Tsvi Kopelowitz

Gregory Kucherov
email: gregory.kucherov@univ-mlv.fr

Yakov Nekrich
email: yakov.nekrich@googlemail.com

Tatiana Starikovskaya
email: tat.starikovskaya@gmail.com

Cross-Document Pattern Matching $

Keywords: algorithms, pattern matching, document reporting, weighted

published or not. The documents may come

ancestor problem.

Introduction

In this paper we study the following variant of the pattern matching problem that we call cross-document pattern matching: given a collection of strings (documents) stored in a "database", we want to be able to efficiently search for a pattern in a given document, where the pattern itself is a substring of another document. More formally, assuming we have a set of documents T 1 , T 2 , . . . , T m , we want to answer queries about the occurrences of a substring T k [i..j] in a document T .

This scenario may occur in various situations when we have to search for a pattern in a text stored in a database, and the pattern is itself drawn from a string from the same database. In bioinformatics, for example, a typical project deals with a selection of genomic sequences, such as a family of genomes of evolutionary related species. A common repetitive task consists then in looking for genomic elements belonging to one of the sequences in some other sequences. These elements may correspond to genes, exons, mobile elements of any kind, regulatory patterns, etc., and their location (i.e. start and end positions) in the sequence of origin is usually known from a genome annotation provided by a sequence data repository (such as GenBank or any other). A similar scenario may occur in other application fields, such as the bibliographic search for example.

In this paper, we study different versions of the cross-document pattern matching problem. First, we distinguish between counting and reporting queries, asking respectively about the number of occurrences of T k [i..j] in T or about the occurrences themselves. The two query types lead to slightly different solutions. In particular, the counting problem uses the weighted ancestor problem [START_REF] Farach | Perfect hashing for strings: Formalization and algorithms[END_REF][START_REF] Kopelowitz | Dynamic weighted ancestors[END_REF][START_REF] Amir | Dynamic text and static pattern matching[END_REF] to which we propose a new solution with an improved complexity bound.

We further consider different variants of the two problems. The first one is the dynamic variant where new documents can be added to or deleted from the database. In another variant, called document counting and reporting, we only need to respectively count or report the documents containing the pattern, rather than counting or reporting pattern occurrences within a given document. This version is very close to the document retrieval problem previously studied (see [START_REF] Muthukrishnan | Efficient algorithms for document retrieval problems[END_REF] and later papers referring to it), with the difference that in our case the pattern is itself selected from the documents stored in the database. Finally, we also consider succinct data structures for the above problems, where we keep the underlying index data structure in compressed form. In particular, we propose a generic solution to the weighted ancestor problem on a compressed suffix tree, whose running time is expressed in terms of time bounds for suffix tree operations. This generic solution is then applied to obtain a compact-space solution of the document reporting problem.

Let m be the number of stored strings and n the total length of all strings. Our results are summarized below. (III) In the dynamic case, when documents can be dynamically added or deleted, we are able to answer counting queries in time O(log log n) and reporting queries in time O(log log n + occ), whereas the updates take O(log log n + log log σ) expected time per character, where σ is the size of the alphabet.

(IV) For the document counting and document reporting problems, our algorithms run in time O(log n) and O(t + ndocs) respectively, where t is as above and ndocs is the number of reported documents.

(V) Finally, we also present succinct data structures that support counting, reporting, and document reporting queries in the cross-document scenario (see Theorems 6 and 7 in Section 4.3).

For problems (I)-(IV), the involved data structures occupy O(n) space under the RAM model. Interestingly, in the cross-document scenario, the query times either do not depend at all on the pattern length or depend on it in a very limited (doubly logarithmic) way. The paper is organized as follows. In Section 2.1, we briefly introduce main data structures used in the paper and then, in Section 2.2, describe an improved solution to the weighted ancestor problem that we use in the following sections. Section 3 is devoted to counting and reporting versions of the basic cross-document pattern matching problem. In Section 4, we study different variants of the basic problem. First, in Section 4.1, we focus on the dynamic version, when documents can be dynamically added or deleted. Then, in Section 4.2, we turn to the document counting and reporting versions, when we only seek documents containing the pattern and not occurrences themselves. Finally, in Section 4.3 we propose solutions to the basic problems using succinct data structures.

Throughout the paper positions in strings are numbered from 1. Notation T [i..j] stands for the substrings

T [i]T [i + 1] . . . T [j] of T , and T [i..]
denotes the suffix of T starting at position i.

