be reduced, leading to a decrease of the sol viscosity.

In the case of Ce2(SO4)3, the situation is different. The shear-

stress vs. shear-rate curve of this system presents a shear-thinning

behaviour but thixotropy was evidenced neither at t0 nor at t3d.

Thus, when boehmite sols were mixed with Ce2(SO4)3, the sol

spontaneously separated into a colloid-rich and a colloid-poor

phase. This observation indicates that Ce2(SO4)3 interacts in an

unusual manner with boehmite nanoparticles. Indeed, sulphates

have been shown to bond strongly to particles of goethite [53–

55] and to favour the growth of boehmite along [100] direction

[24]. The precipitation of boehmite in the presence of different an-

ions (Clÿ, NOÿ
3 and SO2ÿ

4 ) has also been investigated [23]. From this

study it was inferred that the hydrolysis of Al2(SO4)3 starts at lower

temperatures (compared to AlCl3 and Al(NO3)3) due to the forma-

tion of hydroxy-sulphate species as a result of the higher complex-

ing ability of SO2ÿ
4 with aluminium compared to Clÿ and NOÿ

3 .

In order to corroborate our rheological results, we have under-

taken vibrational spectroscopic experiments to highlight interac-

tions between Ce-salts and the surface of boehmite

nanoparticles. The positive surface charge of the boehmite implies

its stabilisation by nitrate anions which could be free or coordi-

nated to cerium and the IR spectroscopy ascertains identification

of these two species.

Adsorption of nitrate anions on nanoparticle surface is demon-

strated by FTIR and DRIFT spectroscopies (Fig. 3 and 7A, a). These

anions come from peptization during which Al-OH is protonated

in Al-OHþ
2 . Protonation is followed by the adsorption of free NOÿ

3

ions on the nanoparticle surface by H-bond.

On Ce-modified boehmite (Fig. 7A, b–e), coordination between

free NOÿ
3 anions and Ce3+ cations was evidenced by the splitting

of the band at 1380 cmÿ1 in two bands at 1460 and 1345 cmÿ1. In-

deed, these two bands appear at the same positions as those of

Ce(NO3)3 as solid (Fig. 7B, b).

Based on these observations, the interaction of Ce(NO3)3, CeCl3
and Ce(CH3COO)3 with boehmite surface may occur as illustrated

in Fig. 8. When these salts are introduced separately in the pep-

tized boehmite sol, the coordination between Ce3+ cations and free

NOÿ
3 surface anions leads to formation of [Ce(NO3)4(H2O)x]

ÿ com-

plex ions which adsorb on the nanoparticle surface via H-bond.

Such adsorption contributes to the modification of particle–parti-

cle interactions (from repulsion to attraction) and by consequence

a thixotropic structure develops.

According to the results mentioned above, we can assume that

the adsorption of Ce-salts at the boehmite–water interface strongly

affects the rheological behaviour of the sols. More importantly, the

nature of Ce-salts as well as the ageing time may be chosen appro-

priately to tune the sol viscosity.

5. Conclusion

Stable suspensions of boehmite crystallites were synthesised by

hydrolysis and condensation of aluminium tri-sec-butoxide in

water followed by peptisation with nitric acid. DRIFT data collected

on boehmite sols showed one band at 1380 cmÿ1 associated to the

adsorption of NOÿ
3 anions at the AlOHþ

2 sites of boehmite.

The addition of Ce-salts involved changes on the rheological

behaviour of the sols. While Ce-free boehmite suspensions were

near-Newtonian and time-independent, the addition of Ce-salts in-

volved a high shear-thinning behaviour. Depending on the nature

of Ce-salt used, the rheological behaviour of the sol was modified

in a different way. The thixotropic structure that formed at t0
was moderate in the sols prepared with Ce(NO3)3 and CeCl3
whereas it was strongly enhanced in the sols prepared with

Ce(CH3COO)3. After ageing the sols for 3 days, a higher evolution

of the thixotropic structure was observed with CeCl3 compared

to Ce(NO3)3, whereas a saturation value was reached with Ce(CH3-

COO)3. By contrast, Ce2(SO4)3 presented a sudden phase-separation

due to the complexation of the anion with dissolved aluminium

species.

DRIFT spectra collected from Ce-modified boehmite samples

showed splitting of the band at 1380 cmÿ1 into two bands at

1460 and 1345 cmÿ1 which are associated to the coordination of

free NOÿ
3 anions at the boehmite surface with Ce3+ ions followed

by the formation of [Ce(NO3)4(H2O)x]
ÿ complex ions. Such Ce-com-

plexes that adsorb at boehmite/water interface play a decisive role

on the interparticle interactions and are probably at the origin of

the thixotropic structure formation. Combining rheological data

with data computed from IR spectroscopies may be a new ap-

proach to interfer information about the rheological behaviour of

colloidal dispersions linked to complex formation at the particle/

water interface.
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