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Dynamic Dielectric Spectroscopy and Thermo Stimulated Current were used to investigate of the dielectric

relaxation of hybrid Poly(vinylidene-fluoride-trifluoroethylene)/barium titanate 700 nm composites with

0–3 connectivity. The results obtained by this method allow us to describe the physical structure of these

composites in the glassy state at a nanometric scale. The decrease of the activation enthalpies and activation

entropies involved in the dynamics of the α relaxation is attributed to: the decrease of Cooperative Rearran-

ging Region sizes and an increase of intra/inter macromolecular interactions in the amorphous phase with

the volume fraction.

1. Introduction

Since the discovery of the piezoelectric behavior of Poly(vinylidene

fluoride) by Kawai [1] and the understanding of the molecular origin of

this electroactivity [2–4], organic ferroelectric materials have attracted

interest for their potential use in specific applications such as lowweight

andflexible sensors [5].Many classes of polymers have shownpiezoelec-

tric and pyroelectric activities such as odd-polyamide [6], even odd poly-

amide copolymer [7] and more recently the copolymer Poly(vinylidene

fluoride-trifluoroethylene) [8,9] and the terpolymer Poly(vinylidene

fluoride-trifluoroethylene-chlorofluoroethylene) [10,11]. For electroac-

tive applications, Poly(vinylidene fluoride-trifluoroethylene) copolymer

was the most useful polymer because of the low poling field required to

induce ferroelectric behavior and high dielectric permittivity compared

to other class of ferroelectric polymer. Another important point was

that this copolymer did not require any mechanical stretching before

polarization [12]. Even if this polymer might have interesting ferroelec-

tric properties, the piezoelectric and pyroelectric properties were much

lower than well-known inorganic ferroelectric materials [13,14]. To

overcome this disadvantage, someworkswere devoted to the dispersion

of ferroelectric inorganic fillers (micron size) in a polymeric matrix in

0–3 connectivity [15–18]. Depending on the polarization procedure

[19–22] these authors have shown that the ferroelectric inorganic nano-

particles could increase the ferroelectric activity of organic materials. As

far as we know very few works were devoted to the influence of the

ferroelectric inorganic phase on the molecular mobility of the organic

phase. In this study, barium titanate submicron particles with a mean

diameter of 700 nm were dispersed in a Poly(vinylidene fluoride-

trifluoroethylene) matrix. Dynamic Dielectric Spectroscopy and Thermo

Stimulated Currentwere employed to characterize the physical structure

in the solid state of these composites at a nanometric scale.

2. Experimental section

2.1. Samples elaboration

The mean diameter of barium titanate particles is 700 nm. Poly(-

vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE) 70:30 mol.%)

has been purchased from Piezotech (France). Copolymer powders

were dissolved in acetone. Then the required barium titanate powder

(BaTiO3 or BT) was dispersed to form amixture by ultrasonication. Dur-

ing 24 h the samples were dried at 110 °C to remove the solvent. The

composites were hot pressed to form thin films of thickness from 100

to 150 μm. Volume fraction (ϕ) of ceramic in composite films ranged

from 0.07 to 0.41.

2.2. Dielectric measurements

Dynamic Dielectric Spectroscopy (DDS) was performed using a

BDS400 covering a frequency range of 10−2 Hz–3.10 [6] Hz with 10

points per order of magnitude. Experiments were carried out in a

temperature range from −150 °C to 150 °C. Dielectric isothermal

spectra were measured every 2 °C. Before each frequency scan, tem-

perature was kept constant to ±0.2 °C. The real ε′ and imaginary ε″

parts of the relative complex permittivity ε* were measured as a func-

tion of frequency f at a given temperature T.
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The complex dielectric permittivity ε⁎ was fitted to the Havriliak–

Negami (HN) function:

ε
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Where εs is the static permittivity, ε∞ is the permittivity at high

frequency, and βHN, γHN are the Havriliak–Negami parameters.

Complex Thermo Stimulated Current (TSC) thermograms were car-

ried out on a TSC/RMA Analyser. For complex experiments, the sample

was polarized by an electrostatic field during tp=2min over a temper-

ature range from the polarization temperature Tp=50 °C down to the

freezing temperature T0. Then the field was turned off and the depolar-

ization current was recorded at a constant heating rate (qh=

+7 °C.min−1), the equivalent frequency of the TSC spectrum was

feq~10
−2

–10−3 Hz. Elementary TSC thermograms were performed in

a polarizationwindowof 5 °C. Then thefieldwas removed and the sam-

ple cooled at a temperature Tcc=Tp−30 °C. The depolarization current

was recorded at a constant heating rate (qh=+7 °C.min−1). Each ele-

mentary thermogram was recorded by shifting the polarization win-

dow 5 °C toward a higher temperature. The temperature dependence

of relaxation times follows an Arrhenius–Eyring equation:
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Where kB is the Boltzmann's constant, R is the gas constant; h is

the Planck's constant, ΔH the activation enthalpy and ΔS the activa-

tion entropy.

