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Introduction

In this paper we prove the existence of a generalized eigenvalue and a corresponding eigenfunction for fully nonlinear operators singular or degenerate, homogeneous of degree 1 + α, α > -1 in unbounded domains of IR N . The main tool will be the Harnack's inequality. The key hypotheses on the operator, homogeneity (H1) and ellipticity (H2) are given later.

Very recently Davila, Felmer and Quaas [START_REF] Davila | Inequality For Singular Fully Nonlinear Operators and some existence results[END_REF][START_REF] Davila | Alexandroff -Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF] proved Harnack's inequality in all dimensions N but in the singular case i.e. α < 0. Here, in the two dimensional case, we prove Harnack's inequality for any α > -1. The proof uses in an essential way this dimensional restriction. It follows the lines of the original proof of Serrin [START_REF] Serrin | On the Harnack inequality for linear elliptic equations[END_REF] in the linear case. For Harnack's inequalities in quasi-linear cases see [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF] and [START_REF] Trudinger | On Harnack type inequalities and their application to quasilinear elliptic equations[END_REF]. Very recently C. Imbert [START_REF] Imbert | Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate fullynon-linear elliptic equations[END_REF] has proved an Harnack's inequality for fully nonlinear degenerate elliptic operators; let us mention that the class of operators he considers does not include those treated in this paper (see also [START_REF] Delarue | Krylov and Safonov estimates for degenerate quasilinear elliptic PDEs[END_REF] for degenerate elliptic equations in divergence form).

It is well known that Harnack's inequality allows to control the oscillations of the solutions and hence it is used to prove uniform Hölder's estimates. It has been generalized to many 'weak' and nonlinear context, we are thinking for example about those due to Krylov and Safonov for "strong solutions" [START_REF] Krylov | An estimate for the probability of a diffusion process hitting a set of positive measure[END_REF][START_REF] Krylov | A certain property of solutions of parabolic equations with measurable coefficients Izv[END_REF], or the results of Caffarelli, Cabré [START_REF] Caffarelli | Fully-nonlinear equations Colloquium Publications[END_REF] for fully nonlinear equations that are uniformly elliptic.

Let us mention that in previous works on singular or degenerate fully nonlinear operators [START_REF] Birindelli | Eigenvalue and Maximum principle for fully nonlinear singular operators Advances in Partial Diff[END_REF][START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF] we proved Hölder's regularity of the solutions of Dirichlet problems in bounded domains. There the proof relied on the regularity of the solution on the boundary and the supremum of the solution. Hence in unbounded domains that tool cannot be used.

In the case treated here of fully nonlinear operators homogenous of degree 1 + α, the Harnack inequality, due to Davila, Felmer and Quaas [START_REF] Davila | Inequality For Singular Fully Nonlinear Operators and some existence results[END_REF], is the following Suppose that F does not depend on x and it satisfies (H1) and (H2) as defined later and that -1 < α ≤ 0. Suppose that V , h and f are continuous and that u is a nonnegative solution of

F (∇u, D 2 u) + h(x) • ∇u|∇u| α + V (x)u 1+α = f in Ω.
Then for all Ω ⊂⊂ Ω there exists some constant C which depends on a, A, α, V , h, N , Ω , Ω, such that

sup Ω u ≤ C(inf Ω u + ||f || 1 1+α L N (Ω ) ).
Among all the consequences of Harnack's inequality, Berestycki, Nirenberg and Varadhan in their acclaimed paper [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] proved the existence of an eigenfunction for a linear, uniformly elliptic operator when no regularity of the boundary of the domain is known. The idea being that, close to the boundary, the solutions are controlled by the maximum principle in "small" domains, and, in the interior, one can use Harnack's inequality.

As it is well known, inspired by [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF], the concept of eigenvalue in the case of bounded regular domains has lately been extended to fully nonlinear operators (see [START_REF] Busca | Nonlinear eigenvalues and bifurcation problems for Pucci's operator[END_REF], [START_REF] Quaas | On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF], [START_REF] Birindelli | Eigenvalue and Maximum principle for fully nonlinear singular operators Advances in Partial Diff[END_REF][START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF], [START_REF] Ishii | Demi-eigenvalues for uniformly elliptic Isaacs operators[END_REF]). Two "principal eigenvalues" can be defined as the extremum of the values for which the maximum principle or respectively the minimum principle holds.

