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ABSTRACT. We introduce a new, elementary method for studying random differences in arithmetic progres-
sions and convergence phenomena along random sequences of integers. We apply our method to obtain sig-
nificant improvements on two results. The first improvement is the following: Let ` be a positive integer and let
u1 ≥u2 ≥ . . . be a decreasing sequence of probabilities satisfying un ·n1/(`+1) →∞. Select the natural number
n into a random sequence R = Rω of integers with density un . Let A be a set of natural numbers with positive
density. Then A contains an arithmetic progression a, a+r, a+2r, . . . , a+`r of length `+1 with difference r ∈ Rω.

The best earlier result (by M. Christ and us) was the condition un ·n2−`+1 →∞ with a logarithmic speed. The
new bound is better when `≥ 4.

The other improvement concerns almost everywhere convergence of double ergodic averages: we (ran-
domly) construct a sequence r1 < r2 < . . . of positive integers so that for any ε> 0 we have rn /n2−ε→∞ and for
any measure preserving transformation T of a probability space the averages

(0.1)
1

N

∑
n<N

T n F1(x)T rn F2(x)

converge for almost every x. Our earlier best result was the rn /n(1+1/14)−ε →∞ growth rate on the sequence
(rn ).

We dedicate this paper to the 70th birthday of our friend, Karl Petersen, who raised the interest of the
senior authors in random sequences 20 years ago.
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1. CONVENTIONS

In this paper, a dynamical system is a quadruple (X ,Σ,µ,T ) where (X ,Σ,µ) is a probability space, and T
is a Σ-measurable, measure preserving transformation, i.e. for any A ∈ Σ, we have µ(T −1 A) = µ(A). Since
the σ-algebra Σ doesn’t play any special role in what follows, we omit it from our notation, and we just write
(X ,µ,T ) instead of (X ,Σ,µ,T ).

We use the usual notational convention that the isometry of L1 induced by a measure preserving trans-
formation T is also denoted by the same letter T : T f (x) = f (T x).

The arbitrary constants c or C appearing in an estimate are always positive, and are absolute unless oth-
erwise noted. The same constant may have a different value even in the same series of estimates.

The notation
∑

n<N means
∑

0≤n<N , so 0 is included in the range of summation.
A lacunary sequence of positive real numbers or integers is a sequence {a1 < a2 < a3 < ·· · < an < . . .} such

that liminfn→∞ an+1
an

> 1.

2. INTRODUCTION, HISTORY

2.1. Intersective and recurrent sets. For a set A of positive integers, let d(A) denote its upper density

(2.1) d(A) = limsup
M→∞

|{a | a ∈ A, a < M }|
M

.

The celebrated result of [Sze75a, Sze75b] says that if A is a set of positive integers with positive density, then
for any positive ` one can find an `+1 long arithmetic progression a, a + r, a +2r, . . . , a +`r in A. One way
to generalize this result is to demand that the difference r is from some prescribed sequence.

Definition 2.1. Let ` be a positive integer. We say that a set R of positive integers is `-recurrent or `-
intersective if any set A of positive density contains an `+1 long arithmetic progression a, a+r, a+2r, . . . , a+
`r with the difference r ∈ R.

We refer to ` as the order of intersectivity.

We note that an `-intersective set may not be (`+1)-intersective, see [FLW06].
The explanation for the terminology “intersective” is that saying R is `-intersective is equivalent with

(2.2) d(A) > 0 implies A∩ (A− r )∩ (A−2r )∩·· ·∩ (A−`r ) 6=∅ for some r ∈ R.

For the term “recurrent”, it is known that eq. (2.2) is equivalent with the following: In every dynamical system
(X ,µ,T )

(2.3) µ(A) > 0 implies µ
(

A∩T −r A∩T −2r A∩·· ·∩T −`r A
)
> 0 for some r ∈ R.

The direction “recurrent =⇒ intersective” is known as Furstenberg’s transfer principle, and it was proved in
[Fur77].

It is known that the following sets are `-intersective

• the squares {12,22,32 . . . ,n2, . . .} or, more generally, the kth powers {1k ,2k ,3k . . . ,nk , . . .}. For `= 1, this
was a conjecture of Lovász, and was answered in [Sár78a, Sár78b]. The case of any ` was proved in
[BL96].

• the “prime minus ones” {2−1,3−1,5−1, . . . , p−1, . . .}, or the “prime plus ones” {2+1,3+1,5+1, . . . , p+
1, . . .} where p is a prime number. For ` = 1 this was a question raised by Erdős, and was answered
by [Sár78b]. The `= 2 case is solved in [FHK07], the case of all other ` is solved in [WZ12].
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• {
[13/2], [23/2], [33/2], . . . , [n3/2], . . .

}
or, more generally,

{
[1δ], [2δ], [3δ], . . . , [nδ], . . .

}
for any fixed posi-

tive, non-integer δ. For `= 1, this probably was first noted in [Wie89], but it’s clear that Boshernitzan
had been aware of the result. See [Bos83]. It also follows from the general result in [ES78]. For all `,
it is proved in [FW09].

These intersective sequences don’t increase faster to infinity than some power of n. We can express this in
terms of the counting function R(N ) = (r | r ∈ R,r < N ): the counting function of any of the above sets is
not very thin since it satisfies R(N ) > N ε for some positive ε. Are there any intersective sets which increase
to infinity faster than any power of n? The question is not exactly a good one: [ES78] considered sets with
dilations. A k-long dilation is a set of integers of the form {d ,2d ,3d , . . . ,kd}. Now, if a set contains arbi-
trarily long dilations, then it is a consequence of Szemerédi’s theorem, that the set is `-intersective for all
`. This way, one can make `-intersective sequences with arbitrarily thin counting functions. On the other
hand, a lacunary sequence cannot contain arbitrarily long dilations and it is shown in [ES77] that a lacunary
sequence is not even 1-intersective.

Are then the previously mentioned intersective sets exceptional in some sense, or a typical set is also
intersective? To be able to talk more conveniently about these questions, we introduce the concept of a
random sequence:

Definition 2.2. Given a sequence u1,u2, . . . of probabilities, let U1,U2, . . . be an independent sequence of
0−1 valued random variables on a probability space (Ω,P ) so that P (Un = 1) =un = 1−P (Un = 0). We think
of the sequence U1(ω),U2(ω), . . . as the indicator of the set Rω defined by

(2.4) Rω = {n |Un(ω) = 1}.

We say that the random sequence has some given property if there is a setΩ′ ⊂Ωwith P (Ω′) = 1 so that Rω has
the property for all ω ∈Ω′. Note that the concept of a random sequence is always tied to a given sequence
of probabilities u1,u2, . . . .

WARNING 2.3. Unless we say otherwise, in this paper we assume that the probabilities un form a non-
increasing sequence, {u1 ≥u2 ≥u3 ≥ . . .}, and that they sum to ∞,

∑
nun =∞.

The standing assumption
∑

nun =∞ guarantees, by the strong law of large numbers (cf. Theorem A.1 in the
Appendix), that the random sequence R is infinite, since its counting function R(N ) = ∑

n<N Un is almost
surely assymptotically equal to

∑
n<N un . We make the decreasing assumption because intuitively it gives

the expected behavior from a random set.
Now we can make the concept of a typical set completely precise: it is the random set associated with a

given sequence of probabilities un . It is easy to see that if un goes to 0 slower than any negative power of
n, that is un ·nε →∞ for any ε > 0, then the random sequence contains arbitrarily long dilations, hence it
is `-intersective for any `. On the other hand, if un < n−ε for some positive ε, then the random sequence
doesn’t have arbitrarily long dilations. Nevertheless, [ES78] showed that ifun > logn·n−1/3, then the random
sequence is 1-intersective. Can a random sequence be arbitrarily thin but still intersective? Well, it is shown
in [Bos83] that if un ·n →∞, then the random sequence is still 1-intersective. Paul Balister pointed out to
us that if un = 1

n(logn)1/2+ε , then the random sequence is lacunary and hence is not 1-intersective. Anthony

Quas told us in private conversation that the method of [Bou87] can be used to show that if un = 1/n, then
the random sequence is not 1-intersective.

While quite a lot is known about 1-intersective sets, much less is known about typical 2 or higher order
intersective sets. We proved in [FLW12] that if un = n−b for some some b < 1/2, then the random set is
2-intersective.

For general `, we proved in [FLW12] that if

(2.5) un = n−b for some 0 < b < 1

2`−1
,

then the random set is `-intersective. This result was proved independently from us in [Chr11].
The main result on random intersective sets in this current paper is the following improvement of the

above results
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Theorem A (Random `-intersectivity theorem). Let ` be a positive integer, and assume the decreasing se-
quence u1 ≥u2 ≥ . . . of probabilities satisfy

(2.6) un ·n1/(`+1) →∞.

Then the random sequence is `-intersective.

The condition in eq. (2.6) is better than the condition in eq. (2.5) for ` ≥ 4. The earlier result that used the
condition in eq. (2.5) was obtained by using Van der Corput’s inequality `−1 times, and this iteration poses
the restriction in eq. (2.5). Our method doesn’t use iteration, and it doesn’t reduce the case for ` to the
case for `−1. In particular, we give a new, quite elementary proof when ` = 1. If ` = 1, eq. (2.6) gives the
restriction b < 1/2, while we know, after Boshernitzan, that every b < 1 works. Our proof doesn’t use Fourier
analysis or the spectral theorem.

Remark 2.4. We will see that instead of the individual behavior of the u probabilities, as expressed in
eq. (2.6), only their average behavior is important. The exact assumption we use in the proof is

(2.7)

∑
n<N un

N 1−1/(`+1)
→∞.

In other words, only the counting function R(N ) of the random set R matters: by the strong law of large
numbers, the above is the same as saying that R(N )/N 1−1/(`+1) → ∞. In fact, the proof permits to prove
a more general result where the probabilities u are not fixed once and for all, but may depend on N . For
example, for each N we can take the probabilities to be a constant u=u(N ) that satisfiesu(N )·N 1/(`+1) →∞
as N →∞.

Now that we are at the end of this introductory section, we state a conjecture which, if true, would be an
extension of Boshernitzan’s result for random 1-intersective sets to `-intersective ones
Conjecture 2.5. Suppose

(2.8) un ·n →∞.

Then the random sequence is `-intersective.

As we mentioned earlier, if this conjecture is true, it’s sharp in the sense that if un = 1/n, then the random
sequence is not 1-intersective.

2.2. Convergence of ergodic averages. In this section (X ,µ,T ) denotes a dynamical system.

Definition 2.6. Let ` be a positive integer. We say that the set R = {r1 < r2 < r3 < . . .} of positive integers is
`-averaging in norm if in any dynamical system the averages

(2.9)
1

N

∑
n<N

T rn F1 ·T 2rn F2 · · · · ·T (`−1)rn F`−1 ·T `rn F`

of bounded functions Fi converge in L1 norm.