3. Results

3.1. Dielectric relaxation modes in dynamic spectroscopy

The evolution of ε″ versus frequency is shown in Fig. 1 for P(VDF-

TrFE)/BaTiO3 composites with 700 nm particle sizes. The volume frac-

tion was maintained at 41%. Two dielectric modes were clearly identi-

fied in the amorphous phase: a lower temperature mode γ at −80 °C

associated with the mobility of short sequences, an intermediate tem-

perature mode α at−25 °C was attributed to the dielectric manifesta-

tion of the glass transition. At higher temperature, an isothermal

phenomenon attributed to the dielectric manifestation of the Curie

transition of the organic phase was observed. The Curie temperature

[19] of these particles was already pointed out by Differential Scanning

Calorimetry (DSC) near 130 °C. Furthermore, relaxation times extracted

from these data with Havriliak Negami equation did not show an influ-

ence of the BT particles on P (VDF-TrFE) mobility.

Fig. 2(a) showed the evolution of the conservative part of the di-

electric permittivity at 26 °C as a function of frequency for various

volume fractions. BT particles increase drastically the ε′ value from

18.3 at 23% vol. to 136 at 61% vol. An evolution of ε′ at low frequency

was also observed for high BT content. Heterogeneous systems were

generally characterized at low frequency and high temperature by

an important increase of the dielectric permittivity associated with

the Maxwell Wagner Sillars [23] (MWS) phenomenon. The values of

ε′ at 1 kHz as function of ϕ were reported in Fig. 2(b). Experimental

values were well fitted by the following Bruggeman [24] model for

volume fraction below 45% vol.

1−Φð Þ
εm&εeff

εm þ 2εeff
þΦ

εincl−εeff
εincl þ 2εeff

¼ 0

With Φ the volume fraction, εm the dielectric permittivity of the

matrix, εincl the dielectric permittivity of the inclusion, εeff the effec-

tive dielectric permittivity.

According to this model, we could extract the dielectric permittivity

of the inorganic part of the composite. From the Bruggemanmodel, ε′ of

Fig. 1. Imaginary part of the dielectric permittivity, isochronous between 100 Hz and

1 MHz for P(VDF-TrFE)-BaTiO3 700 nm with 41% vol.

Fig. 2. (a) Real part of the dielectric permittivity as function of frequency for P(VDF-

TrFE)/BaTiO3 composites with ϕ ranging from 0% (■), 23% (●), 41% (▲) to 61% vol

(▼). (b) Real part of the dielectric permittivity P(VDF-TrFE) (●) as function of volume

fraction of BaTiO3 700 nm fitted by Bruggeman model in red line.



BaTiO3 700 nmwas evaluated to be nearly 1500. This valuewas in good

agreement with bulk ceramic sintered from BaTiO3 700 nm particles

using Spark Plasma Sintering technique. For ϕ>45%, the experimental

points departed from the Bruggeman model. For these high volume

fractions the connectivity of the biphasic system was modified by the

agglomeration of particles. 0–3 connectivity, in Newnham notation,

did not govern the physical properties of the composite. For ϕ>45%,

3–3 connectivity described the dispersion of inorganic particles in the

P(VDF-TrFE) matrix. This point was already observed in thermoplastic

polymers by Scanning Electron Microscopy and published [25].

3.2. Dielectric relaxation modes in thermal analysis

The influence that the volume fraction of inorganic fillers has on

the molecular mobility of the amorphous phase of the polymeric ma-

trix was characterized using the thermally stimulated currents tech-

nique. The samples were polarized under an electric field of

Ep=1 kV/mm at Tp=50 °C for 2 min then the composites were

cooled at Tcc=−100 °C and short-circuited for 2 min. Thermograms

were recorded from −90 °C to 110 °C.

Complex TSC thermograms at low temperatures of P (VDF-TrFE)/

BaTiO3 composites were presented in Fig. 3. The relaxation modes

shown in this figure were related to the amorphous organic phase.

For purpose of clarity and in order to compare composites depolariza-

tion current was normalized to: the fraction of polymer in the com-

posite, the electric field and the surface of the sample. Whatever the

volume fraction of BaTiO3 particles, two modes were observed in

the low temperature range. As the low temperature relaxations γ

and α appeared below the poling temperature, these relaxations

have been attributed to dipolar relaxation phenomena. In the inset,

the complex dielectric manifestation of the Curie transition of

P(VDF-TrFE) appeared at 100 and 110 °C, which is consistent with

DDS and DSC measurements [26,27]. These high temperature relaxa-

tions are associated with the crystalline phase of the copolymer. Re-

laxation of the barium titanate particles was pointed out near 130 °C.

The localization versus temperature of the γ mode was influenced

by the volume fraction of inorganic phase. In the case of P(VDF-TrFE)

the γ mode appears at Tγ=−80 °C. This mode was attributed to the

dipolar relaxation of small segments of the macromolecule in the

amorphous phase. As the barium titanate fraction increased the

peak temperature increased. The peak temperature of the composite

made with ϕ=41% was 10 °C higher than the copolymer.

