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Abstract

This article presents some qualitative results for solutions of the fully
nonlinear elliptic equation F (∇u,D2u) + f(u) = 0 in IRN . Precisely un-
der some assumptions on f , if −1 ≤ u ≤ 1 and limx1→±∞ u(x1, x

′) = ±1
uniformly with respect to x′, then the solution depends only on x1.

1 Introduction

The sliding method was introduced in [6] by Berestycki and Nirenberg in order to
prove monotonicity of solutions of

∆u+ f(u) = 0 in Ω ⊂ IRN . (1.1)

This powerful method uses two features of the Laplacian, comparison principle and
invariance with respect to translation. The idea in general is the following: Fix
any direction ν; first slide of tν the solution of (1.1) with t ∈ IR large enough that
the intersection of the slided domain with Ω is small enough or ”narrow enough”
for the maximum principle to hold in that intersection. Since the Laplacian is
invariant by translation the slided solution satisfies the same equation then u and
this allows to compare the values of the slided solution with the original solution.
Then continue ”sliding” i.e. decrease t until reaching a critical position.

Coupling simplicity with ductility, the sliding method of [6] has been incredibly
influential, it is possible to count over two hundred citations of the work (e.g.
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through google scholar). We shall here only recall the work by Berestycki, Hamel
and Monneau [5] where the method is used to prove the so called Gibbons conjecture
. This was simultaneously and independently solved by Barlow, Bass and Gui [3]
and Farina [20]. Precisely in [5], the authors prove that if f is a C1([−1, 1]) function
decreasing near −1 and 1, with f(−1) = f(1) = 0 (typically, f(u) = u− u3) then
the solutions of (1.1) in IRN that converge uniformly to 1 or -1 at infinity in some
fixed direction, say x1, are in fact one dimensional i.e functions of x1 alone. In [5],
the sliding method is coupled with a maximum principle (comparison principle) in
unbounded domains contained in some cone. This equation is named after Allen-
Cahn who used it [1] to describe the interfaces of gasses or solids.

As is well known the Gibbons conjecture is a weak form of the famous De
Giorgi’s conjecture which states that for f(u) = u−u3, the level sets of monotone,
entire solutions of (1.1) are hyperplanes for N ≤ 8. This result has been proved in
dimension 2 and 3 respectively by Ghoussoub and Gui [24] and by Ambrosio, Cabré
[2], while Del Pino, Kowalcyk and Wei [18] have proved that it does not hold for
N > 8 by constructing a counter example. Savin has proved the case 4 ≤ N ≤ 8,
with the further condition that the limit be ±1 in a direction at infinity, in that
case this condition is not assumed to be uniform with respect to the other variables.
See also [29] for analogous results concerning the p-Laplacian.

In the present note for F (∇u,D2u) := |∇u|αF̃ (D2u) with α > −1 and F̃
uniformly elliptic (for precise assumptions see section 2) we prove an analogue of
the results just discussed i.e.

Theorem 1.1 Let f be defined on [−1, 1], C1 and such that f is nonincreasing
near −1 and 1, with f(−1) = f(1) = 0. Let u be a viscosity solution of

F (∇u,D2u) + f(u) = 0 in IRN ,

with values in [−1, 1]. Suppose that lim
x1→±∞

u(x1, x
′) = ±1, uniformly with respect

to x′. When α 6= 0 we also suppose that for any b < c there exists m > 0 such that
|∇u(x)| ≥ m > 0 in [b, c]× IRN−1 in the viscosity sense.
Then u does not depend on x′ i.e. u(x1, x

′) = v(x1) where{
F (v′e1, v

′′e1 ⊗ e1) + f(v) = 0 in IR,
|v| ≤ 1, lim

x→±∞
v = ±1 (1.2)

and v is increasing.
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Remark 1.2 This theorem proves that in the case α > 0, and for a large class
of operators, there is no solution which satisfies the assumptions. Indeed, we shall
prove in section 5 that every solution of

−|u′|αu′′ = f(u)

with |u| ≤ 1, lim
x→±∞

u = ±1 and 1 and −1 are simple roots of f , cannot satisfy

u′ > 0 on IR.

Many remarks are in order. Let us note that in the case α ≤ 0, some recent
regularity results [9] prove that locally Lipschitz solutions are in fact C1,β for some
β < 1, and this regularity is sufficient to prove the results enclosed here. For α > 0
the C1 regularity is a consequence of the hypothesis on the positivity of the norm
of the gradient.

A key ingredient in the proof of this result, which is of independent interest, is
the following, strong comparison principle.

Proposition 1.3 Suppose that Ω is some open set, and xo, r such that B(xo, r) ⊂
Ω.

Suppose that f is C1 on IR , and that u and v are, respectively, C1 bounded sub-
and super-solutions of

F (∇w,D2w) + f(w) = 0 in Ω

such that u ≥ v and ∇v 6= 0 (or ∇u 6= 0) in B(xo, r), then, either u > v or u ≡ v
in B(xo, r).

