
Synchronizing the dynamics of a single NV spin qubit on a

parametrically coupled radio-frequency field through microwave dressing

1 Measurement setup

NV centers are inclusions in nanodiamonds spincoated on a quartz plate. We measure the fluorescence of a single
NV center with the setup shown in S1. Manipulation of the NV center is performed by MW and RF fields applied
through a home-made coplanar waveguide deposited on the quartz plate.

S 1: Setup. A confocal microscope is employed to read and prepare the NV electronic spin state. MW and RF
currents are combined in a homemade duplexer and delivered to the NV via a coplanar waveguide lithographied on
a quartz plate supporting diamond nanocrystals.

The NV fluorescence is excited non-resonantly with a 532nm laser. The photons emitted by the NV center are
collected via a high numerical aperture microscope objective (NA = 0.85, compensated for 200µm glass thickness)
and sent through two optical filters to an avalanche photo diode (APD) (see S1). Fluorescence rates detected by
the APD are in the 20 kHz range for the NV center used in this article. Measurements of Rabi oscillations were
done in the saturated regime in order to be insensitive to intensity fluctuations of the laser. A 200 MHz AOM is
used to form laser pulses for initialization and time-resolved readout of the NV center’s spin state.

The microscope objective is mounted on a piezo-stage in order to track a single NV center. We developed a
tracking program with a feedback loop which continuously maximizes the NV fluorescence. An adaptative step size
routine allows for tracking a single NV over long duration while minimizing the fluorescence fluctuations due to the
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tracking.
For all the experiments described in the paper we restrict ourselves to the states |mS = −1〉 and |mS = 0〉. A
permanent magnet is used to Zeeman split the NV states |mS = −1〉 and |mS = +1〉 and to reach the ESLAC.
To address NV centers with MW and RF fields we patterned a home-made 50 Ω impedance coplanar waveguide on
the quartz plate sample. On the central part of the waveguide an optical window is opened to allow optical access
to the NV centers for fluorescence measurements. In this part the central conductor dimensions are reduced (cross
section 27µm x 0.15µm) in order to increase locally the magnetic field (see S2).

Using the Biot-Savart law we estimate the local magnetic field seen by a NV center located 5µm away from
the waveguide (see S. 2) and with a spin orientation perpendicular to the quartz plane to be 0.235 mT/V, with
V the applied bias voltage. The corresponding shift of the ESR resonance frequency is given by βmax = gµB

h
B
V ∼

6.58 MHz/V.

S 2: Waveguide. Left: Electron microscope image of the waveguide used in this experiment. Right: Fluorescence
scanning image of a collection of NV centers close to the waveguide. The NV center circled in yellow is the one
used in this study.

2 Determination of the orientation of the NV center

Since the NV centers used in the experiment are hosted in nanodiamonds spin coated onto the sample, their align-
ment relative to the quartz plate is not under control. We determine the orientation of our NV center by approaching
a permanent magnet with a homogeneous field gradient from two directions and detecting the corresponding Zee-
man shift of the ESR peak. For the NV center presented in the main text, the polar angle (the angle between the
optical axis (z) and the NV quantization axis) is estimated at θ ≈ 68◦, while the azimuthal angle (the angle between
the waveguide central conductor axis (x) and the projection of the NV quantization axis onto the quartz plate,
see S. 3) is estimated at φ ≈ 71◦. The imprecision inherent to the determination of the absolute magnetic field
applied generates a 10% error for this estimation. The magnetic field B generated by the waveguide in the vicinity
of the NV center is perpendicular to the quartz plate (Biot-Savart calculations show that the slight elevation of the
waveguide and the vertical uncertainty in the nanocrystal position play negligible roles here), we have B‖ = B cos θ
and B⊥ = B sin θ. Hence, our NV center will experience magnetic field contributions along both directions, where
components oscillating along B‖ will modulate the energy of the NV center and B⊥ will induce spin rotations.
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S 3: NV orientation. The schematics shows the orientation of the NV quantization axis with respect to the waveguide
axis (‖ x̂) and the optical axis (‖ ẑ) with angles θ and φ.