Preliminaries

Basic Data Structures

We assume a basic knowledge of suffix trees and suffix arrays. Besides using suffix trees for individual strings T i , we will also be using the generalized suffix tree for a set of strings T 1 , T 2 , . . . , T m that can be viewed as the suffix tree for the string T 1 $ 1 T 2 $ 2 . . . T m $ m . A leaf in the suffix tree for T i is associated with a distinct suffix of T i , and a leaf in the generalized suffix tree is associated with a suffix of some document T i together with the index i of this document. We assume that for each node v of a suffix tree, the number n v of leaves in the subtree rooted at v, as well as its string depth d(v) can be recovered in constant time. Recall that the string depth d(v) is the total length of strings labeling the edges along the path from the root to v.

We will also use suffix arrays for individual documents as well as the generalized suffix array for strings T 1 , T 2 , . . . , T m . Each entry of the suffix array for T i is associated with a distinct suffix of T i and each entry of the generalized suffix array for T 1 , T 2 , . . . , T m is associated with a suffix of some document T i and the index i of the document the suffix comes from. We store these document indices in a separate array D, called document array, such that D[i] = k if the i-th entry of the generalized suffix array for T 1 , T 2 , . . . , T m corresponds to a suffix coming from T k . We also augment the document array D with a linear space data structure that answers queries rank(k, i) (number of entries storing k before position i in D) and select(k, i) (i-th entry from the left storing k). Using the result of [START_REF] Alexander Golynski | Rank/select operations on large alphabets: a tool for text indexing[END_REF], we can support such rank and select queries in O(log log m) and O(1) time respectively.

For each considered suffix array, we assume available, when needed, two auxiliary arrays: an inverse suffix array and another array, called the LCParray, of longest common prefixes between each suffix and the preceding one in the lexicographic order. Moreover, we maintain a data structure that answers range minima queries (RMQ) on the LCP-array: for any 1 ≤ r 1 ≤ r 2 ≤ n, find the minimum among LCP [r 1], LCP [r 1 +1], . . . , LCP [r 2]. There exists a linear space RMQ data structure that supports queries in constant time, see e.g., [START_REF] Bender | The LCA problem revisited[END_REF]. An RMQ query on the LCP-array computes the length of the longest common prefix of the suffixes of ranks r 1 and r 2 , denoted LCP (r 1 , r 2).

Weighted Ancestor Problem

The weighted ancestor problem, defined in [START_REF] Farach | Perfect hashing for strings: Formalization and algorithms[END_REF], is a generalization of the level ancestor problem [START_REF] Berkman | Finding level-ancestors in trees[END_REF][START_REF] Bender | The level ancestor problem simplified[END_REF] for the case when tree edges are assigned positive weights. In this section, we present an improved solution to this problem that will be used later in the paper.

Consider a rooted tree T whose edges are assigned positive integer weights. For a node w, let weight(w) denote the total weight of the edges on the path from the root to w; depth(w) denotes the usual tree depth of w.

A weighted ancestor query wa(v, q) asks, given a node v and a positive integer q, for the ancestor w of v of minimal depth such that weight(w) ≥ q (wa(v, q) is undefined if there is no such node w).

Three previously known solutions [START_REF] Farach | Perfect hashing for strings: Formalization and algorithms[END_REF][START_REF] Kopelowitz | Dynamic weighted ancestors[END_REF][START_REF] Amir | Dynamic text and static pattern matching[END_REF] for the weighted ancestor problem achieve O(log log W) query time using linear space, where W is the total weight of all tree edges. Our data structure also uses O(n) space, but achieves a faster query time in many special cases. We prove the following result.

Theorem 1. There exists an O(n)-space data structure that answers a weighted ancestor query wa(v, q) in O(min(log g/ log log g, log log q)) time, where g = min(depth(wa(v, q)), depth(v) -depth(wa(v, q))).

If every internal node is a branching node, we obtain the following corollary.

Corollary 1. Suppose that every internal node in T has at least two children. There exists an O(n)-space data structure that finds u = wa(v, q) in O(min(log n u / log log n u , log log q)) time, where n u is the number of leaves in the subtree of u.

Our approach combines the heavy path decomposition technique of [START_REF] Amir | Dynamic text and static pattern matching[END_REF] with efficient data structures for finger searching in a set of integers.

Predecessor Queries. We will need the following result about a data structure that supports predecessor and successor queries. The predecessor of an integer q in a set S is pred (q, S) = max{ e ∈ S | e ≤ q }. The successor of q in S is succ(q, S) = min{ e ∈ S | e ≥ q }. Lemma 1. Let S be a set of n positive integers drawn from the universe of size U . Using an O(n)-space data structure, we can find pred (q, S) and succ(q, S) for any q in O(log log q) time.

