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Regularity for radial solutions of degenerate fully
nonlinear equations.

I. Birindelli
Universita di Roma la sapienza, instituto Guido Castelnuovo

F. Demengel
Université de Cergy-Pontoise, AGM UMR 8088

Abstract

In this paper we prove the C1,β regularity of radial solutions for fully
nonlinear degenerate elliptic equations.

1 Introduction

In this paper, for f a continuous radial function, we prove the regularity of radial
solutions of

F (x,∇u,D2u) = f,

when F is a fully nonlinear degenerate elliptic operator, homogenous of degree 1
in the Hessian and homogenous of some degree α > −1 in the gradient, which is
elliptic when the gradient is not null.

Precise conditions on F will be stated in the next section. For the moment
we list some operators that belong to the class of operators we consider for the
regularity results. Maybe the most typical is

F (∇u,D2u) = |∇u|αMa,A(D2u)

where Ma,A is one of the Pucci operators (i.e. either Ma,A = M+
a,A or Ma,A =

M−
a,A). So it is fully nonlinear in the Hessian, but ”quasilinear” in the gradient.
Another important example is the α + 2-Laplacian i.e.

F (∇u,D2u) = ∆α+2u = div(|∇u|α∇u)
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or, more in general,

F (∇u,D2u) = |∇u|α(p1tr(D
2u) + p2〈D2u

∇u
|∇u|

,
∇u
|∇u|

〉)

with p1 > 0 and p1 + p2 > 0.

Before stating our main result let us mention the state of the art concerning
regularity results of fully nonlinear equations. Of course it would be too long to
state all that is known so we will just recall those closer to the scope of this paper.

We begin by recalling that when the operator F is fully nonlinear but uniformly
elliptic and independent of the gradient, it is known (see e.g. Evans [11], Cabré,
Caffarelli [7], [5], [8]) that u is C1,β for some β ∈ (0, 1); when F is concave in the
Hessian the solutions are C2,β.

In the radial case, N. Nadirashvili, S. Vladut in [15] have proved C2 regularity
of radial solutions for a more general class of fully nonlinear operators uniformly
elliptic. In particular for N ≤ 3 the solutions are C2 even without requiring the
convexity assumption of the operator.

On the other hand in the quasi linear case, but when the operator is in diver-
gence form, for example when F is the (α + 2)-Laplacian, the C1,β regularity of
weak solutions was proved by Evans [12] and Di Benedetto [10]. This regularity will
hold for radial viscosity solutions, since it is possible to prove that radial viscosity
solutions and weak solutions coincide. The proof given here provides an elementary
way to obtain the same result in the radial case.

Finally let us recall that in a previous paper [3] we proved that for F such that
F (∇u,D2u) := |∇u|αF̃ (D2u) and for α ∈ (−1, 0] all solutions of

|∇u|αF̃ (D2u) = f(x), (1.1)

are C1,β.
( if F̃ is concave we obtained that the solutions are C2,β). In that case, differently

from here, the operator is ”more elliptic”. Briefly speaking, the result is obtained
by proving that the solution of (1.1), are in fact solutions of

F̃ (D2u) = f(x)|∇u|−α

in the Lp viscosity sense. This uses the Lipschitz regularity of u and a fixed point
argument. Of course, this argument fails in the case α ≥ 0.

So that the case α ≥ 0 was completely open. Let us emphasize that regularity
results for degenerate elliptic operators that are not in divergence form are in
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general very difficult. The difficulty comes from the fact that difference of solutions
are not sub or super solutions of some elliptic equation. As an example, let us recall
that for the infinity Laplacian ∆∞ the solutions are known to be in C1,β for small
β > 0 only in dimension 2, and only for f ≡ 0, see [13].

We now state the main result of this paper, which holds under the hypothesis
described in section 2.

Theorem 1.1 If Ω is either a ball or an annulus, any radial viscosity solution of

F (x,∇u,D2u) = f(|x|) in Ω

is C1(Ω).
Furthermore, suppose that either N ≤ 3 or, for any N > 3, suppose that

M 7→ F (x, p,M) is convex or concave, then u is C1, 1
1+α everywhere and it is C2 on

points where the derivative is different from zero.

Remark 1.2 Observe that where the radial derivative is zero the Hölder continuity

of the first derivative is optimal. Indeed it is easy to see that u(x) = |x|
α+2
α+1 is a

viscosity solution of
|∇u|αM+

a,A(D2u) = c

for c =
(
α+2
α+1

)α+1
A( 1

1+α
+N − 1).

Beside its intrinsic interest, the regularity question was raised naturally while prov-
ing the simplicity of the principal eigenfunctions : In recent years, the concept of
principal eigenvalue has been extended to fully nonlinear operators, by means of
the maximum principle (see [1]). The values

λ+(Ω) = sup{λ,∃φ > 0 in Ω, F (x,∇φ,D2φ) + λφ1+α ≤ 0 in Ω}

λ−(Ω) = sup{λ,∃ψ < 0 in Ω, F (x,∇ψ,D2ψ) + λ|ψ|αψ ≥ 0 in Ω}

are generalized eigenvalues in the sense that there exists a non trivial solution to
the Dirichlet problem

F (∇φ,D2φ) + λ±(Ω)|φ|αφ = 0 in Ω, φ = 0 on ∂Ω.

