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Abstract

We study a new variant of the pattern matching problem called cross-
document pattern matching, which is the problem of indexing a collection of
documents to support an efficient search for a pattern in a selected docu-
ment, where the pattern itself is a substring of another document. Several
variants of this problem are considered, and efficient linear space solutions
are proposed with query time bounds that either do not depend at all on
the pattern size or depend on it in a very limited way (doubly logarithmic).
As a side result, we propose an improved solution to the weighted ancestor
problem.
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ancestor problem.

1. Introduction

In this paper we study the following variant of the pattern matching
problem that we call cross-document pattern matching: given a collection
of strings (documents) stored in a “database”, we want to be able to effi-
ciently search for a pattern in a given document, where the pattern itself is
a substring of another document. More formally, assuming we have a set of
documents T1, T2, . . . , Tm, we want to answer queries about the occurrences
of a substring Tk[i..j] in a document T`.

This scenario may occur in various situations when we have to search for
a pattern in a text stored in a database, and the pattern is itself drawn from
a string from the same database. In bioinformatics, for example, a typical
project deals with a selection of genomic sequences, such as a family of
genomes of evolutionary related species. A common repetitive task consists
then in looking for genomic elements belonging to one of the sequences in
some other sequences. These elements may correspond to genes, exons,
mobile elements of any kind, regulatory patterns, etc., and their location
(i.e. start and end positions) in the sequence of origin is usually known
from a genome annotation provided by a sequence data repository (such as
GenBank or any other). A similar scenario may occur in other application
fields, such as the bibliographic search for example.

In this paper, we study different versions of the cross-document pattern
matching problem. First, we distinguish between counting and reporting
queries, asking respectively about the number of occurrences of Tk[i..j] in T`
or about the occurrences themselves. The two query types lead to slightly
different solutions. In particular, the counting problem uses the weighted
ancestor problem [9, 20, 2] to which we propose a new solution with an
improved complexity bound.

We further consider different variants of the two problems. The first
one is the dynamic variant where new documents can be added to or deleted
from the database. In another variant, called document counting and report-
ing, we only need to respectively count or report the documents containing
the pattern, rather than counting or reporting pattern occurrences within a
given document. This version is very close to the document retrieval prob-
lem previously studied (see [22] and later papers referring to it), with the
difference that in our case the pattern is itself selected from the documents
stored in the database. Finally, we also consider succinct data structures
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for the above problems, where we keep the underlying index data structure
in compressed form. In particular, we propose a generic solution to the
weighted ancestor problem on a compressed suffix tree, whose running time
is expressed in terms of time bounds for suffix tree operations. This generic
solution is then applied to obtain a compact-space solution of the document
reporting problem.

Let m be the number of stored strings and n the total length of all
strings. Our results are summarized below.

(I) For the counting problem, we propose a solution with query time
O(t+ log logm), where t = min(

√
log occ/ log log occ, log log |P |), P =

Tk[i..j] is the searched substring and occ is the number of its occur-
rences in T`.

(II) For the reporting problem, our solution outputs all the occurrences in
time O(log logm+ occ).

(III) In the dynamic case, when documents can be dynamically added or
deleted, we are able to answer counting queries in time O(log log n)
and reporting queries in time O(log log n+ occ), whereas the updates
take O(log log n + log log σ) expected time per character, where σ is
the size of the alphabet.

(IV) For the document counting and document reporting problems, our
algorithms run in time O(log n) and O(t+ ndocs) respectively, where
t is as above and ndocs is the number of reported documents.

(V) Finally, we also present succinct data structures that support count-
ing, reporting, and document reporting queries in the cross-document
scenario (see Theorems 6 and 7 in Section 4.3).

For problems (I)-(IV), the involved data structures occupy O(n) space under
the RAM model. Interestingly, in the cross-document scenario, the query
times either do not depend at all on the pattern length or depend on it in a
very limited (doubly logarithmic) way.

The paper is organized as follows. In Section 2.1, we briefly introduce
main data structures used in the paper and then, in Section 2.2, describe
an improved solution to the weighted ancestor problem that we use in the
following sections. Section 3 is devoted to counting and reporting versions
of the basic cross-document pattern matching problem. In Section 4, we
study different variants of the basic problem. First, in Section 4.1, we fo-
cus on the dynamic version, when documents can be dynamically added or
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deleted. Then, in Section 4.2, we turn to the document counting and re-
porting versions, when we only seek documents containing the pattern and
not occurrences themselves. Finally, in Section 4.3 we propose solutions to
the basic problems using succinct data structures.

