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Abstract 

 In the context of vineyard leaf roughness analysis for precision spraying applications, this 
article deals with its characterization by computer vision and cloud computing techniques. The 
techniques merge feature extraction, linear or nonlinear dimensionality reduction techniques and 
several kinds of classification methods. Different combinations are processed and their performances 
compared in terms of classification error rate, in order to find the best association. However, these 
combinations are hardly processed because of the lack of computing power and the prohibitive time 
consumption of the algorithms. To overcome these difficulties, we propose a solution: the use of cloud 
computing, which considerably improves computing power. We conclude on the well performance of 
vineyard leaf roughness characterization through the combination of features extraction, 
dimensionality reduction and classification processed in a cloud computing environment. 
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1. Introduction 
 Since the development of Precision Agriculture (Robert 1999), many works have been 
done on the optimization of input in the field so as to reduce the environmental impact and to 
increase the yield that is the benefit for the farmers. Two specific activities have been 
especially focused, the fertilization (mineral or organic spreading (Hijazi et al. 2008; Villette et 
al. 2008) and the spraying (crop/weed discrimination (Yun et al. 2006) for appropriate 
weeding …). 

 Particularly, in the domain of vineyard spraying research, one of the most important 
objectives is to minimize the volume of phytosanitary products in order to be more 
environmentally respectful with more effective plant treatments. Thus, the main goal is to be 
sure that the spray reaches the target in order to reduce losses that occur at the application. 
Mechanisms of losses by drift are now well known, contrary to runoffs on the leaves. These 
last ones are related to adhesion mechanisms of liquid on a surface. Specific models have 
been developed (Forster et al. 2005) and showed that the predominant factor is leaf 
roughness, for which few robust works and models have been carried out. For example, with 
hydrophobic surface, “lotus effect” can appear as in the Figure 1. 



2 
 

 In a precision viticulture context, our work aims at analysing droplets behaviour on the 
leaves. Therefore, we have to study vineyard leaf surface and particularly its roughness. 
Taking the computer vision viewpoint, we propose here to characterize the vineyard leaf 
roughness through the performance of a combination of spatio-frequential texture feature 
extraction and classification methods. However, if we consider the methodological aspect of 
our process, one of most important step corresponds to the dimensionality reduction (DR) of 
the features in order to reduce redundancies due to significant extracted parameters size. In 
this context, several kinds of DR approaches have been compared in previous works for 
other applications, such as multispectral image compression (Journaux et al. 2006). The 
results coming from these works clearly show that some efficient techniques such as 
Curvilinear component analysis are very restrictive due to a convergence problem of the cost 
function minimization. Indeed, such problems are resolved with a second order gradient 
resolution, such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Levenberg-Marquart 
method (Fletcher 2000). Unfortunately, these techniques are really time consuming and need 
significant computing power due to the iterative calculation of the derivative function based 
on the hessian calculations, which ensure to find the global minimum of the cost function. 
Considering these conditions, we propose here to overcome this lake of power calculation 
with the use of a separate computing system, well known by the name of cloud computing. 

2. Material and methods 
Our aim is to estimate vineyard leaf roughness. In this purpose, we use texture analysis. 

The main goal of texture analysis is to formalize the texture feature by mathematics 
parameters. In order to test our texture classification protocol, the experiments include 
images (Figure 2) acquired with a SEM microscope and representing different kinds of leaf 
surfaces coming from seven plant leaf species. 

             
Figure 2: Leaf texture images; from left to right: tomato, ray grass, mature wheat, pea, young 

wheat, horsetail, vineyard. 

For each class of leaf textures, 150 to 200 images have been acquired. Our dataset is 
made up of 1234 images. Each image consists of a 100 µm scale image, with a resolution of 
512× 512 pixels adapting the scale to our biological application. 

2.1. Texture feature extraction 
In order to extract the texture features, a variety of methods have already been proposed 

in the literature and tested in practice. In this context, (Jain et al. 1993) distinguish four 
families of texture feature extraction: statistical, geometrical, model based and signal 
processing. A successful texture classification or segmentation requires an efficient feature 

 
Figure 1: Representation of lotus effect (photo by William Thielicke) 
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extraction methodology. However, the major difficulty is that textures in the real world are 
often not uniform, due to changes in orientation, scale, illumination conditions or others visual 
appearances. In this context, due to the high variability of orientation, scale and illumination 
conditions for the different textures, we prefer to test our protocol via the computation of 
robust invariant such as Generalized Fourier Descriptors (GFD) and Zernike moments (ZM). 