For the experiments presented in the main text MW and RF fields are simultaneously applied through the same
waveguide. As described in [1] the effects of the magnetic fields (both Rf and MW) can be categorized as follows:

• BRF
‖ : energy modulation of the two level system (TLS) at RF frequencies.

• BRF
⊥ : RF frequencies are off-resonant and hence do not induce spin transitions.

• BMW
‖ : Energy modulation at MW frequencies are too rapid compared to all other time-scales involved to be

seen by the TLS.

• BMW
⊥ : Will induce spin transitions at resonance.

Note that in order for multi-photon spin transitions to occur between |mS = 0〉 and |mS = −1〉 (which could have
been responsible for Rabi oscillations on the sidebands (Fig. 3 in the article)), an odd number of photons needs
to be absorbed / emitted by the TLS in order to preserve the spin selection rules for the interaction Hamiltonian.
Such effects for photon numbers larger than 1 are highly unlikely and thus neglected in our further considerations
[1]. As a consequence, we can restrict our study to the Hamiltonian described in the article, where the RF and MW
fields play an asymmetric role: the RF modulates the spin energy (σz), while the MW induces spin flips (σx).

3 Modeling of the NV spin dynamics in presence of RF and MW fields

For all measurements presented in the main text a static magnetic field is applied in order to Zeeman shift the
levels |mS = −1〉 and |mS = +1〉 and restrict ourselves to the S( 1

2 ) subspace : (|mS = 0〉,|mS = −1〉), discarding
the |ms = +1〉 state. We thus model the NV center as a single two level system with spin states |0〉 and |1〉 coupled
to a MW field via the σx−operator and to a RF field via the σz−operator, as justified in the previous section. The
restriction to the subspace leads to a rescaling of the magnetic fields if we want to use the convenient spin 1/2

formalism in our Hamiltonian which can be rewritten: Hint/gµB = B‖ σ
1/2
z +B⊥/

√
2σ

1/2
x . Thus, the fields become

B
( 1
2 )

‖ = B
(1)
‖ and B

( 1
2 )

⊥ = 1√
2
B

(1)
⊥ . This is equivalent to rescaling the parametrized MW drive strength ΩR, such

that ΩR = gµB√
2~B

MW
⊥ .

Furthermore, we make the approximation of a Markovian environment for the spin and assume that all information
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of the spin’s coherence passed to the environment is completely lost. This approximation although not entirely
justified for NV spins in nano-diamonds allows to understand most of the experimental traces observed. However
this approximation fails when trying to explain the increase of Rabi oscillation decay time as observed in Fig 4a.
This effect which can be interpreted as a continuous dynamical decoupling and a protection of the spin coherence
due to the continuous spin locking is beyond the scope of this article and will be investigated elsewhere.

3.1 Bloch equations

The NV spin dynamic is described by the following system of Bloch equations [2]:u̇v̇
ẇ

 =

−Γ∗2 − Γc −(ω − ω0(t)) 0
ω − ω0(t) −Γ∗2 − Γc ΩR/2

0 −2ΩR −2Γ1 − Γp

uv
w

−
 0

0
Γp

 (1)

Here, u is the real part of the dipole matrix element, v the imaginary part and w is the population difference
defined as w = σ11 − σ00. The involved parameters are:

• ΩR - the strength of the microwave field,

• ω - the frequency of the microwave field,

• ω0(t) = ω0 + δω0 cos (Ωmt+ ψ) - the resonance frequency of the TLS, which is modulated at a frequency Ωm

by an amplitude δω0, at an oscillatory phase ψ (see 6).

• Γ1 - the population decay rate from state |ms = −1〉 to state |ms = 0〉

• Γp - the relaxation due to the optical illumination, which repolarizes the spin in its ground state [2]. This
process implies a transition via the metastable state. Therefore Γp is limited by the lifetime of the metastable
state: Γp = Γ∞p

s
s+1 , where Γ∞p ≈ 1

200 ns = 5 MHz, and s = Popt/Psat the saturation parameter of the radiative
transition given by the ratio of the optical pumping power Popt and the saturation power Psat.