In this article we want to use the Harnack inequality obtained here and in [START_REF] Davila | Inequality For Singular Fully Nonlinear Operators and some existence results[END_REF][START_REF] Davila | Alexandroff -Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF] (see also [START_REF] Busca | Harnack type estimates for nonlinear elliptic equations systems and applications[END_REF]) to study the eigenvalue problem in unbounded domains. Let us recall that in general, even for the Laplacian operator, the maximum principle does not hold in unbounded domain, hence we cannot define the "principal" eigenvalue in the same way as in the case of bounded domains. In [START_REF] Capuzzo-Dolcetta | The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains[END_REF] and [START_REF] Capuzzo Dolcetta | A qualitative Phragmn-Lindelöf theorem for fully nonlinear elliptic equations[END_REF] Capuzzo Dolcetta, Leoni and Vitolo study the conditions on the domain Ω in order for the Maximum principle to hold for fully nonlinear operators, extending the result of Cabré [START_REF] Cabré | On the Alexandroff-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations[END_REF].

Furthermore let us mention that in unbounded domains, even for the Laplacian, there are several possible definitions of "eigenvalues" as the reader can see in Berestycki and Rossi [START_REF] Berestycki | On the principal eigenvalue of elliptic operators in R N and applications[END_REF] . Here we define the first eigenvalue as the infimum of the first eigenvalues for bounded smooth domains included in Ω. We prove the existence of a positive eigenfunction for this so called eigenvalue, using Harnack's inequality.

We shall also prove the existence of solutions for equations below the eigenvalues. Observe that differently from the case of bounded domains, we can't use the maximum principle since in general it won't hold.

The paper is organized as follows. In the next section we state the main assumptions and some key theorem, in section 3 we state precisely the main results i.e. Harnack's inequality and existence of solutions in unbounded domains. Finally the proofs are given in the last section.

2 Assumptions and known results.

Hypotheses

Let Ω be a domain of IR N . In the whole paper we consider solutions of the equation

F (x, ∇u, D 2 u) + h(x).∇u|∇u| α + V (x)u 1+α = f (x) in Ω, (2.1) 
with the following hypotheses on F , h and V . Let α > -1 and S be the set of symmetric N × N matrices:

(H1) F is continuous on Ω × IR N \ {0} × S → IR, and ∀t ∈ IR \ {0}, µ ≥ 0, F (x, tp, µX) = |t| α µF (x, p, X).

(H2) There exists 0 < a ≤ A such that for p ∈ IR N \{0}, M ∈ S, N ∈ S, N ≥ 0

a|p| α tr(N ) ≤ F (x, p, M + N ) -F (x, p, M ) ≤ A|p| α tr(N ).
(H3) There exists a continuous function ω with ω(0

) = 0, such that if (X, Y ) ∈ S 2 and ζ ∈ IR + satisfy -ζ I 0 0 I ≤ X 0 0 Y ≤ 4ζ I -I -I I
and I is the identity matrix in IR N , then for all (x, y)

∈ IR N , x = y F (x, ζ(x -y), X) -F (y, ζ(x -y), -Y ) ≤ ω(ζ|x -y| 2 ).
Observe that when F is independent of x, condition (H3) is a consequence of (H2).

We assume that h and V are some continuous bounded functions on Ω and h satisfies (H4) -Either α ≤ 0 and h is Hölder continuous of exponent 1 + α, -or α > 0 and

(h(x) -h(y)) • (x -y) ≤ 0.
Recall that examples of operators satisfying these conditions include the p-Laplacian with α = p -2 and

F (∇u, D 2 u) = |∇u| α M ± a,A (D 2 u) where M + a,A is the Pucci operator M + a,A (M ) = ATr(M + ) -aTr(M -) and M - a,A (M ) = aTr(M + ) -ATr(M -).
For another example let α ≤ 0, B be some matrix with Lipschitz coefficients, and invertible for all x ∈ Ω. Let us consider A(x) = B B(x) and the operator

F (x, p, M ) = |p| α (tr(A(x)(M )).
Then F satisfies (H1),.., (H3). The solutions that we consider will be taken in a generalized viscosity sense see e.g. [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF] for precise definitions, let us recall that in particular we do not test when the gradient of the test function is null.

Known results in bounded domains.

We assume in this subsection that Ω is a bounded domain.

We first recall a weak comparison principle, (see [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF]), which will be used in the proof of Theorem 3.1.

Theorem 2.2 Suppose that f and g are continuous and bounded and that u and v satisfy

F (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α + V (x)|u| α u ≥ g in Ω, F (x, ∇v, D 2 v) + h(x) • ∇v|∇v| α + V (x)|v| α v ≤ f in Ω, u ≤ v on ∂Ω. If V ≤ 0 and f < g then u ≤ v in Ω. If V < 0 and f ≤ g then u ≤ v in Ω.
We shall also need for the proof of Theorem 3.1 another comparison principle :

Theorem 2.3 [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF] Suppose that τ < λ(Ω), f ≤ 0, f is upper semi-continuous and g is lower semi-continuous with f ≤ g. Suppose that there exist u continuous and v ≥ 0 and continuous, satisfying