In [3], we proved that, for F satisfying (1.1), these eigenfunctions are simple as
long as ∂Ω has only one connected component. This result extends to the situation
where ∂Ω has at most two connected components when the dimension is 2, and
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when F̃ is convex or concave. In the first case, the proof uses the fact that the
eigenfunctions are C1,β, in the second one, that they are C2 .

Of course we use viscosity solutions, and then, as can easily be imagined, the
difficulties arise where the derivative is zero. So we will check that if u′ 6= 0 in the
viscosity sense at some point, then this holds in a neighborhood, and furthermore, in
that neighborhood the solution is C1. Then we treat the points where u′ = 0 in the
viscosity sense. The proof relies only on the comparison principle, Hopf principle,
the regularity results of [9] and [6] , together with some classical analysis.

The Hölder regularity of the derivative of the radial solution will require a more
involved argument which is somehow less viscous and the proof is in section 4.

In the appendix we prove the equivalence of the notion of viscosity solutions.

After submitting this paper, we received a nice preprint from Imbert and Sil-
vestre [14] where they prove interior Hölder regularity of the derivatives for any
solution of (1.1) with α > 0. Their technics is very different from our and uses
an ”improvement of flatness lemma” in order to estimate the oscillation of the
gradient.

2 Hypothesis and known results.

In all the paper we suppose that either Ω is a ball or an annulus. We shall consider
solutions of the following equation

F (x,∇u,D2u) = f(|x|). (2.2)

The function f is supposed to be continuous on [0, R] when Ω = B(0, R), on [R1, R2]
when Ω = B(0, R2) \B(0, R1).

The operator F is supposed to be continuous on Ω× (IRN)?×S, where S is the
space of N ×N symmetric matrices and to satisfy:

(H1) For some α > −1, for all x ∈ Ω, for all p 6= 0 and N ∈ S and for all t ∈ IR
and µ > 0, F (x, tp, µN) = |t|αµF (x, p,N).

(H2) F is fully nonlinear elliptic, i.e there exist some positive constants a and A,
such that for any M ∈ S and N ≥ 0 in S, one has

a|p|αtr(N) ≤ F (x, p,M +N)− F (x, p,M) ≤ A|p|αtr(N).
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(H3) F is an Hessian operator, i.e. for anyM ∈ S andO ∈ O(n, IR), F (Ox,tOp,tOMO) =
F (x, p,M).

(H4) There exists ν > 0 and κ ∈]1/2, 1] such that for all |p| = 1 , |q| ≤ 1
2
, M ∈ S

|F (x, p+ q,M)− F (x, p,M)| ≤ ν|q|κ|M |

which implies by homogeneity that for all p 6= 0 , |q| ≤ |p|
2

, M ∈ S

|F (x, p+ q,M)− F (x, p,M)| ≤ ν|q|κ|p|α−κ|M |

We need to precise what we mean by viscosity solutions :

Definition 2.1 Let Ω be a domain in IRN , let g be a continuous function on Ω×
IR, then v, continuous in Ω is called a viscosity super-solution (respectively sub-
solution) of F (x,∇u,D2u) = g(x, u) if for all x0 ∈ Ω,

- Either there exists an open ball B(x0, δ), δ > 0 in Ω on which v equals to
a constant c and 0 ≤ g(x, c), for all x ∈ B(x0, δ) (respectively 0 ≥ g(x, c) for all
x ∈ B(x0, δ)).

- Or ∀ϕ ∈ C2(Ω), such that v − ϕ has a local minimum (respectively local
maximum) at x0 and ∇ϕ(x0) 6= 0, one has F (x0,∇ϕ(x0), D2ϕ(x0)) ≤ g(x0, v(x0)).
(respectively F (x0,∇ϕ(x0), D2ϕ(x0)) ≥ g(x0, v(x0))).

A viscosity solution is a function which is both a super-solution and a sub-
solution.

Let us observe that in the case where α > 0, the operator is well defined everywhere,
and then it is a natural question to ask if the viscosity solutions in the sense above
are the same as the viscosity solutions in the usual sense. The answer is yes as
is proved in the appendix of this paper. However, the Definition 2.1 presents the
advantage not to test points where the gradient of the test function is zero.

From now on we suppose that α ≥ 0 and that the solutions are ”radial ”. Let
us observe that the hypothesis (H3) that F be a fully nonlinear elliptic hessian
operator, implies that there exists some operator H defined on IR+× IR2, such that
if u(x) = g(|x|) is radial and C2, then, for r = |x|,

F (x,∇u,D2u) = H(r, g′′, g′)

with

|g′|α
(
A
(

(g′′)− +
N − 1

r
(g′)−

)
+ a

(
(g′′)+ +

N − 1

r
(g′)+

))
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≤ H(r, g′′, g′)

≤ |g′|α
(
A
(

(g′′)+ +
N − 1

r
(g′)+

)
+a

(
(g′′)− +

N − 1

r
(g′)−

))
.