Observe that in Proposition 1.3 the condition that the gradient needs to be different
from zero cannot be removed and this is why we need the condition in Theorem
1.1. Indeed, for any m, k ∈ Z with k ≤ m the functions

uk,m(x) =


1 for x1 ≥ (2m+ 2)π
cosx1 for (2k + 1)π ≤ x1 ≤ (2m+ 2)π
−1 for x1 ≤ (2k + 1)π

are viscosity solutions of

|∇u|2(∆u) + (u− u3) = 0,

and they are C1,β for all β < 1.
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Observe that e.g. u0,0 ≥ u0,i for all i ≥ 1 and u0,0(2π, y) = u0,i(2π, y) but the
functions don’t coincide.

When α = 0, De Silva and Savin in [19], have proved the analogue of De Giorgi’s
conjecture for uniformly elliptic operators in dimension 2. With f as above, they
prove that if there exists a one dimensional monotone solution i.e. g : IR 7→ [−1.1]
such that u(x) = g(η · x) is a solution of

F̃ (D2u) + f(u) = 0 in IR2 (1.3)

satisfying limt→±∞ g(t) = ±1 then, all monotone bounded solutions of (1.3) are
one dimensional, i.e. their level sets are straight lines.

In the last section of this paper we prove the existence of one dimensional
solutions in the case α ≤ 0 i.e. we prove that there exist solutions of (1.2). Precisely
we give conditions on f that guarantee existence of solutions of the ODE

|u′|αM+
a,A(u′′) + f(u) = 0

that satisfy limx→±∞ u(x) = ±1.
Observe for f satisfying the conditions of (1.1), in general, the solution of the

ODE may not exist. Indeed, let F̃ (D2u) = M+
a,A(D2u) where, for any symmetric

matrix M with eigenvalues ei,

M+
a,A(M) = a

∑
ei<0

ei + A
∑
ei>0

ei.

Then, as shown in the last section, for a < A there are no one dimensional solutions
of

M+
a,A(D2u) + u− u3 = 0,

that satisfy the asymptotic conditions.

While completing this work, we have received an interesting preprint by Farina
and Valdinoci, [21], who treats Gibbons conjecture in a very general setting that
includes the case α = 0 in this note.

2 Assumptions and known results

In the whole paper we shall suppose the following hypotheses on the operator F .
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Let S be the set of N × N symmetric matrices, and let α > −1. Then F is
defined on IRN \ {0} × S by

F (p,M) = |p|αF̃ (M), (2.4)

where F̃ satisfies

F̃ (tM) = tF̃ (M) for any t ∈ IR+,M ∈ S,

and there exist A ≥ a > 0 such that for any M and any N ∈ S such that N ≥ 0

atr(N) ≤ F̃ (M +N)− F̃ (M) ≤ Atr(N). (2.5)

Example 2.1 1) Let 0 < a < A andM+
a,A(M) be the Pucci’s operatorM+

a,A(M) =
Atr(M+) − atr(M−) where M± are the positive and negative part of M , and
M−

a,A(M) = −M+
a,A(−M). Then F defined as

F (p,M) = |p|αM±
a,A(M)

satisfies the assumptions.
2) Let B be a symmetric positive definite matrix then F (p,M) = |p|α(tr(BM)),

is another example of operator satisfying the assumptions.

We now recall what we mean by viscosity solutions in our context :

Definition 2.1 Let Ω be a bounded domain in IRN , let g be a continuous function
on Ω× IR, then v, continuous on Ω is called a viscosity super-solution (respectively
sub-solution) of F (∇u,D2u) = g(x, u) if for all x0 ∈ Ω,

-Either there exists an open ball B(x0, δ), δ > 0 in Ω on which v is a constant
c and 0 ≤ g(x, c), for all x ∈ B(x0, δ) (respectively 0 ≥ g(x, c) for all x ∈ B(x0, δ))

-Or ∀ϕ ∈ C2(Ω), such that v − ϕ has a local minimum (respectively local maxi-
mum) at x0 and ∇ϕ(x0) 6= 0, one has

F (∇ϕ(x0), D2ϕ(x0)) ≤ g(x0, v(x0)).

(respectively
F (∇ϕ(x0), D2ϕ(x0)) ≥ g(x0, v(x0))).

A viscosity solution is a function which is both a super-solution and a sub-
solution.
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Remark 2.2 When F is continuous in p, and F (0, 0) = 0, this definition is equiv-
alent to the classical definition of viscosity solutions, as in the User’s guide [15].

We now give a definition that will be needed in the statement of our main theorem.

Definition 2.3 We shall say that |∇u| ≥ m > 0 in Ω in the viscosity sense, if for
all ϕ ∈ C2(Ω), such that u − ϕ has a local minimum or a local maximum at some
x0 ∈ Ω,

|∇ϕ(x0)| ≥ m.