F (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α + (V (x) + τ )|u| α u ≥ g in Ω, F (x, ∇v, D 2 v) + h(x) • ∇v|∇v| α + (V (x) + τ )v 1+α ≤ f in Ω, u ≤ v on ∂Ω.
Then u ≤ v in Ω in each of these three cases:

1) v > 0 on Ω and f < 0 in Ω, 2) v > 0 on Ω and (f (x) = 0 ⇒ g(x) > 0), 3) v > 0 in Ω, f < 0 in Ω and f < g on Ω.
We also recall the following regularity result:

Proposition 2.4 [5]
Let Ω be a smooth domain. Let f be a continuous function in Ω. Let u be a viscosity non-negative bounded solution of

F (x, ∇u, D 2 u) + h(x) • ∇u|∇u| α = f in Ω, u = 0 in ∂Ω. (2.2)
Then, for any γ < 1, there exists a constant C which depends only on |f | ∞ , |h| ∞ and |u| ∞ such that :

|u(x) -u(y)| ≤ C|x -y| γ for any (x, y) ∈ Ω 2 .
3 Main results

Harnack's inequality in the two dimensional case.

In this subsection we state Harnack's inequality, together with some important corollary. These results will be proved in section 4 and used in the next subsection.

Theorem 3.1 (Harnack's inequality) Suppose that Ω is a bounded domain in IR 2 and that f is continuous on Ω. Let u be a positive solution of

F (x, ∇u, D 2 u) + h(x).∇u|∇u| α + V (x)u 1+α = f (x) in Ω. (3.1)
Let Ω ⊂⊂ Ω. Then there exists 

K = K(Ω, Ω , A, a, |h| ∞ , |V | ∞ ) such that sup Ω u ≤ K inf Ω u + |f | 1 1+α ∞ . ( 3 
sup B(0,R) u ≤ K( inf B(0,R) u + R 2+α 1+α |f | 1 1+α ∞ ). (3.3)
As a consequence, for any solution u of (3.1) and for any Ω ⊂⊂ Ω, there exists

β ∈ (0, 1) depending on Harnack's constant K in (3.3) such that u ∈ C o,β (Ω ).
An immediate consequence of Harnack's inequality is the following Liouville type result :

Corollary 3.3 (Liouville) Let u be a solution of F (x, ∇u, D 2 u) = 0 in IR 2 , if u is bounded from below, then u is constant.
See [START_REF] Cutrì | On the Liouville property for fully nonlinear equations[END_REF] for other Liouville results.

Existence's results in unbounded domains.

Before stating the results in unbounded domains we recall what we mean by first eigenvalue and the property of these eigenvalues in the bounded case.

When Ω is a bounded domain we define

λ(Ω) = sup{λ, ∃ ϕ ∈ C(Ω), ϕ > 0 in Ω, F [ϕ] + h(x) • ∇ϕ|∇ϕ| α + (V (x) + λ)ϕ 1+α ≤ 0}, and 
λ(Ω) = sup{λ, ∃ ϕ ∈ C(Ω), ϕ < 0 in Ω, F [ϕ] + h(x) • ∇ϕ|∇ϕ| α + (V (x) + λ)ϕ|ϕ| α ≥ 0}.
We proved in [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF] that when Ω is a smooth bounded domain, there exists ϕ > 0 and ψ < 0 in Ω which are respectively a solution of

F [ϕ] + h(x) • ∇ϕ|∇ϕ| α + (V (x) + λ(Ω))ϕ 1+α = 0 in Ω, ϕ = 0 on ∂Ω,
and

F [ψ] + h(x) • ∇ψ|∇ψ| α + (V (x) + λ(Ω))|ψ| α ψ = 0 in Ω, ψ = 0 on ∂Ω.
Moreover ϕ and ψ are Hölder continuous as recalled in Proposition 2.4.

When Ω ⊂ IR N is unbounded, we extend in the following way the definition of the "eigenvalues": λ(Ω) = inf{λ(A), for all smooth bounded domain A, A ⊂ Ω}, and λ(Ω) = inf{λ(A), for all smooth bounded domain A, A ⊂ Ω}.

When no ambiguity arises we shall omit to write the dependence of the eigenvalues with respect to the domain Ω. We start by giving some lower bounds on the eigenvalues. For simplicity this will be done for h ≡ 0, V ≡ 0. If Ω is bounded it is easy to see that λ(Ω) > 0, while it is obvious that for Ω = IR N , λ(Ω) = 0. We wish to prove that this is not the case for all unbounded domains, in fact we shall see that if Ω is bounded in one direction, then λ(Ω) > 0.