Proof. The set S is divided into consecutive groups S i , i = 1, 2, . . . , n/d , where d = log U . Each S i , except of the last one, contains d elements.

For any e ∈ S i and e ∈ S j iff i < j then e < e . All elements of S i , 1 ≤ i ≤ n/ log U , are stored in a data structure that supports predecessor and successor queries in O(1) time [START_REF] Michael | Trans-dichotomous algorithms for minimum spanning trees and shortest paths[END_REF].

A set S contains the smallest element from each S i . We store all elements of S in a predecessor data structure D described in [START_REF] Bose | Fast local searches and updates in bounded universes[END_REF]. By Theorem 3 from [START_REF] Bose | Fast local searches and updates in bounded universes[END_REF], there exists a data structure that uses O(m log U) space and answers predecessor queries on a set of m elements in O(log log ∆) time, where ∆ ≤ q is the distance between q and pred (q, S). Hence, D uses O(n) space and enables us to find pred (q, S) for any q in O(log log q) time.

To find pred (q, S), we identify e = pred (q, S). Let S t be the group that contains e . Obviously pred (q, S t) is the predecessor of q in S. We find pred (q, S) in O(log log q) time; we find pred (q, S t) in O(1) time. Hence, a query pred (q, S) is answered in O(log log q) time.

If e = pred (q, S) is known, then e = succ(q, S) is the element that follows e in the sorted list of elements. Hence, succ(q, S) can also be found in O(log log q) time.

Heavy Path Decomposition. A path π in T is heavy if every node u on π has at most twice as many nodes in its subtree as its child v on π. A tree T can be decomposed into paths using the following procedure: we find the longest heavy path π r that starts at the root of T and remove all edges of π r from T . All remaining vertices of T belong to a forest; we recursively repeat the same procedure for every tree of that forest.

We can represent the decomposition into heavy paths using a tree T. Each node v j in T corresponds to a heavy path π j in T . A node v j is a child of a node v i in T if the head of π j (i.e., the highest node in π j) is a child of some node u ∈ π i . In this case, some node of π i has at least twice as many descendants as each node in π j ; hence, T has height O(log n). O(n log n)-Space Solution. Let p j denote a root-to-leaf path in T. For a node v in T let weight(v) denote the weight of the head of π, where π is the heavy path represented by v in T. We store a data structure D(p j) that contains the values of weight(v) for all nodes v ∈ p j . D(p j) contains O(log n) elements; hence, we can find the highest node v ∈ p j such that weight(v) ≥ q in O(1) time. This can be achieved by storing the weights of all nodes from p j in a data structure [START_REF] Michael | Trans-dichotomous algorithms for minimum spanning trees and shortest paths[END_REF].

For every heavy path π in T , we store the data structure E(π) from [START_REF] Andersson | Dynamic ordered sets with exponential search trees[END_REF] that contains the weights of all nodes u ∈ π and supports the following queries: for an integer q, find the lightest node u ∈ π such that weight(u) ≥ q. Using Theorem 1.5 in [START_REF] Andersson | Dynamic ordered sets with exponential search trees[END_REF], we can find such a node

u ∈ π in O(log n / log log n) time where n = min(n h , n l), n h = |{ v ∈ π | weight(v) > weight(u) }|, and n l = |{ v ∈ π | weight(v) < weight(u) }|.
Moreover, by Lemma 1, we can find the node u in O(log log q) time. Thus E(π) can be modified to support queries in O(min(log n / log log n , log log q)) time.

For each node u ∈ T we store a pointer to the heavy path π that contains u and to the corresponding node v ∈ T.

A query wa(v, q) can be answered as follows. Let v denote the node in T that corresponds to the heavy path containing v. Let p j be an arbitrary root-to-leaf path in T that also contains v. Using D(p j) we can find the highest node u ∈ p j , such that weight(u) ≥ q in O(1) time. Let π t denote the heavy path in T that corresponds to the parent of u, and π s denote the path that corresponds to u. If the weighted ancestor wa(v, q) is not the head of π s , then wa(v, q) belongs to the path π t . Using E(π t), we can find u = wa(v, q) in O(min(log n / log log n , log log q)) time where Lemma 2. There exists an O(n log n) space data structure that finds the weighted ancestor u in O(min(log n / log log n , log log q)) time.

n = min(n h , n l), n h = |{ v ∈ π t | weight(v) >
O(n)-Space Solution. We can reduce the space from O(n log n) to O(n) using a micro-macro tree decomposition. Let T 0 be a tree induced by the nodes of T that have at least log n/8 descendants. The tree T 0 has at most O(n/ log n) leaves. We construct the data structure described above for T 0 ; since T 0 has O(n/ log n) leaves, its heavy path tree T 0 also has O(n/ log n) leaves.