Throughout the paper positions in strings are numbered from 1. No-
tation T [i..j] stands for the substrings T [i]T [i + 1] . . . T [j] of T , and T [i..]
denotes the suffix of T starting at position i.

2. Preliminaries

2.1. Basic Data Structures

We assume a basic knowledge of suffix trees and suffix arrays.
Besides using suffix trees for individual strings Ti, we will also be using

the generalized suffix tree for a set of strings T1, T2, . . . , Tm that can be viewed
as the suffix tree for the string T1$1T2$2 . . . Tm$m. A leaf in the suffix tree
for Ti is associated with a distinct suffix of Ti, and a leaf in the generalized
suffix tree is associated with a suffix of some document Ti together with
the index i of this document. We assume that for each node v of a suffix
tree, the number nv of leaves in the subtree rooted at v, as well as its string
depth d(v) can be recovered in constant time. Recall that the string depth
d(v) is the total length of strings labeling the edges along the path from the
root to v.

We will also use suffix arrays for individual documents as well as the
generalized suffix array for strings T1, T2, . . . , Tm. Each entry of the suffix
array for Ti is associated with a distinct suffix of Ti and each entry of the
generalized suffix array for T1, T2, . . . , Tm is associated with a suffix of some
document Ti and the index i of the document the suffix comes from. We store
these document indices in a separate array D, called document array, such
thatD[i] = k if the i-th entry of the generalized suffix array for T1, T2, . . . , Tm
corresponds to a suffix coming from Tk. We also augment the document
array D with a linear space data structure that answers queries rank(k, i)
(number of entries storing k before position i in D) and select(k, i) (i-th
entry from the left storing k). Using the result of [15], we can support such
rank and select queries in O(log logm) and O(1) time respectively.

For each considered suffix array, we assume available, when needed, two
auxiliary arrays: an inverse suffix array and another array, called the LCP-
array, of longest common prefixes between each suffix and the preceding one
in the lexicographic order. Moreover, we maintain a data structure that
answers range minima queries (RMQ) on the LCP-array: for any 1 ≤ r1 ≤
r2 ≤ n, find the minimum among LCP [r1], LCP [r1+1], . . . , LCP [r2]. There
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exists a linear space RMQ data structure that supports queries in constant
time, see e.g., [4]. An RMQ query on the LCP-array computes the length
of the longest common prefix of the suffixes of ranks r1 and r2, denoted
LCP (r1, r2).

2.2. Weighted Ancestor Problem

The weighted ancestor problem, defined in [9], is a generalization of the
level ancestor problem [6, 5] for the case when tree edges are assigned positive
weights. In this section, we present an improved solution to this problem
that will be used later in the paper.

Consider a rooted tree T whose edges are assigned positive integer
weights. For a node w, let weight(w) denote the total weight of the edges
on the path from the root to w; depth(w) denotes the usual tree depth of w.

A weighted ancestor query wa(v, q) asks, given a node v and a positive
integer q, for the ancestor w of v of minimal depth such that weight(w) ≥ q
(wa(v, q) is undefined if there is no such node w).

Three previously known solutions [9, 20, 2] for the weighted ancestor
problem achieve O(log logW ) query time using linear space, where W is the
total weight of all tree edges. Our data structure also uses O(n) space, but
achieves a faster query time in many special cases. We prove the following
result.

Theorem 1. There exists an O(n)-space data structure that answers a
weighted ancestor query wa(v, q) in O(min(

√
log g/ log log g, log log q)) time,

where g = min(depth(wa(v, q)), depth(v)− depth(wa(v, q))).

If every internal node is a branching node, we obtain the following corol-
lary.

Corollary 1. Suppose that every internal node in T has at least two chil-
dren. There exists an O(n)-space data structure that finds u = wa(v, q) in
O(min(

√
log nu/ log lognu, log log q)) time, where nu is the number of leaves

in the subtree of u.