Proposition 3.4 Suppose that Ω is contained in a strip of width M i.e. up to translation and rotation

Ω ⊂ [0, M ] × IR N -1 then there exists C = C(α, a) > 0 such that λ(Ω) ≥ C M 2+α . (3.4) Proof: Let u(x) = 4M 2 -(x 1 + M ) 2 . Then u 1+α ≤ (3M 2 ) 1+α and F [u] ≤ -2 1-|α| M α a in [0, M ] × IR N -1 . Hence λ(Ω) ≥ 2 1-|α| M 2+α
a . This gives (3.4) and it ends the proof.

In the next theorem we want to be in the same hypotheses for which Harnack's inequality is known, hence we consider the following condition:

(C) N ≥ 3, F is independent of x and -1 < α ≤ 0;

or N = 2, α > -1, F may depend on x .

Theorem 3.5 Suppose that Ω is a (possibly unbounded) domain of IR N . Suppose that F satisfies (C). Then there exists a positive function φ, respectively a negative function ψ , which is a solution of

F [φ] + h(x) • ∇φ|∇φ| α + (V (x) + λ(Ω))φ 1+α = 0 in Ω, respectively 
F [ψ] + h(x) • ∇ψ|∇ψ| α + (V (x) + λ(Ω))|ψ| α ψ = 0 in Ω.
Furthermore φ and ψ are Hölder continuous.

Remark 3.6 In Theorem 3.5, we do not require that φ and ψ be zero on ∂Ω.

Nonetheless inf Ω φ = inf Ω |ψ| = 0 otherwise it would contradict the definition of eigenvalues.

In the next proposition we prove some existence's result "below" the eigenvalues.

Proposition 3.7 For any λ < λ(Ω) (respectively λ < λ(Ω)) , for any f ∈ C c (Ω) non positive (respectively non negative), there exists a solution v > 0 (respectively v < 0) of

F [v] + h(x) • ∇v|∇v| α + (V (x) + λ)|v| α v = f in Ω.
Furthermore, in both cases, for f ≡ 0 there exists C such that

|v| ∞ ≤ C|f | 1 1+α ∞ .
Remark 3.8 As mentioned in Proposition 2.4, we proved some Hölder's regularity result for all β ∈ [0, 1[ in bounded regular domains for homogeneous or regular boundary conditions, [START_REF] Birindelli | Eigenvalue and Maximum principle for fully nonlinear singular operators Advances in Partial Diff[END_REF]. More precisely the Hölder's constants depend on the L ∞ norm of u and u is zero on the boundary. This gives also some Hölder's uniform estimates for sequences of solutions. As a consequence, a sequence of solutions converges, for a subsequence, towards a solution. This cannot be used in the proof of the results above, indeed we shall need compactness results inside bounded sets Ω n whose size increases, for sequence of functions which have uniform L ∞ bounds on bounded fixed sets, but for which the L ∞ (Ω n ) norm may go to infinity.

Proofs of the Main results

Proof of existence

We start by the existence of some "eigenfunction".

Proof of Theorem 3.5. We shall only give the proof for the positive eigenfunction φ, the case of the negative eigenfunction ψ being analogous. Let (Ω n ) n be a sequence of smooth, bounded domains such that

Ω n ⊂⊂ Ω n+1 ⊂⊂ Ω, λ(Ω n ) → λ(Ω) and ∪ n Ω n = Ω.
Let f n be a sequence of functions in C c (Ω n \ Ω n-1 ), f n ≤ 0 and not identically zero. Since λ(Ω n ) > λ(Ω), for any n, there exists u n > 0 in Ω n which solves

F [u n ] + h(x) • ∇u n |∇u n | α + (λ(Ω) + V (x))u 1+α n = f n in Ω n , u n = 0 on ∂Ω n . Fix x 0 ∈ Ω 1 , let v n (x) = u n (x) u n (x 0 )
, for all x ∈ Ω n .

We extend them to zero in Ω \ Ω n , obtaining in such a way a sequence of continuous functions in Ω. Let O , O be regular domains such that O ⊂⊂ O ⊂⊂ Ω. We prove that (v n ) n converges uniformly on K = O . Indeed there exists N 0 such that for all n ≥ N 0 , Ω n contains K . As a consequence we have, for such n ,

F [v n ] + h(x) • ∇v n |∇v n | α + (V (x) + λ(Ω))v 1+α n = 0 in O .
Moreover v n (x 0 ) = 1. By Harnack's inequality of Theorem 3.1 there exists a constant

C K such that sup v n ≤ C K (inf v n ) ≤ C K .
This implies in particular that v n is bounded independently of n in K . Using Corollary 3.2 on the open set O , one gets that (v n ) n is relatively compact in C(O). A subsequence of (v n ) n will converge towards φ, a solution of

F [φ] + h(x) • ∇φ|∇φ| α + (V (x) + λ(Ω))φ 1+α = 0 in O.
Since φ(x 0 ) = lim v n (x 0 ) = 1, φ cannot be identically zero. By the strong maximum principle on compact subdomains of Ω, φ > 0 inside Ω. Since O can be taken arbitrarily large this ends the proof.

