
HAL Id: hal-00842452
https://hal.science/hal-00842452v1

Submitted on 8 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pretreatments by means of orthogonal projections
J.C. Boulet, J.M. Roger

To cite this version:
J.C. Boulet, J.M. Roger. Pretreatments by means of orthogonal projections. Chemometrics and
Intelligent Laboratory Systems, 2012, 117, p. 61 - p. 69. �10.1016/j.chemolab.2012.02.002�. �hal-
00842452�

https://hal.science/hal-00842452v1
https://hal.archives-ouvertes.fr


Pretreatments by means of orthogonal projections

Jean-Claude Boulet1

INRA, UMR1083 Sciences Pour l’Oenologie, 2 place Viala, F-34060 Montpellier, France

Jean-Michel Roger2

IRSTEA, UMR ITAP Information Technologies Analyse environnementale Procédés
agricoles, F-34196 Montpellier, France

Abstract

This article describes several linear pretreatments based on orthogonal projec-
tions. The main differences of these pretreatments lie in the way the information
to be removed is identified, using calibration dataset, pure spectra, experimental
designs or mathematical models. Removing all the undesired spectral informa-
tion yields spectra proportional to the net analyte signal, so it is important to
collect the most complete information possible, using the complementarities of
different approaches. The correction should then be processed with a single Eu-
clidian orthogonal projection that gathers all the information, rather than with
successive operations. By embedding Euclidian orthogonal projections into the
calibration, it is not necessary to reapply them to new datasets.

Keywords: orthogonal projection, pretreatment, preprocessing, subspace,
linear model

1. Introduction1

Spectroscopy has spread throughout many industries as an on-line process2

control tool because calibration models are able to extract quantitative infor-3

mation about a compound of interest from the spectra. Among the models4

proposed, regressions or inverse calibrations such as partial least square re-5

gression (PLSR) (1), extract the relevant spectral information by means of a6

calibration dataset. The term ”partial” recalls that just a few dimensions or7

latent variables are used, and thus the information related to the other variables8

is dropped. Pretreatments or preprocessings are positioned prior to calibration.9

Their purpose is to identify and to remove spectral information that interferes10
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with the desired prediction. Pretreatments and regressions share a same ob-11

jective, so pretreatments allow regressions to perform better. Many different12

pretreatments are available. This paper focuses on describing the ones based13

upon orthogonal projections and complements a recent review by Rinnan et al14

(2). After introducing the notations, we describe several pretreatments focused15

on orthogonal projections, and then discuss their properties. We propose a clar-16

ified view of several pretreatments by putting forward their resemblances and17

complementarities and suggesting the best methods for their use. The detailed18

relationships of these pretreatments with other pretreatments (e.g. Savitsky-19

Golay (SG), standard normal variate) and with other calibration methods are20

outside the scope of this article.21

1.1. Notations22

Vectors are noted in bold lowercase, matrices in bold uppercase, and scalars23

in uppercase characters. Vectors are arranged in columns, except in matrices X24

and XG where the lines represent the spectra. The transposed forms of vector25

a and matrix A are noted a′ and A′, respectively. The main notations are26

gathered in Table 1, and a glossary is also available in Table 2.27

2. Pretreatments based on orthogonal projections28

Pretreatments based on orthogonal projections deal with the correction of29

additive effects. For example, suppose that for sample i the observed spectrum30

xi,obs is the sum of the expected spectrum xi plus an unwanted contribution hi:31

xi,obs = xi + hi (1)

If a good estimation of hi is available, the first possibility would be to perform32

a subtraction, and so xi is estimated as:33

x̂i = xi,obs − ĥi

Unfortunately, because hi is not well estimated for each spectrum i, this34

configuration is very uncommon in spectrometry. Nevertheless, it is possible to35

obtain a good estimation of the subspace ED spanned by the different vectors36

{ hi} . Thus it becomes possible to build a projector orthogonal to this subspace.37

Let P be a matrix of dimensions P × A whose column-vectors { p1,p2, ...pA}38

form a basis of ED. Let IP be the identity matrix of dimensions P × P . The39

Euclidian orthogonal projector to P is:40

P⊥P = IP −P(P′P)−1P′

A spectrum xi,corr corrected from the information due to any hi is obtained41

after a projection of xi,obs orthogonally to P:42
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xi,corr = P⊥P xi,obs = P⊥P xi (2)

Note that the vector xi,corr that is obtained after an orthogonal projection43

is very different from x̂i obtained when a subtraction is possible. However in44

both cases, the influence of hi has been reduced to nought. The orthogonal45

projector P⊥P is symmetrical: P ′⊥P = P⊥P , so for N spectra forming the matrix46

X of dimensions N × P :47

Xcorr = XP⊥P = X(IP −P(P′P)−1P′) (3)

The performances of the different pretreatments are directly explained by48

their ability to obtain a good approximation of a basis of ED. Different ap-49

proaches are possible: using pure spectra, information extracted from experi-50

mental design, models, and calibration datasets. For each method, matrix X51

represents centered or uncentered data, depending on the centering option cho-52

sen. In order to simplify the presentation, all pretreatments presented here are53

for correcting spectra in which just one compound of interest is to be quantified.54