In our context, since the solutions considered have their gradient different from
zero everywhere, the viscosity solutions can be intended in the classical meaning.

We begin to recall some of the results obtained in [8] which will be needed in
this article.

Theorem 2.4 Suppose that c is a continuous and bounded function satisfying c ≤
0.

Suppose that f1 and f2 are continuous and bounded and that u and v satisfy

F (∇u,D2u) + c(x)|u|αu ≥ f1 in Ω,

F (∇v,D2v) + c(x)|v|αv ≤ f2 in Ω,

u ≤ v on ∂Ω.

If f2 < f1 then u ≤ v in Ω. Furthermore, if c < 0 in Ω and f2 ≤ f1 then u ≤ v in
Ω.

Proposition 2.5 Suppose that O is a smooth bounded domain. Let u be a solution
of

F (∇u,D2u) ≤ 0 in O. (2.6)

If there exists some constant co, such that u ≥ co inside O and u(x̄) = co with
x̄ ∈ ∂O, then either u ≡ co in O or

lim inf
t→0+

u(x̄− t~n)− u(x̄)

t
> 0,

where ~n is the outer normal to ∂O at x̄.
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Remark 2.6 In particular Proposition 2.5 implies that a non constant super-
solution of (2.6) in a domain Ω has no interior minimum.

If co = 0, the result can be extended in the following manner : Suppose that
β ≥ α, that c is continuous and bounded, and u is a nonnegative solution of

F (∇u,D2u) + c(x)u1+β ≤ 0

then either u ≡ 0 or u > 0 in Ω. In that last case, if u = 0 on some point xo ∈ ∂Ω,
then ∂~nu(xo) < 0.

We now recall the regularity results obtained in [9].

Theorem 2.7 Suppose that Ω is a bounded C2 domain and α ≤ 0. Suppose that g
is continuous on Ω× IR . Then the bounded solutions of{

F (∇u,D2u) = g(x, u(x)) in Ω,
u = 0 on ∂Ω,

(2.7)

satisfy u ∈ C1,β(Ω), for some β ∈ (0, 1) .
Furthermore if Ω is a domain (possibly unbounded) of IRN and if u is bounded

and locally Lipschitz then u ∈ C1,β
loc (Ω) for some β ∈ (0, 1).

When α > 0, C1 regularity results are not known except for the one dimen-
sional case or the radial case, however here, since the solutions that we consider
have the gradient bounded away from zero, this regularity is just a consequence of
classical results and a priori estimates. Indeed next theorem is just an application
of Theorem 1.2 of [14], which in turn is the extension of Caffarelli’s classical result:

Theorem 2.8 Suppose that Ω is a (possibly unbounded) domain, and that g is C1

and bounded. Let u be a bounded solution of

F (∇u,D2u) = g(u) in Ω. (2.8)

If |∇u| ≥ m > 0 in Ω in the sense of Definition 2.3 then ∀y, ∀ρ such that B(y, ρ) ⊂
Ω, there exist β ∈ (0, 1) and C = C(a,A,N, |g(u)|∞,m) such that

‖u‖C1,β(B(y, ρ
2

)) ≤ C sup
B(y,ρ)

|u|. (2.9)
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Proof. We introduce the operator:

G(v,∇v,D2v) := F̃ (D2v)− g(v) sup
(
|∇v|, m

2

)−α
.

If u is a solution of (2.8) such that in the viscosity sense |∇u| ≥ m > 0, then it is
a solution of

G(u,∇u,D2u) = 0 in Ω.

Indeed, e.g. if ϕ ∈ C2 is such that (u − ϕ)(x) ≥ (u − ϕ)(x̄) for some x̄ ∈ Ω, then
|∇ϕ|(x̄) ≥ m and

|∇ϕ|α(x̄)F̃ (D2ϕ(x̄)) ≥ g(u(x̄))⇒ F̃ (D2ϕ(x̄))− |∇ϕ(x̄)|−αg(u(x̄)) ≥ 0.

In order to apply Theorem 1.2 of [14], it is enough to remark that G does not depend
on x and therefore the condition on the modulus of continuity is automatically
satisfied.

Furthermore, the dependence on the gradient is Lipschitz, where the Lipschitz
constant depends onm and |g(u)|∞. Applying Theorem 1.2 of [14] we have obtained
the above estimate and u ∈ C1,β(Ω). This ends the proof.

3 Comparison principles

As mentioned in the introduction, we begin by proving a strong comparison prin-
ciple, that extends the one obtained in [9].

Proposition 3.1 Suppose that Ω is some open subset of IRN , f is C1 on IR . Let
u and v be C1 bounded sub-solution and super-solution of

F (∇u,D2u) + f(u) = 0 in Ω.

Suppose that O is some connected subset of Ω, with u ≥ v and ∇v 6= 0 (or ∇u 6= 0)
on O , then either u > v or u ≡ v in O.