2.1.1. Generalized Fourier Descriptors 
The GFD are defined as follows. Let f  be a square summable function on the plane. The 

Fourier transform is then: 

 
2

(̂ ) ( )exp .f f x j x dx  
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If  ,  are polar coordinates of point  , we shall denote again  ˆ ,f   the Fourier transform 

of f at point  ,  . Gauthier et al. (Gauthier et al. 1991) defined the mapping fD from 

 into   by 
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So, fD  is the GFD feature vector which describes each texture image as in Figure 3. 
 
 

 
Figure 3: Scheme of GFD texture vectors 

 

This vector will be used as an input of the supervised classification method and be reduced 
by DR methods. Motion descriptors, calculated according to equation (2), have several 
properties useful for object recognition: they are translation, rotation and reflection-invariant 
(Gauthier et al. 1991; Smach et al. 2007). 
2.1.2. Zernike moments 
The kernel of ZM is the set of orthogonal Zernike polynomials defined over the polar 
coordinate space inside a unit circle. The two dimensional ZM of an image intensity function 

( , )f r θ are defined as: 
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ZM are rotation-invariant: the image rotation in spatial domain simply implies a phase shift to 
the ZM. Mukundan et al. (1998), and Khotanzad et al. (1990), have shown that translation-
invariance of ZM can be achieved using image normalization method. Chong et al. (2003) 
present a mathematical framework for the derivation of translation invariants of radial 
moments defined in polar form. 

2.2. Dimensionality reduction 
The GFD and ZM provide features with potential in pattern recognition. However, it 

represents very high dimensional datasets which are difficult to handle with redundant 
information. Unfortunately, in a classification context, high dimensional data are often 
redundant, strongly correlated and suffer from the problem of the “Hughes Phenomenon” 
(Hughes 1968). This results in inaccurate classification, as illustrated in the figure 4. 

Moreover, data are also large, and the computational cost of elaborates data 
processing task may be prohibitive. Thus, to improve the classification performance it is well 
interesting to use DR techniques in order to transform high-dimensional data into a 
meaningful representation of reduced dimensionality.  

2.2.1. Estimating intrinsic dimensionality 
Let 1( ,..., )T

n=X x x be an n×m data matrix. The number n represents the number of image 
examples contained in our texture dataset. Our texture dataset is made up of 1034 
agronomical images and 200 vineyard leaf images whose size is 512x512 pixels, m is the 
dimension of vector ix , corresponding to the concatenation of the 255 values for GFD and 
the 25 first ZM. Ideally, the reduced representation has a dimensionality that corresponds to 
the intrinsic dimensionality of the data. One of our working hypotheses is that, though data 
points (all texture images) are points in m

 , there exists a p-dimensional manifold 
1( ,..., )Tn y y  that can satisfyingly approximate the space spanned by the data points. The 

meaning of “satisfyingly” depends on the dimensionality reduction technique used. The so-
called intrinsic dimension (ID) of X  in m

  is the lowest possible value of p (p<m) for which 
the approximation of X  by   is reasonable. In other words, the ID is defined as the number 
of variables which are sufficient to represent the signal. In order to determine the ID of our 
dataset, we used a geometric approach that estimates the equivalent notion of fractal 
dimension (Camastra et al. 2002). Using this method, we estimated and fixed the intrinsic 
dimensionality of our dataset as being p=8. 
 
DR methods can be classified according to three characteristics: 

- Linearity: This describes the type of transformation applied to the data matrix, 
mapping it from m

 to p
 . 

- Scale analysis (Local or global): This reflects the kind of properties the 
transformation does preserve.  

 
Figure 4: Illustration of Hughes phenomenon 



5 
 

- Metric  (Euclidean or geodesic): This defines the distance function used to estimate 
whether two data points are close to each other in m

 , and should consequently remain 
close in p

 , after the DR transformation. 
 

It already exists a dozen of linear and non-linear DR methods (Lee et al. 2007). 
Unfortunately, it's impossible at this time of our work to develop all these methods. We only 
focus on non linear approaches which present a bad trade-off between really good quality of 
results and high computational cost, that makes these approaches little workable. Among 
these methods, some require the minimization of a second order cost function so far 
impossible to achieve due to the lack of computing power and prohibitive time consuming of 
the second order gradient resolution algorithms. In order to overcome this problem, we 
propose here one solution based on cloud computing which allows sharing of computing 
power through internet.  