However, some pretreatments can also be written for the correction of several55

compounds of interest.56

2.1. Pretreatment using pure spectra57

A basis of the space spanned by chemical components is given by their pure58

spectra. A method derived from hyperspectral imaging uses this property.59

2.1.1. Orthogonal subspace projection60

The orthogonal subspace projection (OSP) use pure spectra, called undesired61

signatures, which are associated with all the chemical influences present except62

the one of the compound of interest. These undesired signatures form matrix K.63

They can be determined after a clustering process (3; 4), in which homogeneous64

groups of spectra are obtained, followed by selection of a spectrum representative65

of each group. However in Harsanyi et al (5) they were chosen within the image.66

The OSP correction is a projection that is orthogonal to K, in accordance with67

equation 3:68

XOSP = X(IP −K(K′K)−1K′)

In Harsanyi et al (5), the OSP method was applied to an hyperspectral im-69

age from an airborne VIS-IR spectrometer using the radiance spectra directly.70

Several end members were identified and alternatively chosen as the compound71

of interest. An OSP was performed for each endmember. For each OSP, the72

corrected spectra were used to classify the pixels, and the results were in accor-73

dance with the measured values, or ground truth. However, the limits of this74

method are such that all the pure spectra must be known in advance and they75

cannot be collinear. In addition, influences such as temperature are not taken76

into account.77
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2.2. Pretreatments using spectra issued from an experimental design78

If pure spectra are not available due to the chemical complexity of the sam-79

ples or because the influence to be removed is physical and no pure spectrum80

exists, OSP cannot be applied. It is possible to construct experimental designs81

to obtain a matrix XG whose spectra contain targeted spectral perturbations82

without any useful information. A singular value decomposition (SVD) or a83

principal component analysis (PCA) applied to XG gives a matrix of eigenvec-84

tors P of dimensions (P ×A) whose columns represent an orthonormal basis of85

the subspace to be removed. The matrix X is corrected to Xcorr by a projection86

orthogonal to P. The following formula is the same as equation 3 and can be87

simplified to:88

Xcorr = X(IP −P(P′P)−1P′) = X(IP −PP′)

Several methods have been based on this principle, but they differ in the89

way XG is obtained, and in how the dimension of the SVD or the PCA applied90

to XG is determined.91

2.2.1. Independent interference reduction92

The independant interference reduction method (IIR), Hansen (6) uses spec-93

tra from samples where the compound of interest is null and these spectra are94

gathered into the matrix XG. The IIR method implies that such samples should95

be easy to collect in large numbers. This was the case in the reported applica-96

tion, due to the absence of acetone for the milk of healthy cows. IIR yielded97

models that were more interpretable and predictions that were more stable. IIR98

removes more interferences with higher numbers of PCA factors and thus the99

PLSR needs fewer latent variables.100

2.2.2. External parameter orthogonalization and transfer orthogonal projection101

External parameter orthogonalization (EPO), Roger et al (7) and transfer102

orthogonal projection (TOP), Andrew et al (8) are two closely related methods.103

For the same set of M samples, M spectra are acquired at R levels of one phys-104

ical influence. Thus, each sample is associated with R spectra. Centering each105

set of R spectra removes chemical information to leave only the information106

from the physical influence remaining. Matrix XG of dimensions (MR × P )107

is obtained by merging the R centered spectra from each of the M samples.108

EPO was first applied to correct temperature effects when predicting the sugar109

concentration in apples in the near infrared. Ten apples were set at different110

temperatures between 5°C and 40°C. The spectra of the ten apples were centered111

for each temperature level, and then merged, to yield XG. The PCA and PLSR112

dimensions were determined using either cross validation or Wilks Λ. The EPO113

method produced a dramatic drop in the root mean square error of prediction114

(RMSEP ) value compared to that obtained without any pretreatment. TOP115

aims at transferring calibrations from one instrument to another, and was used116

in two applications: to determine the protein content in barley and moisture117
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in corn. Near infrared (NIR) spectra of the same five samples of barley were118

acquired onto seven spectrometers, and the NIR spectra of five samples of corn119

were acquired onto three spectrometers. Spectra were centered for each instru-120

ment, and then merged into two matrices XG associated with barley and corn121

respectively. The PCA dimensions were determined such that 98− 99 % of the122

variance was captured. For barley and corn, the TOP-PCR and TOP-PLSR123

models were determined on one instrument and then applied to the others. The124

low RMSEP values produced by the analysis demonstrated the value of using125

TOP for calibration transfer. Calibration was also successfuly transfered to an126

unseen instrument (not used for the calculation of TOP).127

2.2.3. Dynamic orthogonal projection128

Dynamic orthogonal projection (DOP), Zeaiter et al (9) was inspired by129

EPO. The aim of DOP is the on-line correction of unexpected disruptive influ-130

ences. The spectra and reference values of a few disturbed samples are assumed131

to be known. Let (X,y) be the calibration dataset, x1 a spectrum acquired after132

the appearance of a disruptive influence, and y1 the reference value associated133

with x1. The ideal spectrum x̂1 which would have been obtained without the134

disturbance is estimated by a kernel function or weighted mean of spectra from135