Remark 3.2 Of course when α = 0 the strong comparison principle is classical
and holds without requiring that the gradient be different from zero.

Proof of Proposition 3.1. We write the proof in the case α < 0, the changes to
bring when α > 0 being obvious.
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We argue as in [9]. Suppose that xo is some point where u(xo) > v(xo) (if such
point doesn’t exist we have nothing to prove).

Suppose by contradiction that there exists some point x1 such that u(x1) =
v(x1). It is clear that it can be chosen in such a way that, for R = |x1− xo|, u > v
in B(xo, R) and x1 is the only point in the closure of that ball on which u and v
coincide. Without loss of generality, one can also assume that B(xo,

3R
2

) ⊂ O.
We may suppose without loss of generality that v is the function whose gra-

dient is bounded away from zero. Let then L1 = infB(xo,
3R
2

) |∇v| > 0, L2 =

supB(xo,
3R
2

) |∇v|. We will prove that there exist two constants c > 0 and δ > 0

such that

u ≥ v + δ(e−c|x−xo| − e
−3cR

2 ) ≡ v + w in
R

2
≤ |x− xo| = r ≤ 3R

2
.

This will contradict the fact that u(x1) = v(x1).
Let δ ≤ min

|x−xo|=R
2

(u− v), so that

u ≥ v + w on ∂

(
B(xo,

3R

2
) \B(xo,

R

2
)

)
.

Define

γ(x) =

{
f(u(x))−f(v(x))

u(x)−v(x)
if u(x) 6= v(x)

f ′(u(x)) if u(x) = v(x).

Since f is C1 and the functions u and v are bounded, γ is continuous and bounded.
We write

f(u) = γ(x)(u− v) + f(v),

F (∇u,D2u)− (|γ|∞ + 1)(u− v) = −f(v) + (−γ − |γ|∞− 1)(u− v) ≤ F (∇v,D2v).

We shall prove that, for c chosen conveniently,

F (∇v,D2v) < F (∇(v + w), D2(v + w))− (|γ|∞ + 1)w,

this will imply that

F (∇u,D2u)− (|γ|∞ + 1)u ≤ F (∇(v + w), D2(v + w))− (|γ|∞ + 1)(v + w).

Let ϕ be some test function for v from above, a simple calculation on w implies
that, if c ≥ 1

a
(2(2A(N−1)

R
) then
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|∇ϕ+∇w|α · F̃ (D2ϕ+D2w)− (|γ|∞ + 1)w

≥ |∇ϕ+∇w|αF̃ (D2ϕ) + |∇ϕ+∇w|αM−(D2w)− (|γ|∞ + 1)w

≥ |∇ϕ+∇w|αF (∇ϕ,D2ϕ)

|∇ϕ|α
+

+|∇ϕ+∇w|αac
2

2
δe−cr − (|γ|∞ + 1)δe−cr.

We also impose δ < RL1e
16

so that |∇w| ≤ |∇ϕ]
8

; then the inequalities

||∇ϕ+∇w|α − |∇ϕ|α| ≤ |α||∇w||∇ϕ|α−1
(

1

2

)α−1

≤ |∇ϕ|
α

2

imply that

|∇ϕ+∇w|α
(
F̃ (D2ϕ+D2w)

)
≥ −f(v)−|f(v)|∞|∇ϕ|−1|α|21−αcδe−cr+Lα2

ac2

4
δe−cr.

It is now enough to choose

c ≥ 4A(N − 1)

R
+
|α||f(v)|∞22−α

aL1+α
2

+

(
16(|γ|∞ + 1)

aLα2

) 1
2

to finally obtain

|∇ϕ+∇w|αF̃ (D2ϕ+D2w)− (|γ|∞ + 1)w ≥ f(v) +
ac2δLα2 e

−cr

8
− (|γ|∞ + 1)δe−cr

i.e.
F (∇(v + w), D2(v + w))− (|γ|∞ + 1)w > F (∇v,D2v).

Hence the comparison principle, Theorem 2.4, gives that

u ≥ v + w in B(xo,
3R

2
) \B(xo,

R

2
),

the desired contradiction. This ends the proof of Proposition 3.1.

From now f will denote a C1 function defined on [−1, 1], such that f(−1) =
f(1) = 0, and nonincreasing on the set [−1,−1 + δ] ∪ [1− δ, 1] for some δ ∈]0, 1[.

Next is a comparison principle in unbounded domains that are ”strip” like.
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Proposition 3.3 Suppose that u and v are C1, have values in [−1, 1] and are
respectively sub and super solutions of

F (∇w,D2w) + f(w) = 0 in IRN

with F (∇u,D2u) ∈ L∞, F (∇v,D2v) ∈ L∞. If b, c ∈ IR are such that b < c,
Ω = [b, c]× IRN−1, |∇u| and |∇v| ≥ m > 0 and either u ≤ −1 + δ or v ≥ 1− δ in
Ω, then

u− v ≤ sup
∂Ω

(u− v)+.