Proof of Proposition 3.7. We consider only the case f ≤ 0 and λ < λ(Ω). We first treat f ≡ 0. Let K be the compact support of f . As in the previous proof let (Ω n ) n be a sequence of bounded smooth domains, such that

Ω n ⊂ Ω n+1 and ∪ n Ω n = Ω.
Since λ(Ω n ) ≥ λ(Ω), according to the existence's results in [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF], there exists u n , a positive solution of

F [u n ] + h(x) • ∇u n |∇u n | α + (V (x) + λ)u 1+α n = f in Ω n , u n = 0 on ∂Ω n .
Let ϕ + be the function given in Theorem 3.5 such that

F [ϕ + ] + h(x) • ∇ϕ + |∇ϕ + | α + (V (x) + λ(Ω))(ϕ + ) 1+α = 0 in Ω,
with max K ϕ + = 1. By homogeneity, the function

ϕ 1 (x) = sup |f | 1 1+α (λ -λ) 1 1+α inf K ϕ + ϕ + (x), is a solution of F [ϕ 1 ] + h(x) • ∇ϕ 1 |∇ϕ 1 | α + (V (x) + λ)ϕ 1+α 1 = (λ -λ) (ϕ + ) 1+α sup(-f ) (λ -λ)(inf K ϕ + ) 1+α ≤ f.
Since ϕ 1 > 0 on ∂Ω n , the comparison principle in Theorem 2.3, gives for any n

0 ≤ u n ≤ ϕ 1 in Ω n .
The same argument as in the proof of Theorem 3.5 shows that there is a subsequence of (u n ) n , converging on every compact subset of Ω, to a solution u of

F [u] + h(x) • ∇u|∇u| α + (V (x) + λ)u 1+α = f in Ω.
The strong maximum principle applied on bounded subdomains of Ω implies that u > 0.

We now consider the case f ≡ 0. We only give the proof in the case λ < λ(Ω), the other case being analogous.

Let (Ω n ) n be a sequence of smooth bounded domains such that

Ω n ⊂ Ω n+1 and ∪ n Ω n = Ω.
For any n, let u n be the solution of

F [u n ] + h(x) • ∇u n |∇u n | α + (V (x) + λ)u n |u n | α = 0 in Ω n , u n = 1 on ∂Ω n .
Since, λ < λ(Ω n ), u n is well defined and u n > 0 in Ω n , (see [START_REF] Birindelli | The Dirichlet problem for singular fully nonlinear operators[END_REF]). Fix x 0 ∈ Ω 1 . Observe that v n = un un(x 0 ) is a solution of

F [v n ] + h(x) • ∇v n |∇v n | α + (V (x) + λ)v 1+α n = 0. By Harnack's inequality, for every O such that O ⊂⊂ Ω , (v n ) n is bounded on K = O .
Using Corollary 3.2 as before, there exists a subsequence of (v n ) n which converges uniformly on every compact subdomain of Ω, to v which is a solution of

F [v] + h(x) • ∇v|∇v| α + (V (x) + λ)v 1+α = 0 in Ω.
Moreover v(x 0 ) = 1, therefore v is not identically zero. By the strong maximum principle v > 0 in Ω. This ends the proof.

Proofs of Harnack's inequality in the two dimensional case.

The proof that we propose follows the lines of the proof of Serrin [START_REF] Serrin | On the Harnack inequality for linear elliptic equations[END_REF], see also Gilbarg Trudinger [19], with some new arguments that make explicit use of the eigenfunction in bounded domains. This extends the result of [START_REF] Davila | Inequality For Singular Fully Nonlinear Operators and some existence results[END_REF] to the case α > 0, but only in the two dimensional case.

In the proof of Theorem 3.1 we shall use the following Lemma 4.1 Let b and c be some positive numbers,

x o = (x o 1 , x o 2 ) ∈ IR 2 . Let E = x = (x 1 , x 2 ), σ 2 (x) := (x 1 -x o 1 ) 2 b 2 + (x 2 -x o 2 ) 2 c 2 ≤ 1, x 1 -x o 1 > b 2 .
Then there exist two constants γ > 0 and > 0 such that the function

v(x) = e -γσ 2 (x) -e -γ e -γ/4 -e -γ , satisfies F [v] -|h| ∞ |∇v| 1+α -|V | ∞ v 1+α > in E, (4.1 
)

and v = 0 on ∂E ∩ {x 1 -x o 1 > b 2 }. Remark 4.2
The same result holds for the symmetric part of ellipsis :