We now recall some known results concerning the operators considered :

Proposition 2.2 ([2]) Suppose that Ω is a bounded open set. Suppose that f and
g are continuous on Ω such that f ≥ g and suppose that F satisfies hypothesis
(H1) and (H2). Assume that β is some continuous and non decreasing function
on IR, and that u and v are continuous respectively sub- and super-solutions of the
equation

F (x,∇u,D2u)− β(u) ≥ f in Ω,

F (x,∇v,D2v)− β(v) ≤ g in Ω,

with u ≤ v on ∂Ω.
If f > g in Ω, or if f ≥ g but β is increasing, then u ≤ v in Ω.

We shall also need the Lipschitz regularity of the solutions:

Proposition 2.3 ([2]) Suppose that Ω is an bounded regular domain of IRN . Sup-
pose that F satisfies (H1), (H2) and (H4). Let u be a C(Ω) solution of{

F (x,∇u,D2u) = f in Ω,
u = 0 on ∂Ω,

then u is Lipschitz continuous in Ω.

Remark 2.4 We shall use this Proposition for radial solutions, so it is clear that
the result holds when u is constant on the boundary, even if the constant is not
zero.

3 C1 regularity

In the sequel, since we only consider radial solution, we shall denote, for simplicity,

F [u](r) = H(r, u′′,
u′

r
)
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where, with a classical abuse of notation, u(x) will be identify with u(r) for r = |x|.
We will study solutions of F [u](r) = f(r) on either the interval [0, R) or the interval
(R1, R).

The following two definitions will be useful.

Definition 3.1 For any (p, q) ∈ IR2 and any r ∈ [0, R], we define the paraboloid

w[p, q, r](s) = u(r) + p(s− r) +
q

2
(s− r)2.

We also give the following

Definition 3.2 For a Lipschitz continuous function u, we define the following so
called derivative numbers of u :

λg(r1) = lim inf
r→r1,r<r1

u(r)− u(r1)

r − r1

,

Λg(r1) = lim sup
r→r1,r<r1

u(r)− u(r1)

r − r1

,

λd(r1) = lim inf
r→r1,r>r1

u(r)− u(r1)

r − r1

,

Λd(r1) = lim sup
r→r1,r>r1

u(r)− u(r1)

r − r1

.

(Here ”g” stands for ”gauche” and ”d” stands for ”droite”). Clearly for r1 = 0,
only the ”right” derivatives are defined.

We shall say that u′(r̄) > 0 in the viscosity sense (respectively u′(r̄) < 0) if
inf(λg(r̄), λd(r̄)) > 0 (respectively if sup(Λd(r̄),Λg(r̄)) < 0).

On the opposite we shall say that u′(r̄) = 0 in the viscosity sense if one has

λg(r̄)λd(r̄) ≤ 0 and Λd(r̄)Λg(r̄) ≥ 0.

Remark 3.3 Let us note first that for u solution of (2.2) all the numbers defined
above exist and are finite since the solutions are Lipschitz; furthermore we proved
in [4] that since f is bounded, Λg ≥ λd, Λd ≥ λg. Finally, if all these numbers
coincide on r̄, u′(r̄) exists in the classical sense.

We begin with a lemma which legitimates the fact that radial viscosity solutions
satisfy u′(0) = 0.
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Lemma 3.4 Suppose that u is a radial continuous viscosity solution of F [u] = f
on [0, R), then u′(0) exists and it is zero.

Remark 3.5 We want to point out that for radial function, i.e. for the continuous
functions u defined on some ball of IRN , such that there exists v continuous on
[0, r], with u(x) = v(|x|), in order to test on points x 6= 0, it is sufficient to use
test functions which are radial. A consequence of Lemma 3.4 and Definition 2.1
is that we do not need to test at the point zero. As a consequence u is a viscosity
supersolution of F [u] = f in B(0, R) if and only if u′(0) exists and is zero, and for
all r 6= 0 and for all ϕ which is C2 around r̄ 6= 0 which touches u by below on r̄

F [ϕ](r̄) ≤ f(r̄).

Proof of Lemma 3.4. The scope is to prove that

Λd(0) = λd(0) = 0.

We suppose first that Λd(0) > 0. Let m′ < Λd(0) arbitrary close to it. Choose δ
small enough in order that

a(m′)1+αN − 1

δ
> |f |∞.

For this choice of m′, there exists r ∈]0, δ] such that

u(r)− u(0)

r
≥ m′ i.e. u(r) ≥ u(0) +m′r.

Let w := w[m′, 0, 0] so that w(0) = u(0), w(r) ≤ u(r), and

F [w](s) ≥ a(m′)1+αN − 1

s
> f(s) on (0, r].

Then, by Proposition 2.2, w(s) ≤ u(s), in [0, r]. Hence

u(s)− u(0)

s
≥ m′, and then λd(0) ≥ m′.