In order to complete the comparison between the different non linear methods, we use 
as controls the vector with original features and the reduced vector with the well-known linear 
approach: PCA (Jollife 1986). 

2.2.2. Linear methods 

It is the best known DR method. PCA finds a linear transformation for keeping the subspace 
that has largest variance. It can be shown that reconstruction error 

Principal Components Analysis (PCA) 

PCAJ  is minimized for the 

iu being the eigenvectors of the covariance matrix of X . It is  interesting to note that PCA is 
close to the classical Multidimensional Scaling (MDS) introduce by Shepard (Shepard 1962) 
and Kruskal (Kruskal 1964) when Euclidean distance is used as it demonstrates in (Fodor 
2002). This relation between MDS and PCA is important because MDS corresponds to the 
basic method of other nonlinear DR methods such as ISOMAP (Tenenbaum et al. 2000). 
PCA is linear, global and Euclidean technique. 

2.2.3. Non-linear methods: global approaches 

Sammon's mapping is a DR method that tries to preserve the neighbourhood topology of the 
set of data by preserving distances between points (Sammon 1969). To evaluate the 
topology preservation, we use the following stress function minimized by a gradient descent: 

Sammon's mapping. (Sammon) 

2
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Where ,
m
i jd and ,

p
i jd are the distances between points ith and jth points, in m

 and p
 . This 

function allows adapting the distances in the projection space compared to the initial space. 
Sammon’s mapping is a nonlinear, global, and Euclidean method. 

Isomap (Tenenbaum et al. 2000) estimates the geodesic distance along the manifold using 
the shortest path in the nearest neighbours’ graph. It then looks for a low-dimensional 
representation that approximates those geodesic distances in the least square sense. The 
three steps are: (1) Build 

Isometric feature mapping (Isomap) 

mD (X) , the all-pairs distance matrix. (2) Build a graph from X (k 
nearest neighbours). For a given point ix  in m

 , a neighbour is either one of the K nearest 
data points from ix  or one for which m

ijd ε< . Build the all-pairs geodesic distance matrix 

m (X)∆ , using Dijkstra’s shortest path algorithm. (3) Use classical MDS to find the 
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transformation from m
 to p

 that minimizes 

       
2

,
( , ) ( )

n
m p

ISOMAP ij ij
i j

J X p δ δ= −∑         (7) 

Isomap is nonlinear, global and geodesic. 

2.2.4. Non-linear methods: local approaches 

CCA is an evolution of the Multidimensional Scaling (MDS) and Sammon’s mapping 
algorithms (Demartines et al. 1997). Instead of the optimization of a reconstruction error, 
CCA aims at preserving the distance matrix while projecting data onto a lower dimensional 
manifold. Let 

Curvilinear Components Analysis (CCA) and Curvilinear Distance Analysis (CDA) 

(X)mD be the 2 2n n× matrix of distances between pairs of points in X: 

 (X) ( ),m
m ijD d= where m

ij i jd = −x x  (8) 

After DR transformation to p
 , we also have: 

(X) ( ),p
p ijD d= where p

ij i jd = −y y  (9) 

  
CCA tries to find the best suitable transformation, minimizing: 
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Where F is a decreasing, positive weighting function, giving more importance to the 
preservation of small distances. CCA is nonlinear, local and Euclidean.  

CDA is a refinement of CCA (Lee et al. 2007), minimizing: 

         
2

, 1
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m p p
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Where m
ijδ measures the geodesic distance between ix and jx , as in Isomap. CDA is 

nonlinear, local and geodesic. 

2.3. Classification 
 Classification is a central problem in pattern recognition (Duda et al. 2001) and many 
approaches to solve it have been proposed such as the connectionist approach (Bishop 
1995) or metrics based methods, k-nearest neighbours (k-nn) and kernel-based methods 
such as support vector machines (SVM) (Vapnik 1998). In our experiments, the average 
performances of the dimensionality reduction methods applied to the features have to be 
evaluated. In this context, we have chosen and evaluated six efficient classification 
approaches from four families  of classification: the boosting (adaboost) family (Schapire 
1990) using three weak classifiers, (hyperplan, hyperinterval and hyperrectangle), the 
hyperrectangle (polytope) method (Miteran et al. 1994), the SVM method (Vapnik 1998; Abe 
2005) and the connectionist family with a multilayer perceptron (MLP) (Rumelhart et al. 
1986). To validate the classification performance and estimate the average error for each 
method, we performed 20 iterative experiments with a 10-fold cross validation procedure 
(Witten et al. 2005).  