While 1-averaging sequences have been studied for a long time, the study of `-averaging sequences for
` > 1 is more recent than that of `-intersective sets: the breakthrough result of [HK05b], where they show
that the set of natural numbers is `-averaging in norm, came 30 years after Szemerédi’s and Furstenberg’s
result. Now the study of intersective and averaging sequences have been done parallel to each other: The
following sets have been found `-averaging in norm

• the squares {12,22,32, . . . ,n2, . . .} or, more generally, {p(1), p(2), p(3), . . . , p(n), . . .}, where p(x) is poly-
nomial taking on positive integer values for large enough n. For ` = 1, this is a folklore result, and
follows from Weyl’s estimate on trigonometric sums. For all `, it was proved in [HK05a] (weak con-
vergence) and in [Lei05] for norm convergence.

• {2,3,5, . . . , p, . . .}, where p is a prime number. For ` = 1 this follows from Vinogradov’s classical es-
timates on the Fourier transform (trigonometric sum) of the sequence of primes. The ` = 2 case is
solved in [FHK07], the case of all other ` is solved in [WZ12].

• {
[13/2], [23/2], [33/2], . . . , [n3/2], . . .

}
or, more generally,

{
[1δ], [2δ], [3δ], . . . , [nδ], . . .

}
for any fixed posi-

tive, non-integer δ. For `= 1, this may have been first noted explicitly only in [Wie89], but it’s clear
that Boshernitzan had been aware of the result. See [Bos83]. For all `, the result is proved in [Fra10].

An important difference between intersective and averaging sets is that just because a set contains arbi-
trarily long dilations, it may not be an averaging set. In particular, it is not easy to construct fast growing
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averaging sequences. To avoid trivial examples, such as sequences consisting of longer and longer intervals
of consecutive integers, we are asking the following: are there any averaging sets {r1,r2 < r3 < . . .} so that the
gaps rn+1 − rn between consecutive terms goes to infinity faster than any polynomial? It follows from the
estimates in [Kar71] (see also [BP98, Theorem 2]), that if, for some positive ε, rn = [

exp
(
(logn)3/2−ε)], then

{r1 < r2 < r3 < . . .} is 1-averaging. It is not known if this sequence is 2-averaging (or, for that matter, if it’s
2-intersective). How fast can an averaging sequence increase? Can it increase arbitrarily fast? It was [Bos83]
(and, explicitly, [Bou88]) who showed that if

(2.10) un ·n →∞,

then the random sequence is 1-averaging. Unlike in case of 1-intersective sets, it is known that this result is
best possible: [JLW99] proved that if

(2.11) un = 1

n
,

then the random sequence is not 1-averaging. How about 2-averaging random sets? Well, we still don’t
know of any 2-averaging random set {r1,r2 < r3 < . . .} which goes to infinity as fast as the squares, that is
when un = n−1/2.

For all `, we proved in [FLW12] that if

(2.12) un = n−b for some 0 < b < 1

2`−1
,

then the random set is `-averaging. This result was also proved independently from us by [Chr11]. Our
main result on random `-averaging sets in the present paper is the following

Theorem B (Random `-averaging theorem). Let ` be a positive integer, and suppose the decreasing sequence
u1 ≥u2 ≥ . . . of probabilities satisfy

(2.13) un ·n1/(`+1) →∞.

Then the random sequence is `-averaging in norm, and the limit is the same as the limit of the multiple
averages

(2.14)
1

N

∑
n<N

T nF1 ·T 2nF2 · · · · ·T (`−1)nF`−1 ·T `nF`.

Here, again, the real assumption the proof uses is in terms of the average behavior of the the un , that is, in
terms of the counting function of the random sequence: the assumption in eq. (2.13) can be weakened to

(2.15)

∑
n<N un

N 1−1/(`+1)
→∞.

We have a conjecture similar to the one for intersective sets

Conjecture 2.7. Suppose

(2.16) un ·n →∞.

Then the random sequence is `-averaging.

In Section 5.3, we examine almost everywhere convergence, and show in Theorem D that a.e. conver-
gence of the difference between the random averages and their expectations follows if we add a mild speed
to the assumption in eq. (2.13).

2.3. Semirandom averages. Our third main topic is the convergence of double ergodic averages with dif-
ferent rates. Combinatorial applications and norm-convergence are also of interest, but the novelty is the
pointwise convergence result, since it’s the first result for non-linear sequences. For linear sequences, it was
[Bou90] who proved that the averages 1

N

∑
n<N T nF1T 2nF2 converge a.e.

Our main result for “semirandom” averages is
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Theorem C (Semirandom pointwise averaging theorem). Suppose the decreasing sequence u1 ≥ u2 ≥ . . . of
probabilities satisfy

(2.17) un · n1/2

log3+δn
→∞ for some δ> 0,

and

(2.18) un → 0.

Then the random sequence Rω = {r1 < r2 < r3 < . . .} satisfies, in every dynamical system (X ,µ,T ), for
bounded functions Fi , that

(2.19) lim
N→∞

1

N

∑
n<N

T nF1(x)T rn F2(x) = F 1F 2 for a.e. x ∈ X ,

where F i is the projection of Fi to the T -invariant functions.

Remark 2.8. It will be clear from the proof that if we weaken the assumption in eq. (2.17) to

(2.20) un ·n1/2 →∞,

we can still conclude mean convergence, and we have recurrence (intersectivity). What we mean by inter-
sectivity in this context is that if the set of positive integers A has positive upper density, then for some n

and a, the three numbers a, a +n, a + rn belong to A. In fact, the lower density of such n’s is at least
(
d(A)

)3

(2.21) liminf
N→∞

1

N

∑
n<N

d(A∩ (A−n)∩ (A− rn)) ≥
(
d(A)

)3
.

In [FLW12], we proved the theorem with the conditionun = n−b for some b < 1/14, so with our theorem, we
improve the range of b to b < 1/2.

Note that the assumption in eq. (2.18) is equivalent with the random sequence having 0 density. This
assumption is necessary to have the limit equal F 1F 2. If we drop the assumption that un → 0, then we don’t
know if we have convergence—such as in the most basic “coin flipping” case,

Unsolved problem 2.9. Suppose un = 1/2.
Is it true that then the random sequence Rω = {r1 < r2 < r3 < . . .} satisfies, in every dynamical system, for

bounded functions Fi , that the averages

(2.22)
1

N

∑
n<N

T nF1(x)T rn F2(x)

converge for a.e. x ∈ X ?

Conjecture 2.10. Suppose the decreasing sequence u1 ≥u2 ≥ . . . of probabilities satisfy

(2.23) un · n(
loglogn

)1+δ →∞ for some δ> 0,

and

(2.24) un → 0.

Then the random sequence Rω = {r1 < r2 < r3 < . . .} satisfies, in every dynamical system, for bounded
functions Fi , that

(2.25) lim
N→∞

1

N

∑
n<N

T nF1(x)T rn F2(x) = F 1F 2 for a.e. x ∈ X ,

where F i is the projection of the function Fi to the T -invariant functions.

If F1 is T -invariant, then the conjecture is true. See [Bou88]. Even in this case, a speed of a power of loglogn
is necessary as shown in [JLW99].

3. GENERAL IDEAS BEHIND THE PROOFS

Our proof of Theorem A will be presented in an elementary way, but here we explain how the idea of the
proof came about because we believe this is a good general context to search for further improvements.
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In case of 1- and 2-intersectivity, the main tasks to prove are

lim
N→∞

sup
A

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) ·d
(

A∩ (A−n)
)∣∣∣∣∣= 0 with probability 1,(3.1)

and

lim
N→∞

sup
A

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) ·d
(

A∩ (A−n)∩ (A−2n)
)∣∣∣∣∣= 0 with probability 1,(3.2)

respectively, where in supA we take the supremum over all subsets of the positive integers. For 1- and 2-
averaging the main tasks are

lim
N→∞

sup
(X ,T,µ),F

∫
X

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T nF

∣∣∣∣∣= 0 with probability 1,(3.3)

and

lim
N→∞

sup
(X ,T,µ),Fi

∫
X

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T nF1 ·T 2nF2

∣∣∣∣∣= 0 with probability 1,(3.4)

respectively, where in sup(X ,T,µ),Fi
we take the supremum over all dynamical systems (X ,T,µ) and indicators

Fi . After a duality consideration, all these cases are proved via estimates of the form

(3.5) P

(
sup

(a1,a2,a3,...,aN−1)∈A

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) ·an

∣∣∣∣∣> ε
)
< exp

(
−cε2

∑
n<N

un

)
,

where in sup(a1,a2,a3,...,aN−1)∈A we take the the supremum over a certain class A of vectors (a1, a2, a3, . . . , aN−1)
of real numbers with |an | ≤ 1. For example, in case of 2-averaging, we have

(3.6) an =
∫

X
G ·T nF1 ·T 2nF2

and the supremum is taken over all dynamical systems (X ,T,µ), indicators Fi and ±1-valued functions G .
The inequality in eq. (3.5) for a fixed vector (a1, a2, a3, . . . , aN−1) with |an | ≤ 1 follows from Bernstein’s expo-
nential inequality, Lemma 4.1 below, so the difficulty is to handle the supremum. Now, for estimating the
supremum of a class of random variables Yk , k ∈K , the best estimate we have is the union estimate,

(3.7) P

(
sup
k∈K

Yk > ε
)
≤ |K | · sup

k∈K

P (Yk > ε).

In our case, K would be the class of vectors (a1, a2, a3, . . . , aN−1). This requires the reduction of the number
of vectors (a1, a2, a3, . . . , aN−1) in the supremum: we need to be able to find a subclass A0 of A which has
the following properties

A0 approximates A within ε: for any (a1, a2, a3, . . . , aN−1) ∈ A there is
(
a′

1, a′
2, a′

3, . . . , a′
N−1

) ∈ A0 so
that |an −a′

n | < ε, n = 1,2,3, . . . , N .
The cardinality of A0 is exp

(
o
(∑

n<N un
))

: More precisely, for every ε, we need to have log(|A0|) =
O

(
ε2 ∑

n<N un
)
.

In other words, the existence of A0 with the above properties means that the ε-covering number of A in the

`∞ metric needs to be exp
(
O

(
ε2 ∑

n<N un
))

. In both the intersective and averaging case, A is uncountably

infinite, but via appropriate (and more or less standard) transference arguments, we will show that in both
cases A has finite ε-covering numbers. In case of 1-intersectivity and 1-averaging, the structure of an is
single correlation, that is convolution,

(3.8) an = 1

Q

∑
a<Q

g (a) f (a +n),

where Q < N , and f and g are two-valued functions defined on the interval [0,2N ]. In this case, Parseval’s

formula easily yields that the ε-covering number is O(N ) = exp
(
O

(
log N

))
which implies that

∑
n<N un only



8 RANDOM DIFFERENCES IN SZEMERÉDI’S THEOREM AND RELATED RESULTS

needs to satisfy

(3.9)

∑
n<N un

log N
→∞.