The peak temperature of the α relaxation until 41% volume frac-

tion was not so influenced by the volume fraction than γ mode. This

relaxation was attributed to the glass transition dielectric manifesta-

tion. The peak temperature Tα=−20 °C was in agreement with

DDS measurement of the α relaxation for P(VDF-TrFE) copolymer.

The amplitude of the TSC thermograms increased with the volume

fraction. As the barium titanate was a pyroelectric material, it was at-

tributed to the pyroelectric current associated with the inorganic

phase.

Fractional TSC [28] was employed to characterize the fine struc-

ture of the major α relaxation. For each elementary thermogram,

the sample was polarized under a field Ep=1 kV/mm in a tempera-

ture range of 5 °C. Fig. 4 shows the complex and the associated ele-

mentary thermograms of the α mode of P(VDF-TrFE) copolymer.

From each elementary thermogram, we calculate the relaxation

times associated with the α relaxation process. The evolution of α re-

laxation times had an Arrhenius behavior; we were able to determine

the activation enthalpies and the activation entropies at various tem-

peratures according to the barriers theory.

The activation enthalpies versus elementary peak temperatures of

the α mode for P(VDF-TrFE) and composites with ϕ ranging from 7%

to 41% were shown in Fig. 5. Whatever the volume fraction, the acti-

vation enthalpies of the composites reach a maximum value before

decreasing. The null activation entropy was represented by a dashed

line also called the Starkweather “line” [29]. For α mode, experimen-

tal data departed from the Starweather “line” whatever the volume

fraction. It meant that the molecular mobility of the dipolar entities

involved in the α process generated an increase in entropy. This

point was consistent with a relaxation process attributed to the

glass transition molecular mobility. As the volume fraction of barium

titanate filler increased the maximum and minimum values of the α

relaxation enthalpy decreased: enthalpy values were closer to the

Starkweather “line” and the α relaxation process tended to be more

localized.

4. Discussion

The pre-exponential factor τ0 which was proportional to the acti-

vation entropy (ΔS) was presented in Fig. 6 for the α mode of P(VDF-

Fig. 3. TSC thermograms (Tp=50 °C Ep=1 kV/mm, Tcc=−100 °C) of P(VDF-TrFE)/BaTiO3 composites with ϕ ranging from 0% (■), 7% (●), 23% (▲) to 41% (▼). Each thermogram is

normalized to the volume fraction of P(VDF-TrFE). (inset) The high temperature range of the TSC thermograms.



TrFE) and composite. In both cases a linear relationship between en-

thalpy and entropy was observed which is characteristic of a compen-

sation law.

As the volume fraction of the barium titanate was increased, the

pre-exponential factor was shifted toward higher times. τ0 and the

activation entropy were inversely proportional to the increase of

inorganic content and were responsible for a decrease of the system

disorder. It was attributed to an increase of intra/inter macromolecular

interactions in the amorphous phase. The main variation reports in this

study concerned the evolution of τ0 with the enthalpy. It can be seen in

Fig. 6 that the maximum and minimum values of the activation

enthalpies decrease with an increase in volume fraction. This decrease

is proportional to ϕ. The temperature range of these enthalpies was not

influenced by the inorganic content. The decrease of the maximum and

minimum values of the activation enthalpies was attributed to the

decrease of the Cooperative Rearranging Regions (CRR) size [30,31]

with the volume fraction.

Dynamic Dielectric Spectroscopy measurements showed that the

physical structure was independent from the volume fraction in the

liquid state. In the same way, Differential Scanning Calorimetry ex-

periments, not presented here for purpose of clarity, showed that

the barium titanate contents only had a weak influence on glass

transition and crystallinity ratio of these composites. Thus, the de-

crease of the CRR size cannot be explained by any interactions be-

tween inorganic and organic phases. Densification effect due to the

increase of the inorganic content and an increase of the intra/inter

macromolecular interactions in the amorphous phase appeared to

be responsible for the slight decrease of the CRR size. This conclusion

was in good agreement with a recent study [25] made on PA11/

BaTiO3 composites.

5. Conclusion

The work presented here describes the influence that the volume

fraction of inorganic barium titanate submicron fillers with a mean

diameter of 700 nm has on the molecular mobility of the amorphous

phase in the copolymer P(VDF-TrFE).

The TSC measurements were used to investigate the physical

structure of the composite at a nanometric scale. The densification

of the matrix with the increase of the inorganic phase causes a de-

crease of the activation enthalpies and activation entropies. These ac-

tivation parameters were involved in the dynamics of the α

relaxation associated with the delocalized mobility near Tg. These

evolutions were attributed to the decrease of Cooperative Rearran-

ging Region sizes and an increase of intra/inter macromolecular inter-

actions in the amorphous phase.
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