This implies, by the arbitrariness of m′, that Λd(0) = λd(0).
We now suppose that Λd(0) ≤ 0. If λd(0) = 0 then so does Λd(0) and the thesis

is proved, so we suppose that λd(0) < 0. We proceed with a proof which is similar
to the one above.
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Let 0 < m′ < −λd(0) arbitrarily close to it. Choose δ as above, by hypothesis,
there exists r ∈]0, δ], such that

u(r)− u(0)

r
≤ −m′.

Let w ≡ w[−m′, 0, 0], then w(0) = u(0), w(r) ≥ u(r) and

F [w](s) ≤ −a(m′)1+αN − 1

s
≤ f(s) on (0, δ].

Then by Proposition 2.2, w(s) ≥ u(s) and then for all s ∈ [0, r],

u(s)− u(0)

s
≤ −m′ and Λd(0) ≤ −m′.

By the arbitrariness of −m′ we obtain that Λd(0) = λd(0). And the existence of
the derivative at zero is proved.

We now prove that it is zero. Suppose by contradiction that it is not, one can
suppose that it is positive, the other case can be done with obvious changes. Let
δ be small enough that

a(u′(0))1+α

δ21+α
> f(r) for r < δ.

The function

ϕ(x) = u(0) +
u′(0)

2
x1 +

u′(0)

4δ
x2

1.

touches u from below at zero and can be used as a test function and by definition
of supersolution

a(u′(0))1+α

δ21+α
≤ F (0,∇ϕ(0), D2φ(0)) ≤ f(0),

a contradiction with the choice of δ. This ends the proof.

We now state the main result of this section i.e. the first part of Theorem 1.1.

Theorem 3.6 Suppose that u is a radial solution of F [u] = f in Ω. Then u is
C1(Ω).

The proof of Theorem 3.6 relies on Proposition 3.7, Corollary 3.8 which give that
the derivative exists for any r and that it is continuous when it is not zero. Finally
Proposition 3.9 proves that u′ is continuous even in points where it is not zero.
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Proposition 3.7 Suppose that u is a radial solution of F [u] = f such that in r̄
one of the derivative numbers is different from zero.

Then in a neighborhood of r̄, u′ exists in the classical sense and the function u′

is continuous in r̄.

Corollary 3.8 If, at r1, one of the derivative numbers is zero , then u′(r1) exists
and it is zero.

Proof of Corollary 3.8. By Proposition 3.7 if one of the derivative number has a sign
then u′(r1) exists and it is different from zero, which contradicts our hypothesis,
so all four derivative numbers are zero and u′(r1) = 0 in the classical sense.

Proof of Proposition 3.7. There are, in theory, 8 cases to treat, because each of the
derivative numbers may be either positive or negative. But in fact considering the
function v = −u, that satisfies

G[v] := −F [−v] = −f,

it is enough to consider only half of the cases.
What we want to prove is that, for any r̄ as in Proposition 3.7,

∃δ > 0, λd(r) = λg(r) = Λd(r) = Λg(r), ∀r ∈ (r̄ − δ, r̄ + δ). (3.3)

Claim 1: Λd(r̄) = k < 0 implies the thesis (3.3).
We first prove that

Λd(r̄) < µ < 0⇒ ∃δ > 0, sup(λd, λg,Λd,Λg)(r) < µ < 0, ∀r ∈ (r̄− δ, r̄+ δ). (3.4)

Let µ′ ∈]Λd(r̄), µ[, and let δ1 > 0 be small enough in order that µ′

1−
√
δ1
> Λd(r̄). Let

δ2 < δ1 be small enough in order that

a|µ|1+α

(1−
√
δ2)
√
δ2

≥ |f |∞. (3.5)

Let δ3 <
r̄
2

such that for δ < inf(δ1, δ2, δ3)

u(r̄ + δ)− u(r̄)

δ
≤ µ′

1−
√
δ1

.

By the continuity of u, for any fixed δ, there exists δ4 such that for r ∈]r̄−δ4, r̄+δ4[

u(r + δ)− u(r)

δ
≤ µ

1−
√
δ1

. (3.6)
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For any such r let

w := w(µ,
µ

(1−
√
δ)
√
δ
, r).

Then
w(r) = u(r), w(r + δ) ≥ u(r + δ),

and using (3.5) it is easy to check that w is a supersolution in [r, r+ δ]. From this,
using Proposition 2.2, one gets that w(s) ≥ u(s) on [r, r + δ] and then

u(s)− u(r)

s− r
≤ µ

which implies that Λd(r) ≤ µ. Exchanging the roles of r and s one obtains also
Λg(r) ≤ µ. This proves (3.4 ).