But in case of 2-intersectivity and 2 averaging, the structure of an is more complicated: we have order 2
correlation sequences of the form

(3.10) an = 1

Q

∑
a<Q

g (a) f1(a +n) f2(a +2n).

The novelty of our paper is that even in this case we manage to show that the ε-covering number is better

than the trivial exp
(
O(N )

)
estimate: we show that for order ` correlation sequences, the ε-covering number

is exp
(
O

(
N 1−1/(`+1

))
, which yields the condition

(3.11)

∑
n<N un

N 1−1/(`+1)
→∞,

appearing in both Theorems A and B. We achieve this by restricting the functions fi and g to thin, inde-
pendent subsets each of a certain appropriate density. The independence of these support sets results in
restricting the order ` correlation sequences to the product of these densities. The fact that we have `+1
factors in an order ` correlation sequence explains the appearance of `+1 in the condition eq. (3.11). The
origin of the idea of thinning via independent sets is coming from [CG10]. We later noticed that instead
of using independent random variables, we can simply use independent residue classes and the Chinese
remainder theorem, and this less sophisticated method yields more accurate results.

We do believe, though, that even for order ` > 1 correlation sequences, the ε-covering numbers are not

greater than some power of N . Hence the ε-covering number is always exp
(
O

(
log N

))
, which would give the

condition eq. (3.9). This belief is behind Conjectures 2.5 and 2.7.
We close this section by stating that finding optimal ε-covering numbers is behind many convergence

theorems. The general techniques of maximal inequalities, convexity methods (cf. Section 7.2), Fourier
transform, spectral theorem, uniform boundedness and transference principles can be viewed as tools to
help us reduce the original class of functions for which we need to check convergence.

4. PROOF OF THEOREM A, THE RANDOM INTERSECTIVITY THEOREM

The proof is completely elementary, and, unlike earlier methods, the ` = 1 case contains most of the
ingredients of the proof, and only in the last step we need an extra idea to handle two or more factors.
Hence, we give the detailed proof for `= 1, and only indicate the changes to be made for `> 1.

4.1. The ` = 1 case. As we indicated, we shall work with the weaker assumption in eq. (2.7) which in this
case is

(4.1)

∑
n<N un

N 1/2
→∞,

and we shall prove a little more than required: we’ll prove that the set of differences r ∈ Rω for which d
(

A∩
(A− r )

)> 0 is of positive lower density in Rω,

(4.2) liminf
N→∞

1∑
n<N Un

∑
n<N

Un ·d
(

A∩ (A−n)
)
> 0.

By the strong law of large numbers, Theorem A.1,

(4.3)
1∑

n<N un

∑
n<N

Un → 1 with probability 1,

so eq. (4.2) is equivalent with

(4.4) liminf
N→∞

1∑
n<N un

∑
n<N

Un ·d
(

A∩ (A−n)
)
> 0.
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Let us consider the expectation of the averages 1∑
n<N un

∑
n<N Un ·d

(
A∩ (A−n)

)
,

(4.5)
1∑

n<N un

∑
n<N

un ·d
(

A∩ (A−n)
)
.

Using that the sequence (un) is decreasing1, summation by parts gives the estimate

(4.6) liminf
N→∞

1∑
n<N un

∑
n<N

un ·d
(

A∩ (A−n)
)
≥ liminf

N

1

N

∑
n<N

d
(

A∩ (A−n)
)
.

It’s an unpublished result of Erdős and Sárközy (cf. [Ruz74]) that for any A (of positive density)

(4.7) liminf
N→∞

1

N

∑
n<N

d
(

A∩ (A−n)
)
> 0.

It is then enough to prove that the difference between the averages along the random sequence and the
expectation of the averages goes to 0

(4.8) lim
N→∞

sup
A

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) ·d
(

A∩ (A−n)
)∣∣∣∣∣= 0 with probability 1,

where in supA we take the supremum over all subsets of the positive integers. In fact, for our method it is
more natural to prove the more general result

(4.9) lim
N→∞

sup
A,B

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) ·d
(
B ∩ (A−n)

)∣∣∣∣∣= 0 with probability 1.

By the assumption in eq. (4.1), we can choose a sequence (εN ) of positive numbers so that

(4.10) εN → 0 and
ε2

N

∑
n<N un

N 1/2
>C , with some constant C > 0 to be chosen later, for all N > N (C ).

We will show that, for each N > N (C ), the N th average is greater than εN with small probability

(4.11) P

(
sup
A,B

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) ·d
(
B ∩ (A−n)

)∣∣∣∣∣> εN

)
< exp

(
− 1

20
·ε2

N

∑
n<N

un

)
.

This implies eq. (4.8) since, by the choice of εN in eq. (4.10), we have exp
(− 1

20 ·ε2
N

∑
n<N un

)< exp
(− C

20 N 1/2
)

which is summable in N , hence we can apply the Borel-Cantelli lemma.
Now, the difficulty in proving eq. (4.11) is the requirement that we need to have the estimate of the average

simultaneously for all A,B . Indeed, the estimate for fixed sets A,B instead of supA,B follows readily from
Bernstein’s exponential inequality,

Lemma 4.1 (Bernstein’s exponential inequality). Let X1, X2, . . . , XN independent, mean zero random vari-
ables with |Xn | ≤ K .

Then we have

(4.12) P

(∣∣∣∣∣ ∑
n≤N

Xn

∣∣∣∣∣≥ t

)
≤ 2max

{
exp

(
− t 2/4∑

n≤N EX 2
n

)
, exp

(
−t/(2K )

)}
for all t > 0.

Corollary 4.2. Let {a1, a2, a3, . . . , an , . . .} be a sequence of real or complex numbers with |an | ≤ 1.
Then for any ε, 0 ≤ ε< 1, we have

(4.13) P

(∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) ·an

∣∣∣∣∣> ε
)
< exp

(
−1

4
ε2

∑
n<N

un

)
.

Proof of corollary 4.2. Set Xn = (Un −un) ·an . Then |Xn | ≤ 1 and

EX 2
n ≤ E(Un −un)2(4.14)

≤un .(4.15)

Now use Lemma 4.1 with this Xn and t = ε ·∑n<N un . �

1This is the only place where we use that the (un ) is decreasing.
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Using this corollary with an = d
(
B ∩ (A−n)

)
and ε= εN , we readily get

(4.16) P

(∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) ·d
(
B ∩ (A−n)

)∣∣∣∣∣> εN

)
< exp

(
−1

4
ε2

N

∑
n<N

un

)
.

How can we get almost the same estimate when, instead a fixed A,B , we take supA,B ? The best general
estimate we have for the supremum of a class of random variables Yk , k ∈K , is what is known as the union
estimate

(4.17) P

(
sup
k∈K

Yk > ε
)
≤ |K | · sup

k∈K

P (Yk > ε).

In view of the above, since in our case we would take K to be the set of A,B ’s, our task is to reduce the
number of sets A,B we need to consider in supA,B . Our first step is to show that we can take finitely many

A,B . In calculating d
(
B ∩(A−n)

)
, we are taking the limsup of 1

M |{a | a ∈ B ∩ (A−n), a < M }| as M →∞. Our

formulas become simpler if we use the indicators 1A ,1B of A,B . We can then write

(4.18)
1

M
|{a | a ∈ B ∩ (A−n), a < M }| = 1

M

∑
a<M

1B (a)1A(a +n).

Let us divide up the interval [1, M) of summation into intervals of length Q, where we’ll see that the best
choice for the positive integer Q will be a constant multiple of N 1/2

(4.19)
1

M

∑
a<M

1B (a)1A(a +n) = 1

M/Q

∑
k<M/Q

1

Q

∑
kQ≤a<(k+1)Q

1B (a)1A(a +n)+O(Q/M).

It follows, since M →∞ hence the error term O(Q/M) goes to 0, that

(4.20)

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) ·d
(
B ∩ (A+n)

)∣∣∣∣∣
≤ sup

k

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · 1

Q

∑
kQ≤a<(k+1)Q

1B (a)1A(a +n)

∣∣∣∣∣.
Now, instead of taking the supremum supk over varying intervals of length Q, we can take the fixed interval
[0,Q), and take the supremum over indicators over the intervals [0,Q) and [0,Q+N ). Simply change variable
b = a −kQ, and define f (b) = 1A(kQ +b)1[0,Q+N )(b) and g (b) = 1B (kQ +b)1[0,Q)(b). It follows that

(4.21) sup
k

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · 1

Q

∑
kQ≤a<(k+1)Q

1B (a)1A(a +n)

∣∣∣∣∣
≤ sup

f ∈F ,g∈G

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · 1

Q

∑
b<Q

g (b) f (b +n)

∣∣∣∣∣,
where F =F (N ) is the family of indicators supported on the interval [0,Q +N ) and G =G (N ) is the family
of indicators supported on the interval [0,Q),

(4.22) F =
{

f | f : [0,Q +N ) → {0,1}
}

, G =
{

g | g : [0,Q) → {0,1}
}

We’ve reduced the inequality in eq. (4.11) to

(4.23) P

(
sup

f ∈F ,g∈G

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · 1

Q

∑
a<Q

g (a) f (a +n)

∣∣∣∣∣> εN

)
< exp

(
− 1

20
ε2

N

∑
n<N

un

)
.

The important thing is that in sup f ∈F ,g∈G we take the supremum over finite sets. The cardinality of G is 2Q

and at this point it is still at our disposal, so it is of no concern right now except we note that Q < N . But we
do have a problem with the cardinality of F : its cardinality is at least 2N = exp(cN ). Applying corollary 4.2
with an = 1

Q

∑
a<Q g (a) f (a +n), and using eq. (4.17), we only get

(4.24) P

(
sup

f ∈F ,g∈G

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · 1

Q

∑
a<Q

g (a) f (a +n)

∣∣∣∣∣> εN

)
≤ exp(cN ) ·exp

(
−1

4
ε2

N

∑
n<N

un

)
,
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which is not good enough since the best estimate we have is ε2
N

∑
n<N un >C N 1/2. To reduce the cardinality

of the f further, we restrict their support, the [0,Q +N ) interval, to arithmetic progressions. More precisely,
we will restrict the support of the factor f (x +n) to arithmetic progressions. Since we want to have the
difference q of the arithmetic progression as big as possible, so that the f have thin support, but we average
over the interval [0,Q), hence we cannot have much more residue classes than Q; we choose

(4.25) q =Q.

We still retain the notation q to remind ourselves of its separate role from Q. Let us make the restriction to
residue classes explicit: let χ be the indicator of the multiples of q

(4.26) χ(x) =
{1 if q | x,

0 otherwise.