Our approach combines the heavy path decomposition technique of [2]
with efficient data structures for finger searching in a set of integers.

Predecessor Queries. We will need the following result about a data struc-
ture that supports predecessor and successor queries. The predecessor of an
integer q in a set S is pred(q, S) = max{ e ∈ S | e ≤ q }. The successor of q
in S is succ(q, S) = min{ e ∈ S | e ≥ q }.
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Lemma 1. Let S be a set of n positive integers drawn from the universe
of size U . Using an O(n)-space data structure, we can find pred(q, S) and
succ(q, S) for any q in O(log log q) time.

Proof. The set S is divided into consecutive groups Si, i = 1, 2, . . . , dn/de,
where d = logU . Each Si, except of the last one, contains d elements.
For any e ∈ Si and e′ ∈ Sj iff i < j then e < e′. All elements of Si,
1 ≤ i ≤ dn/ logUe, are stored in a data structure that supports predecessor
and successor queries in O(1) time [12].

A set S′ contains the smallest element from each Si. We store all elements
of S′ in a predecessor data structure D′ described in [7]. By Theorem 3 from
[7], there exists a data structure that uses O(m logU) space and answers
predecessor queries on a set of m elements in O(log log ∆) time, where ∆ ≤ q
is the distance between q and pred(q, S). Hence, D′ uses O(n) space and
enables us to find pred(q, S′) for any q in O(log log q) time.

To find pred(q, S), we identify e′ = pred(q, S′). Let St be the group
that contains e′. Obviously pred(q, St) is the predecessor of q in S. We find
pred(q, S′) in O(log log q) time; we find pred(q, St) in O(1) time. Hence, a
query pred(q, S) is answered in O(log log q) time.

If e = pred(q, S) is known, then e′ = succ(q, S) is the element that
follows e in the sorted list of elements. Hence, succ(q, S) can also be found
in O(log log q) time.

Heavy Path Decomposition. A path π in T is heavy if every node u on π
has at most twice as many nodes in its subtree as its child v on π. A tree
T can be decomposed into paths using the following procedure: we find the
longest heavy path πr that starts at the root of T and remove all edges of
πr from T . All remaining vertices of T belong to a forest; we recursively
repeat the same procedure for every tree of that forest.

We can represent the decomposition into heavy paths using a tree T.
Each node vj in T corresponds to a heavy path πj in T . A node vj is a
child of a node vi in T if the head of πj (i.e., the highest node in πj) is a
child of some node u ∈ πi. In this case, some node of πi has at least twice
as many descendants as each node in πj ; hence, T has height O(log n).

O(n log n)-Space Solution. Let pj denote a root-to-leaf path in T. For a
node v in T let weight(v) denote the weight of the head of π, where π is
the heavy path represented by v in T. We store a data structure D(pj)
that contains the values of weight(v) for all nodes v ∈ pj . D(pj) contains
O(log n) elements; hence, we can find the highest node v ∈ pj such that
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weight(v) ≥ q in O(1) time. This can be achieved by storing the weights of
all nodes from pj in a data structure [12].

For every heavy path π in T , we store the data structure E(π) from [3]
that contains the weights of all nodes u ∈ π and supports the follow-
ing queries: for an integer q, find the lightest node u ∈ π such that
weight(u) ≥ q. Using Theorem 1.5 in [3], we can find such a node
u ∈ π in O(

√
log n′/ log logn′) time where n′ = min(nh, nl), nh =

|{ v ∈ π |weight(v) > weight(u) }|, and nl = |{ v ∈ π |weight(v) <
weight(u) }|. Moreover, by Lemma 1, we can find the node u in
O(log log q) time. Thus E(π) can be modified to support queries in
O(min(

√
log n′/ log logn′, log log q)) time.

For each node u ∈ T we store a pointer to the heavy path π that contains
u and to the corresponding node v ∈ T.

A query wa(v, q) can be answered as follows. Let v denote the node in
T that corresponds to the heavy path containing v. Let pj be an arbitrary
root-to-leaf path in T that also contains v. Using D(pj) we can find the
highest node u ∈ pj , such that weight(u) ≥ q in O(1) time. Let πt denote
the heavy path in T that corresponds to the parent of u, and πs denote
the path that corresponds to u. If the weighted ancestor wa(v, q) is not
the head of πs, then wa(v, q) belongs to the path πt. Using E(πt), we
can find u = wa(v, q) in O(min(

√
log n′/ log log n′, log log q)) time where

n′ = min(nh, nl), nh = |{ v ∈ πt |weight(v) > weight(u) }|, and nl = |{ v ∈
πt |weight(v) < weight(u) }|.