To complete the proof of Claim 1 we prove that

0 > Λd(r̄) > µ⇒ ∃δ > 0, inf(λd, λg,Λd,Λg)(r) > µ, ∀r ∈ (r̄ − δ, r̄ + δ). (3.7)

Indeed (3.4) and (3.7) imply the thesis (3.3).
The proof of (3.7) proceeds in a fashion similar to the proof of(3.4), we give

the details of the computation for completeness sake. Let δ1 < inf( r̄
2
, 1) be small

enough in order that µ
1+
√
δ1
< Λd(r̄), that

8A(N − 1)

r̄
<

a√
δ1

and that
|µ|1+αa

2(1 +
√
δ1)1+α

√
δ1

> |f |∞. (3.8)

As above, there exists δ4 such that for δ < δ1 small enough and for r ∈]r̄−δ4, r̄+δ4[,

u(r + δ)− u(r)

δ
>

µ

1 +
√
δ1

.

We define, on [r, r + δ],

w := w[µ,
|µ|

(1 +
√
δ)
√
δ
, r]

then w(r) = u(r), w(r + δ) ≤ u(r + δ) and, using (3.8), w is a sub-solution in
[r, r + δ]. Then

w(s) ≤ u(s) on [r, r + δ].

Finally one gets that for r ∈]r̄ − δ4, r̄ + δ4[, and s ∈ [r, r + δ]

u(s) ≥ u(r) + µ(s− r).
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Hence
λd(r) ≥ µ.

Exchanging the roles of r and s, one gets λg(r) ≥ µ. This proves (3.7) and it ends
the proof of Claim 1.

Claim 2: λd(r̄) = k > 0 implies the thesis (3.3).
Indeed for v = −u,

λd,u(r̄) = −Λd,v(r̄)

(here we have added in the index the function for which the derivative number is
computed) so it is enough to use Claim 1.

The proofs of the following claims are similar to the proof of (3.4) or (3.7) but,
of course, each case needs a different choice of parabola w, so we give the details
for completeness sake.
Claim 3: Λd(r̄) = k > 0 implies the thesis (3.3).

Suppose that 0 < µ < Λd(r̄), and let δ1 > 0 such that µ1+αa
(1−
√
δ1)
√
δ1
≥ |f |∞. Let

δ2 < δ1 such that µ
1−
√
δ2
< Λd(r̄). As before, let δ3 < inf(δ1, δ2) such that for δ < δ3,

u(r̄ + δ)− u(r̄)

δ
>

µ

1−
√
δ2

.

Finally let δ4 such that, for r ∈ [r̄ − δ4, r̄ + δ4],

u(r + δ)− u(r)

δ
>

µ

1−
√
δ2

.

Define w := w[µ, µ

(1−
√
δ)
√
δ
, r]. Then w(r) = u(r), w(r + δ) ≤ u(r + δ) and w is a

sub-solution.
Hence, by Proposition 2.2, w(s) ≤ u(s) on [r, r + δ], which implies that for

r ∈]r̄ − δ4, r̄ + δ4[,
inf(Λd,Λg, λg, λd)(r) ≥ µ > 0.

We are back to the hypothesis of Claim 2, which implies the thesis .
Claim 4: Λg(r̄) = k < 0 implies the thesis (3.3).

Let µ be such that 0 > µ > Λg(r̄). Let δ1 <
r̄
2
,
√
δ1 < inf(1, ar̄

8A(N−1)
), Λg(r̄) <

µ
1−
√
δ1

, and such that

|µ|1+αa

2(1−
√
δ1)
√
δ1

> |f |∞.
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As before there exists δ4 < δ1 such that for r ∈]r̄ − δ4, r̄ + δ4[ and for δ < δ4 one
has

u(r − δ)− u(r)

−δ
≤ µ

1−
√
δ1

.

Then

w(s) := w[µ,
|µ|

(1−
√
δ)
√
δ
, r](s)

is a subsolution which satisfies w(r) = u(r), w(r − δ) ≤ u(r − δ). Then, by
Proposition 2.2, w(s) ≤ u(s) in (r − δ, r). This in turn implies that

sup(λd, λg,Λd,Λg)(r) < µ < 0.

We are once again in the hypothesis of Claim 1 and we are done.
Claim 5: Λg(r̄) = k > 0 implies the thesis (3.3).

Let µ be so that Λg > µ > 0. Let δ1 be such that δ1 <
r̄
2
, µ

1−
√
δ1
< Λg,

√
δ1 < inf(1,

ar̄

8A(N − 1)
) and

µ1+αa

2(1−
√
δ1)
√
δ1

≥ |f |∞.

As before for δ fixed, δ < δ1, there exists some δ4 < δ1 such that for r ∈ [r̄−δ4, r̄+δ4],

u(r − δ)− u(r)

−δ
≥ µ

1−
√
δ1

.

We define w := w[µ, −µ
(1−
√
δ)
√
δ
, r], then w(r) = u(r), w(r− δ) ≥ u(r− δ) and by the

assumptions w is a supersolution on (r − δ, r). Once more this implies that

inf(λd, λg,Λd,Λg)(r) > µ > 0, ∀r ∈ (r̄ − δ, r̄ + δ).

And we conclude with Claim 2.

Again, using v = −u, the Claims 3, 4 and 5 give that respectively λd(r̄) = k < 0
or λg(r̄) = k < 0 or λg(r̄) = k > 0 imply the thesis (3.3).