Note that for any r , the indicator of the r (mod q) residue class is χ(x − r ). Rewrite as

(4.27)

1

Q

∑
a<Q

g (a) f (a +n) = 1

Q

∑
a<Q

g (a)
∑

r<q
χ(a +n − r ) f (a +n)

= 1

Q

∑
r<q

∑
a<Q

g (a)χ(a +n − r ) f (a +n).

We then have ∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · 1

Q

∑
a<Q

g (a) f (a +n)

∣∣∣∣∣(4.28)

by eq. (4.27) and since q =Q

=
∣∣∣∣∣ 1

Q

∑
r<q

1∑
n<N un

∑
n<N

(Un −un) · ∑
a<Q

g (a)χ(a +n − r ) f (a +n)

∣∣∣∣∣(4.29)

≤ sup
r<q

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · ∑
a<Q

g (a)χ(a +n − r ) f (a +n)

∣∣∣∣∣.(4.30)

It follows, using eq. (4.17), that

(4.31)

P

(
sup

f ∈F ,g∈G

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · 1

Q

∑
a<Q

g (a) f (a +n)

∣∣∣∣∣> εN

)

≤ q · sup
r<q

P

(
sup

f ∈F ,g∈G

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · ∑
a<Q

g (a)χ(a +n − r ) f (a +n)

∣∣∣∣∣> εN

)
.

The contribution of q < N = exp
(
log N

)
is insignificant to the order of exp

(−ε2
N

∑
n<N un

)= exp
(−O(N 1/2)

)
which we aim to achieve in eq. (4.23), so we ignore it in further considerations. For given r , the function h
defined by h(x) = χ(x − r ) f (x) is supported on the part of the residue class r (mod q) that falls into the in-
terval [0,Q +N ). Denote by H those functions from F which are supported on the residue class r (mod q)

(4.32) H =
{

h | h : [0,Q +N ) → {0,1},h(x) 6= 0 =⇒ x ≡ r (mod q)
}

.

Since the cardinality of the residue class r (mod q) that falls into the interval [0,Q + N ) is not more than
(Q +N )/q < 2N /q , we have

(4.33) |H | ≤ 22N /q .

Our remaining remaining task is to estimate

(4.34) P

(
sup

h∈H ,g∈G

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · ∑
a<Q

g (a)h(a +n)

∣∣∣∣∣> εN

)
.

In the above,
∣∣∑

a<Q g (a)h(a +n)
∣∣ is bounded by 1 since q = Q and hence there is one a < Q for which

a +n ≡ r (mod q). Clearly

(4.35) |G | = 2Q ,
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hence, using eq. (4.33),

(4.36) |H ×G | ≤ 22N /q+Q .

We can now estimate, using eq. (4.17) and corollary 4.2 with an =∑
a<Q g (a)h(a +n), as

P

(
sup

h∈F ,g∈G

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · ∑
a<Q

g (a)h(a +n)

∣∣∣∣∣> εN

)
≤ 22N /q+Q ·exp

(
−1

4
ε2

N

∑
n<N

un

)
(4.37)

≤ exp

(
(2N /q +Q)− 1

4
ε2

N

∑
n<N

un

)
,(4.38)

where we used that log2 < 1. In order to have a nontrivial estimate, we need to have something like

(4.39)
2N

q
+Q ≤ 1

5
·ε2

N

∑
n<N

un .

Since q =Q, the left hand side has a minimum at

(4.40) Q = (2N )1/2,

in which case eq. (4.39) becomes

(4.41) 2(2N )1/2 ≤ 1

5
·ε2

N

∑
n<N

un ,

or the slightly generous but simpler looking

(4.42) 20N 1/2 < ε2
N

∑
n<N

un .

This says that we should take C = 20 in eq. (4.10). With this choice, and with taking q = Q = [
(2N )1/2

]
,

eq. (4.39) is satisfied and the estimate in eq. (4.37). becomes

(4.43) P

(
sup

h∈F ,g∈G

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · ∑
a<Q

g (a)h(a +n)

∣∣∣∣∣> εN

)
≤ exp

(
− 1

20
ε2

N

∑
n<N

un

)
,

finishing our proof.

4.2. The general ` case. There are only three remarks we need to make here, and then the proof goes
through almost verbatim. The first remark pertains the generalization of eq. (4.7): Szemerédi’s theorem
has been strengthened by [Fur77] to

(4.44) liminf
N→∞

1

N

∑
n<N

d
(

A∩ (A−n)∩·· ·∩ (A− (`−1)n)∩ (A−`n)
)
> 0,

which implies that the set of possible differences in Szemerédi’s theorem is of positive lower density. Those
who seek a more elementary reason: N. Hegyvári pointed out to us that the method of [Var59] can be used
for the same conclusion if we assume that the lower density d(A) is positive (which doesn’t affect the essence

of our results here), and, in this case, we can even replace upper density d by lower density d in eq. (4.44) 2.
Second, this time we need to choose the (εN ) so that

(4.45) εN → 0 and
ε2

N

∑
n<N un

N 1−1/(`+1)
>C , with some constant C > 0 to be chosen later, for all N > N (C ).

The third remark is a bit more involved. In place of eq. (4.23), our task is to prove

(4.46) P

(
sup

fi∈F ,g∈G

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) · 1

Q

∑
a<Q

g (a) f1(a +n) . . . f`−1(a + (`−1)n) f`(a +`n)

∣∣∣∣∣> εN

)

< exp

(
− 1

20
ε2

N

∑
n<N

un

)
,

2In [Var59], only the `= 2 case is treated, but the method works for any `. See Theorem 8′ in http://terrytao.wordpress.
com/2008/08/30/the-correspondence-principle-and-finitary-ergodic-theory/. That result easily implies eq. (4.44)
for lower densities.

http://terrytao.wordpress.com/2008/08/30/the-correspondence-principle-and-finitary-ergodic-theory/
http://terrytao.wordpress.com/2008/08/30/the-correspondence-principle-and-finitary-ergodic-theory/
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where G is the same as before, but this time F needs to be enlarged to accommodate the argument a +`n
of f`

(4.47) F =
{

f | f : [0,Q +`N ) → {0,1}
}

, G =
{

g | g : [0,Q) → {0,1}
}

.

The extra difficulty here is that instead of one f , we need to slim down the supports of` functions f1, f2, . . . , f`.
Correspondingly, we choose ` modulus q1, q2, . . . , q`, and we split the support of fi , the interval [0,Q +`N ),
according to the residue classes (mod qi ). This results in splitting the supports of the products f1(a +
n) f2(a +2n) . . . f`(a +`n) into q1q2 . . . q` residue classes: Let χi be the indicator of the multiples of qi

(4.48) χi (x) =
{1 if qi | x,

0 otherwise.

Since χi (x − r ) is the indicator of the r (mod qi ) residue class, we can write

(4.49)

1

Q

∑
a<Q

g (a) f (a +n) . . . f`(a +`n)

= 1

Q

∑
a<Q

g (a)
∑

r1<q1

χ1(a +n − r1) f1(a +n) . . .
∑

r`<q`
χ`(a +`n − r`) f`(a +`n)

= 1

Q

∑
r1<q1

. . .
∑

r`<q`

∑
a<Q

g (a)χ1(a +n − r1) f1(a +n) . . .χ`(a +`n − r`) f`(a +`n).

We want the qi to be as big as possible, but we don’t want the number of terms q1q2 . . . q` in
∑

r1<q1

∑
r2<q2

. . .
∑

r`<q`
to be greater than Q, so we require

(4.50) q1q2 . . . q` ≤Q.

We also need to make sure
∑

a<Q g (a)χ1(a+n−r1) f1(a+n) . . .χ`(a+`n−r`) f`(a+`n) is bounded indepen-
dently of n for fixed ri . We can achieve this if the equation

(4.51) χ1(a +n − r1)χ2(a +2n − r2) . . .χ`(a +`n − r`) = 1

has, say, at most 1 solution in a ∈ [0,Q). We can rewrite eq. (4.51) as simultaneous congruences

(4.52)

a ≡ r1 −n (mod q1)

a ≡ r2 −2n (mod q2)

...

a ≡ r`−1 − (`−1)n (mod q`−1)

a ≡ r`−`n (mod q`).

Now, if the qi are pairwise coprimes, then the above system of congruences has a single solution (mod q1q2 . . . q`)
by the Chinese remainder theorem. It follows that eq. (4.51) has at most 1 solution in a ∈ [0,Q) if

(4.53) Q ≤ q1q2 . . . q`.

Comparing this with eq. (4.50), we commit to

(4.54) Q = q1q2 . . . q`.

As we follow the proof of the `= 1 case, we also get the requirement

(4.55)
`N

q1
+ `N

q2
+·· ·+ `N

q`
+Q ≤ 1

5
ε2

N

∑
n<N

un .

If the qi and Q were real variables, the left hand side would be minimized when

(4.56) Q = cN`/(`+1),

and the qi were equal to each other. By eq. (4.54) this means

(4.57) qi =Q1/` = cN 1/(`+1).

With these values, eq. (4.55) becomes

(4.58) cN 1−1/(`+1) < ε2
N

∑
n<N

un ,
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which suggested the assumption in eq. (2.7). The only question remains if we can choose pairwise coprime
qi ’s near the optimal value N 1/(`+1) of eq. (4.57)? To do this, choose each qi to be a prime number with
N 1/(`+1) < qi < 2N 1/(`+1). This is possible for large enough N by the prime number theorem. The much
simpler Chebyshev estimate 1

2 t/log t < π(t ) < 2t/log t is also enough, but then the primes would satify

N 1/(`+1) < qi < 5N 1/(`+1).

5. PROOF OF THEOREM B, THE RANDOM AVERAGING THEOREM

Similarly to the proof of Theorem A, we just explain the idea of the proof for `= 1. Since the proof is very
similar to the proof of Theorem A, we just point out the differences between the arguments.

5.1. The `= 1 case. We want to show that with probability 1 in any dynamical system

(5.1)
1∑

n<N Un

∑
n<N

UnT nF → F

in L1 norm, where F is the projection of F onto the invariant functions. Since the norm of the L1 → L1 linear
oprator F → 1∑

n<N Un

∑
n<N UnT nF is uniformly bounded by 1, we can assume that F is an indicator function,

since the linear combinations of indicator functions are dense in L1. By the strong law of large numbers,
Theorem A.1, we have

(5.2)

∑
n<N Un∑
n<N un

→ 1 with probability 1,

hence eq. (5.1) is equivalent to

(5.3)
1∑

n<N un

∑
n<N

UnT nF → F .

The expectation of the averages 1∑
n<N un

∑
n<N UnT nF is

(5.4)
1∑

n<N un

∑
n<N

unT nF.