All data structures E(πi) use linear space. Since there are O(n) leaves
in T and each path pi contains O(log n) nodes, all D(pi) use O(n log n)
space.

Lemma 2. There exists an O(n log n) space data structure that finds the
weighted ancestor u in O(min(

√
log n′/ log log n′, log log q)) time.

O(n)-Space Solution. We can reduce the space fromO(n log n) toO(n) using
a micro-macro tree decomposition. Let T0 be a tree induced by the nodes of
T that have at least log n/8 descendants. The tree T0 has at mostO(n/ log n)
leaves. We construct the data structure described above for T0; since T0
has O(n/ log n) leaves, its heavy path tree T0 also has O(n/ log n) leaves.
Therefore all structures D(pj) use O(n) words of space. All E(πi) also use
O(n) words of space. If we remove all nodes of T0 from T , the remaining
forest F consists ofO(n) nodes. Every tree Ti, i ≥ 1, in F consists ofO(log n)
nodes. Nodes of Ti are stored in a data structure that uses linear space and
answers weighted ancestor queries in O(1) time. This data structure will be
described later in this section.
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Suppose that a weighted ancestor wa(v, q) should be found. If v ∈ T0, we
answer the query using the data structure for T0. If v belongs to some Ti for
i ≥ 1, we check the weight wr of root(Ti). If wr ≤ q, we search for wa(v, q)
in Ti. Otherwise we identify the parent v1 of root(Ti) and find wa(v1, q) in
T0. If wa(v1, q) in T0 is undefined, then wa(v, q) = root(Ti).

Data Structure for a Small Tree. It remains to describe the data structure
for a tree Ti, i ≥ 1. Since Ti contains a small number of nodes, we can
answer weighted ancestor queries on Ti using a look-up table V . V contains
information about any tree with up to log n/8 nodes, such that node weights
are positive integers bounded by log n/8. For any such tree T̃ , for any node
v of T̃ , and for any integer q ∈ [1, log n/8], we store the pointer to wa(v, q)
in T̃ . There are O(2logn/4) different trees T̃ (see e.g., [5] for a simple proof);
for any T̃ , we can assign weights to nodes in less than (log n/8)! ways. For
any weighted tree T̃ there are at most (log n)2/64 different pairs v, q. Hence,
the table V contains O(2logn/4(log n)2(log n/8)!) = o(n) entries. We need
only one look-up table V for all small trees Ti.

We can now answer a weighted ancestor query on Ti using reduction to
rank space [13]. The rank of a node u in a tree T is defined as rank(u, T ) =
|{ v ∈ T |weight(v) ≤ weight(u) }|. The successor of an integer q in a tree T
is the lightest node u ∈ T such that weight(u) ≥ q. The rank rank(q, T ) of
an integer q is defined as the rank of its successor. Let rank(T ) denote the
tree T in which the weight of every node is replaced with its rank. The weight
of a node u ∈ T is not smaller than q if an only if rank(u, T ) ≥ rank(q, T ).
Therefore we can find wa(v, q) in a small tree Ti, i ≥ 1, as follows. For
every Ti we store a pointer to T̃i = rank(Ti). Given a query wa(v, q), we
find rank(q, Ti) in O(1) time using a q-heap [12]. Let v′ be the node in T̃i
that corresponds to the node v. We find u′ = wa(v′, rank(q, Ti)) in T̃i using
the table V . Then the node u in Ti that corresponds to u′ is the weighted
ancestor of v.

3. Cross-document Pattern Counting and Reporting

3.1. Counting

In this section we consider the problem of counting occurrences of a
pattern Tk[i..j] in a document T`.

Our data structure consists of the generalized suffix array GSA for doc-
uments T1, . . . , Tm and individual suffix trees Ti for every document Ti.
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For every suffix tree T` we store a data structure of Theorem 1 support-
ing weighted ancestor queries on T`.