Therefore all structures D(p j) use O(n) words of space. All E(π i) also use O(n) words of space. If we remove all nodes of T 0 from T , the remaining forest F consists of O(n) nodes. Every tree T i , i ≥ 1, in F consists of O(log n) nodes. Nodes of T i are stored in a data structure that uses linear space and answers weighted ancestor queries in O(1) time. This data structure will be described later in this section.

Suppose that a weighted ancestor wa(v, q) should be found. If v ∈ T 0 , we answer the query using the data structure for T 0 . If v belongs to some T i for i ≥ 1, we check the weight w r of root(T i). If w r ≤ q, we search for wa(v, q) in T i . Otherwise we identify the parent v 1 of root(T i) and find wa(v 1 , q) in T 0 . If wa(v 1 , q) in T 0 is undefined, then wa(v, q) = root(T i).

Data Structure for a Small Tree. It remains to describe the data structure for a tree T i , i ≥ 1. Since T i contains a small number of nodes, we can answer weighted ancestor queries on T i using a look-up table V . V contains information about any tree with up to log n/8 nodes, such that node weights are positive integers bounded by log n/8. For any such tree T , for any node v of T , and for any integer q ∈ [1, log n/8], we store the pointer to wa(v, q) in T . There are O(2 log n/4) different trees T (see e.g., [START_REF] Bender | The level ancestor problem simplified[END_REF] for a simple proof); for any T , we can assign weights to nodes in less than (log n/8)! ways. For any weighted tree T there are at most (log n) 2 /64 different pairs v, q. Hence, the table

V contains O(2 log n/4 (log n) 2 (log n/8)!) = o(n) entries.
We need only one look-up table V for all small trees T i .

We can now answer a weighted ancestor query on T i using reduction to rank space [START_REF] Harold | Scaling and related techniques for geometry problems[END_REF]. The rank of a node u in a tree T is defined as rank (u, T) = |{ v ∈ T | weight(v) ≤ weight(u) }|. The successor of an integer q in a tree T is the lightest node u ∈ T such that weight(u) ≥ q. The rank rank (q, T) of an integer q is defined as the rank of its successor. Let rank (T) denote the tree T in which the weight of every node is replaced with its rank. The weight of a node u ∈ T is not smaller than q if an only if rank (u, T) ≥ rank (q, T). Therefore we can find wa(v, q) in a small tree T i , i ≥ 1, as follows. For every T i we store a pointer to T i = rank (T i). Given a query wa(v, q), we find rank (q, T i) in O(1) time using a q-heap [START_REF] Michael | Trans-dichotomous algorithms for minimum spanning trees and shortest paths[END_REF]. Let v be the node in T i that corresponds to the node v. We find u = wa(v , rank (q, T i)) in T i using the table V . Then the node u in T i that corresponds to u is the weighted ancestor of v.

Cross-document Pattern Counting and Reporting

Counting

In this section we consider the problem of counting occurrences of a pattern T k [i..j] in a document T .

Our data structure consists of the generalized suffix array GSA for documents T 1 , . . . , T m and individual suffix trees T i for every document T i .

For every suffix tree T we store a data structure of Theorem 1 supporting weighted ancestor queries on T .

Our counting algorithm consists of two steps:

1. Using GSA and the corresponding document array D, we identify a position p of T at which the query pattern T k [i..j] occurs, or determine that no such p exists, 2. Find the locus u of T k [i..j] in the suffix tree T using a weighted ancestor query and retrieve the number of leaves in the subtree rooted at u.

Let r be the position of T k [i..] in GSA. We find indexes r 1 = select(, rank(r,)) and r 2 = select(, rank(r,) + 1) in O(log log m) time (see Section 2.1). GSA[r 1] (resp. GSA[r 2]) is the closest suffix from document T that precedes (resp. follows) T k [i..] in the lexicographic order of suffixes. Observe now that T k [i..j] occurs in T if and only if either LCP (r 1 , r) or LCP (r, r 2) (or both) is no less than j -i + 1. If this holds, then the starting position p of GSA[r 1] (respectively, starting position of GSA[r 2]) is the position of T k [i..j] in T . Once such a position p is found, we jump to the leaf v of T that contains the suffix T [p..].

The weighted ancestor u = wa(v, (j -i + 1)) is the locus of T k [i..j] in T . This is because T [p..p + j -i] = T k [i..j]. By Theorem 1, we can find u in O(log log(j -i + 1)) time.