Summation by parts shows that the averages in eq. (5.4) converge to the same limit as the usual ergodic av-
erages 1

N

∑
n<N T nF . The limit of the usual ergodic averages is F , so it is enough to prove that the difference

between the random averages and its expectations goes to 0 in L1 norm

(5.5) lim
N→∞

sup
(X ,T,µ),F

∫
X

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T nF

∣∣∣∣∣= 0 with probability 1,

where in sup(X ,T,µ),F we take the supremum over all dynamical systems (X ,T,µ) and indicators F . First, we
reduce all to a single dynamical system using an appropriate version of the transference principle. Since T
is measure preserving, we have, for every integer a

(5.6)
∫

X

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T nF

∣∣∣∣∣=
∫

X

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T a+nF

∣∣∣∣∣.
Average this in a over the interval [0,Q), where Q is the same as in the proof of Theorem A in the `= 1 case,
so its best choice will be Q = [(2N )1/2]. We get

(5.7)
∫

X

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T nF

∣∣∣∣∣=
∫

X

1

Q

∑
a<Q

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T a+nF

∣∣∣∣∣.
It follows that

(5.8) sup
F

∫
X

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T nF

∣∣∣∣∣≤
∫

X
sup

F

1

Q

∑
a<Q

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T a+nF

∣∣∣∣∣.
Introduce f (a) = f (x, a) = T aF (x)1[0,Q+N )(a). Then for the values of a and n considered above we have
T a+nF (x) = f (a+n). Denote again by F =F (N ) the family of indicators supported on the interval [0,Q+N )

(5.9) F =
{

g | g : [0,Q +N ) → {0,1}
}

.



RANDOM DIFFERENCES IN SZEMERÉDI’S THEOREM AND RELATED RESULTS 15

We then have the pointwise estimate

(5.10) sup
F

1

Q

∑
a<Q

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T a+nF (x)

∣∣∣∣∣ ≤ sup
f ∈F

1

Q

∑
a<Q

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) f (a +n)

∣∣∣∣∣.
Integrating this over the space X , and using eq. (5.8), we get

(5.11) sup
(X ,T,µ)

sup
F

∫
X

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T nF

∣∣∣∣∣ ≤
∫

X
sup
f ∈F

1

Q

∑
a<Q

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) f (a +n)

∣∣∣∣∣.
The important thing to notice is that the argument of the integral on the right hand side of eq. (5.10) doesn’t
depend on the dynamical system (X ,T,µ) anymore and, furthermore, in sup f ∈F we take the supremum
over finitely many functions f . Our remaining task is to show that

(5.12) lim
N→∞

sup
f ∈F

1

Q

∑
a<Q

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) f (a +n)

∣∣∣∣∣= 0 with probability 1.

Let us write the above average in dual form: Let G = G (N ) be the family of ±1-valued functions supported
on the interval [0,Q)

(5.13) G =
{

g | g : [0,Q) → {−1,1}
}

.

We then have

(5.14) sup
f ∈F

1

Q

∑
a<Q

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un) f (a +n)

∣∣∣∣∣ = sup
f ∈F ,g∈G

1

Q

∑
a<Q

1∑
n<N un

∑
n<N

(Un −un)g (a) f (a +n).

The only difference between the right hand side of eq. (5.14) above and the right hand side of eq. (4.21)
is that this time G contains ±1-valued functions instead of indicators. But this difference doesn’t change
anything in the proof, since the only thing we use about the functions in G is that they take on two values.
So the method used to establish eq. (4.23) works equally well to prove, for all large enough N ,

(5.15) P

(
sup

f ∈F ,g∈G

1∑
n<N un

∑
n<N

(Un −un)
1

Q

∑
a<Q

g (a) f (a +n) > εN

)
< exp

(
− 1

20
ε2

N

∑
n<N

un

)
,

where εN is chosen to satisfy eq. (4.10).

5.2. The general ` case. Our remarks are similar to the three remarks we made in Section 4.2. The only
difference is in the first remark: While in the ` = 1 case, we invoked the mean ergodic theorem, this time
we need to refer to the “multiple mean ergodic theorem” of [HK05b] (cf. [Zie07] for a different proof). The
multiple ergodic theorem says that the set of positive integers is `-averaging, that is the averages

(5.16)
1

N

∑
n<N

T nF1 ·T 2nF2 · · · · ·T `nF`

converge in L1 norm for bounded Fi . Then the proof proceeds to show that the averages along the random
sequence converge to the same limit as the multiple averages above.

5.3. Pointwise convergence. The main philosophy on pointwise convergence for any averages (not just
those in our paper) is that if mean convergence takes place with an appropriate speed, then we also have
pointwise convergence. It is enough to prescribe the speed for a subsequence of the averages

(5.17)
1∑

n<N Un

∑
n<N

(Un −un)T nF1(x) ·T 2nF2(x) · · · · · ·T `nF`(x).

What is the sparsest subsequence of the averages the convergence of which implies the convergence of
all the averages? Actually, we are going to consider a class of subsequences: forσ> 1, let {N1 < N2 < N3 < . . .}
be such that

(5.18)
∑

n<Ni

un ≈σi .
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Roughly speaking, for each σ > 1, the Ni defined above is a sequence along which the averages could still
change significantly, but as σ gets closer and closer to 1, this change is as small as we want. To understand
why, consider the simplest random average relevant to our problem

(5.19)
1∑

n<N un

∑
n<N

Un .

The Ni th sum
∑

n<Ni
Un has an expected mass of

∑
n<Ni

un ≈ σi and the Ni+1st sum
∑

n<Ni+1
Un has an ex-

pected mass of
∑

n<Ni+1
un ≈σi+1. Hence the difference

∑
Ni≤n<Ni+1

Un has an expected mass of
∑

Ni≤n<Ni+1
un ≈

σi+1 −σi . What is the proportion of this increase in mass to σi , the expected mass of the Ni th average? It is
(σi+1−σi )/σi =σ−1. This means, the proportion of this difference is a fixed positive number (independent
of i ), so if changes happen in this difference, it may affect averages that are between the Ni th and Ni+1st
average. On the other hand, the proportion σ−1 of this difference goes to 0 as σ gets closer to 1. We then
expect that if the Ni th average and the Ni+1st averages are both close to 1, and if N is between Ni and Ni+1,
then the N th average will also be close to 1, and the difference will not be much more than σ−1.

Let us now carry out this argument for our averages precisely. Our random average in eq. (5.17) is of the
form

(5.20)
1∑

n<N Un

∑
n<N

(Un −un)Gn

for some uniformly bounded sequence of functions G1,G2,G3, . . . . We can assume ‖Gn‖∞ ≤ 1. By the strong
law of large numbers, Theorem A.1, with probability 1, we can divide by the expectation

∑
n<N un instead of∑

n<N Un

(5.21)
1∑

n<N un

∑
n<N

(Un −un)Gn .

For σ> 1, we choose the subsequence Iσ = {N1 < N2 < N3 < . . .} so that
∑

n<Ni
un ≈σi ,

(5.22)
∑

n<Ni

un ≥σi but
∑

n<N
un <σi for N < Ni .

In words: Ni is the smallest index N for which
∑

n<N un ≥ σi . That Iσ is well defined and infinite follows
from the dissipative assumption

∑
nun =∞. Clearly

(5.23)
∑

n<Ni

un =σi +O(1) for all i = 1,2,3, . . . .

Note that we also have that
∑

n<Ni
Un ≈ σi . More precisely, we have, by the strong law of large numbers,

Theorem A.1, and by eq. (5.23),

(5.24)
∑

n<Ni

Un =σi +o
(
σi

)
with probability 1.

Let us see how convergence along the subsequences Iσ’s, σ> 1, imply convergence along the full sequence
N = 1,2,3, . . . . Assume that

(5.25) For each fixed σ> 1, lim
i→∞

1∑
n<Ni

un

∑
n<Ni

(Un −un)Gn = 0 with probability 1.

We want to show that

(5.26) For each fixed σ> 1, limsup
N→∞

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)Gn

∣∣∣∣∣≤ 4(σ−1) with probability 1.

If we choose a sequence of σ’s which go to 1, then the intersection of the corresponding 1-probability sets
for which eq. (5.26) holds will give that the full sequence of averages converge to 0,

(5.27) lim
N→∞

1∑
n<N un

∑
n<N

(Un −un)Gn = 0 with probability 1.
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So fix σ> 1. By the assumption in eq. (5.25), eq. (5.26) follows from

(5.28) limsup
i→∞

max
Ni≤N<Ni+1

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)Gn − 1∑
n<Ni

un

∑
n<Ni

(Un −un)Gn

∣∣∣∣∣≤ 4(σ−1)

with probability 1.

For a given N , choose the i so that

(5.29) Ni ≤ N < Ni+1.

To estimate the difference between the N th and Ni th average, denote

(5.30) Hn = (Un −un)Gn ,

and write

1∑
n<N un

∑
n<N

Hn − 1∑
n<Ni

un

∑
n<Ni

Hn(5.31)

=
(

1∑
n<N un

∑
n<N

Hn − 1∑
n<N un

∑
n<Ni

Hn

)
+

(
1∑

n<N un

∑
n<Ni

Hn − 1∑
n<Ni

un

∑
n<Ni

Hn

)
(5.32)

=
(

1∑
n<N un

∑
Ni≤n<N

Hn

)
+

( ∑
n<Ni

Hn

)(
1∑

n<N un
− 1∑

n<Ni
un

)
.(5.33)

To estimate the two terms in eq. (5.33), we need the following consequence of the strong law of large num-
bers, Theorem A.1,

(5.34) lim
i→∞

∑
Ni≤n<Ni+1

Un∑
Ni≤n<Ni+1

un
= 1 with probability 1.

To see eq. (5.34), write as

(5.35)

∑
Ni≤n<Ni+1

Un∑
Ni≤n<Ni+1

un
= 1∑

Ni≤n<Ni+1
un

( ∑
n<Ni+1

Un − ∑
n<Ni

Un

)
.