• Γ∗2 - the intrinsic spin decoherence rate.

• Γc - the decoherence consequent to the destruction of phase information due to optical transitions, Γc =
Γ∞c

s
s+1 , where Γc ≈ 1

12 ns = 80 MHz.

3.2 Bloch equations for Rabi oscillations

For Rabi oscillations only the MW and RF fields act on the spin and the laser is turned off during the spin evolution,
hence s = 0 and the optically induced decay rates reduce to Γp = Γc = 0. This simplifies equation (1) to:u̇v̇

ẇ

 =

 −Γ∗2 −(ω − ω0(t)) 0
ω − ω0(t) −Γ∗2 ΩR/2

0 −2ΩR −2Γ1

uv
w

 (2)

3.3 Connection between temporal decay rates and FFT linewidths

We place ourselves here in the case of resonant driving δ = 0. In absence of RF field, the decay rate of Rabi

oscillations (w(t) ∝ e−ΓRabi
2 t cos(ΩRt)) is given by

ΓRabi
2 =

Γ?2
2

+ Γ1,

The corresponding peak in the FFT power spectrum (see Fig. 4 for an FFT amplitude spectrum) has a half width
at half maximum of ΓRabi

2 /2π. When turning on the RF field, three peaks are now visible in the FFT ampltiude
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plot, splitted by δω0/2. The central peak HWHM is unchanged, while the side peaks of the Mollow triplet present
a 1.5 times larger damping rate (see Fig. 4). The simulated FFT amplitude spectra are fitted with the expression:

|A0 +B0L(f, fm,Γspin/2π) +B+L(f, fm + δω0/2, 3Γspin/4π) +B−L(f, fm − δω0/2, 3Γspin/4π)|

where

L(f, f1, δf) ≡ 1

f − f1 − iδf
is a Lorentzian whose power spectrum HWHM is δf .

S 4: Simulated traces of Rabi oscillations and their corresponding FFT amplitude spectra, in absence and presence
of a 6 MHz RF field. Black points are the results of our simulations of Bloch equations, red curve are fits (see text).
The damping rate of the central peak of the triplet is the same as the one obtained in absence of RF. The side
peaks of the triplet feature 1.5 times larger damping rates. In the real experiment this is not the case, due to the
non-Markovian nature of the spin environment.

4 Calibration

4.1 RF-field calibration

To evaluate the RF magnetic field seen by the NV center we measure how the ESR spectra are affected by the
RF signals. Figure S5 shows the shifts of the ESR resonance obtained for different DC voltages applied to the
waveguide input ports. The dual RF injection scheme was developed for compensating electric fields that induce
quadratic shifts of the ESR frequency as a function of the applied voltage. For the NV presented in this article,
increasing the DC voltage of both input channels leads to a linear shift of the ESR spectra. This firstly confirms
that no residual DC field is present at the position of the NV center: indeed the shifts in the ESR spectra measured
are symmetrical with respect to zero. Then, we deduce a linear dependency of the resonance shift as a function of
RF amplitude voltage of β = 3.6 MHz/V. Using the simulated value of βmax = 6.58 MHz/V, we conclude that the
NV center is oriented with a polar angle of θ = 56◦(±3◦), which is in rough agreement with the measurements of
section 2, the difference originating from the local structure of the waveguide and the impedance imperfections of
the RF ports scheme.
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S 5: RF calibration map. The scan along two directions allows to verify the linear shift of the spin resonance with
the applied voltage. The arrow indicates the modulation axis of the experiments presented here.

4.2 MW-field calibration

To calibrate the amplitude of the microwave field seen by the NV center, we measure Rabi oscillations for varying
MW input powers, see section 5.2. We verify that the measured Rabi frequency ΩR varies linearly with the amplitude
of the microwave generator output, as expected for a two level system. Using the previous expressions for Rabi
frequencies (taking into account the spin 1 to spin 1/2 reduction), the corresponding magnetic field seen by the
NV center falls in the range between 0.1 mT and 0.35 mT. The transmission losses in the MW port are estimated
bellow 3 dB, rendering the use of MW power amplifiers unnecessary, which improves the long term stability of the
MW scheme. This was found to be critical for accumulating Rabi traces over several days in order to obtain high
quality FFT data on a single electronic spin, as presented in this paper. The NV employed in this article was chosen
to present sufficient RF and MW sensitivities.