2.4. Cloud computing 
Cloud computing is a concept referring to the use of memory and computing power of 

servers around the world interconnected via Internet (Vaquero et al. 2009). We see here the 
principle of grid computing. Users access many services online without having to manage 
infrastructure. Similarly, applications and data are no longer on their local computers, but in 
the cloud, Internet. The access service is via a standard application most of the time a Web 
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browser, located on any PC, or Web services. Applications are being transformed into 
service, users can consume on demand. This is the concept "Software as a Service (SaaS). 
This software is being deployed on each machine, freeing customers from software 
administration. In addition, software evolves seamlessly to customers, without impacting their 
information systems. Finally, service is billed according to use and the amount of computing 
resources consumed. 

This software, a service, is encapsulated on a platform called "Platform as a Service" 
(PaaS) (Vaquero et al. 2009). This platform facilitates application deployment with lower cost, 
lower complexity, without having to purchase and manage hardware, software and hosting 
capabilities. These platforms are based on infrastructure that has also become a service, 
"Infrastructure as a Service" (IaaS) (Vaquero et al. 2009). These facilities are generally 
virtualization environments. Clients no longer have to purchase and manage servers and 
softwares to ensure the data and software storage and to buy and manage the network 
equipment. We find a stack with layers formed by the software (SaaS) platforms (PaaS) and 
infrastructure (IaaS). The client uses one or more of these layers to meet these needs. 
 Cloud comes in three types: private cloud public, cloud and hybrid cloud. Public cloud 
(or external) describes cloud in traditional way. That is, Internet resources providing a service 
request via Web applications or Web services. In private cloud (or internal), companies are 
transforming their data center infrastructures through virtualization technologies and 
automation. Infrastructure can then provide resources to application as needed. This results 
in better resource utilization and reduced costs. However, companies must manage and buy 
servers, network hardware and software. This type of cloud is only a structure transformation 
using the tools of public clouds. With private cloud, the users are only purchasing a service 
rather than purchasing and management to do. Finally, a hybrid cloud is composed of both 
private and clouds both audiences. 

We have built a private cloud using 12 identical machines for hardware level. In terms of 
software, we used GNU Linux PelicanHPC1 which is based on GNU Debian2. The 
processing on the images was performed using GNU Octave3, a freeware, open source and 
compatible with MatLab4

3. Results and discussion 
. 

Here, we present the results in terms of classification error, with several combinations of 
DR and classification methods and the results in terms of time computing, with several 
configurations of clouds. 

3.1. Classification results 
The results are exposed in terms of classification error rate (Table 1). For our dataset, 

regarding to the classification error using the original feature space, the best results are 
obtained using SVM (e=3.82%). All the other methods give poorer results (from 5.4 % to 
35.7%). Their performances are often improved by DR and the optimum of error rate is 
obtained by combining CDA and SVM (e=1.92%). The Isomap combination with SVM gives 
similar results.  

It appears that the combination of GFD and ZM for texture extraction, CDA for DR and 
SVM for classification provides sufficient information to characterize vineyard leaf roughness. 
Moreover, in the group of fast methods of decision, the best result is obtained using 
Hyperrectangle combined with Isomap (e=4.25%).  

 

                                                
1 http://idea.uab.es/mcreel/ParallelKnoppix/ 
2 http://www.debian.org/ 
3 http://www.gnu.org/software/octave/ 
4 http://www.mathworks.com/ 
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Hyperplan Hyperinterval Hyperrectangle

Original features 6.52 5.4 16.87 27.61 3.82 35.7

linear PCA 7.64 3.94 8.62 9.66 2.35 11.9

Sammon 26.9 25.84 10.89 10.1 5.48 13
Isomap 7.2 5.12 4.25 7.8 2.28 11.2
CCA 31.07 17.47 5.23 9.98 2.89 16.2
CDA 34.13 7.6 4.83 9.75 1.92 15.4

Dimensionality 
reduction nonlinear

SVM MLPMethods Boosting Hyperrectangle

 Table 1: Classification results on the plants leaf dataset (% error rate) 

It appears that the combination between GFD, ZM and CDA provides sufficient 
information to characterize plant leaf roughness. Particularly, this solution of texture 
classification allows to separate our seven kinds of plants leaf surface images like vineyard 
leaves in seven different clusters.  