X chosen for their proximity to y1. The difference between the spectra (x̂1-136

x1) characterizes the disturbance. The same operation is repeated with other137

measurement points x2, x3, etc., and spectral differences are gathered into XG.138

The method was applied to the prediction of ethanol in wine fermentations, and139

aimed at correcting the temperature effects. A calibration database was first140

obtained during an isothermal fermentation. Then, temperature was monitored141

during a second fermentation. Five reference points were acquired during the142

increase of temperature and the NIR predictions of ethanol were corrected using143

DOP. A Gaussian kernel function was used to build virtual spectra of the avail-144

able reference points, and the database was successively corrected from one to145

five points. Ethanol predictions were well-corrected by DOP, even at the end of146

the fermentation when the temperature had decreased to its initial value. It was147

also shown that DOP was able to capture the vertical (baseline) and horizontal148

(wavelength) shifts due to the temperature.149

2.2.4. Error removal by orthogonal subtraction150

Error removal by orthogonal subtraction (EROS), Zhu et al (10) is a method151

derived from TOP. EROS takes into account and then corrects variations due152

to repetitions. Several spectra acquired from a same sample are centered. The153

centered spectra associated with the different samples are gathered into a ma-154

trix XG which contains only information due to the repetitions and in which the155

row mean is null. EROS was applied to the diagnosis of precancerous polyps156

using visible-NIR spectroscopy. The repeatability of the spectra was poor due157

to different angles, pressures or locations at which the optical probe was used158

during the in vivo data acquisitions. EROS was able to correct these influences159

using five repetitions for each analysis. Normal and precancerous polyps were160

classified by principal component discriminant analysis (PCDA), the dimensions161
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were tuned using cross-validation. EROS enabled the accuracy of the classifica-162

tion to be slightly increased. However, the models generated were expected to163

be more robust because they had been simplified and because EROS+PCDA164

needed fewer components than PCDA alone.165

2.3. Pretreatments using a polynomial model166

Let λ be the vector of dimensions P × 1 composed of values { v1, v2, ...vP } .167

The i°column of the matrix ΛR of dimensions (P ×R+1) is obtained by raising168

each term of λ to the power i. A vector z can be written in a polynomial form169

if it exists as vector a such that:170

z = ΛRa (4)

If an observed spectrum xobs is the sum of the expected spectrum x plus the171

contribution of an unexpected influence (e.g. scattering), which is represented172

by a polynomial vector z, then:173

xobs = x + z = x + ΛRa

An estimation of x, corrected from the polynomial, is obtained after x is174

projected orthogonally to ΛR:175

x̂corr = (IP −ΛR(Λ′RΛR)−1ΛR)xobs

The following pretreatments: detrend, constrained principal spectra analysis176

(CPSA) and iterative polynomial fitting, are based on polynomial corrections.177

2.3.1. Detrend178

Detrend was proposed by Barnes et al(11; 12) to correct baselin distortions179

due to scattering effects able to be modeled by a polynomial. These situations180

are very common in spectroscopy and are difficult to model due to the variabil-181

ity of particle sizes (2). Detrend calculates a matrix Λ2 of dimensions (P × 3)182

as described above, to model second-order polynomials. A detrend correction183

consists of an orthogonal projection of the raw spectra to Λ2. Detrend was184

applied to spectra from crystalline and powder forms of sucrose (11), and the185

corrected spectra of the same component were nearly identical. However, as186

expected for an orthogonal projection, they had lost the classical shape of the187

sucrose spectra. Other authors have proposed modeling baselines with polyno-188

mials having orders up to two (13; 14) and with solutions for the choice of the189

polynomial order. However the corrections were done using subtraction and an190

orthogonal projection was also possible, at least for the spectra.191
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2.3.2. Constrained principal spectra analysis192

CPSA addresses the correction of influences unrelated to the chemical com-193

position of the sample (15). As for detrend, scattering is modeled by a matrix194

Λ2. Spectra from external influences such as water and carbon dioxide gas,195

form matrix K. Matrices Λ2 and K are merged to yield matrix R. The CPSA196

correction consists of projecting raw spectra xi orthogonally to R.197

2.4. Pretreatments using data compression methods198

The main goal of data compression methods is to obtain fewer numbers of199

new variables A such that A << P , where P is the dimension of a spectrum.200

These variables form the best basis (BB) (16), in that they span the subspace201

of RP containing the most relevant information. However a consequence of this202

pretreatment is that information is dropped while projecting onto the BB.203

Let W be a P×P matrix in which column-vectors constitute an orthonormal204

basis of RP . Thus W′W = IP . The projection of any vector xi of dimension205

P onto W is invariant and gives xi:206

W(W′W)−1W′xi = WW′xi = xi (5)

The scores of xi in the basis represented by the column-vectors of W are207

represented by a unique vector ti, which by definition verifies:208

xi = Wti (6)