Observe that in fact, (3.4) and (3.7) prove more than Claim 1 because they
imply that the derivative of u is continuous in points where the derivative is not
zero. And this ends the proof.

We finally give the last step of the proof of Theorem 3.6:

Proposition 3.9 u′ is continuous on points r̄ where u′(r̄) = 0.
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Proof. We treat separately the case r̄ = 0 and r̄ 6= 0. In the latter case, let

ε > 0 and δ1 < inf(
r̄

2
,

aε1+α

21+α|f |∞
), such that

u(r̄ − δ)− u(r̄)

(−δ)
≤ ε

4

for δ < δ1.
Fixing such δ, let δ2 < δ1 such that for r ∈ [r̄ − δ2, r̄ + δ2], by continuity,

u(r−δ)−u(r)
(−δ) ≤ ε

2
. Then

u(r − δ) ≥ u(r) +
ε

2
(−δ).

Let w := w[ε, ε
2δ
, r]. Then w(r) = u(r), w(r− δ) ≤ u(r− δ) and, by the hypothesis

on δ, w is a sub-solution on [r− δ, r]. Then w(s) ≤ u(s) for r ∈ [r̄− δ2, r̄+ δ2], and
s ∈ [r − δ, r]. By passing to the limit when s goes to r it gives

u′(r) ≤ ε.

We now prove that for all ε > 0, there exists a neighborhood of r̄ where u′ ≥ −ε.
Let, as above,

δ1 < inf(
r̄

2
,

aε1+α

21+α|f |∞
),

such that for δ < δ1, −ε
4
≤ u(r̄−δ)−u(r̄)

(−δ) .

Fixing such δ, let δ2 < δ1 such that for r ∈ [r̄ − δ2, r̄ + δ2], by continuity,

u(r − δ)− u(r)

(−δ)
≥ −ε

2
.

Let w := w(−ε, −ε
2δ
, r). Then w(r − δ) ≥ u(r − δ), w(r) = u(r) and w is a super-

solution on [r − δ, r]. Using again Proposition 2.2

w(s) ≥ u(s),

and passing to the limit u′(r) ≥ −ε.

We now consider the case where r̄ = 0. We want to prove the inequality |u′| ≤ ε
in a neighborhood of zero.

Take any ε > 0, by Lemma 3.4 there exists δε > 0 such that∣∣∣∣∣u(δ)− u(0)

δ

∣∣∣∣∣ ≤ ε

2
, ∀δ ∈ (0, δε).
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Let δ ≤ min(aε
1+α(N−1)

2|f |∞ , δε), by the continuity of u, there exists δ1 < δ such that for

r ∈ [δ, δ + δ1],
u(r)− u(r − δ)

δ
≥ −ε.

Let us consider w := w[−ε, 0, r]. Then u(r) = w(r), w(r − δ) ≥ u(r − δ) and,
with our choice of δ, w is a supersolution in [r − δ, r]. By Proposition 2.2 we have
obtained that

u(s) ≤ w(s) on [r − δ, r]

and then
u′(r) ≥ −ε, ∀r ∈ [δ, δ + δ1].

In particular, u′(δ) ≥ −ε for any δ ≤ min(aε
1+α(N−1)

2|f |∞ , δε).

In a similar fashion, for any δ ≤ min(aε
1+α(N−1)

2|f |∞ , δε) and for all r ∈ [δ, δ + δ1]

u′(r) ≤ ε.

This is the desired result and it ends both the proof of Proposition 3.9 and the
proof of Theorem 3.6.

4 C1,β regularity.

We now state the main result of this section which is also the second part of
Theorem 1.1.

Theorem 4.1 Suppose that N ≤ 3 or for any N > 3 that M 7→ F (x, p, .) is convex

or concave and that u is a radial solution of F [u] = f in Ω. Then u is C1, 1
1+α (Ω)

and it is C2 where the derivative is different from zero.

The case where the derivative is different from zero is easy to treat:

Proposition 4.2 Suppose that for ro > 0, u′(ro) 6= 0 in the viscosity sense. Then,
on a neighborhood around ro, u is C1,β for some β, and if N ≤ 3 or for any
dimension when F̃ is convex or concave, u is C2,β.

Proof of Proposition 4.2. Observe that we now know that u′ is continuous, so we
can consider F̃ (x,D2v) := F (x,∇u,D2v) and clearly u is a solution of

F̃ (x,D2v) := f(x).

15



Observe that condition [(H4)] implies that we are in the hypothesis of [7] in
Bro+δ \ Bro−δ for some δ > 0. Hence u is C1,β on that annulus. Similarly if F is
concave or convex we are in the hypothesis of [11] and [7] and u is C2,β.

Note that when N ≤ 3, the C2,β regularity holds without the convexity or
concavity assumption thanks to [15].

To prove the C1, 1
1+α regularity result on any point, including those with the

derivative equals to zero, we begin to establish a technical lemma.