For our specific application of vineyard spraying, these results have to be combined 
with contact angles measured using a high-speed imaging system based on PTVS technique 
under development with the FUSAGx University. In our future work, we want to apply our 
protocol on two different problems: first, in precision viticulture in order to modelling the 
evolution of vineyard leaves roughness in a context of precision spraying research by 
analyzing different growth stage of leaves. Second, we will apply this comparison review to 
multispectral texture images for which the original dimensional space is higher and for which 
the correlation between spectral bands are often very important. 

3.1. Cloud computing results 
The results are exposed in terms of time computing:  
 

Methods/Number of machines 
No cloud 2 6 12 

(1) (1+1) (1+5) (1+11) 

PCA 0,46 0,27 0,09 0,05 

Isomap 24,55 14,19 4,84 2,51 

CCA 361,78 209,12 71,36 36,99 

CDA 378,59 218,84 74,67 38,71 

Sammon’s mapping 894,21 516,88 176,37 91,43 
Table 2: Time computing (in s) with several cloud configurations 

 
For our experiment regarding to the cloud experiment results, the best computing time 

for iterative approach is obtained with Isomap in 2.51s (12 machines) against 24.55s (1 
machine). It is important to note that the rating is not changed between the methods with and 
without cloud. However, even if the gain seems to be short for Isomap methods, we can see 
that it is the opposite for Sammon’s mapping in 91.43s (12 machines) against 894.21s (1 
machine). At this time of our experiment, it is interesting to note that it is the slowest methods 
for which the gain is the more important. 

For the faster methods as PCA, we can see that the gain is not profitable compared to 
the lowest approach. In the case of the fastest approach, it seems it will appear a strong 
limitation due to pass band width with and within the cloud.  

So, the best methods combination of DR/classification coupled with cloud computing 
seems to be the CDA/SVM combination for iterative approach even if the standard PCA 
coupled with SVM still offers a good trade-off between computation time and performances. 
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4. Conclusion and perspectives 
In this paper, we proposed a comparison of iterative DR methods combined, with several 
classification methods coupled, with cloud computing process in the context of texture 
classification of natural images using GFD and ZM. We used the powerful cloud computing 
which has interesting properties in the context of hard computing algorithms. 

The use of cloud computing for image processing is interesting in terms of 
computation time. Processing times are reduced significantly. However, our cloud is made up 
of 12 machines is not enough power for the methods we used. Even if this time has greatly 
decreased, it is still too high, for example for the Sammon's mapping method. It will 
significantly increase the number of machines in the cloud and/or have recourse to external 
clouds, such as Cyclone5

The results are acceptable and the proposed method can be used as robust tool for 
roughness analysis. Nevertheless, the experiments were done on small samples for the 
agronomic dataset, although the results obtained on our dataset are pertinent. To improve 
these results, we will increase the number of leaf texture surfaces with different leaf species 
(vineyard leaves and other crops) at different growth stages to follow the evolution.  

. 

From the image processing viewpoint, comparisons are currently done with other 
texture features such as spatio-frequential and statistical parameters (Gabor filters, co-
occurence matrices …) and combination of colour-texture analysis that provide high 
dimensional data by the concatenation of the textural features and the spectral information. 

Finally, the combination of CDA and SVM could be used for other agronomic 
parameter detection such as hydrophobic or hydrophilic surfaces, or monocotyledon/ 
dicotyledon recognition. The modeling of artificial leaf texture for experiments in laboratory to 
control the hydrophobicity of surface and then adapt the sprays appears also as an 
interesting and innovative research. For this last work, comparisons with spectral tools will be 
necessary. 

For a same crop, we want to distinguish different growth stages (like vineyard leaves), 
in order to optimize the input but also to detect earlier the diseases. Indeed, a disease will 
modify the structure of the leaf so the texture. 

Finally, we are currently developing some research around precision viticulture, and 
the results and methods presented in this paper will help us to model the ratio between the 
leaf roughness and the droplets behaviour. This will be combined to the use of optical 
approaches, such as PTVS (Particle Tracking Velocimetry Sizing) to study the behaviour of 
the droplets on the leaves. This research interests the sprayer manufacturers but also the 
phyto pharmaceutical firms.  
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