Thus, from equations 5 and 6:209

ti = W′xi

W is split into two matrices: W1:A containing A selected vectors of W (the210

BB); and WA+1:P containing the last P −A vectors of W. The spectrum xi is211

rebuilt using W1:A and the A first scores of ti, noted ti,1:A, into equation 6:212

xi,corr = W1:Ati,1:A = W1:AW′
1:Axi

It can easily be deduced that xi,corr is also the orthogonal projection of xi213

to WA+1:P :214

xi,corr = (IP −WA+1:PW′
A+1:P )xi

The equation obtained is equivalent to equation 2 with WA+1:P replacing215

P. The W1:A and WA+1:P matrices can be obtained using several compression216

methods. The simplest way is to perform a PCA, then select respectively the217

A first and P − A last components. Discrete Fourier transform (DFT) is used218

in signal processing. However in chemometrics more attention has been paid to219

wavelet transforms. Thus a discrete wavelet transform (DWT) and a wavelet220

packet transform (WPT) offer alternative solutions.221
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2.5. The wavelet packet transform and the discrete wavelet transform222

All of the vectors of W are calculated using a WPT, whereas only a few of223

them are obtained with DWT (16). Thus DWT is a particular case of WPT.224

Two parameters must be determined for a WPT: (1) an orthonormal wavelet225

basis of RP , represented by the columns of W; and (2) the A vectors from W226

which form the BB (16). Examples of orthonormal wavelet families of bases227

are Haar-Daubechie, Symmlet, and Coiflet (16; 17; 18). The vectors forming228

the BB are determined using a threshold. Several methods are available to229

obtain the value of the threshold: predetermined (16); minimum description230

length (MDL), which is a compromise between A and the percent of spectral231

reconstruction (16; 19); and universal thresholding (ThU) (20). Cross-validation232

on a calibration dataset (X,y) can help to determine these parameters (19; 21).233

A WPT-DWT can be used for data compression and for smoothing, denoising234

and baseline corrections. Smoothing consists of removing high frequency signals235

(16; 19; 22), regardless of their amplitudes (23). Denoising consists in removing236

the lower coefficients in the frequency domain, regardless of their frequencies237

(23). Smoothing and denoising are different, but high frequencies are often238

associated with low coefficients, so in practice both denoising and smoothing239

are performed in the same operation. Baseline can also be removed. Hu et al240

(20) applied DWT to Raman spectra for baseline and noise corrections.241

DWT-WPT performance can be very good in terms of signal reconstruction242

and data compression. Barclay et al obtained corrections which overwhelmed243

the DFT and the SG method (23). Trygg et al obtained quite the same in-244

formation after a compression rate of 30 (17). However, when associated with245

PLSR, DWT-WPT did not significantly improve the quality of prediction (17).246

2.6. Pretreatments using a calibration dataset247

Orthogonal signal correction (OSC) methods are based on a calibration248

dataset (X,y) and do not need any additional information. Several methods249

have been proposed for removing the spectral information orthogonal to y from250

X: Wold et al OSC (24); Sjoblom et al OSC (25); Wise et al OSC (cited in (26));251

Andersson direct orthogonalization (DO) (27); Fearn’s OSC (28); Westerhuis et252

al direct orthogonal signal correction (DOSC) (26); Goicoechea net analyte pre-253

processing (NAP) (29); and Trygg orthogonal projection to latent structures254

(OPLS) (30). These methods have been reviewed previously (26; 31) and have255

been cited extensively in the litterature. OSC methods are not reviewed here256

but will be discussed briefly to clarify their relationships with orthogonal pro-257

jections.258

2.6.1. Overview of the OSC methods259

All OSC methods aim at determining scores T containing information or-260

thogonal to y. The correction can be written as an orthogonal projection into261

RN :262

XOSC = (IN −T(T′T)−1T′)X (7)
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The methods differ in the way T is obtained.263

• Wold’s OSC264

X1:0 = X; for step i :

t = first score of a PCA onto X1:i−1

to = (IN − y(y′y)−1y′)t

TPLSR = first scores of a PLSR calculated with (X1:i−1, to)

to,new = TPLSR(T′PLSRTPLSR)−1T′PLSRt0

t = to,new then repeat until convergence of t→ ti

pi = X′1:i−1ti(t
′
iti)
−1

X1:i = (IN − ti(t
′
iti)
−1t′i)X1:i−1

At each loop, the projection of to onto TPLSR means that to,new lies in265

the subspace spanned by the columns of X1:i−1. Thus the ti are orthog-266

onal. After A iterations, they form matrix T and the OSC correction is267

performed according to equation 7.268

• Sjoblom and Wise OSCs269

X1:0 = X; for step i :

t = first score vector of a PCA onto X1:i−1

to = (IN − y(y′y)−1y′)t

wi = X′1:i−1to then wi is normed

t1 = X1:i−1wi

t = t1 then repeat until convergence of t1

TPLSR = first scores of a PLSR calculated with (X1:i−1, t1)

ti = TPLSR(T′PLSRTPLSR)−1T′PLSRt1

pi = X′1:i−1ti(t
′
iti)
−1

X1:i = (IN − ti(t
′
iti)
−1t′i)X1:i−1

This is Sjoblom’s OSC. Wise’ OSC is similar, with an additional step270

consisting of orthogonalizing ti to y (26). By construction each score-271

vector ti lies in the X1:i−1 subspace, so the ti vectors are orthogonal. After272