S 6: MW coupling. The MW calibration measurement (blue dots) allows to quantify ΩR vs. injected MW power.
The red line is a linear fit.
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5 Measurements

5.1 ESR and hyperfine structure

Figure S7 shows the ESR spectra obtained at low microwave power (3 dBm) and in presence of a small static
magnetic field of Bext

‖ ≈ 2.4 mT which lifts the degeneracy between |mS = −1〉 and |mS = +1〉 states. The ESR

peak, corresponding to the transitions between |ms = 0〉 and |ms = −1〉, exhibits a well resolved substructure of
three peaks of width 1.4 MHz and 2.2 MHz separation. This substructure is a consequence [3] of the hyperfine
interaction between the NV electronic and the 14N nuclear spin of I = 1.

S 7: Hyperfine structure. A measurement showing the hyperfine structure in the ESR response of the NV defect
under investigation.

This hyperfine coupling is responsible for the subpeak structures observed in the Rabi maps in Fig. 3 and has
been taken into account in the simulations (see section 6).

5.2 Rabi oscillations

We measure Rabi oscillations following the protocol depicted in figure S8: First the NV spin is initialized in its
ground state |0〉 with a 5µs laser pulse, then the NV spin-state is manipulated with MW pulses of variable duration
τ . Finally the spin state is read out by applying a laser pulse and measuring the spin-dependant fluorescence
signal [4]. The emitted photons are detected by correlated photon counting measurement synchronized to the Rabi
sequence, using a P7889 Multiscaler from FastComTek, see S9. Using relatively long laser pulses in our protocols
allows maintaining significant amount of optical duty cycles in order to maintain a sufficiently large photon number
to guarantee the reliability of the NV tracking.

S 8: Rabi oscillation sequence. The spin is optically polarized and subsequently manipulated by the microwave
field. The following laser pulse serves to readout the spin state and re-polarizes the spin prior to the next MW
pulse. In our protocol, the RF field is permanently turned on.
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S 9: Spin dependent fluorescence. The NV prepared in |0〉 (blue trace) emits on average more photons than the
NV prepared in |1〉 (red trace).

Measurements of Rabi oscillations presented in Fig. 3 and 4 of the main text are the result of an average over
1.4 × 106 realizations and correspond to about 40 hours of continuous measurement. During this duration the
position of the NV center with respect to the confocal microscope is kept constant by the home made NV-tracking
program. To compensate temporal drifts of the ESR resonance due to changes in temperature or drift of the external
dc magnetic field for measurements in Fig. 4, an ESR measurement is performed and the MW frequency is re-set
to resonance for each new set of experimental parameters. The temporal traces used to build the FFT map of
Fig. 4c are shown in S 10, clearly demonstrating the interplay of the different frequency components in terms of
beating signatures as well as the enhanced coherence times TRabi

2 . Notice however, that the measurement in Fig.
4b was done by continuous data acquisition over approximately 120 h, emphasizing the role of spin synchronization
in compensating drifts of the MW drive strength.
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S 10: Temporal traces of Rabi oscillations for varying MW powers. The plot represents the temporal evolution of
the spin population corresponding to the FFT traces of Fig. 4c, where Ωm /2π = 6 MHz.

To obtain sufficiently large resolution on the discrete Fourier transform spectra of Fig. 4e, 4f of the article, Rabi
oscillations are measured for MW pulse duration varying between 20 ns and 5 µs in 10 ns steps corresponding to
a spectral resolution of 200 kHz. The data used for Fig. 4c correspond to [20 ns -10 µs] in 20 ns steps (100 kHz
resolution). The high resolution data of Figure 4a and 4b correspond to the range [20 ns - 20 µs] in 20 ns steps (50
kHz resolution).