Summing up, we obtain the following theorem.

Theorem 2. For any 1 ≤ k, ≤ m and 1 ≤ i ≤ j ≤ |T k |, we can count the number of occurrences of T k [i..j] in T in O(t + log log m) time, where t = min(log occ/ log log occ, log log(j -i + 1)) and occ is the number of occurrences. The underlying indexing structure takes O(n) space and can be constructed in O(n) time.

Reporting

A reporting query asks for all occurrences of a substring T k [i..j] in T .

To support reporting queries, we use the same two-step procedure as in Section 3.1, but make a slight change in the data structures: at Step 2, instead of using individual suffix trees for each of the documents, we use suffix arrays. The rest of the data structures is unchanged.

We first find an occurrence of T k [i..j] in T (if there is one) using Step 1 of Section 3.1. Let p be the position of this occurrence in T . We then jump to the corresponding entry r of the suffix array SA for the document T .

Let LCP be the LCP-array of SA . Starting with entry r, we visit adjacent entries t of SA moving both to the left and to the right as long as LCP [t] ≥ j -i + 1. While this holds, we report SA [t] as an occurrence of T k [i..j]. Note that the length of the longest common prefix of SA [t] and SA [p] is at least j -i + 1, as it is equal to the minimal value of LCP [s], where s is between t and p. Hence, SA [t] starts with T k [i..j], and

SA [t] is indeed an occurrence of T k [i..j].
No occurrence will be missed by the algorithm: if SA [t] is an occurrence of T k [i..j], then the length of the longest common prefix of SA [t] and SA [p] is at least |T k [i..j]| = j -i + 1 and therefore LCP [s] ≥ j -i + 1 for any s between t and p. As a result, we obtain the following theorem. Theorem 3. All the occurrences of T k [i..j] in T can be reported in O(log log m + occ) time, where occ is the number of occurrences. The underlying indexing structure takes O(n) space and can be constructed in O(n) time.

Variants of the Problem

Dynamic Counting and Reporting

In this section we focus on a dynamic version of counting and reporting problems, where dynamic operations are either addition or deletion of a document to the database. We assume that the total length of documents in the database is equal to n.

Recall that in the static case, counting occurrences of T k [i..j] in T is done through the following two steps (Section 3.1): compute position p of some occurrence of T k [i..j] in T , and find the locus of T [p..p + j -i] in the suffix tree of T .

For reporting queries (Section 3.2), Step 1 is unchanged, while Step 2 uses an individual suffix array for T .

In the dynamic framework, we follow the same general two-step scenario. Note first that since Step 2, for both counting and reporting, uses data structures for individual documents only, it trivially applies to the dynamic case without changes. However, Step 1 requires serious modifications that we describe below. Data Structures. Let L be a dynamic list of the suffixes of T 1 , T 2 , . . . , T m in the lexicographic order. We will maintain the data structure for Predecessor search on Dynamic Subsets of an Ordered Dynamic List problem (P OLP for short) of [START_REF] Kopelowitz | On-line indexing for general alphabets via predecessor queries on subsets of an ordered list[END_REF] on L. This data structure supports the following variant of predecessor queries in O(log log n) time: let P 1 , . . . , P m denote dynamic subsets of a list L; for any element e of L and for any i, 1 ≤ i ≤ m, find the predecessor of e in P i . In our setting, a subset P k , 1 ≤ k ≤ m, contains suffixes of document T k .

We will also maintain the data structure of [START_REF] Franceschini | A general technique for managing strings in comparison-driven data structures[END_REF] (for a full version see [START_REF] Amir | Managing unbounded-length keys in comparison-driven data structures with applications to on-line indexing[END_REF]) on the suffixes of T 1 , T 2 , . . . , T m . This data structure allows us to compute the longest common prefix of any two suffixes in O(1) time.

Queries. To identify an occurrence position of T k [i..j] in T , we have to examine the two suffixes of T closest to T k [i..] in L, respectively from right and from left. These suffixes correspond to the predecessor and the successor of T k [i..] in subset P and can be found in O(log log n) time by two queries to the P OLP data structure.

We then check if at least one of these two suffixes corresponds to an occurrence of T k [i..j] in T . Similarly to Section 3, it is sufficient to compute the longest common prefix between each of these two suffixes and T k [i..], and compare these values with (j -i + 1), which can be done in O(1) time using the data structure of [START_REF] Franceschini | A general technique for managing strings in comparison-driven data structures[END_REF].

The query time bounds are summarized in the following lemma.

Lemma 3. Using the above data structures, counting and reporting all occurrences of T k [i..j] in T can be done respectively in time O(log log n) and time O(log log n + occ), where occ is the number of reported occurrences.