E = {x = (x 1 , x 2 ), σ 2 (x) ≤ 1, x 1 -x o 1 < -b 2 }.
Proof of Lemma 4.1. Without loss of generality one can assume that x o = 0. Let ṽ = e -γσ 2 e -γ/4 -e -γ and let B be the diagonal 2 × 2 matrix, with

B 11 = 1 b 2 and B 22 = 1 c 2 . Then ∇v = -2γṽBx and 
D 2 v = (2γ)(2γBx ⊗ Bx -B)ṽ.
Since B and Bx ⊗ Bx are both nonnegative,

a(tr(D 2 v) + ) -A(tr(D 2 v) -) ≥ aγ 2 4( x 2 1 b 4 + x 2 2 c 4 ) -2(A + a)γ( 1 b 2 + 1 c 2 ) ṽ.
We define

m = inf b -α , 2 α ( 1 b 2 + 1 c 2 ) α/2 and M = 2 1+α ( 1 b 2 + 1 c 2 ) 1+α 2 . Choosing γ = sup 4(A + a) a (1 + b 2 c 2 ), 4|h| ∞ M b 2 ma , 4|V | ∞ b 2 am 1 2+α , (4.2) 
and using (H1), there exists ε > 0 such that :

F (x, ∇v, D 2 v) + h(x) • ∇v|∇v| α + V (x)v 1+α ≥ ≥ |∇v| α (a(tr(D 2 v) + ) -A(tr(D 2 v) -)) -|h| ∞ |∇v| 1+α -|V | ∞ v 1+α ≥ ε > 0.
This ends the proof of Lemma 4.1.

Proof of Theorem 3.1:

Let us remark that u ≥ 0 implies that λ(Ω) ≥ 0, according to the definition of λ(Ω). Moreover without loss of generality we can suppose that λ(Ω) > 0. Indeed, using again the definition of the eigenvalue, there exists Ω 1 ⊂ Ω such that Ω ⊂⊂ Ω 1 and λ(Ω 1 ) > λ(Ω) ≥ 0. Then we consider the proof in Ω 1 instead of Ω.

The proof proceeds in the following way, we first prove (3.2) in a ball of radius 1. The homogeneity of the equation allows to extent it to balls of any bounded radius R. Finally, for general bounded domains Ω, (3.2) is proved using an argument that is standard in potential theory.

So we begin with the following Claim: Suppose that Ω = B(0, 1). There exists K which depends only on a, A, and bounds on h and V such that

u(0) ≤ K min B(0, 1 3 ) u + |f | 1 1+α ∞ . (4.3) 
Proof of the Claim : Since λ(B(0, 1)) > 0, for δ > 0 sufficiently small, λ δ := λ(B(0, 1 + δ)) > 0 as well. We show first that there exists a constant > 0 such that if max B(0,1) |f | ≤ , then for some constant K ≥ 1 u(0) ≤ K( min B(0, 1 3 )

u + 1).

If u(0) ≤ 1, every K greater than 1 is convenient. We assume then that u(0) > 1.

Let φ δ be some positive eigenfunction in B(0,

1 + δ) such that |φ δ | ∞ = 1 2 i.e. φ δ satisfies F [φ δ ] + h(x) • ∇φ δ |∇φ δ | α + V (x) + λ δ φ 1+α δ = 0 in B(0, 1 + δ), φ δ = 0 on ∂B(0, 1 + δ).
For 1 = λ δ 2 min B(0,1) φ 1+α δ , we then have

F [φ δ ] + h(x) • ∇φ δ |∇φ δ | α + V (x) + λ δ φ 1+α δ ≤ -2 1 in B(0, 1). (4.4)
Since u(0) > 1, the function χ = u(0)φ δ satisfies (4.4) as φ δ . We assume that ≤ 1 , then

F [χ] + h(x) • ∇χ|∇χ| α + V (x) + λ δ χ 1+α ≤ f (x) -1 in B(0, 1).
Let G denote the connected component of the set {x ∈ B(0, 1), | u(x) > χ(x)} which contains 0. Observe that G contains at least one point, say P o on ∂B(0, 1). Indeed, if not, G would be contained in the interior of B(0, 1). Since u(x) = χ on ∂G ∩ B(0, 1) = ∂G, Theorem 2.3 applied in the set G, implies that u(x) ≤ χ in G. This is a contradiction since it would imply that u(0) ≤ u(0) 2 . Without loss of generality one may suppose that P o = (0, 1).