A iterations, they form matrix T and the OSC correction is performed into273

RN according to equation 7.274

• Andersson’s DO and Goicoechea’s NAP275

9
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Z = (IN − y(y′y)−1y′)X

P = A first loadings of a PCR calculated with Z

T = A first scores of a PCR calculated with Z

DO and NAP are the same method. The correction is be performed into276

RN according to equation 7, but also into RP using P:277

XDO−NAP = X(IP −PP′)

• Fearn’s OSC278

M = IP −X′y(y′XX′y)−1y′X

W = A first eigenvectors of a PCA calculated with MX′X

T = XW

As the ti are orthogonal (28), the correction is performed into RN accord-279

ing to equation 7.280

• Westerhuis’ DOSC281

y1 = X(X′X)+X′y

X1 = (IN − y1(y′1y1)−1y′1)X

T = A first scores of a PCA calculated with X1

The scores of a PCA are orthogonal, so the correction is performed into282

RN according to equation 7.283

• Trygg’s OPLS284

X1:0 = X; for step i :

wPLS ,pPLS = first weight and loading vectors of a PLSR calculated with (X1:i−1,y)

wi = pPLS − (w′PLSpPLS)(w′PLSwPLS)−1wPLS then wi is normed

ti = X1:i−1wi

pi = X′1:i−1ti(t
′
iti)
−1

X1:i = (IN − ti(t
′
iti)
−1t′i)X1:i−1

Each vector ti lies in the column space of X1:i−1. Thus the ti vectors are285

orthogonal and can be gathered into a matrix T for the OPLS correction286

into RN according to equation 7.287
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2.6.2. Properties of the OSC methods288

OSC methods were created to improve inner properties (26), such as: no (or289

nearly no) correlation between the OSC scores ti and the reference values y;290

removal of the largest variability in X; belonging of the ti to the column space;291

and more direct calculation. In order to prevent overfit, just a few dimensions292

are usually removed. The usefulness of OSC has been widely discussed, and293

many authors agree that OSC does not improve accuracy (26; 27; 28; 29; 30; 31).294

Several OSC methods are connected with PLSR. For example, Wold’s OSC is295

derived from PLSR, and OPLS can be obtained from PLSR (32). Often the same296

calibrations obtained after OSC would be obtained without OSC, but the latter297

calibrations contain more PLSR latent variables. Nevertheless OSC improves298

the interpretability of the calibrations by identifying outliers (27) and explaining299

the regression model obtained after OSC, by analyzing the information removed300

by OSC (30; 31).301

OSC models can always be presented as a subtraction: XOSC = X−
∑

tip
′
i302

(31). The calculations of these models are similar to orthogonal projection into303

the individual space RN . It is less obvious to link OSC to orthogonal projections304

into the variable space RP , but it is possible in some instances. For example, DO305

and NAP are Euclidian orthogonal projections into RP , whereas Fearn’s OSC is306

an oblique orthogonal projection into RP , see Appendix A. These mathematical307

considerations are of importance for the embedded or not embedded properties308

of OSCs, and also for their compatibilities with other orthogonal projection309

methods (see below).310

3. Discussion311

Orthogonal projections are common to the main linear pretreatment meth-312

ods. We discuss several of their properties, including the relationship to the313

net analyte signal, the complementarity and the association of different pre-314

treatments, and the correction of additive and multiplicative effects. We also315

propose for practical rules using orthogonal projections.316

3.1. Net analyte signal and pretreatments in the calibration process317

Calibration consists of two steps: an optional pretreatment or preprocessing318

step, and a mandatory calibration step. The aims of pretreatments and linear319

calibrations are linked.320

A linear multivariate calibration extracts the spectral information produced321

by the compound of interest, and uses this information to predict the concen-322

tration of the compound. From a mathematical point of view, it is a function323

from RP to R, represented by a vector b, called the regression or b-coefficients324

vector. Let (X,y) be a calibration dataset, (Xc,yc) be the calibration datset325

after mean centering, and let b and bc be the models obtained from raw or326

centered data. For a spectrum xi from X acquired on sample i, an estimation327

ŷi for the concentration of the compound of interest is given by the following328

equations, depending on the centering option:329
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ŷi = x′ib (no centering)

ŷi = x′i,cbc + y0 (centering)

The intercept y0 is induced by the centering. A good calibration model gives330

a prediction close to the true values of yi, so |yi−ŷi| is minimized under different331

constraints. For that purpose, it is able to extract only the relevant information332

from xi (or xi,c if centered). The most condensed relevant spectral information333

is called the net analyte signal (NAS). Lorber et al (33) introduced the NAS (a334

vector of the same dimension as a spectrum) in multivariate calibration. For335

one component of interest, two definitions were proposed:336

• First definition337

”NAS is the part of the spectrum of the component of interest which, is338

orthogonal to the spectra of the other components” (33; 34)339

• Second definition340

”NAS is the part of the raw signal that is useful for prediction of the341

component of interest” (34)342

Suppose that all of the contributions to the spectra, except the contribution343

of the compound to be predicted, span a subspace ED. Let the column-vectors344

of a matrix P be a basis of ED. Thus the NAS part of a spectrum xi, called345

xi,nas, is obtained as an orthogonal projection of xi to P (35), so that the NAS346

is in the null space of ED:347

xi,nas = (IP −P(P′P)−1P′)xi (8)