Our counting algorithm consists of two steps:

1. Using GSA and the corresponding document array D, we identify a
position p of T` at which the query pattern Tk[i..j] occurs, or determine
that no such p exists,

2. Find the locus u of Tk[i..j] in the suffix tree T` using a weighted an-
cestor query and retrieve the number of leaves in the subtree rooted
at u.

Let r be the position of Tk[i..] in GSA. We find indexes r1 =
select(`, rank(r, `)) and r2 = select(`, rank(r, `) + 1) in O(log logm) time
(see Section 2.1). GSA[r1] (resp. GSA[r2]) is the closest suffix from docu-
ment T` that precedes (resp. follows) Tk[i..] in the lexicographic order of suf-
fixes. Observe now that Tk[i..j] occurs in T` if and only if either LCP (r1, r)
or LCP (r, r2) (or both) is no less than j − i + 1. If this holds, then the
starting position p of GSA[r1] (respectively, starting position of GSA[r2]) is
the position of Tk[i..j] in T`. Once such a position p is found, we jump to
the leaf v of T` that contains the suffix T`[p..].

The weighted ancestor u = wa(v, (j − i + 1)) is the locus of Tk[i..j] in
T`. This is because T`[p..p+ j − i] = Tk[i..j]. By Theorem 1, we can find u
in O(log log(j − i+ 1)) time.

Summing up, we obtain the following theorem.

Theorem 2. For any 1 ≤ k, ` ≤ m and 1 ≤ i ≤ j ≤ |Tk|, we can count
the number of occurrences of Tk[i..j] in T` in O(t + log logm) time, where
t = min(

√
log occ/ log log occ, log log(j − i + 1)) and occ is the number of

occurrences. The underlying indexing structure takes O(n) space and can be
constructed in O(n) time.

3.2. Reporting

A reporting query asks for all occurrences of a substring Tk[i..j] in T`.
To support reporting queries, we use the same two-step procedure as

in Section 3.1, but make a slight change in the data structures: at Step 2,
instead of using individual suffix trees for each of the documents, we use
suffix arrays. The rest of the data structures is unchanged.

We first find an occurrence of Tk[i..j] in T` (if there is one) using Step 1
of Section 3.1. Let p be the position of this occurrence in T`. We then jump
to the corresponding entry r of the suffix array SA` for the document T`.
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Let LCP` be the LCP-array of SA`. Starting with entry r, we visit
adjacent entries t of SA` moving both to the left and to the right as long
as LCP`[t] ≥ j − i+ 1. While this holds, we report SA`[t] as an occurrence
of Tk[i..j]. Note that the length of the longest common prefix of SA`[t] and
SA`[p] is at least j − i + 1, as it is equal to the minimal value of LCP`[s],
where s is between t and p. Hence, SA`[t] starts with Tk[i..j], and SA`[t] is
indeed an occurrence of Tk[i..j].

No occurrence will be missed by the algorithm: if SA`[t] is an occurrence
of Tk[i..j], then the length of the longest common prefix of SA`[t] and SA`[p]
is at least |Tk[i..j]| = j − i + 1 and therefore LCP`[s] ≥ j − i + 1 for any s
between t and p. As a result, we obtain the following theorem.

Theorem 3. All the occurrences of Tk[i..j] in T` can be reported in
O(log logm + occ) time, where occ is the number of occurrences. The un-
derlying indexing structure takes O(n) space and can be constructed in O(n)
time.

4. Variants of the Problem

4.1. Dynamic Counting and Reporting

In this section we focus on a dynamic version of counting and reporting
problems, where dynamic operations are either addition or deletion of a
document to the database. We assume that the total length of documents
in the database is equal to n.

Recall that in the static case, counting occurrences of Tk[i..j] in T` is
done through the following two steps (Section 3.1): compute position p of
some occurrence of Tk[i..j] in T`, and find the locus of T`[p..p+ j − i] in the
suffix tree of T`.

For reporting queries (Section 3.2), Step 1 is unchanged, while Step 2
uses an individual suffix array for T`.

In the dynamic framework, we follow the same general two-step scenario.
Note first that since Step 2, for both counting and reporting, uses data
structures for individual documents only, it trivially applies to the dynamic
case without changes. However, Step 1 requires serious modifications that
we describe below.