Updates. We now explain how the data structures are updated. Suppose that we add a new document T . First we construct individual data structures for T in O(|T |) time. Suffixes of T can be added to the P OLP data structure and the data structure [START_REF] Franceschini | A general technique for managing strings in comparison-driven data structures[END_REF] in O(log log n+log log σ) expected time per suffix as described in [START_REF] Kopelowitz | On-line indexing for general alphabets via predecessor queries on subsets of an ordered list[END_REF]. Suppose now that we want to delete a document T . We start by deleting all individual data structures for T in O(1) time per character. Then we have to update the P OLP data structure and the data structure [START_REF] Franceschini | A general technique for managing strings in comparison-driven data structures[END_REF]. Deletion of a suffix from the P OLP data structure takes O(log log n) expected time 4 . To delete a suffix from the data structure of [START_REF] Franceschini | A general technique for managing strings in comparison-driven data structures[END_REF] one needs O(1) time.

The following theorem summarizes the results of this section.

Theorem 4. In the case when documents can be added or deleted dynamically, the number of occurrences of T k [i..j] in T can be computed in time O(log log n) and reporting these occurrences can be done in time O(log log n + occ), where occ is their number and n is the total length of the documents in the database. The underlying data structure occupies O(n) space and addition or deletion of a new document T takes O(|T | • (log log n + log log σ)) expected time.

Document Counting and Reporting

Consider a static collection of documents T 1 , . . . , T m . In this section we focus on document reporting and counting queries: report or count the documents which contain at least one occurrence of T k [i..j], for some 1 ≤ k ≤ m and i ≤ j.

For both counting and reporting, we use the generalized suffix tree, the generalized suffix array and the document array D for T 1 , T 2 , . . . , T m . We first retrieve the leaf of the generalized suffix tree labeled by T k [i..] and compute its highest ancestor u of string depth at least j -i + 1, using the weighted ancestor technique of Section 2.2. The suffixes of T 1 , T 2 , . . . , T m starting with T k [i..j] (i.e. occurrences of T k [i..j]) correspond then to the leaves of the subtree rooted at u, and vice versa. As shown in Section 3.1, this step takes O(t) time, where t = min(log occ/ log log occ, log log(j -i + 1)) and occ is the number of occurrences of T k [i..j] (this time in all documents).

Once u has been computed, we retrieve the interval [lef t(u)..right(u)] of ranks of all the leaves under interest. We are then left with the problem of counting/reporting distinct values in D[lef t(u)..right(u)]. This problem is exactly the same as the color counting/ color reporting problem that has been studied extensively (see e.g., [START_REF] Gagie | Colored range queries and document retrieval[END_REF] and references therein).

For color reporting queries, we can use the solution of [START_REF] Muthukrishnan | Efficient algorithms for document retrieval problems[END_REF] based on an O(n)-space data structure for RMQ, applied to (a transform of) the document array D. The pre-processing time is O(n). Each document is then reported in O(1) time, i.e. all relevant documents are reported in O(ndocs) time, where ndocs is their number. The whole reporting query then takes time O(t + ndocs) for t defined above.

For counting, we use the solution described in [START_REF] Bozanis | New upper bounds for generalized intersection searching problems[END_REF]. The data structure requires O(n) space and a color counting query takes O(log n) time. The following theorem presents a summary. Theorem 5. We can store a collection of documents T 1 , . . . , T m in a linear space data structure, so that for any pattern P = T k [i..j] all documents that contain P can be reported and counted in O(t + ndocs) and O(log n) time respectively. Here t = min(log occ/ log log occ, log log |P |), ndocs is the number of documents that contain P and occ is the number of occurrences of P in all documents.

Compact Counting, Reporting and Document Reporting

In this section, we show how our reporting and counting problems can be solved on succinct data structures [START_REF] Navarro | Compressed full-text indexes[END_REF].

Reporting and Counting. Our compact solution is based on compressed suffix arrays proposed by Grossi and Vitter [START_REF] Grossi | Compressed suffix arrays and suffix trees with applications to text indexing and string matching[END_REF]. A compressed suffix array for a text T uses |CSA| bits of space and enables us to retrieve the position of the suffix of rank r, the rank of a suffix T [i..], and the character T [i] in time Lookup(n). Different trade-offs between space usage and query time, Lookup(n), can be achieved. E.g., the compressed suffix array described in [START_REF] Grossi | Compressed suffix arrays and suffix trees with applications to text indexing and string matching[END_REF][START_REF] Sadakane | Compressed text databases with efficient query algorithms based on the compressed suffix array[END_REF] uses |CSA| = O((1 + 1/ε)n) and achieves Lookup(n) = log ε n for any constant ε > 0 provided that a text T is over an alphabet of constant size. We refer the reader to [START_REF] Navarro | Compressed full-text indexes[END_REF] for an extensive survey of previous results.