The net sensivity vector (NSV) snsv is the NAS for a compound of interest348

whose concentration is one. The vectors snsv and b are collinear and they verify,349

for direct and inverse calibrations (34):350

snsv = b(b′b)−1 (9)

For the same compound of interest, the NAS is strongly dependent on the351

experiment. For instance, glucose presents different NAS, when measured in352

fruit juices or blood. If a new compound whose spectra is close to that of glucose353

is added either to juice or blood, the glucose NAS is immediately modified.354

Thus, the NAS is conceptual rather than actual and is difficult or impossible355

to measure. However, the NAS can be estimated. From equation 9, the best356

calibration models are expected to be the best NAS estimates.357

Equations 8 and 9 also clarify the relationships among orthogonal pretreat-358

ments, NAS and calibrations. The definitions of the NAS and a pretreatment359

based on orthogonal projections are very similar. The differences lie in the in-360

formation represented by the matrices P. For the NAS, P contains the vectors361
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spanning all the spectral contributions to be removed. In general pretreatment362

cases, P contains the vectors spanning only a part of the space containing the363

contributions to be removed. The extent to which pretreatments are able to364

gather the comprehensive information to be removed determines how close cor-365

rected spectra will be to their NAS. And from equation 9, determining regression366

vector b is straightforward. The relationship between the NAS and b, along367

with the calculation of the NAS using Euclidian orthogonal projections, has at368

least two consequences.369

A first consequence is the embedded / not embedded property of pretreat-370

ments. A pretreatment is embedded into the calibration if it is not necessary to371

apply the pretreatment to a new spectrum xi,val before using it for prediction.372

If Euclidian orthogonal projection is applied, e.g. to correct the spectra from373

P, the regression vector b of the subsequent calibration is built in a subspace374

already orthogonal to P: b = P⊥P b. Thus, it is not necessary to apply the same375

pretreatment to xi,val. However this property is not verified for non-Euclidian376

orthogonal projections. For example, OSC methods have different behaviors.377

Fearn’s OSC is not embedded because it is an oblique rather than an Euclidan378

projection. In contrast, the DO and NAP OSCs, which are written as Euclidian379

orthogonal projections, are embedded. No conclusions can be drawn for the380

other OSC methods because they have not yet been rewritten as projections381

into RP .382

A second consequence is an identification of the useful and detrimental spaces383

within the variables space RP (Fig.2). The useful space EU contains informa-384

tions for the prediction of the compound of interest. Its dimension is one ac-385

cording to the first definition, but can be greater than one according to the386

second definition. The subspace related to other compounds or chemical influ-387

ences is detrimental (ED) if it shares common information with the useful space.388

The information from EU which is not shared by ED is the NAS, i.e. the NAS389

is orthogonal to ED. All the information from RP which does not belong to390

EU or ED is unuseful information because it is already orthogonal to EU . Pre-391

treatments have different strategies to remove ED. OSC methods rely on the392

information provided by y. However, as PLSR uses the same approach, there393

is no added value, at least for prediction. Nevertheless OSCs calculated using394

other data (e.g. pure spectra or experimental design) and then applied to the395

calibration data X can increase the accuracy of measurement (36; 37) because396

the two sets of spectral informations are complementary. On the other hand,397

the non OSC orthogonal projections (OSP, IIR, EPO, TOP, DOP, EROS, de-398

trend, CPSA, DWT-WPT) rely on additional information, and various sources399

of information can be withdrawn. The disadvantages of the methods are: (1)400

except for DWT-WPT, a prior knowledge is necessary, such as a model, pure401

spectra or information that can be used to build an experimental design; and402

(2) non OSC orthogonal pretreatments may remove information from the NAS403

subspace, contributing to a drop in the accuracy of prediction. Therefore, choos-404

ing the correct pretreatments and tuning and applying them properly, are very405

important for optimizing their predictive value.406
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3.2. Pretreatment complementarity407

A spectrum can be viewed as the sum of signals of different frequencies: low,408

medium, and high (38).409

Baseline shifts correspond to low frequencies. They can be modeled and410

removed either by detrend and related methods or by data compression methods411

such as WPT. Detrend is used more often than WPT. One reason for this may412

be that the polynomials used are based on models of low rank (e.g. 2). These413

models may already fit well with the observed deviations of the baseline, and414

thus detrend is more parsimonious.415

Noise corresponds to high frequencies, usually removed using the SG algo-416

rithm. However WPT also removes noise, smooths the spectra and is more417

compatible with the other orthogonal projections.418

Most of the relevant spectral information corresponds to medium frequencies,419

such as the information from the component of interest and the information to420

be removed. Orthogonal projections perform best in these situations.421

Therefore different pretreatments should be selected according to their com-422

plementarity; that is, their ability to represent the whole space to be removed423