Writing

(5.36)
1∑

Ni≤n<Ni+1
un

∑
n<Ni+1

Un =
∑

n<Ni+1
un∑

Ni≤n<Ni+1
un

· 1∑
n<Ni+1

un

∑
n<Ni+1

Un ,

we see that by the strong law of large numbers, we have, with probability 1,

lim
i→∞

1∑
Ni≤n<Ni+1

un

∑
n<Ni+1

Un = lim
i→∞

∑
n<Ni+1

un∑
Ni≤n<Ni+1

un
(5.37)

using eq. (5.23)

= lim
i→∞

σi+1 +O(1)

σi+1 −σi +O(1)
(5.38)

= σ

σ−1
.(5.39)

Similarly

lim
i→∞

1∑
Ni≤n<Ni+1

un

∑
n<Ni

Un = lim
i→∞

∑
n<Ni

un∑
Ni≤n<Ni+1

un
(5.40)

= 1

σ−1
.(5.41)

Now take the difference of eqs. (5.39) and (5.41) to get our claim in eq. (5.34).
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Let’s go back to our main task of estimating the two terms in eq. (5.33). Estimate as∣∣∣∣∣ 1∑
n<N un

∑
Ni≤n<N

Hn

∣∣∣∣∣≤ 1∑
n<Ni

un

∑
Ni≤n<Ni+1

|Hn |(5.42)

≤ 1∑
n<Ni

un

∑
Ni≤n<Ni+1

(Un +un)(5.43)

=
∑

Ni≤n<Ni+1
un∑

n<Ni
un

· 1∑
Ni≤n<Ni+1

un

∑
Ni≤n<Ni+1

(Un +un).(5.44)

Take “limsupi→∞ maxNi≤N<Ni+1 ” of both ends, to get

limsup
i→∞

max
Ni≤N<Ni+1

∣∣∣∣∣ 1∑
n<N un

∑
Ni≤n<N

Hn

∣∣∣∣∣(5.45)

≤ limsup
i→∞

∑
Ni≤n<Ni+1

un∑
n<Ni

un
· 1∑

Ni≤n<Ni+1
un

∑
Ni≤n<Ni+1

(Un +un)(5.46)

using eq. (5.34)

= 2 · lim
i→∞

∑
Ni≤n<Ni+1

un∑
n<Ni

un
(5.47)

using eq. (5.23)

= 2 · lim
i→∞

σi+1 −σi +O(1)

σi +O(1)
(5.48)

= 2(σ−1).(5.49)

Similarly

(5.50) limsup
i→∞

max
Ni≤N<Ni+1

∣∣∣∣∣
( ∑

n<Ni

Hn

)(
1∑

n<N un
− 1∑

n<Ni
un

)∣∣∣∣∣≤ 2(σ−1).

The estimates in eqs. (5.49) and (5.50) imply eq. (5.28).
The consequence of this lacunary subsequence trick is that for the averages in eq. (5.17), it is enough to

prove, for all σ > 1, almost sure convergence along the subsequence Iσ. This is accomplished if we ensure
that the sequence {ε1,ε2,ε3, . . .} satisfies

(5.51)
∑

N∈Iσ

εN <∞ for all σ> 1

in addition to the requirement in eq. (4.45). In our case, since we at least assume
∑

n<N un

N 1−1/(`+1) → ∞, the sub-
sequence Iσ does not increase faster to ∞ than a geometric progression, so a near optimal choice for εN is
εN = log−(1+δ) N for some fixed positive δ. Putting all this together, we get the following theorem for indica-
tor functions
Theorem D (Random pointwise `-averaging theorem). Let ` be a positive integer and suppose that for some
positive δ we have

(5.52) un · n1/(`+1)

log2+δn
→∞.

Then, with probability 1, in any dynamical system (X ,T ),

(5.53) lim
N→∞

1∑
n<N Un

∑
n<N

(Un −un) ·T nF1(x) ·T 2nF2(x) · · · · ·T `nF`(x) = 0 for a.e. x ∈ X ,

for bounded functions Fi .

The main utility of this theorem is that once we have almost everywhere convergence for the multiple aver-
ages

(5.54)
1

N

∑
n<N

T nF1(x) ·T 2nF2(x) · · · · ·T `nF`(x),
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then the averages

(5.55)
1∑

n<N Un

∑
n<N

Un ·T nF1(x) ·T 2nF2(x) · · · · ·T `nF`(x)

along the random sequence also converge and to the same limit for almost every x. So far, the a.e. conver-
gence of eq. (5.54) in every dynamical system is known only in case `= 1,2. For `= 1, this is the pointwise
ergodic theorem, for ` = 2 it was proved by [Bou90]. Moreover, the pointwise convergence of the averages
in eq. (5.54) for any ` is known in a great variety of particular dynamical systems such as in

• discrete spectrum or quasi-discrete spectrum dynamical systems;
• K-systems (cf. [DL96]);
• a large class of skew-product extensions of ergodic compact group translations (cf. [Les93]);
• a lot of dynamical systems with a compact topological structure where everywhere convergence can

be proved for continuous functions, hence the general pointwise ergodic theorem follows by a max-
imal inequality. An example for this that we haven’t mentioned is a horocycle flow on a compact
surface with negative curvature, or, more generally, unipotent transformations (Ratner’s theory).

So far, we showed how to prove Theorem D for indicator functions. The extension to bounded functions
is rather simple: Since we have a.e. convergence for a dense set of functions, namely for linear combinations
of indicators, we just need a “maximal inequality” argument. The way we’ll do this is that we first extend a.e.
convergence to all bounded F1, then we extend it to all bounded F1,F2, then to all bounded F1,F2,F3, etc.

For this argument, it is convenient to introduce three notations: one for our averages, normalized by∑
n<N un instead of

∑
n<N Un

(5.56) AN (F1,F2, . . . ,F`) = 1∑
n<N un

∑
n<N

(Un −un) ·T nF1 ·T 2nF2 · · · · ·T `nF`,

and two for the 1-linear, dominating averages

(5.57) BN F = 1∑
n<N un

∑
n<N

un · ∣∣T nF
∣∣ CN F = 1∑

n<N un

∑
n<N

Un · ∣∣T nF
∣∣.

A summation by parts argument shows that BN is pointwise dominated by the usual ergodic averages
1
N

∑
n<N |T nF |, and hence we have the maximal inequality for the BN

(5.58)
∫

X

(
sup

N
BN F

)2

≤ c
∫

X
F 2.

With probability 1, we also have a maximal inequality for the CN

(5.59)
∫

X

(
sup

N
CN F

)2

≤ cω

∫
X

F 2.

This was established by [Bou88] for a much wider range of un than we consider in this theorem: they just
need to satisfy

(5.60)

∑
n<N un

(loglog N )1+δ log N
→∞ for some positive δ.

That this extra loglog N factor is necessary for the maximal inequality and a.e. convergence, compared to
the lone log N needed for mean convergence, was proved in [JLW99].

Let now F1 be a function bounded by 1, and assume F2,F3, . . . ,F` are indicators. We want to show that,
with probability 1, the oscillation of the AN is 0 almost surely

(5.61) µ

(
limsup

N
|AN (F1,F2, . . . ,F`)| = 0

)
= 1.

We show this by showing that for any ε> 0

(5.62) µ

(
limsup

N
|AN (F1,F2, . . . ,F`)| > ε

)
≤ ε.

Let ε> 0 be given and let G1 be a linear combination of indicators so that

(5.63)

(∫
X
|F1 −G1|2

)1/2

< δ,



20 RANDOM DIFFERENCES IN SZEMERÉDI’S THEOREM AND RELATED RESULTS

where we’ll choose δ later appropriately for ε. By Theorem D, we have

(5.64) limsup
N

|AN (G1,F2, . . . ,F`)(x)| = 0 for a.e. x.

We then have

(5.65) limsup
N

|AN (F1,F2, . . . ,F`)(x)| = limsup
N

|AN (F1 −G1,F2, . . . ,F`)(x)| for a.e. x.

Using the boundedness of the Fi by 1 we can estimate pointwise as

(5.66) |AN (F1 −G1,F2, . . . ,F`)(x)| ≤ BN (F1 −G1)(x)+CN (F1 −G1)(x).

We thus have∫
X

limsup
N

|AN (F1 −G1,F2, . . . ,F`)| ≤
∫

X
sup

N
BN (F1 −G1)+

∫
X

sup
N

CN (F1 −G1)(5.67)

by the Cauchy-Schwarz-Bunyakovsky inequality for the integral
∫

X

≤
(∫

X

(
sup

N
BN (F1 −G1)

)2)1/2

+
(∫

X

(
sup

N
CN (F1 −G1)

)2)1/2

(5.68)

using the maximal inequalities for BN in eq. (5.58) and for CN in eq. (5.59)

≤
(
c
∫

X
(F1 −G1)2

)1/2

+
(
cω

∫
X

(F1 −G1)2
)1/2

(5.69)

by the approximation in eq. (5.63)

≤ cωδ.(5.70)

Using this and Markov’s inequality, we finally get

µ

(
limsup

N
|AN (F1,F2, . . . ,F`)| > ε

)
≤ 1

ε
·
∫

X
limsup

N
|AN (F1 −G1,F2, . . . ,F`)|(5.71)

≤ cωδ

ε
.(5.72)

We see, we just have to choose δ small enough so that

(5.73)
cωδ

ε
< ε

to get eq. (5.62).
What we have accomplished so far is that our averages AN (F1,F2, . . . ,F`) converge a.e. to 0 for all bounded

F1 and indicators F2,F3, . . . ,F`. But we can repeat the argument with F2 in place of F1 to get that AN (F1,F2, . . . ,F`)
converge a.e. to 0 for all bounded F1,F2 and indicators F3,F4, . . . ,F`. Repeating the argument ` times, we
eventually get that AN (F1,F2, . . . ,F`) converge a.e. to 0 for bounded F1,F2, . . . ,F`.

6. PROOF OF THEOREM C, THE SEMIRANDOM CONVERGENCE THEOREM

Our first observation is that the a.e. convergence of our averages

(6.1)
1

N

∑
n<N

T nF1(x)T rn F2(x)

to F 1F 2 needs to be proved only for indicator functions F1,F2. This follows from a similar maximal inequal-
ity argument as we used to extend Theorem D from indicators to bounded functions.

So, unless we say otherwise, we now assume, for the rest of the proof, that the Fi are indicator functions.
We will follow the general structure of the proof in [FLW12]. As in the proof of Theorem D, it is enough
to prove convergence along a sparse subsequence of the N . As in that proof, for σ > 1, we choose the
subsequence Iσ = {N1 < N2 < N3 < . . .} so that

∑
n<Ni

un ≈σi (and hence
∑

n<Ni
Un ≈σi )

(6.2)
∑

n<Ni

un ≥σi but
∑

n<N
un <σi for N < Ni .
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To be exact, we have

(6.3)
∑

n<Ni

un =σi +o(1) for all i = 1,2,3, . . .

We notice, that the averages in eq. (2.19) can be written in the form

(6.4)
1∑

n<N Un

∑
n<N

UnT U1+U2+···+Un F1T nF2.

The two main steps in proving that the above converges a.e. are that the “partial” expectations

(6.5)
1∑

n<N un

∑
n<N

unT U1+U2+···+Un F1T nF2

converge to F 1F 2, and that the difference between the two averages

(6.6)
1∑

n<N un

∑
n<N

(Un −un)T U1+U2+···+Un F1T nF2

converge to 0.
We will be able to prove the convergence of the partial expectations in eq. (6.5) for any sequence (un)

with un → 0 and satisfying the dissipative property
∑

nun = ∞. To emphasize this fact, we formulate the
result explicitly

Theorem 6.1. Suppose the decreasing sequence {u1 ≥u3 ≥u1 ≥ . . .} satisfies

(6.7)
∑
n
un =∞,

and

(6.8) lim
n→∞un = 0.