Our data structure consists of a compressed generalized suffix array CSA for T 1 , . . . , T m and compressed suffix arrays CSA i for each document T i . In [START_REF] Sadakane | Compressed suffix trees with full functionality[END_REF] Weighted Ancestor Problem on Compressed Suffix Trees. In order to adapt our document reporting solution (Section 4.2) to succinct data structures, we need first to adapt the solution of weighted ancestor problem accordingly. The following lemma provides a general time bound for weighted ancestor queries depending on bounds for suffix tree operations provided by the data structure. Subsequently, we will use this Lemma to obtain an efficient succinct solution for the document reporting problem. In the rest of this section, we assume a constant-size alphabet. For any τ ≥ 2, we can add O(n/ log τ -2 n) bits to the compressed suffix tree and support weighted ancestor queries in time O((SDepth(n)

+ LAQ T (n) + Count(n))τ log log n + TDepth(n))
, where weight of a node is defined to be its string depth.

Proof. Let T 0 be a tree induced by the nodes of the suffix tree with at least log τ n leaves in their subtrees. The tree T 0 has at most O(n/ log τ n) leaves. We maintain a modified data structure of Section 2.2 for T 0 . Data structures D(p j) for T 0 are implemented exactly as in Section 2.2. Since T 0 has O(n/ log τ n) leaves, there are O(n/ log τ n) data structures D(p j). Each D(p j) contains O(log n) elements of log n bits each. Therefore, all D(p j) use O(n/ log τ -2 n) bits. We implement data structures E(π i) using a van Emde Boas data structure [START_REF] Peter Van Emde | Design and implementation of an efficient priority queue[END_REF][START_REF] Willard | Log-logarithmic worst-case range queries are possible in space Theta(n)[END_REF] so that searching is supported in O(log log n) time; E(π i) contains every (log τ n)-th node from the heavy path π i , so that all E(π i) use O(n/ log τ -1 n) bits. If we remove all nodes of T 0 from the suffix tree, the remaining forest will consist of trees T i , i ≥ 1, of height at most log τ n. Consider a query wa(v, q). We first compute the number of leaves in the subtree rooted at v. If v has at least log τ n leaf descendants, then v belongs to T 0 and we use the data structure for T 0 to compute wa(v, q). Using o(n) additional bits, we can find the leftmost leaf descendant v l of v [START_REF] Munro | Space efficient suffix trees[END_REF]. Then, we find the node v l , such that v l is an ancestor of v l and a leaf in T 0 . This can be done by binary search among the log τ n lowest ancestors of v l in O((LAQ T (n) + SDepth(n))τ log log n + TDepth(n)) time. Then, we identify the path p j from v l to the root of T 0 and use D(p j) to find the heavy path π i the node wa(v, q) belongs to. Let u denote the lowest node in E(π i) with string depth at least q, and u denote the parent of u in E(π i). The node wa(v, q) belongs to the path from u to u . Using binary search, we can find it in O((LAQ T (n) + SDepth(n))τ log log n) time.

If v has less than log τ n leaf descendants, then v belongs to one of the micro-trees T i , i ≥ 1. We first find the root r of T i by binary search on the suffix tree in O((LAQ T (n) + Count(n))τ log log n + TDepth(n)) time. If its string depth is larger than q, then wa(v, q) = wa(r, q) and we compute the latter as described before. Otherwise, we use binary search on the path from v to r and compute wa(v, q) in O((LAQ T (n) + SDepth(n))τ log log n) time.