Proof of Proposition 3.3.
Without loss of generality f can be extended outside of [−1, 1] in order that f

be still C1 , bounded, and nonincreasing after 1 − δ and before −1 + δ. Suppose,
to fix the ideas, that v ≥ 1− δ in Ω.

We can also assume that u ≤ v on ∂Ω. Indeed, since f is decreasing after
1− δ, w = v+sup∂Ω(u−v)+ is a super-solution which satisfies F (∇w,D2w) ∈ L∞.
Suppose by contradiction that supΩ(u − v) = λ for some λ > 0. Let then (xk)k
be some sequence such that (u − v)(xk) → λ. Eventually extracting from (xk)k a
subsequence, still denoted (xk)k, we have xk1 → x̄1 ∈ [b, c]. For any x = (x1, x

′) let

uk(x1, x
′) = u(x1, x

′ + (x′)k)

and
vk(x1, x

′) = v(x1, x
′ + (x′)k).

By the uniform estimates (2.9) in Theorem 2.8 one can extract from (uk)k and
(vk)k some subsequences, denoted in the same way, such that uk → ū and vk → v̄
uniformly on every compact set of [b, c]× IRN−1 and ū and v̄ + λ are solutions of

F (∇ū, D2ū) ≥ −f(ū),

F (∇(v̄ + λ), D2(v̄ + λ)) ≤ −f(v̄) ≤ −f(v̄ + λ).

Furthermore, ū ≤ v̄ + λ, and through the uniform convergence on the compact set
[b, c] × {0}N−1, limk u

k(x̄1, 0) = limk u
k(xk1, 0) and limk v

k(x̄1, 0) = limk v
k(xk1, 0).

This implies that

ū(x̄1, 0) = lim
k
u(xk1, 0 + x′

k
)

= lim
k
v(xk1, 0 + x′

k
) + λ = v̄(x̄1, 0) + λ.
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Now using the fact that |∇u| > m and |∇v| > m on [b, c] × IRN−1, by passing to
the limit one gets that |∇ū| ≥ m > 0 and |∇v̄| ≥ m on that strip, and the strong
comparison principle in Proposition 3.1, implies that ū ≡ v̄ + λ.

On the other hand,

u(b, x′ + x′
k
) ≤ v(b, x′ + x′

k
)

implies, by passing to the limit that

ū(b, x′) ≤ v̄(b, x′)

a contradiction.

4 Proof of the one dimensionality.

We are now in a position to prove the main result of this paper:
Proof of Theorem 1.1. We proceed analogously to the proof given in [5]. First

observe that by Theorem 2.8 the solution u is in C1,β
loc (IRN), so that the condition

on the gradient is pointwise and not only in the viscosity sense.
Let δ be such that f is nonincreasing on [−1,−1 + δ] ∪ [1− δ, 1]. Define

Σ+
M := {x = (x1, x

′) ∈ IRN , x1 ≥M} and Σ−M := {x = (x1, x
′) ∈ IRN , x1 ≤M}.

By the uniform behavior of the solution in the x1 direction, there exists M1 > 0
such that

u(x) ≥ 1− δ in Σ+
M1
, u(x) ≤ −1 + δ in Σ−(−M1).

Fix any ν = (ν1, . . . , νn) such that ν1 > 0 and let ut(x) := u(x+ t~ν).
Claim 1 : For t large enough, ut ≥ u in IRN .

For x ∈ Σ+
(−M1) and for t large enough, say t > 2M1

ν1
,

u(x+ t~ν) ≥ 1− δ and ut ≥ u on x1 = −M1.

We begin to prove that ut ≥ u in Σ+
(−M1).

Suppose by contradiction that supΣ+
(−M1)

(u− ut) = mo > 0.

Observe that since lim
x1→+∞

u = lim
x1→+∞

ut = 1 uniformly, there exists M2 such that

for x1 > M2 ≥ −M1, |ut−u| < mo
2

. Then supΣ+
(−M1)

(u−ut) = mo is achieved inside

[−M1,M2]× IRN−1.
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On that strip, by hypothesis, there exists m > 0 such that |∇u|, |∇ut| ≥ m, and
also ut ≥ 1−δ. Then one can apply the strong comparison principle in Proposition
3.3 with b = −M1 and c = M2 and obtain that

u− ut ≤ sup
{x1=−M1}∪{x1=M2}

(u− ut)+ <
mo

2
,

a contradiction. Finally we have u ≤ ut in Σ+
(−M1).

We can do the same in Σ−{−M1} by observing that, in that case, u ≤ −1 + δ.
This ends the proof of Claim 1.

Let τ = inf{t > 0, such that ut ≥ u ∈ IRN}, by Claim 1, τ is finite.
Claim 2: τ = 0.