We then have, almost surely, in any dynamical system,

(6.9) lim
N→∞

1∑
n<N un

∑
n<N

unT U1+U2+···+Un F1T nF2 = F 1F 2 for a.e.x ∈ X

for bounded Fi .

Proof. We divide the proof into two cases: first, when F2 is T -invariant, and second, when F2 is orthogonal
to all T -invariant functions. The function F1 is an indicator throughout the proof.

Let thus F2 be T -invariant. We then need to prove the pointwise convergence of

(6.10)
1∑

n<N un

∑
n<N

unT U1+U2+···+Un F1.

The a.e. convergence of the averages

(6.11)
1∑

n<N Un

∑
n<N

UnT U1+U2+···+Un F1

to F 1 follows from the pointwise ergodic theorem. To see this, let r1 < r2 < ·· · < rk < ·· · < rK < N be all the
elements of our random sequence which are less than N . Since U1,U2, . . . is the indicator of the random
sequence, Un = 1 exactly when n = rk for some k ≤ K . It follows that

(6.12)
∑

n<N
Un = K ,

and

(6.13) UnT U1+U2+···+Un =
{

T k if n = rk for some k ≤ K ,

0 otherwise,

so the average in eq. (6.11) is the K th ergodic average 1
K

∑
1≤k≤K T k F1.

Since the averages in eq. (6.11) converge a.e. to F 1, by the strong law of large numbers, the averages

(6.14)
1∑

n<N un

∑
n<N

UnT U1+U2+···+Un F1.
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also converge to F 1. We then need to show that, with full probability, the difference between the two aver-
ages converges to 0 a.e.

(6.15) lim
N→∞

sup
(X ,µ,T ),F1

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T U1+U2+···+Un F1

∣∣∣∣∣= 0 with probability 1.

Let εN → 0. Later we’ll find that the fastest rate our method allows εN to go to 0 is O
((∑

n<N un
)−1/4

)
which

is plenty, as we will soon see. We shall prove

(6.16) P

(
sup

(X ,µ,T ),F1

∫
X

∣∣∣∣∣ 1∑
n<N un

∑
n<N

(Un −un)T U1+U2+···+Un F1

∣∣∣∣∣> εN

)
< exp

(
− 1

20
ε2

N

∑
n<N

un

)
for all large enough N . This implies eq. (6.15) if εN can be chosen so that, for all σ> 1 we have∑

N∈Iσ

εN <∞,(6.17)

and ∑
N∈Iσ

exp

(
− 1

20
ε2

N

∑
n<N

un

)
<∞,(6.18)

where Iσ is defined in eq. (6.2). This is because we need to show convergence only for the subsequence Iσ.
Following the proof of Theorem B, a duality and a transference argument shows that eq. (6.16) follows

from

(6.19) P

(
sup

f ∈F ,g∈G

1∑
n<N un

∑
n<N

(Un −un)
1

Q

∑
a<Q

g (a) f
(
a + (U1 +U2 +·· ·+Un)

)> εN

)

< exp

(
− 1

20
ε2

N

∑
n<N

un

)
for all large enough N ,

where G is the same as before, that is, it contains ±1 valued functions supported on the interval [0,Q)

(6.20) G =
{

g | g : [0,Q) → {−1,1}
}

,

and F contains indicators supported on the interval
[

0,Q +U1 +U2 +·· ·+UN

)
(6.21) F =

{
f | f :

[
0,Q +U1 +U2 +·· ·+UN

)
→ {0,1}

}
.

In fact, except on a set with small probability, we can replace the interval [0,Q +U1 +U2 +·· ·+UN

)
above,

which depends on ω, by the interval
[

0,Q + 2
∑

n<N un

)
. This is because when we put Xn = Un −un and

t =∑
n<N un in Bernstein’s inequality, Lemma 4.1, we get

(6.22) P

(
U1 +U2 +·· ·+UN − ∑

n<N
un > ∑

n<N
un

)
< exp

(
−c

∑
n<N

un

)
,

and, of course,
∑

N∈Iσ exp
(−c

∑
n<N un

) <∞. So from now on, F denotes indicators on the interval
[

0,Q +
2
∑

n<N un

)
(6.23) F =

{
f | f :

[
0,Q +2

∑
n<N

un

)
→ {0,1}

}
.

The next step in our method is to divide up the interval
[

0,Q +2
∑

n<N un

)
into residue classes (mod q)

for an appropriate q . The same way as in previous proofs, we get that a good choice for q is q = Q. We
also get the requirement, using the cardinality of functions supported on a single residue class (mod q) in[

0,Q +2
∑

n<N un

)
and the cardinality of G , that

(6.24)
2
∑

n<N un

q
+Q ≤ cε2

N

∑
n<N

un .
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Since q =Q, the left hand side of eq. (6.24) is smallest when

(6.25) q =Q = c

( ∑
n<N

un

)1/2

.

In the above, nothing changes significantly, if we choose the constant c so that Q is an integer. Substituting
eq. (6.25) into eq. (6.24), we get

(6.26) εN = c

( ∑
n<N

un

)−1/4

.

With these values all our requirements are satisfied including eqs. (6.17) and (6.18), and our proof of eq. (6.15)
is finished.

Our next step in proving Theorem 6.1 is to consider the case when F2 is orthogonal to the invariant func-
tions. Since in this case, F 2 = 0, we want to prove

(6.27)
1∑

n<N un

∑
n<N

unT U1+U2+···+Un F1T nF2 → 0.

By a maximal inequality argument—similar but simpler than the one we used to extend Theorem D to
bounded functions—it is enough to prove eq. (6.25) for a class of functions which generates a dense lin-
ear subspace of the orthocomplement of invariant functions. This class of functions will be the “bounded”
coboundaries, so those functions F2 which can be written in the form F2 = T G −G for some bounded G .

So let F2 be a coboundary. We shall prove a much more general result: The only property of the sequence{
T 1F2(x),T 2F2(x), . . .

}
we use is that 1

N

∑
L<n<L+N T nF2(x) converges to 0 uniformly in L as N →∞. The only

property of the random sequence {r1 < r2 < r3 < . . .} we use is that it has 0 density as a consequence of the
assumption that un → 0.

Lemma 6.2. Suppose the set R of positive integers has 0 density, and let X (n) denote its indicator. Let{
g1, g2, g3, . . .

}
be a sequence of real numbers which is bounded

|gn | ≤ c for n = 1,2,3, . . . ,(6.28)

and satisfy

lim
L→∞

1

L

∑
M≤n<M+L

gn = 0 uniformly in M .(6.29)

Then for any bounded sequence f1, f2, f3 . . . of numbers and decreasing sequence w1 ≥ w2 ≥ w3 ≥ . . . of
weights with

∑
n wn =∞ we have

(6.30) lim
N→∞

1∑
n<N wn

∑
n<N

wn fX (1)+X (2)+···+X (n)gn = 0.

Proof. A summation by parts argument shows that we can assume all the weights wn are equal to 1, so we
need to show

(6.31)
1

N

∑
n<N

fX (1)+X (2)+···+X (n)gn → 0.

The main observation is that the complement of R is basically a set which is the union of longer and longer
intervals. More precisely, for any given length L, there is a S ⊂ Rc of density 1 so that S is the union of
intervals of length at least L. To see this, suppose to the contrary. So there is a length L so that a positive
upper density of the intervals [kL, (k +1)L), k = 1,2,3, . . . contains a point from R. But then R would have a
positive upper density which is at least 1/L.

To prove the lemma, let L be arbitrary, and consider the average

(6.32)
1

K L

∑
k≤K

∑
kL≤n<(k+1)L

fX (1)+X (2)+···+X (n)gn .
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Let k1 < k2 < . . . be a sequence so that R ⊂∪i [ki L, (ki +1)L), and the density of (ki ) is 0. Write

(6.33)
1

K L

∑
k≤K

∑
kL≤n<(k+1)L

fX (1)+X (2)+···+X (n)gn

= 1

K L

∑
i

∑
ki L≤n<(ki+1)L

fX (1)+X (2)+···+X (n)gn + 1

K L

∑
k 6=ki

∑
kL≤n<(k+1)L

fX (1)+X (2)+···+X (n)gn .

The first sum above goes to 0, since (ki ) has 0 density and the functions are assumed to be bounded. For the
second sum, note that on each interval [kL, (k +1)L), we have X (n) = 0, hence fX (1)+X (2)+···+X (n) is constant.
We can estimate

(6.34)

∣∣∣∣∣ 1

K L

∑
k 6=ki

∑
kL≤n<(k+1)L

fX (1)+X (2)+···+X (n)gn

∣∣∣∣∣≤ 1

K

∑
k 6=ki

∣∣∣∣∣ 1

L

∑
kL≤n<(k+1)L

gn

∣∣∣∣∣.
By the assumption in eq. (6.28),

∣∣ 1
L

∑
kL≤n<(k+1)L gn

∣∣ is uniformly small if L is big, finishing the proof of the
lemma. �

This ends the proof of Theorem 6.1. �

Our last task in the proof of Theorem C is to prove that with probability 1 we have, in every dynamical
system,

(6.35) lim
N→∞

1∑
n<N un

∑
n<N

(Un −un)T U1+U2+···+Un F1(x)T nF2(x) = 0 for almost every x.

Let δ> 0 and

(6.36) εN =
(

log
∑

n<N
un

)−(1+δ)

.

As many times before in this paper, our task is reduced to proving an inequality for the probability of aver-
ages on the integers

(6.37) P

(
sup

fi∈Fi ,g∈G

1∑
n<N un

∑
n<N

(Un −un)
1

Q

∑
a<Q

g (a) f1

(
a + (

U1 +U2 +·· ·+Un
))

f2(a +n) > εN

)

≤ exp

(
− 1

20
ε2

N

∑
n<N

un

)
, for all large enough N ,

where Q is to be determined momentarily, F1 contains all the indicators supported in the interval3
[

0,Q +
2
∑

n<N un

)
F1 =

{
f | f :

[
0,Q +2

∑
n<N

un

)
→ {0,1}

}
,(6.38)

F2 contains all the indicators supported in the interval [0,Q +N ),

F2 =
{

f | f : [0,Q +N ) → {0,1}
}

,(6.39)

and G contains all the ±1 valued functions supported on the interval [0,Q)

G =
{

g | g : [0,Q) → {−1,1}
}

.(6.40)

We now choose the relatively prime moduli q1, q2, and we divide up the support of fi according to the
residue classes (mod qi ). With the assumption that

(6.41) q1q2 =Q,

3We already showed in eq. (6.22) that we make only a small error in probability, if we replace the random interval
[

0,Q +∑
n<N Un

)
by

[
0,Q +2

∑
n<N un

)
.
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we further reduce the problem to the case when the fi are supported on a fixed ri residue class (mod qi ).
This way, following the proof of Theorem A, we get the estimate

(6.42) P

(
sup

fi∈Fi ,g∈G

1∑
n<N un

∑
n<N

(Un −un)
1

Q

∑
a<Q

g (a) f1

(
a + (

U1 +U2 +·· ·+Un
))

f2(a +n) > εN

)

≤ q2q1 exp

(
Q +

∑
n<N un

q1
+ N

q2
− 1

4
ε2

N

∑
n<N

un

)
.