Lemma 4.3 Suppose that u is a radial C2 viscosity solution of (2.2), and that on
]r, s[, 0 < r < s, u′ > 0. Then

|u′|αu′(s) ≤ |u′|αu′(r) + (1 + α)
∫ s

r
εa,A(f(t))dt (4.9)

where εa,A(x) = x+

a
− x−

A
; furthermore, for γ = A

a
(N − 1)(1 + α)

|u′|αu′(s) ≥
(
r

s

)γ
|u′|αu′(r)− |f |∞(1 + α)s

A(N − 1)(1 + α) + A

(
1−

(
r

s

)γ+1
)
. (4.10)

If u′ < 0 on ]r, s[, 0 < r < s, then

|u′|αu′(s) ≥ |u′|αu′(r) + (1 + α)
∫ s

r
εA,a(f(t))dt (4.11)

and

|u′|αu′(s) ≤
(
r

s

)γ
|u′|αu′(r) +

|f |∞(1 + α)s

A(N − 1)(1 + α) + a

(
1−

(
r

s

)γ+1
)
. (4.12)

Proof : We start by supposing that u′ > 0 in (r, s). Since u′′ is continuous then
(u′′)−1(IR+) is an open set of IR+ and there exists a union of numerable open
sets ∪n∈N]rn, rn+1[, with ]r, s[= ∪n∈N]rn, rn+1[ where u′′ is of constant sign on each
interval ]rn, rn+1[. By redefining in an obvious fashion the end points of the intervals
one can suppose that ]r, s[= ∪n∈Z]rn, rn+1] with u′′ ≥ 0 on [r2p, r2p+1] and u′′ ≤ 0
on [r2p+1, r2p+2].

Then, in [r2p, r2p+1],

a(u′′ +
(N − 1)

r
u′)|u′|α ≤ f(r) ≤ A(u′′ +

(N − 1)

r
u′)|u′|α (4.13)
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and, in [r2p+1, r2p+2],

(Au′′ +
a(N − 1)

r
u′)|u′|α ≤ f(r) ≤ (au′′ +

A(N − 1)

r
u′)|u′|α. (4.14)

We begin to prove (4.9) using the inequality on the left of f . In each case one can

drop the term |u′|αu′, hence integrating and using
f

A
,
f

a
≤ εa,A(f), this imply (4.9)

on [r2p, r2p+1] and on [r2p+1, r2p+2].
Let now P arbitrary large negative and N arbitrary large positive, rP close to

r and rN close to s,

|u′|αu′(rN) ≤ |u′|αu′(rN−1) + (1 + α)
∫ rN

rN−1

εa,A(f(t))dt

≤ |u′|αu′(rP ) + (1 + α)
N∑
P

∫ rn+1

rn
εa,A(f(t))dt

and one obtains (4.9) by passing to the limit when P and N go respectively to −∞
and +∞.

We now prove (4.10). In [r2p+1, r2p+2], since u′′ ≤ 0 we multiply the second

inequality of (4.14) by (1+α)
a
r
A(N−1)(1+α)

a := (1+α)
a
rγ and integrating one gets

rγ2p+2|u′|αu′(r2p+2) ≥ rγ2p+1|u′|αu′(r2p+1) +
∫ r2p+2

r2p+1

(1 + α)

a
f(t)tγdt.

Hence dividing by rγ2p+2, using f ≥ −|f |∞ one gets

|u′|αu′(r2p+2) ≥
(
r2p+1

r2p+2

)γ
|u′|αu′(r2p+1)− (1 + α)

a
|f |∞

∫ r2p+2

r2p+1

(
t

r2p+2

)γ
dt.

Similarly, if u′′ > 0, multiplying (4.13) by (1 + α)r(N−1)(1+α) := (1 + α)rγ1 one gets

|u′|αu′(r2p+1) ≥
(
r2p

r2p+1

)γ
|u′|αu′(r)− (1 + α)

A
|f |∞

∫ r2p+1

r2p

(
t

r2p+1

)γ1
dt

≥
(
r2p

r2p+1

)γ
|u′|αu′(r2p)−

(1 + α)

a
|f |∞

∫ r2p+1

r2p

(
t

r2p+1

)γ
dt.

We have used the fact that γ1 = (N − 1)(1 + α) < (N − 1)(1 + α)A
a

:= γ and
A(N − 1)(1 + α) + A ≥ A(N − 1)(1 + α) + a.
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Using the same decomposition of ]r, s[= ∪n∈Z]rn, rn+1], with u′′ of constant sign
in each interval, for P large negative and N large positive , rP close to r and rN
close to s, one has

|u′|αu′(rN) ≥
(
rN−1

rN

)γ
|u′|αu′(rN−1)− |f |∞(1 + α)

a

∫ rN

rN−1

(
t

rN

)γ
dt

≥
(
rN−2

rN−1

)γ (
rN−1

rN

)γ
|u′|αu′(rN−2)

−
(
rN−1

rN

)γ |f |∞(1 + α)

a

∫ rN−1

rN−2

(
t

rN−1

)γ
dt

−|f |∞(1 + α)

a

∫ rN

rN−1

(
t

rN

)γ
dt

=
(
rN−2

rN

)γ
|u′|αu′(rN−2)− |f |∞(1 + α)

a

∫ rN

rN−2

(
t

rN

)γ
dt

≥
(
rP
rN

)γ
|u′|αu′(rP )− |f |∞(1 + α)

a

∫ rN

rP

(
t

rN

)γ
dt.