Data Structures. Let L be a dynamic list of the suffixes of T1, T2, . . . , Tm in
the lexicographic order. We will maintain the data structure for Predecessor
search on Dynamic Subsets of an Ordered Dynamic List problem (POLP
for short) of [18] on L. This data structure supports the following variant
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of predecessor queries in O(log log n) time: let P1, . . . , Pm denote dynamic
subsets of a list L; for any element e of L and for any i, 1 ≤ i ≤ m, find
the predecessor of e in Pi. In our setting, a subset Pk, 1 ≤ k ≤ m, contains
suffixes of document Tk.

We will also maintain the data structure of [11] (for a full version see [1])
on the suffixes of T1, T2, . . . , Tm. This data structure allows us to compute
the longest common prefix of any two suffixes in O(1) time.

Queries. To identify an occurrence position of Tk[i..j] in T`, we have to
examine the two suffixes of T` closest to Tk[i..] in L, respectively from right
and from left. These suffixes correspond to the predecessor and the successor
of Tk[i..] in subset P` and can be found in O(log log n) time by two queries
to the POLP data structure.

We then check if at least one of these two suffixes corresponds to an
occurrence of Tk[i..j] in T`. Similarly to Section 3, it is sufficient to compute
the longest common prefix between each of these two suffixes and Tk[i..],
and compare these values with (j − i+ 1), which can be done in O(1) time
using the data structure of [11].

The query time bounds are summarized in the following lemma.

Lemma 3. Using the above data structures, counting and reporting all oc-
currences of Tk[i..j] in T` can be done respectively in time O(log log n) and
time O(log log n+ occ), where occ is the number of reported occurrences.

Updates. We now explain how the data structures are updated. Suppose
that we add a new document T . First we construct individual data structures
for T in O(|T |) time. Suffixes of T can be added to the POLP data structure
and the data structure [11] in O(log log n+log log σ) expected time per suffix
as described in [18].

Suppose now that we want to delete a document T . We start by deleting
all individual data structures for T in O(1) time per character. Then we have
to update the POLP data structure and the data structure [11]. Deletion of
a suffix from the POLP data structure takes O(log log n) expected time 4.
To delete a suffix from the data structure of [11] one needs O(1) time.

The following theorem summarizes the results of this section.

4In the paper of Kopelowitz [18], only insertions into the POLP data structure are
described. However, it is possible to modify this result, so that deletions are supported as
well – see details at the full version in [19].
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Theorem 4. In the case when documents can be added or deleted dy-
namically, the number of occurrences of Tk[i..j] in T` can be computed
in time O(log log n) and reporting these occurrences can be done in time
O(log log n + occ), where occ is their number and n is the total length
of the documents in the database. The underlying data structure occu-
pies O(n) space and addition or deletion of a new document T takes
O(|T | · (log log n+ log log σ)) expected time.

4.2. Document Counting and Reporting

Consider a static collection of documents T1, . . . , Tm. In this section
we focus on document reporting and counting queries: report or count the
documents which contain at least one occurrence of Tk[i..j], for some 1 ≤
k ≤ m and i ≤ j.

For both counting and reporting, we use the generalized suffix tree, the
generalized suffix array and the document array D for T1, T2, . . . , Tm. We
first retrieve the leaf of the generalized suffix tree labeled by Tk[i..] and
compute its highest ancestor u of string depth at least j − i + 1, using the
weighted ancestor technique of Section 2.2. The suffixes of T1, T2, . . . , Tm
starting with Tk[i..j] (i.e. occurrences of Tk[i..j]) correspond then to the
leaves of the subtree rooted at u, and vice versa. As shown in Section 3.1, this
step takes O(t) time, where t = min(

√
log occ/ log log occ, log log(j − i+ 1))

and occ is the number of occurrences of Tk[i..j] (this time in all documents).
Once u has been computed, we retrieve the interval [left(u)..right(u)]

of ranks of all the leaves under interest. We are then left with the problem
of counting/reporting distinct values in D[left(u)..right(u)]. This problem
is exactly the same as the color counting/ color reporting problem that has
been studied extensively (see e.g., [14] and references therein).