For i = 1, 2, 3, we now introduce E i given by:

E 1 = {(x 1 , x 2 ), (x 1 + 5 2 ) 2 9 + 4(x 2 - √ 3 4 ) 2 ≤ 1, x 1 ≥ -1}, E 2 = {(x 1 , x 2 ), (x 1 -5 2 ) 2 9 + 4(x 2 - √ 3 4 ) 2 ≤ 1, x 1 ≤ 1}, E 3 = {(x 1 , x 2 ), 4x 2 1 + x 2 -1 - √ 3 2 2 + √ 3 2 2 ≤ 1, x 2 ≤ √ 3/4}.
Observe that B(0, 1 3 ) is contained in the interior of E 3 and that the boundary

∂E 3 consists of the elliptic part ∂E 3 ∩ {(x 1 , x 2 ) |x 2 < √ 3
4 } and the line segment

L 3 := ∂E 3 ∩ {(x 1 , x 2 ) | x 2 = √ 3 4 } = [- 1 2 , 1 2 ] × { √ 3 4 }.
Furthermore the straight segment L 3 is contained in the interior of E 1 ∩ E 2 . For i = 1, 2, 3 let v i , be the functions given in Lemma 4.1. We recall that 0 ≤ v i ≤ 1, v i = 0 on the elliptic boundary of E i and there exists a constant ε 2 > 0 such that v i satisfies

F [v i ] + h(x) • ∇v i |∇v i | α + V (x)v α+1 i > 2 .
Let ϕ : [0, 1] → G be a simple and regular curve which connects (0, 0) and (0, 1) i.e. ϕ(0) = (0, 0) and ϕ(1) = (0, 1). We denote by Γ the image of ϕ and define E = E 1 ∪ E 2 . We also introduce

∂E + = {(x 1 , x 2 ) ∈ ∂E |x 2 > √ 3 4 , |x 1 | < 1}
and

∂E -= {(x 1 , x 2 ) ∈ ∂E |x 2 < √ 3 4 , |x 1 | < 1}.
Necessarily Γ intersects ∂E + and ∂E -. Let t -= sup{t, ϕ(t) ∈ ∂E -} and t + = inf{t, ϕ(t) ∈ ∂E + }. Note that the portion ϕ(]t -, t + [) of the curve Γ is in the interior of E and that this portion of curve separates E in two parts, the left part E l and the right part E r .

Let

D 1 := E 1 ∩ E r and D 2 := E 2 ∩ E l , and note that E 1 ∩ E 2 ⊂ D 1 ∪ D 2 , ∂D 1 = ϕ(]t -, t + [) ∩ D 1 ∪(∂E 1 ∩ D 1 ) and ∂D 2 = ϕ(]t -, t + [) ∩ D 2 ∪(∂E 2 ∩ D 2 ) .
Setting κ 1 := inf B(0,1)

φ δ > 0, we have u -κ 1 u(0)v 1 > κ 1 u(0)(1 -v 1 ) > 0 on ϕ(]t -, t + [) ∩ D 1 , u -κ 1 u(0)v 1 = u > 0 on ∂E 1 ∩ D 1 . Analogously u -κ 1 u(0)v 2 > κ 1 -v 2 ) > 0 on ϕ(]t -, t + [) ∩ D 2 , u -κ 1 u(0)v 2 = u > 0 on ∂E 2 ∩ D 2 .
For i = 1, 2 we define w i = κ 1 u(0)v i which satisfies

F [w i ] -|h| ∞ |∇w i | 1+α -|V | ∞ w 1+α i > (κ 1 u(0)) 1+α 2 in E i .
In addition to the first condition on we then assume that ≤ κ 1+α 1 2 so that

F [w i ] -|h| ∞ |∇w i | 1+α -|V | ∞ w 1+α i > f (x) in E i .
The comparison principle in Theorem 2.3 gives

u(x) ≥ κ 1 u(0) min{v 1 (P ), v 2 (P )} for all x ∈ E 1 ∩ E 2 .
In particular, setting

κ 2 = min x∈L 3 max{v 1 (x), v 2 (x)},
and recalling that L 3 is contained in the interior of E 1 ∩ E 2 , we have min

x∈L 3 u(x) ≥ κ 1 κ 2 u(0). (4.5) 
Hence

u(0) ≤ K max 1, -1 1+α min B(0, 1 3 ) u + |f | 1 1+α ∞ .
This ends the proof of the Claim by identifying K and K max 1, -1 1+α .

Remark that the inequality (4.3) is equivalent to

u(0) + K K -1 |f | 1 1+α ∞ ≤ K u(x) + K K -1 |f | 1 1+α ∞ .
Fix any point x in B(0, 1 4 ). Then

B(x, 3 4 
) ⊂ B(0, 1), and 0 ∈ B(x,

).

Hence, using one again (4.3):

u(x) + K K -1 |f | 1 1+α ∞ ≤ K u(0) + K K -1 |f | 1 1+α
∞ but always using the Claim,

u(0) + K K -1 |f | 1 1+α ∞ ≤ K u(x) + K K -1 |f | 1 1+α ∞ .
(4.6)

Now we consider the case where Ω = B(0, R) and u is a positive solution of (3.1). Using the homogeneity of the equation v(x) := u(Rx) satisfies F (Rx, ∇v, D 2 v)+Rh(Rx)•∇v|∇v| α +R α+2 (V (Rx))v α+1 = R 2+α f (Rx) in B(0, 1).