To prove this claim, we argue by contradiction, assuming that it is positive.
We suppose first that

η := inf
[−M1,M1]×IRN−1

(uτ − u) > 0,

and we prove then that there exists ε > 0 such that uτ−ε ≥ u in IRN . This will
contradict the definition of τ .

By the estimate (2.9) in Theorem 2.8, there exists some constant c > 0 such
that for all ε > 0

|uτ − uτ−ε| ≤ εc.

Choosing ε small enough in order that εc ≤ η
2

and ε < τ , one gets that uτ−ε−u ≥ 0
on {x1 = M1}. The same procedure as in Claim 1 proves that the inequality holds
in the whole space IRN , a contradiction with the definition of τ .

Hence η = 0 and there exists a sequence (xj)j ∈
(
[−M1,M1]× IRN−1

)N
such that

(u− uτ )(xj)→ 0.

Let vj(x) = u(x + xj) and vj,τ (x) = uτ (x + xj); these are sequences of bounded
solutions, by uniform elliptic estimates (consequence of Theorem 2.8), one can
extract subsequences, denoted in the same way, such that

vj → v̄ and vj,τ → v̄τ

uniformly on every compact set of IRN . Moreover, v̄ and v̄τ are solutions of the
same equation and v̄ ≥ v̄τ . Furthermore v̄(0) = limj→+∞ u(xj) = limj→+∞ uτ (xj) =
v̄τ (0) and

|∇v̄|(0) = lim
j→+∞

|∇u(xj)| ≥ m

13



by the assumption on ∇u.
Since |∇v̄| > 0 everywhere, by the strong comparison principle in Proposition

3.1, v̄τ = v̄ on any neighborhood of 0 . This would imply that v̄ is τ periodic.
By our choice of M1, ∀x ∈ Σ+

2M1
, vj(x) = u(x+ xj) ≥ 1− δ and

∀x ∈ Σ−(−2M1), vj(x) = u(x + xj) ≤ −1 + δ , This contradicts the periodicity.
Hence τ = 0 and this ends the proof of Claim 2.

This implies that ∂~νu(x) ≥ 0, for all x ∈ IRN since for all t > 0, u(x+t~ν) ≥ u(x)
as long as ν1 > 0.

Take a sequence ~νn = (ν1,n, ν
′) such that 0 < ν1,n and ν1,n → 0. Since u is C1,

by passing to the limit,
∂~ν′u(x) ≥ 0.

This is also true by changing ~ν ′ in −~ν ′ , so finally ∂~ν′u(x) = 0. This ends the proof
of Theorem 1.1.

5 Existence’s and non existence’s results for the

ODE.

5.1 The case α ≤ 0

In this section we prove that , when α ≤ 0, and some compatibility assumptions
on f , the one dimensional problem (1.2) when F̃ is one of the Pucci’s operators,
admits a solution. This solution is unique up to translation.

We introduce the function fa,A(t) =

{
f(t)
a

if f(t) > 0
f(t)
A

if f(t) < 0
. We have the following

existence and uniqueness result :

Proposition 5.1 Let α ∈] − 1, 0]. Suppose that f is C1 on [−1, 1] with f(−1) =
f(0) = f(1) = 0, and :

1. f ′(±1) < 0,

2.
∫ 1

−1
fa,A(s)ds = 0,

3. for all t ∈ (−1, 0],
∫ 1
t fa,A(s)ds > 0.

14



Then the equation { |v′|αM±
a,A(v′′) + f(v) = 0 in IR,

|v| ≤ 1, lim
x→±∞

v = ±1 (5.10)

admits a solution, unique up to translations and satisfies v′ > 0 on IR.

The solution will be obtained using the existence of solution for some ODE,
choosing the initial data for which the corresponding solution satisfies the required
assymptotic behaviour. The Cauchy problem that we consider is{

−u′′|u′|α = fa,A(u), in IR
u(0) = 0, u′(0) = δ.

(5.11)

The equation in (5.11) is, of course, intended in the viscosity sense given in
Definition 2.1 in the particular case of the dimension one.

It will be useful that f be defined on IR. We then extend f outside of [−1, 1]
so that f ∈ C0,1(IR), f ≥ 0 on (−∞,−1), f ≤ 0 on [1,+∞). Then the extension
satisfies also for all t ∈ IR \ {±1}∫ 1

t
fa,A(s)ds > 0.

Let us observe that since we are in the one dimensional case, the equation can
be written in divergence’s form, and then solutions in the variational sense can
be considered. More precisely we shall prove existence and uniqueness of weak
-or variational- solutions (see Definition (5.2) below ) and remark that they are
viscosity solutions.

Definition 5.2 A weak solution for (5.11) is a C1 function which satisfies in the
distribution sense {

− d
dx

(|u′|αu′) = (1 + α)fa,A(u) in IR
u(0) = 0, u′(0) = δ.

(5.12)

Remark 5.3 Let us note that the condition 2 in Proposition 5.1 is necessary for
the existence of weak solutions which satisfy

lim
x→+∞

u(x) = 1, lim
x→−∞

u(x) = −1.