Ignoring the negligible q1q2 < exp
(
c log N

)
product (negligible compared to exp

(
ε2

N

∑
n<N un

)
, which is as-

sumed to be exp
(
O(N 1/2)

)
), we see our task is to choose the parameters Q, q1, q2 so that

(6.43) Q +
∑

n<N un

q1
+ N

q2
< cε2

N

∑
n<N

un .

If Q and qi were real variables, the left hand side is minimal if

Q = cε2
N

∑
n<N

un ,(6.44)

q1 = cε−2
N ,(6.45)

q2 = c
N

ε2
N

∑
n<N un

.(6.46)

We certainly can choose integer values for Q, qi so that they are within constant multiples of the above
optimal values, q1 and q2 are coprimes, and q1q2 =Q. Using that q1q2 =Q, we get the requirement

(6.47)
N

ε4
N

∑
n<N un

≤ cε2
N

∑
n<N

un ,

hence

(6.48) N 1/2 ≤ cε3
N

∑
n<N

un ,

which is possible, since the value of εN in eq. (6.36) is compatible with the assumption in eq. (2.17). With
this, our proof is finished.

7. NOTES

7.1. Our method for bounded functions. In our paper, we chose to extend almost everywhere convergence
results from indicators to bounded functions using the method of maximal inequalities. Our method can
be applied directly to bounded functions, though. The modification in the proof is needed only in the
definition of the sets F . For example, consider the proof of Theorem D in the ` = 1 case. We need to
consider the averages

(7.1)
1∑

n<N un

∑
n<N

(Un −un)
1

Q

∑
a<Q

f (a +n)

for f : [0,Q + N ) → [−1,1]. As a first step, we want to replace f by a function which take on values from
a sufficiently dense discrete subset of the interval [0,1]. Assume, for notational simplicity, that εN is the
reciprocal of a positive integer. A dense enough set is the set

(7.2) D = {−1,−(
ε−1

N −1
)
εN , · · ·−2εN ,−εN ,0,εN ,2εN , . . . ,

(
ε−1

N −1
)
εN ,1

}
,

so we define

(7.3) F =
{

f | f : [0,Q +N ) → D
}

.

Now, if we replace f in eq. (7.1) by a function from F , then with probability very close to 1, we only make a
2εN error. It follows that it is enough to consider functions from F in eq. (7.1). The cardinality of F is not
much bigger than it was before: since |D| = cε−1

N , we have

(7.4) |F | < |D|2N < exp
(
cN logε−1

N

)
.
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Since in Theorem D, εN is a negative power of log N , this extra logε−1
N factor would account for an extra

loglog N speed—negligible as the speed in Theorem D is stated, but it would not be negligible if we wanted
to state the best possible speed our proof could give. For example, it’s clear from the proof that we can
weaken the assumption in eq. (5.52) of Theorem D to

(7.5) un · n1/2

(logn)2 loglog2+δn
→∞ for some δ> 0.

But if we used our method directly to bounded functions instead of maximal inequalities we would have
needed the stronger

(7.6) un · n1/2

(logn)2 loglog3+δn
→∞ for some δ> 0

assumption.
This is the reason why we decided to use the well-known maximal inequality techniques, and hence

we avoided the slight inefficiency and complications in our method when dealing with bounded functions
instead of indicators.

7.2. Convexity methods. We can also use the more geometric convexity methods to extend almost sure
convergence results from indicators to bounded functions. This method is signified by the Krein-Milman
theorem, though we need only the simplest version of it for finite sets. Let us briefly give here the represen-
tation needed to do the extension from indicators to nonnegative functions bounded by 14. Let

Γ=
{

g |g : [1,K ] → {0,1}
}
= {0,1}K ,(7.7)

F =
{

f | f : [1,K ] → [0,1]
}
= [0,1]K .(7.8)

We want to show that for each f ∈F there is a probability measure µ f on Γ so that

(7.9) f (b) =
∫
Γ

g (b)dµ f (g ).

The requirement of the representation uniquely determines the measure. For any b, eq. (7.9) looks like

(7.10) f (b) = 1 ·µ f
{

g |g (b) = 1
}
.

It follows

µ f
{

g |g (b) = 1
}= f (b),(7.11)

µ f
{

g |g (b) = 0
}= 1− f (b).(7.12)

Since the sets µ
{

g |g (b) = 1
}

and µ
{

g |g (b) = 0
}
, b = 1,2, . . . ,K are all the cylinder sets of Γ = {0,1}K , the

measure µ f is uniquely determined as a product measure.
With this representation, it’s a simple exercise to extend, say, eq. (5.15), from indicators to nonnegative

functions bounded by 1.
There is only a slight complication when we have to extend results for multiple averages from indica-

tors to bounded functions. For example, for double averages, we need to be able to represent the product
f1(b1) f2(b2) in an integral form. This can be done using the representation in eq. (7.9) for f1 and f2 sepa-
rately and Fubini’s theorem

f1(b1) f2(b2) =
(∫

G
g (b1)dµ f1 (g )

)(∫
G

g (b2)dµ f2 (g )

)
(7.13)

=
∫
G×G

g1(b1)g2(b2)d
(
µ f1 ×µ f2

)
(g1, g2),(7.14)

which is just a fancy (but useful) way of writing

(7.15) f1(b1) f2(b2) =µ f1

{
g |g (b1) = 1

} ·µ f2

{
g |g (b2) = 1

}
.

4Similar representation applies for extending results for ±1-valued functions to functions bounded by 1.
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7.3. Extension to commuting transformations. In short: our method in its present form doesn’t work for
commuting transformations. For example, we have

Unsolved problem 7.1. Let b < 1/(`+1) and un = n−b .
Show that with probability 1 in any dynamical system, for any commuting transformations T1,T2, . . . ,T`,

the averages

(7.16)
1∑

n<N un

∑
n<N

Un ·T n
1 F1 ·T n

2 F2 · · · · ·T n
` F`

converge in L1 norm.

The good news is that the extension of Theorem C to commuting transformations is true. In other words,
the semirandom averages

(7.17)
1

N

∑
n<N

T n
1 F1(x) ·T rn

2 F2(x)

do converge almost everywhere for commuting measure preserving transformations Ti as long as the ran-
dom sequence {r1 < r2 < r3 < . . .} satisfies rn/n2−ε for some positive ε. The proof of this will be discussed in
an upcoming paper.

APPENDIX A. STRONG LAW OF LARGE NUMBERS

Here we give a quick proof of the strong law of large numbers in a form needed in our paper. The result
is due to Kolmogorov.

Theorem A.1 (Strong law of large numbers for uniformly bounded rv’s). Suppose the random variables
X1, X2, . . . are non-negative, uniformly bounded

(A.1) 0 ≤ Xn ≤ c,

(pairwise) uncorrelated

(A.2) EXn Xm =EXn ·EXm , for n 6= m,

and dissipative

(A.3)
∑
N
EXn =∞.

Then

(A.4) lim
N→∞

1∑
n<N EXn

∑
n<N

Xn = 1 with probability 1.

For an example of two random variables which are nonnegative, uncorrelated but not independent, take
X1(x) = 1+ sin(2πx) and X2(x) = 1+ sin(2π2x) defined on the unit interval [0,1]. (Looking at the graph of
the two functions, by inspection we can find a λ, 0 < λ < 2, so that the level sets {X1 >λ} and {X2 >λ} are
nonempty, but disjoint.)

Proof. We want to use a subsequence argument. Define the set I = {N1 < N2 < ·· · < Ni < . . .} of indices by

(A.5)
∑

n<Ni

EXn ≥ i 2 but
∑

n<N
EXn < i 2 for N < Ni .

In words: Ni is the smallest index N for which
∑

n<N EXn ≥ i 2. That I is well defined and infinite follows
from the dissipative assumption

∑
N EXn =∞. Since the Xn are uniformly bounded, we have

(A.6)
∑

n<Ni

EXn = i 2 +O(1).

We first want to show that we have a.e. convergence along the subsequence I

(A.7) lim
i→∞

1∑
n<Ni

EXn

∑
n<Ni

Xn = 1 with probability 1.
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We show this in the form

(A.8)
∑

i

(
1∑

n<Ni
EXn

∑
n<Ni

Xn −EXn

)2

<∞ with probability 1.

This follows if the above series is integrable, so from

(A.9) E
∑

i

(
1∑

n<Ni
EXn

∑
n<Ni

Xn −EXn

)2

=∑
i
E

(
1∑

n<Ni
EXn

∑
n<Ni

Xn −EXn

)2

<∞.

A consequence of the multiplicativity assumption in eq. (A.2) is orthogonality

(A.10) E(Xn −EXn)(Xm −EXm) = 0 for n 6= m,

and hence we have

(A.11) E

( ∑
n<Ni

Xn −EXn

)2

= ∑
n<Ni

E(Xn −EXn)2.

SinceE(Xn −EXn)2 ≤EX 2
n ≤ cEXn , we have

(A.12) E

(
1∑

n<Ni
EXn

∑
n<Ni

Xn −EXn

)2

≤ c∑
n<Ni

EXn
,

which, by eq. (A.6), establishes eq. (A.9).
We now want to show that the N th average is close to the Ni th if Ni ≤ N < Ni+1. We can estimate, since

the Xn are non-negative,

1∑
n<N EXn

∑
n<N

Xn ≤ 1∑
n<Ni

EXn

∑
n<Ni+1

Xn(A.13)

=
∑

n<Ni+1
EXn∑

n<Ni
EXn

· 1∑
n<Ni+1

EXn

∑
n<Ni+1

Xn .(A.14)

This implies, by eq. (A.7) and eq. (A.6),

limsup
N→∞

1∑
n<N EXn

∑
n<N

Xn ≤ lim
i→∞

(i +1)2 +O(1)

i 2 +O(1)
(A.15)

= 1.(A.16)

Similar estimate shows that

(A.17) liminf
N→∞

1∑
n<N EXn

∑
n<N

Xn ≥ 1,

finishing our proof. �
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[ES77] P. Erdős and A. Sárközy. On differences and sums of integers. II. Bull. Soc. Math. Grèce, 18(2):204–233, 1977.
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