5.3 T1 measurements

The lifetime of the excited spin state is measured by polarizing the NV center in its excited state |1〉 or in its ground
state |0〉 and measuring the population after a varying time interval τ as described in [5]. The NV is initialized in
state |0〉 by optical pumping and then for every second measurement point rotated to |1〉 by a MW π-pulse (while
τ stays the same), see S11. The population is then read out by optical means and fitted to an exponential decay.
We find a population lifetime of T1 = 173µs, as depicted in S11.
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S 11: T1 measurement. Fitting to an exponential decay yields T1 = 173µs. Inset: protocol and schematics of the
spin evolution

5.4 Tspin measurements

The measured decay rate of Rabi oscillations depends on the experimental conditions, even if analytical solutions
of (1) predict that in case of resonant driving (δ = 0), the MW power does not contribute to the decay time of Rabi
oscillations. Indeed, our measurements indicate that it slightly decreases with the MW drive strength, an effect that
can not be described in our model where a Markovian bath has been employed. For example, the measurements of
S6 indicates that the decay rate of Rabi oscillations follows the expression: ΓRabi

2 ≈ 0.37 + 0.11(ΩR/2π) s−1, ΩR in
MHz. One can see that in the spin synchronization regime which requires large Rabi frequencies, the spin linewidth,
called Γspin for simplicity in the article, remains small compared to the RF frequency. For the measurements of Fig
4a,b taken in slightly different conditions due to longer time scans, the Rabi decay rate was measured at the level
of Γspin ≈ 3 × 105 s−1. In the article we have also employed the term Γspin when describing the modulated ESR
signatures and defining the resolved sidebande regime. In that case, one has to take into account the additional
light broadening (Γc) but for simplicity we have chosen to keep the same notation.

6 Simulations

To simulate the Rabi maps presented in Fig. 3 and 4 of the main text, we solved the system of equations (2)
numerically using a Runge-Kutta algorithm of 4th order developed in C. In our simulations, we use a temporal
stepsize of 10−4 µs. The initial parameters for the spin are w(t = 0) = −1, and u(t = 0) = v(t = 0) = 0 meaning
that the system is fully polarized in state |0〉 at time t = 0. Other parameters are Γ1 = 6000 s−1, Γ∗2 = 3× 105 s−1.
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6.1 Hyperfine structure

The peaked substructure observed on the experimental maps of Fig. 3 is due to the hyperfine coupling (cf section
5.1) and was implemented in our simulations. The nuclear spin lifetime is significantly longer (∼ 10 ms in[6]) than
a single MW pulse duration in the sequence of the Rabi protocol, but far shorter than the whole accumulation
time (hours). Thus we can consider that our measurements reflect the average over all possible nuclear spin
configurations. As a consequence, the final Rabi maps of Fig. 3 were obtained by superposing three maps simulated
for ω0, ω0 − 2.1 MHz and ω0 + 2.1 MHz.

6.2 RF phase averaging

No synchronization between the RF field and the Rabi sequence was employed in the experiments. However, in our
simulations the oscillatory phase at which the laser pulse is turned off, initializing the system evolution in presence
of RF and MW fields starting from the |0〉 state, do play a role as in classical phase lock loops. The derived FFT
spectra thus strongly depend on the oscillatory phase, ψ, as can be seen in figure S12. When the NV is driven
at ΩR = Ωm, the frequency component at Ωm is only present in the FFT for ψ = 0[π], where simultaneously, the
components at Ωm ± δω0/2 vanishes. Here, the phase difference ψ is defined such that for ψ = 0 at t = 0 the spin
is polarized in state |0〉 and the oscillator is at maximum amplitude, corresponding to ω0(t = 0) = ω0 + δω0. In
the simulated maps of Fig. 4 we averaged the temporal Rabi traces over ψ before calculating the FFT map. This
explains why all components are visible in the spectra.

S 12: Influence of the RF oscillatory phase on the Rabi maps. The FFT maps on the left are taken at different
initial oscillation states: the left upper trace are obtained when the RF field is maximum at t = 0 (ψ = 0), the
lower ones when it is at zero (ψ = π/2). The right map is obtained by averaging over the oscillatory phase in order
to describe the experimental situation.