As a specific case of Lemma 4, the compressed suffix tree of Sadakane [START_REF] Sadakane | Compressed suffix trees with full functionality[END_REF] on top of the compressed suffix array of Grossi et al. [START_REF] Grossi | High-order entropy-compressed text indexes[END_REF] uses (1 + 1/ε)nH k + 6n + o(n) bits. For this data structure, TDepth(n) = Count(n) = LAQ T (n) = O(1) and SDepth(n) = log ε n. Combining these results with Lemma 4, we can compute wa(v, q) in O(τ log ε n log log n) time using (1 + 1/ε)nH k + 6n + O(n/ log τ -2 n) + o(n) bits of space, for any τ, ε > 0. If τ = 3, we have O(log ε n log log n) query time and (1 + 1/ε)nH k + 6n+o(n) bits of space. This yields a competitive query time for weighted ancestor queries on the compressed suffix tree of Sadakane [START_REF] Sadakane | Compressed suffix trees with full functionality[END_REF], see [START_REF] Luís | Fully compressed suffix trees[END_REF][START_REF] Fischer | Faster entropybounded compressed suffix trees[END_REF] for comparison with previous works. Document Reporting. As in Section 4.2 we use weighted ancestor queries on a generalized compressed suffix tree [START_REF] Sadakane | Compressed suffix trees with full functionality[END_REF] to find the rank interval [r 1 ..r 2] of suffixes that start with T k [i..j]. That is, we first find a leaf of the tree representing T k [i..] in O(log ε n) time and then we compute its highest ancestor u of string depth at least j -i + 1 in O(log ε n log log n) time. Ranks r 1 and r 2 are ranks of the leftmost and rightmost leaves in the subtree of u, which can be computed in O(1) time [START_REF] Sadakane | Compressed suffix trees with full functionality[END_REF].

In [START_REF] Sadakane | Succinct data structures for flexible text retrieval systems[END_REF] it was shown how to report, for any 1 ≤ r 1 ≤ r 2 ≤ n, all distinct documents T f such that at least one suffix of T f occurs at position r, r 1 ≤ r ≤ r 2 , of the generalized suffix array. The construction uses O(n + m log n m) additional bits, and all relevant documents are reported in O(log ε n • ndocs) time, where ndocs is the number of documents that contain T k [i..j]. Summing up, we obtain the following result.

(

 I) For the counting problem, we propose a solution with query time O(t + log log m), where t = min(log occ/ log log occ, log log |P |), P = T k [i..j] is the searched substring and occ is the number of its occurrences in T . (II) For the reporting problem, our solution outputs all the occurrences in time O(log log m + occ).

 weight(u) }|, and n l = |{ v ∈ π t | weight(v) < weight(u) }|. All data structures E(π i) use linear space. Since there are O(n) leaves in T and each path p i contains O(log n) nodes, all D(p i) use O(n log n)space.

Theorem 6 .

 6 it was shown that using O(n) extra bits, the length of the longest common prefix of any two suffixes can be computed in O(Lookup(n)) time. Besides, the ranks of any two suffixes T k [s..] and T [p..] can be compared in O(Lookup(n)) time: it suffices to compare T [p + f] with T k [s + f] for f = LCP (T k [s..], T [p..]). Note that ranks of the suffixes of T starting with T k [i..j] form an interval [r 1 ..r 2]. We use binary search on the compressed suffix array of T to find r 1 and r 2 . At each step of binary search, we compare a suffix of T with T k [i..]. Therefore [r 1 ..r 2] can be found in O(Lookup(n) • log n) time. Obviously, the number of occurrences of T k [i..j] in T is r 2 -r 1 . To report the occurrences, we compute the suffixes of T with ranks in interval [r 1 ..r 2]. All occurrences of T k [i..j] in T can be counted in O(Lookup(n) • log n) time and reported in O(Lookup(n) • (log n + occ)) time, where occ is the number of those. The underlying indexing structure takes 2|CSA| + O(n) bits of memory.

Lemma 4 .

 4 Suppose we have a compressed suffix tree for a string of length n which supports the following operations: (i) Computing the number of leaves in the subtree of a node v in Count(n) time, (ii) Computing the string depth of a node v in SDepth(n) time, (iii) Computing the tree depth of a node v in TDepth(n) time, (iv) Computing the ancestor of v at level in LAQ T (n) time.

Theorem 7 .

 7 All documents containing T k [i..j] can be reported in O((log log n + ndocs) log ε n) time, where ndocs is the number of such documents and ε is an arbitrary positive constant. The underlying indexing structure takes (1 + 1/ε)nH k + O(n + m log n m) bits of space.

In the paper of Kopelowitz[START_REF] Kopelowitz | On-line indexing for general alphabets via predecessor queries on subsets of an ordered list[END_REF], only insertions into the P OLP data structure are described. However, it is possible to modify this result, so that deletions are supported as well -see details at the full version in[START_REF] Kopelowitz | On-line indexing for general alphabets via predecessor queries on subsets of an ordered list[END_REF].

Acknowledgments. The authors gratefully acknowledge the help of Travis Gagie who suggested to use a compressed suffix tree in the succinct version of the document reporting problem. T.Starikovskaya has been supported by the mobility grant funded by the French Ministry of Foreign Affairs through the EGIDE agency, by RFBR grant 10-01-93109-CNRS-a, and by Dynasty Foundation.