By (4.6), with h replaced by Rh(Rx) and V (x) replaced by R α+2 V (Rx), v satisfies, for any x ∈ B(0, 1 3 ):

v(0) + R α+2 α+1 K K -1 |f | 1 1+α ∞ ≤ K v(x) + R α+2 α+1 K K -1 |f | 1 1+α ∞ i.e. u(0) + R α+2 α+1 K K -1 |f | 1 1+α ∞ ≤ K u(x) + R α+2 α+1 K K -1 |f | 1 1+α ∞ for x ∈ B(0, R 3 
).

Observe that K depends on γ (see (4.2)), but when R ≤ R o it can be chosen independently on R.

For any bounded domain Ω we follow a standard procedure in potential theory. Let Ω such that Ω ⊂⊂ Ω. Let R = inf{r, sup x∈Ω d(x, ∂Ω) ≤ r}. There exists k ∈ N, such that for any pair (x, x) of points in Ω , and for at most k points x = x 1 , x 2 , . . . , x k = x the following holds:

x i ∈ Ω , |x i -x i+1 | ≤ R 4 , B(x i , R) ⊂ Ω.
Hence applying the previous results, observing that λ(Ω) < λ(B(x i , R)),

we get, for some constant β which depends on K and R,

u(x) + β|f | 1 1+α ∞ ≤ K(u(x 2 ) + β|f | 1 1+α ∞ ) ≤ K 2 (u(x 3 ) + β|f | 1 1+α ∞ ) ≤ K k (u(x) + β|f | 1 1+α ∞ ).
Since this inequality holds for any x, x in Ω , this ends the proof of Theorem 3.1.

Proof of Corollary 3.2.

Suppose that u is a solution in Ω which contains B(0, R o ). Let v be defined as v(x) =: u(Rx) . Then v satisfies in B(0, Ro R )

F (Rx, ∇v, D 2 v)(x) + Rh(Rx) • ∇v|∇v| α + R 2+α V (Rx)v 1+α = R 2+α f (Rx).
Applying (4.3) for v we get (3.3) for u.

We now prove that u is Hölder's continuous. 

Remark 2 . 1

 21 When no ambiguity arises we shall sometimes write F [u] to signify F (x, ∇u, D 2 u).

  Let R o > 0 such that B(x o , 4R o ) ⊂ Ω ⊂⊂ Ω. We define for any R < R o M i = max B(xo,iR) u, m i = min B(xo,iR) u for i = 1 and i = 4. Then u -m i is a solution of F [u -m i ] + h(x)∇(u -m i )|∇(u -m i )| α = -V (x)u 1+α + f (x)

  .2) Corollary 3.2 Let u be a positive solution of (3.1). Let R o be such that B(0, R

o ) ⊂ Ω. Then there exists K which depends only on A, a, |h| ∞ and R o , such that for any R < R o :
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Choose w 3 = κ 1 κ 2 u(0)v 3 so that

Furthermore, by (4.5) u ≥ w 3 on L 3 and u > 0 = w 3 on

i.e. w 3 ≤ u on ∂E 3 . We are in a position to use the comparison principle in Theorem 2.3 and get that u ≥ w 3 in E 3 . Since B(0, 1 3 ) ⊂ E 3 , we have finally obtained min

In particular, since K > 1, we have in both cases u(0) ≤ 1 and u(0) ≥ 1

By (4.3), v satisfies:

In the same way, using the operator G(x, p, M ) = -F (x, p, -M ), and the function M i -u, we get in B(0, iR),

For K as above, we have obtained that sup

Summing this inequality with (4.7), for some constant

The rest of the proof is classical, just apply Lemma 8.23 in [START_REF] Gilbarg | Elliptic Partial Differential equations of second order[END_REF].

Proof of Corollary 3.3. Let c 0 = inf IR 2 u and let w = u -c 0 . Clearly w satisfies in IR 2 : F [w] = 0, w ≥ 0, inf w = 0.

Suppose by contradiction that w > 0 somewhere, then applying the strong maximum principle one gets that w > 0 in the whole of IR 2 . By definition of the infimum, for any ε > 0 there exists x ∈ IR 2 such that w(x) ≤ ε. Now for any x ∈ IR 2 consider the ball B(x, 4|x -x|), by Harnack's inequality , we get that w(x) ≤ Kw(x) ≤ Kε.

Observe that K doesn't depend on the distance |x -x| because h = V ≡ 0, hence it doesn't depend on the choice of x. Since this holds for any ε we get w ≡ 0.