Indeed, by continuity, u has a zero and without loss of generality we can suppose
that it is in 0. Since the solution u is C1, and bounded, there exists a sequence xn
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diverging to infinity such that limxn→+∞ u
′(xn) = 0. In particular, multiplying the

equation (5.12) by u′ and integrating in [0, xn] and letting n to infinity we obtain

|u′(0)|2+α = −(2 + α)
∫ 1

0

f(s)

a
ds

and similarly considering the solution on ]−∞, 0]

|u′(0)|2+α = (2 + α)
∫ −1

0

−f(s)

A
ds = (2 + α)

∫ 0

−1

f(s)

A
ds.

This implies 2.

Proposition 5.4 For any α > −1 there exists ε > 0 such that (5.12) admits a
solution in (−ε, ε), and for α ≤ 0 that solution is unique.

Proof. To prove existence and uniqueness observe that the equation (5.12) can be
written, with u = X and Y = |u′|αu′, under the following form(

X ′

Y ′

)
=

(
|Y |

1
α+1
−1Y

−(1 + α)fa,A(X)

)
(5.13)

with the initial conditions X(0) = 0, Y (0) = |δ|αδ. Moreover the map (X, Y ) 7→(
|Y |

1
α+1
−1Y

−(1 + α)fa,A(X)

)
is continuous, and if α ≤ 0 it is Lipschitz continuous, while

for α > 0 it is Lipschitz continuous around 0, for Y (0) 6= 0. Now the result is just
an application of the classical Cauchy Peano’s Theorem for the existence’s view
point, and the Cauchy Lipschitz theorem, for the uniqueness result in the case
α ≤ 0. This ends the proof.

Now the existence ’s result in Proposition 5.1 is a consequence of

Proposition 5.5 Weak solutions of (5.12) are viscosity solutions of (5.11) . When
α ≤ 0 both notions are equivalent.

Proof : Suppose that u is a solution of (5.12). It is clear that |u′|αu′ is C1, hence
if u′ 6= 0, u′ is C1. Finally u is C2 on each point where the derivative is different
from zero and on such a point the equation is −|u′|αu′′ = f(u(x)) so u is a viscosity
solution.
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We now consider the case where u is constant on ]x1 − δ1, x1 + δ1[ for some
δ1 > 0. Then the ”weak equation” provides f(u(x1)) = 0, then u(x1) = 0, 1 or −1,
and u is a viscosity solution.

We now assume that α ≤ 0 and recall that according to the regularity results
in [10] applied in the one dimensional case, the solutions are C2. We now prove
that the viscosity solutions are weak solutions.

When u′(x) 6= 0 or when u is locally constant, it is immediate that u is a weak
solution in a neighborhood of that point.

Since u ≡ 0, u ≡ 1 and u ≡ −1 are the unique constant solutions of both
(5.12) and (5.11), we consider only the case where there exists some point x1 with
u′(x1) = 0, and ( without loss of generality), 1 > u(x1) > 0. Then, by continuity
of u′′ and using the equation, there exists r > 0 such that

u′′ ≤ 0 in (x1 − r, x1 + r).

Furthermore there exists (xn)n, such that xn ∈ (x1−r, x1), xn → x1 and u′(xn) 6= 0;
by the equation we obtain that

u′′(xn) < 0.

Finally, u′(x) =
∫ x
x1
u′′(t)dt > 0 for x ∈ (x1 − r, x1). Similarly u′(x) < 0 for

x ∈ (x1, x1 + r).
Then u satisfies in a neighborhood of x1:

− d

dx
(|u′|αu′) =

(1 + α)f(u(x))

a
.

This proves that u is a weak solution.

We now prove that, for some convenient choice of δ and for α ≤ 0, the solution
of (5.12) provides the solution of (5.10).

In the following δ1 will denote the positive real

δ1 =

(
(2 + α)

∫ 1

0

f(s)

a
ds

) 1
2+α

. (5.14)

Proposition 5.6 Suppose that α ≤ 0. Let uδ be the unique solution of (5.11).
Then for δ1 defined in (5.14),
1) If δ > δ1, |uδ(x)| ≥ C|x| for C = δ2+α − δ2+α

1 . In particular lim
x→±∞

uδ(x) = ±∞
and u′δ > 0.

17



2) If δ = δ1, u′δ > 0 in IR and lim
x→+∞

uδ(x) = 1, lim
x→−∞

uδ(x) = −1.

3) If −δ1 ≤ δ < δ1 then |uδ(x)|∞ < 1 for any x ∈ IR. The solution can oscillate.
4) If δ < −δ1, uδ is decreasing on IR, hence uδ < 0 on IR+, uδ > 0 on IR−.