7 Doubly dressed spin

In order to understand the features of Fig. 3 and Fig. 4 of the article, we present an interpretation in term of
double dressing of our system with a MW and a RF field. We find that by probing the MW dressed spin with the
RF field we can explain the triple peak features and the ”anti-crossing” in the FFT spectra. Reversely, this picture
also leads to an explanation of the Bessel-like dependence of the effective Rabi frequency. We consider the total
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Hamiltonian:
Htot = H0 +HMW +Hint (3)

with
H0 = ~ω0σ̂z + ~Ωmâ

†â+ ~ωb̂†b̂

HMW = ~ΩvR(b̂† + b̂)σx

Hint = ~κv(â† + â)σz

The generic eigenstates of H0 are |ms, N,M〉, where mS = 0, 1 is the spin state, N the photon number and M the
phonon number. Their eigenenergies are:

E|ms,N,M〉/~ = mSω0 +Nω +MΩm.

7.1 Dressing the spin with the MW field

We first dress the system with the microwave field and apply HMW. It does not modify the phonon number, so we
can use the usual dressed atom equations: we introduce the multiplicities

EN = {|1, N − 1〉, |0, N〉},

where N is the number of total excitations. If δ ≡ ω − ω0, we have an interaction Hamiltonian in the subspace:

HMW
int =

(
0

Ωv
R

√
N

2
Ωv

R

√
N

2 δ

)
,

where the factor of 1
2 arises from the rotating wave approximation. The new eigenstates are now |±N 〉 with energies

(setting the energy of the ground state |0, 0〉 to ~ω/2):

E|±N 〉/~ = Nω − δ

2
± 1

2

√
δ2 +NΩvR

2

featuring a splitting of

∆(N) ≡
√
δ2 +NΩvR

2.

If we define the angle ΘN in [0, π] by :

tan ΘN = −ΩvR
√
N/δ,

then the eigenstates can be written as:

|+N 〉 = cos
ΘN

2
|1, N − 1〉+ sin

ΘN

2
|0, N〉

|−N 〉 = − sin
ΘN

2
|1, N − 1〉+ cos

ΘN

2
|0, N〉.

The σz operator has no effect between multiplicities having a different N and is described in the basis {|−N 〉, |+N 〉}
by:

σz|EN =

(
sin2 ΘN

2 − cos ΘN

2 sin ΘN

2

− cos ΘN

2 sin ΘN

2 cos2 ΘN

2

)
.

Importantly, this point shows that the σz operator now has some non-trivial action on the new dressed eigenstates.
Thus, the RF field described by Hint can induce rotations of the dressed spin.
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7.2 Dressing the MW-dressed spin state with the RF field

As mentioned in the main text, in the picture of dressed states the role of longitudinal and transversal magnetic
field components are interchanged, as the dressed spin is polarized along an axis in the equatorial plane of the Bloch
sphere. Hence, a magnetic field along the z direction oscillating at frequency Ωm can induce transitions between
the dressed states if the field is resonant with the energy splitting, ΩR.

We add the phonon field and the generic eigenstates are now of the form: |±N 〉
⊗
|M〉 ≡ |±N ,M〉. The

interaction Hamiltonian couples the eigenstates that present a phonon number difference of ±1 and we can thus
restrict our considerations to the multiplicity:

ẼN,M = {|+N ,M − 1〉, |−N ,M〉}.

The uncoupled energies are:

E|±N ,M〉/~ = Nω − δ

2
± ∆(N)

2
+MΩm

and using sin ΘN = −ΩvR
√
N/
√
δ2 +NΩvR

2, the interaction Hamiltonian can be written in the multiplicity ẼN,M
as: (

0 κN,M/2
κN,M/2 Ωm −∆(N)

)
(4)

with

κN,M ≡ −
κv
√
M

2
sin ΘN =

κv
√
M

2

ΩvR
√
N√

δ2 +NΩvR
2
.