(Fig. 2, hatched part). Pretreatment choice is guided by the data to be pro-424

cessed and also by the available information. However, disrupting information425

can be expected in all frequency ranges. Thus, a relevant association of several426

methods, such as detrend + EPO + WPT, would respectively be able to remove427

the low, medium and high frequency spectral perturbations. How can several428

projection methods be used to produce the best results?429

3.3. Association of pretreatments430

Using successively two or more orthogonal projections is not equivalent to431

performing a single orthogonal projection containing all the information to be432

removed. An example is given in Fig. 1. Suppose that the spectral information433

from water and ethanol are to be removed from the spectrum of a sample that434

is half ethanol and half water. The expected result is the null vector. It is435

obtained if the orthogonal projection to ethanol and water is done in one step,436

but not if two orthogonal projections, one for ethanol and one for water, are done437

separately. Moreover, successive orthogonal projections are not commutative,438

so different orders lead to different results.439

Let P and Q be two matrices whose column-vectors span the subspaces EP440

and EQ. Let PP and PQ be the orthogonal projectors for EP and EQ, respectively.441

The combined orthogonal projector for the EP and EQ subspaces is called PP+Q.442

According to Piziak et al (39):443

PP+Q = (PP + PQ)(PP + PQ)+

The orthogonal projector to EP and EQ is P⊥P+Q defined as:444

P⊥P+Q = IP − (PP + PQ)(PP + PQ)+ (10)
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If EP and EQ are orthogonal, equation 10 is simplified:445

P⊥P+Q = IP − PP − PQ = (IP − PP )(IP − PQ) = P⊥P P⊥Q

However, in the other cases where EP and EQ are not orthogonal, P⊥P+Q 6=446

P⊥P P⊥Q . So, if several Euclidian orthogonal pretreatments must be applied, it447

is strongly recommended to merge their respective P matrices into a matrix R448

and then performing a single orthogonal projection to R. For example, suppose449

that spectra are to be corrected from scattering and from chemical components450

whose pure spectra are known. The best choice is to merge the Λ2 to the451

pure spectra, yielding R, and to orthogonalize to R. This is also the option452

recommended by Brown (15). In the case of successive orthogonal projections,453

calculations will be erroneous if the bases of the different subspaces are not454

orthogonal.455

3.4. Limits of orthogonal projections456

Orthogonal projections have at least two limits: the number of dimensions457

of the spectra to be processed and the correction of multiplicative effects.458

3.4.1. Reduction of dimensions and number of variables459

Orthogonal projection to a subspace of dimension A retains the number of460

variables but reduces the mathematical dimension of the spectra by A, which461

cannot exceed the dimension P of the spectra. This is not a problem if spectra462

contain hundreds of variables, because A remains lower than P . However, if463

the spectra contain only a few variables (e.g. between 10 and 20), then only a464

few dimensions can be removed by orthogonal projections, and often orthogonal465

projection cannot be applied.466

3.4.2. Additive and multiplicative effects467

Orthogonal projection methods correct additive effects according to equation468

1. Suppose that the spectral perturbations also induce a multiplicative effect469

αi, such that Eq. 1 can be written:470

xi,obs = αi(xi + hi) = αixi + αihi (11)

An orthogonal projector P⊥R can be obtained such that:471

xi,corr = xi,obsP⊥R = αixiP⊥R (12)

Orthogonal projections are able to remove the term αihi, but are not able to472

correct the value αi associated with xi; they cannot handle multiplicative effects.473

Thus, methods such as standard normal variate (SNV) proposed by Barnes (11),474

or (extended) multiplicative signal correction proposed by Martens (40; 41) do475

not use orthogonal projections to correct multiplicative effects.476
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4. Conclusion477

All the pretreatments presented here are based on orthogonal projections.478

Some pretreatments that also use the principle of orthogonal projection were479

not adressed because they do not fulfill all the conditions. The MSC and EMSC480

methods perform a corrections using subtraction and division. SG is a piecewise481

orthogonal projection. Even variable selection is an orthogonal projection into482

the variables space, but in practice, variables are dropped by reshaping the483

spectra rather than by setting them to 0. Thus, the orthogonal projection484

principle, which is directly associated with the least squares approximation, is485

used extensively and its prevalence is a confirmation of its power. Projections486

are performed usually in a Euclidian space but at least one OSC is an oblique487

projection performed in a non-Euclidian space.488

The information used by calibrations is actually an estimation of the NAS.489

A very important issue for pretreatments is identifying the detrimental infor-490

mation to be removed by orthogonal projection. Two opposing strategies are491

used: supervised and unsupervised. On one hand, OSC methods are supervised,492

the information to be removed is chosen orthogonal to the reference values y.493

These methods obey the definition of the NAS, and thus OSC methods should494

perform very well. However, due to OSC’s redundancy with PLSR, which is495

based on the same principles its accuracy has not improved substantially. On496

the other hand, information removed by unsupervised orthogonal projection497

methods is chosen based on prior knowledge of the experimental conditions and498

the analyzed samples. All the available information, pure spectra, spectra from499

an experimental design, and models (such as polynomials), should be consid-500

ered to correct the detrimental information as comprehensively as possible. It is501

important to avoid removing any information about the compound of interest,502

which would lead to worse calibration models. Thus, proper use of orthogonal503

projections requires being very careful about the quality and the completeness504

of the removed information.505

Orthogonal projections have practical properties. Information from different506

origins should be merged in order to process only one orthogonal projection. Eu-507

clidian orthogonal projections are embedded; they are applied only once when508

building the calibration model. There is no need to apply them to new spec-509

tra. Orthogonal projections also have limits. They cannot be applied in good510

conditions for spectra containing just a few variables, and they do not correct511

multiplicative effects. Nevertheless, orthogonal projections have proven to be512

valuable tools when building the calibration models of many applications.513
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X matrix N × P , N samples and P spectral variables
y vector N × 1, the reference values