Remark 5.7 The case 2) in Proposition 5.6 is clearly false in the case α > 0. As
one can see with the example : α = 2, f(u) = u − u3, u(x) = sinx, u satisfies
u′(0) = δ1 = 4

∫ 1
0 f(s)ds, but u′ is not positive. This observation will be developed

in the next subsection.
However it is not difficult to see that the conclusion in the other cases holds for
any α.

Proof of Proposition 5.6.
1 & 4) To fix the ideas we suppose that δ > δ1, the proof is identical in the case

δ < −δ1. For x > 0, since uδ > 0 one has

|u′δ|2+α(x) = δ2+α − (2 + α)
∫ uδ(x)

0

f(s)

a
ds

= δ2+α − δ2+α
1 + (2 + α)

∫ 1

uδ(x)

f(s)

a
ds

≥ δ2+α − δ2+α
1 := C.

This proves, in particular, that u′δ(x) 6= 0 for all x and the Cauchy Lipschitz
theorem ensures the local existence and uniqueness on every point, hence also the
global existence . From this, we also derive that u′δ > 0 and for x > 0, uδ(x) ≥ Cx,
and symmetric estimates for x < 0 give uδ(x) ≤ Cx.

2) If δ = δ1 then |u′δ|2+α(x) = (2 + α)
∫ 1
uδ(x)

f(s)
a
ds > 0. Suppose that there

exists some point x̄ such that uδ(x̄) = 1 then u′δ(x̄) = 0. By the uniqueness of the
solution uδ(x) ≡ 1, which contradicts the fact that u′δ(0) = δ1 6= 0.

We have obtained that uδ(x) < 1 everywhere. Moreover uδ is increasing and
bounded then lim

x→+∞
u′δ = 0. By hypothesis 3. on f , this implies that lim

x→+∞
uδ(x) =

1.
3) Suppose that 0 < δ < δ1, and let θ+ be such that

(2 + α)
∫ θ+

0

f(x)

a
dx = δ2+α,

which exists by the mean value theorem. Either uδ < θ+ for all x, or there exists
x1 such that uδ(x1) = θ+, and then u′δ(x1) = 0. Let us note that u = θ+ on a
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neighborhood of x1 is not a solution since f(θ+) 6= 0. So uδ is not locally constant
and in particular, in a right neighborhood of x1:

∃ εo, u′′δ(x) ≤ 0, u′′δ 6≡ 0

for all x ∈ (x1, x1 + εo), hence u′δ(x) < 0 in (x1, x1 + εo).
So u is decreasing until it reaches a point where u′δ(x2) = 0. Observe that by

the equation

0 = |u′δ|2+α(x2) = −(2 + α)
∫ uδ(x2)

θ+
fa,A(s)ds.

Hence u(x2) = θ− ∈ (−1, 0).
We can reason as above and obtain that u oscillates between θ− and θ+.

5.2 The case α > 0

Proposition 5.8 Suppose that α > 0 and f ≥ 0 on [0, 1], f ≤ 0 on [−1, 0],
f(1) = f(−1) = 0 and f ′(±1) 6= 0 then the viscosity solutions to the ODE with
asymptotic conditions: {

|u′|αu′′ = −f(u), in IR
−1 ≤ u ≤ 1, lim

x→±∞
u = ±1 (5.15)

satisfy for some x̂ < x̃ in IR

u ≡ 1 on [x̃,+∞[ and u ≡ −1 on ]−∞, x̂].

Remark 5.9 The result still holds for the operator |u′|αM±
a,A(u), the changes to

bring being obvious.

Proof. Suppose without loss of generality that u(0) = 0 and u′(0) > 0. We need
to prove that there exists x1 > 0 such that u(x1) = 1 and u′(x1) = 0 and there
exists x2 < 0 such that u(x2) = −1 and u′(x2) = 0.

By the assumptions on f , u′′ ≤ 0 on [0,∞[ and then u′ is decreasing on IR+

hence it has a finite limit at +∞. Since limx→±∞ u = ±1 this limit is zero. Then
one can multiply by u′ and integrate between x and +∞ , and get

|u′(x)|α+2 = −F (u(x)) + F (1) (5.16)

and then
∫ u(x)

0
ds

(F (1)−F (s))
1

α+2
= x.
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Let us recall that f(1) = 0, f ′(1) < 0 and then F (1)− F (u) ∼ (1− u)2 near 1.
Let x1 =

∫ 1
0

ds

(F (1)−F (s))
1

α+2
, then x1 is finite and is the first point on which u(x1) = 1,

furthermore by (5.16) u′(x1) = 0. The construction of x2 is analogous.
At this point it is clear that C2 solutions will oscillate between −1 and 1, so the

only way to construct a viscosity solution of (5.15) that satisfies the asymptotic
condition is to impose that on the right of some point x̃ where the C2 solution
satisfies u(x̃) = 1 and u′(x̃) = 0 the solution take the value 1 and on the left of
some other point x̂ < x̃ the solution takes the value -1. It is easy to see that these
are viscosity solutions.
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