The new eigenstates |±N,M 〉 have energies

E|±N,M 〉/~ = Nω − δ

2
+

∆(N)

2
+ (M − 1

2
)Ωm ±

1

2
∆(N,M), (5)

where

∆(N,M) ≡
√

(Ωm −∆(N))2 + κ2
N,M

and

|+N,M 〉 = cos
ΘM

2
|+N ,M − 1〉+ sin

ΘM

2
|−N ,M〉

|−N,M 〉 = − sin
ΘM

2
|+N ,M − 1〉+ cos

ΘM

2
|−N ,M〉

and
tan ΘM = −κN,M/(Ωm −∆(N)).

For a classical description of the MW and RF field,
√
NΩvR → ΩR,

√
MκvN,M → δω0, the splitting becomes

∆(N,M)→ ∆Mollow, with

∆Mollow =

√(
Ωm −

√
δ2 + Ω2

R

)2

+

(
δω0

2

)2
Ω2
R

δ2 + Ω2
R

.

In case of resonant pumping δ = 0, it simplifies to:

∆Mollow =

√
(Ωm − ΩR)

2
+

(
δω0

2

)2

. (6)

The frequencies that are present in the Rabi oscillations have to be found in the spectrum of allowed transitions
of the σz operator between the eigenstates of the doubly dressed spin. The FFT spectra of the temporal Rabi
traces can be interpreted as a result of a ”fluorescence cascade” of the doubly dressed spin. The observed frequency
components are thus transitions allowed by the selection rules of the σz-operator, see S 13:
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|+N,M+1〉 ↔ |−N,M 〉 oscillating at Ωm + ∆(N,M)

|−N,M+1〉 ↔ |−N,M 〉 oscillating at Ωm

|+N,M+1〉 ↔ |+N,M 〉y oscillating at Ωm

|−N,M+1〉 ↔ |+N,M 〉 oscillating at Ωm −∆(N,M)

|+N,M 〉 ↔ |−N,M 〉 oscillating at ∆(N,M)

The last term is not visible in case of perfect resonant pumping (δ = 0). Due to state preparation in the ground
state of the spin, our system is displaced from equilibrium at t = 0. Thus the analysis of its relaxation towards
equilibrium following this initial displacement, which is a sort of percussional response, reveals all the allowed
transitions previously calculated. Their relative weight can be computed following the previous reasoning.

S 13: Left: the spin is first dressed by the MW field. Center: the oscillator/RF field acting in the dressed base.
Right: the transitions contributing to the measured Rabi oscillations close to the mechanical frequency.

7.3 Bloch - Siegert shift

When restricting the considered transitions to the ones within multiplicities ẼN,M we have implicitly made a
rotating wave approximation (RWA) for the RF field, as reflected by the factors of 1/2 in the off-diagonal elements
of Hamiltonian (4). Here, the assumption that δω0 � Ωm is not necessarily valid and for large values of δω0 we have
to consider effects like the Bloch - Siegert shift for the phonon field, which is indeed visible in our simulations and
experimental data, as mentioned in the main text. According to [7] the minimum splitting between the perturbed

energy eigenstates occurs at ΩR = Ω
⊙
R , with
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Ω
⊙
R ≡ Ωm −

(
δω0

4

)2
Ωm

−
5
(
δω0

4

)4
4 Ω3

m

+
61
(
δω0

4

)6
32 Ω5

m

. (7)

We define Ω∗R as the MW power for which the FFT component of the σz operator oscillating at the mechanical
frequency is maximum. Its expression is given by inverting the previous equation [7]:

Ω∗R ≡ ΩR +

(
δω0

4

)2
ΩR

+

(
δω0

4

)4
4 Ω3

R

−
36
(
δω0

4

)6
32 Ω5

R

. (8)

These epressions are in quantitative agreement with simulations and in qualitative agreement with experimental
data, see S 14.

S 14: Effect of the Bloch - Siegert shift. The MW power required for reaching the minimum splitting (Ω
⊙
R , red) and

the maximum spectral density (Ω∗R, black) at Ωm depends on the RF drive amplitude. The dots are data points
obtained from numerical simulations and fat solid lines are the analytical expressions given above.
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