X1:i projection of X orthogonaly to { t1, t2, ...ti}
T matrix N ×A, scores for X
P matrix P ×A, loadings for X
W matrix P ×A, weights for X

Σ Moore-Penrose pseudo-inverse of (X′X); Σ = (X′X)
+

IN , IP identity matrices for RN and RP spaces
PP Euclidian orthogonal projector P × P onto P; PP = P(P′P)−1P′

P⊥P Euclidian projector P × P orthogonaly to P; P⊥P = I− PP

ti ieme column vector of T
pi ieme column vector of P
wi ieme column vector of W
EX subspace of RP spanned by the line vectors of X
EU , ED useful / detrimental subspaces of RP

Table 1: Main notations
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BB best basis
CPSA constrained principal spectra analysis
DFT discrete Fourier transform
DO direct orthogonalization

DOP dynamic orthogonal projection
DOSC direct orthogonal signal correction
DWT discrete wavelet transform
EMSC extended multiplicative signal correction
EPO external parameter orthogonalization

EROS error removal by orthogonal subtraction
IIR independent interference reduction

MSC multiplicative signal correction
MDL minimum description length
NAP net analyte preprocessing
NAS net analyte signal
NSV net sensitivity vector

OPLS orthogonal projection to latent structures
OSC orthogonal signal correction
OSP orthogonal subspace projection
PCA principal component analysis

PCDA principal component discriminant analysis
PLSR projection to latent structures regression

RMSEP root mean square error of prediction
SG Savitsky-Golay

SNV standard normal variate
SVD singular value decomposition
TOP transfer by orthogonal projection
WPT wavelet packet transform

Table 2: Glossary
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Figure 1: Water and ethanol spectra, and their orthogonal projection. (1) From top to
bottom, spectra of water, water+ethanol, ethanol. (2) Projection of the (water+ethanol)
spectrum orthogonally to: ethanol then water (thick line), water then ethanol (dashed line),
and a matrix containing water and ethanol spectra (horizontal light line)

Figure 2: Different subspaces of RP . The useful subspace EU ; the detrimental subspace ED;
the NAS; the common part of EU and ED to be removed (hatched); and the information
represented by three orthogonal pretreatments (grey) are depicted in the figure. Information
inside of and outside of each subspace are orthogonal
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Appendix A. Writing Fearn’s OSC in the form of an orthogonal pro-633

jection into RP
634

Two equations are extracted from Fearn’s text:635

ti = Xwi (A.1)

pi = X′ti(t
′
iti)
−1 (A.2)

Let Σ be (X′X)+, the Moore-Penrose pseudo-inverse of (X′X). Our first636

goal is to write wi using pi and Σ. The calculation of the product p′iΣpj is637

performed using equations A.1 and A.2 :638

p′iΣpj = (t′iti)
−1w′iX

′XΣX′Xwj(t
′
jtj)

−1

= (t′iti)
−1w′iX

′Xwj(t
′
jtj)

−1

= (t′iti)
−1t′itj(t

′
jtj)

−1

If i 6= j, because of the orthogonality of the ti :639

p′iΣpi = (t′iti)
−1 (A.3)

p′iΣpj = 0 (A.4)

After multiplying on the left by ΣX′, a different combination of equations640

A.1 and A.2, completed with equation A.3, yields:641

ΣX′Xwi = ΣX′ti = Σpi(t
′
iti) = Σpi(p

′
iΣpi)

−1 (A.5)

The left term is the projection of wi onto the space spanned by X′X, which642

is also the space spanned by the lines of X (39), called EX . On the other hand,643

the wi are the eigenvectors of the matrix MX′X, where M is the projector644

orthogonal to X′y, which belongs to EX . Thus, wi also belongs to EX , it is not645

modified after projection onto X′X and equation A.5 is simplified:646

wi = Σpi(p
′
iΣpi)

−1 (A.6)
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The pi are Σ- orthogonal according to equation A.4, and therefore (P′ΣP)647

is a diagonal matrix of full rank. Thus, equation A.6 can be written in a matrix648

form:649

W = ΣP(P′ΣP)−1

The OSC correction is:650

XOSC = X−X
A∑
i=1

wip
′
i

= X−XWP′

= X(IP −ΣP(P′ΣP)−1P′)

To conclude, Fearn’s OSC can be also expressed into RP as an oblique (not651

Euclidian) projection to the space spanned by the column-vectors of P. If X652

has been centered, Σ is a metric associated to a Mahalanobis distance (42).653
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