For color reporting queries, we can use the solution of [22] based on
an O(n)-space data structure for RMQ, applied to (a transform of) the
document array D. The pre-processing time is O(n). Each document is
then reported in O(1) time, i.e. all relevant documents are reported in
O(ndocs) time, where ndocs is their number. The whole reporting query
then takes time O(t+ ndocs) for t defined above.

For counting, we use the solution described in [8]. The data structure
requires O(n) space and a color counting query takes O(log n) time. The
following theorem presents a summary.

Theorem 5. We can store a collection of documents T1, . . . , Tm in a linear
space data structure, so that for any pattern P = Tk[i..j] all documents that
contain P can be reported and counted in O(t + ndocs) and O(log n) time
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respectively. Here t = min(
√

log occ/ log log occ, log log |P |), ndocs is the
number of documents that contain P and occ is the number of occurrences
of P in all documents.

4.3. Compact Counting, Reporting and Document Reporting

In this section, we show how our reporting and counting problems can
be solved on succinct data structures [23].

Reporting and Counting. Our compact solution is based on compressed suf-
fix arrays proposed by Grossi and Vitter [17]. A compressed suffix array for
a text T uses |CSA| bits of space and enables us to retrieve the position
of the suffix of rank r, the rank of a suffix T [i..], and the character T [i] in
time Lookup(n). Different trade-offs between space usage and query time,
Lookup(n), can be achieved. E.g., the compressed suffix array described in
[17, 25] uses |CSA| = O((1 + 1/ε)n) and achieves Lookup(n) = logε n for
any constant ε > 0 provided that a text T is over an alphabet of constant
size. We refer the reader to [23] for an extensive survey of previous results.

Our data structure consists of a compressed generalized suffix array CSA
for T1, . . . , Tm and compressed suffix arrays CSAi for each document Ti.
In [26] it was shown that using O(n) extra bits, the length of the longest
common prefix of any two suffixes can be computed in O(Lookup(n)) time.
Besides, the ranks of any two suffixes Tk[s..] and T`[p..] can be compared
in O(Lookup(n)) time: it suffices to compare T`[p + f ] with Tk[s + f ] for
f = LCP (Tk[s..], T`[p..]).

Note that ranks of the suffixes of T` starting with Tk[i..j] form an interval
[r1..r2]. We use binary search on the compressed suffix array of T` to find r1
and r2. At each step of binary search, we compare a suffix of T` with Tk[i..].
Therefore [r1..r2] can be found in O(Lookup(n) · log n) time. Obviously, the
number of occurrences of Tk[i..j] in T` is r2− r1. To report the occurrences,
we compute the suffixes of T` with ranks in interval [r1..r2].

Theorem 6. All occurrences of Tk[i..j] in T` can be counted in
O(Lookup(n) · log n) time and reported in O(Lookup(n) · (log n+ occ)) time,
where occ is the number of those. The underlying indexing structure takes
2|CSA|+O(n) bits of memory.

Weighted Ancestor Problem on Compressed Suffix Trees. In order to adapt
our document reporting solution (Section 4.2) to succinct data structures,
we need first to adapt the solution of weighted ancestor problem accord-
ingly. The following lemma provides a general time bound for weighted
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ancestor queries depending on bounds for suffix tree operations provided
by the data structure. Subsequently, we will use this Lemma to obtain an
efficient succinct solution for the document reporting problem. In the rest
of this section, we assume a constant-size alphabet.

Lemma 4. Suppose we have a compressed suffix tree for a string of length
n which supports the following operations:

(i) Computing the number of leaves in the subtree of a node v in Count(n)
time,

(ii) Computing the string depth of a node v in SDepth(n) time,

(iii) Computing the tree depth of a node v in TDepth(n) time,

(iv) Computing the ancestor of v at level ` in LAQT (n) time.

For any τ ≥ 2, we can add O(n/ logτ−2 n) bits to the compressed suffix tree
and support weighted ancestor queries in time O((SDepth(n) + LAQT (n) +
Count(n))τ log logn + TDepth(n)), where weight of a node is defined to be
its string depth.

Proof. Let T0 be a tree induced by the nodes of the suffix tree with at
least logτ n leaves in their subtrees. The tree T0 has at most O(n/ logτ n)
leaves. We maintain a modified data structure of Section 2.2 for T0. Data
structures D(pj) for T0 are implemented exactly as in Section 2.2. Since T0
has O(n/ logτ n) leaves, there are O(n/ logτ n) data structures D(pj). Each
D(pj) contains O(log n) elements of log n bits each. Therefore, all D(pj) use
O(n/ logτ−2 n) bits. We implement data structures E(πi) using a van Emde
Boas data structure [28, 29] so that searching is supported in O(log log n)
time; E(πi) contains every (logτ n)-th node from the heavy path πi, so that
all E(πi) use O(n/ logτ−1 n) bits. If we remove all nodes of T0 from the suffix
tree, the remaining forest will consist of trees Ti, i ≥ 1, of height at most
logτ n.

Consider a query wa(v, q). We first compute the number of leaves in the
subtree rooted at v. If v has at least logτ n leaf descendants, then v belongs
to T0 and we use the data structure for T0 to compute wa(v, q). Using o(n)
additional bits, we can find the leftmost leaf descendant vl of v [21]. Then,
we find the node v′l, such that v′l is an ancestor of vl and a leaf in T0. This
can be done by binary search among the logτ n lowest ancestors of vl in
O((LAQT (n) + SDepth(n))τ log log n+ TDepth(n)) time. Then, we identify
the path pj from v′l to the root of T0 and use D(pj) to find the heavy path
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πi the node wa(v, q) belongs to. Let u denote the lowest node in E(πi) with
string depth at least q, and u′ denote the parent of u in E(πi). The node
wa(v, q) belongs to the path from u to u′. Using binary search, we can find
it in O((LAQT (n) + SDepth(n))τ log logn) time.

If v has less than logτ n leaf descendants, then v belongs to one of the
micro-trees Ti, i ≥ 1. We first find the root r of Ti by binary search on the
suffix tree in O((LAQT (n) + Count(n))τ log logn+ TDepth(n)) time. If its
string depth is larger than q, then wa(v, q) = wa(r, q) and we compute the
latter as described before. Otherwise, we use binary search on the path from
v to r and compute wa(v, q) in O((LAQT (n) + SDepth(n))τ log log n) time.

As a specific case of Lemma 4, the compressed suffix tree of Sadakane [26]
on top of the compressed suffix array of Grossi et al. [16] uses (1 +
1/ε)nHk+6n+o(n) bits. For this data structure, TDepth(n) = Count(n) =
LAQT (n) = O(1) and SDepth(n) = logε n. Combining these results
with Lemma 4, we can compute wa(v, q) in O(τ logε n log log n) time us-
ing (1 + 1/ε)nHk + 6n+O(n/ logτ−2 n) +o(n) bits of space, for any τ, ε > 0.
If τ = 3, we have O(logε n log log n) query time and (1+1/ε)nHk+6n+o(n)
bits of space. This yields a competitive query time for weighted ancestor
queries on the compressed suffix tree of Sadakane [26], see [24, 10] for com-
parison with previous works.

Document Reporting. As in Section 4.2 we use weighted ancestor queries on
a generalized compressed suffix tree [26] to find the rank interval [r1..r2] of
suffixes that start with Tk[i..j]. That is, we first find a leaf of the tree rep-
resenting Tk[i..] in O(logε n) time and then we compute its highest ancestor
u of string depth at least j − i+ 1 in O(logε n log log n) time. Ranks r1 and
r2 are ranks of the leftmost and rightmost leaves in the subtree of u, which
can be computed in O(1) time [26].

In [27] it was shown how to report, for any 1 ≤ r1 ≤ r2 ≤ n, all dis-
tinct documents Tf such that at least one suffix of Tf occurs at position
r, r1 ≤ r ≤ r2, of the generalized suffix array. The construction uses
O(n + m log n

m) additional bits, and all relevant documents are reported
in O(logε n · ndocs) time, where ndocs is the number of documents that
contain Tk[i..j]. Summing up, we obtain the following result.

Theorem 7. All documents containing Tk[i..j] can be reported in
O((log logn + ndocs) logε n) time, where ndocs is the number of such doc-
uments and ε is an arbitrary positive constant. The underlying indexing
structure takes (1 + 1/ε)nHk +O(n+m log n

m) bits of space.
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[23] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM
Comput. Surv., 39(1):2:1–2:61, 2007.
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