By passing to the limit when P and N go to −∞ and +∞ one obtains (4.10) .
The inequalities (4.11) and (4.12) can of course be proved either in the same

manner or considering v = −u as the solution of

G[v] = −f

and G[v] = −F [−v] which possesses the same properties as F .

End of the proof of Theorem 4.1. We are left to prove that u ∈ C1, 1
1+α in a a

neighborhood of r1 such that u′(r1) = 0.
Suppose first that r1 6= 0 and take r1

2
< r < r1. We shall prove that

|u′|α+1(r) ≤ 2γ−1(γ + 1)|f |∞(1 + α)

A
(r1 − r). (4.15)

For that aim, suppose first that u′(r) > 0 and let s be the first point between r1

and r, so that u′(s) = 0. Then u′ > 0 between s and r and inequality (4.10), with

γ = A(N−1)(1+α)
a

, becomes

|u′|αu′(s) = 0 ≥
(
r

s

)γ
|u′|αu′(r)− |f |∞(1 + α)s

A(N − 1)(1 + α) + a

(
1−

(
r

s

)γ+1
)
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and then

|u′|αu′(r) ≤
(
s

r

)γ |f |∞(1 + α)

A(N − 1)(1 + α) + a

(
1−

(
r

s

)γ+1
)

≤ (γ + 1)
sγ−1

rγ−1

|f |∞(1 + α)

A(N − 1)(1 + α) + a
(s− r)

≤ 2γ−1(γ + 1)
|f |∞(1 + α)

A(N − 1)(1 + α) + a
(r1 − r).

From this one gets that

|u′(r)| ≤ C(r1 − r)
1

1+α .

The case where u′(r) < 0 can be done similarly.
We now consider the right of r1. This proof still holds when r1 = 0. Suppose

s > r1, we want to prove that

|u′|α+1(s) ≤ (1 + α)|f |∞
a

(s− r).

For that aim suppose that u′(s) > 0. Let r be the last point in ]r1, s[ such that
u′(r) = 0. Then u′ > 0 on ]r, s[ and by (4.13)

|u′|αu′(s) ≤ 0 + (1 + α)
∫ s

r
εa,A(f).

This implies

|u′|α+1(s) ≤ (1 + α)|f |∞
a

(s− r) ≤ (1 + α)|f |∞
a

(s− r1).

5 Appendix : The equivalence of definitions of

viscosity solution in the case α > 0.

We have the following equivalence result

Proposition 5.1 If F satisfies (H1) and (H2) with α ≥ 0, the viscosity solutions
in the classical meaning are the same as the viscosity solutions in the sense of
Definition 2.1.
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Proof of Proposition 5.1.
We assume that u is a supersolution in the sense of Definition 2.1 and we want

to prove that it is a supersolution in the classical sense. We suppose that for xo ∈ Ω
there exists M ∈ S such that

u(x) ≥ u(xo) +
1

2
〈M(x− xo), (x− xo)〉+ o(|x− xo|2) := φ(x). (5.16)

Let us observe first that one can suppose that M is invertible, since if it is not, it
can be replaced by Mn = M − 1

n
I which satisfies (5.16) and tends to M . Without

loss of generality we will suppose that xo = 0.
Let k > 2 and R > 0 such that

inf
x∈B(0,R)

(
u(x)− 1

2
〈Mx, x〉+ |x|k

)
= u(0)

where the infimum is strict. We choose δ < R such that (2δ)k−2 < infi |λi(M)|
2k

where
λi(M) are the eigenvalues of M .

Let ε be such that

inf
|x|>δ

(
u(x)− 1

2
〈Mx, x〉+ |x|k

)
= u(0) + ε

and let δ2 < δ and such that k(2δ)k−1δ2 + |M |∞(δ2
2 + 2δ2δ) <

ε
4
. Then, for x such

that |x| < δ2,

inf
|y|≤δ
{u(y)− 1

2
〈M(y − x), y − x〉+ |y − x|k} ≤ inf

|y|≤δ
{u(y)− 1

2
〈My, y〉+ |y|k}+

ε

4

= u(0) + ε/4

and on the opposite

inf
|y|>δ
{u(y)− 1

2
〈M(y − x), y − x〉+ |y − x|k} ≥ inf

|y|>δ
{u(y)− 1

2
〈My, y〉+ |y|k} − ε

4

> u(0) +
3ε

4
.

Since the function u is supposed to be non locally constant, there exist xδ and yδ
in B(0, δ2) such that

u(xδ) > u(yδ)−
1

2
〈M(xδ − yδ), xδ − yδ〉+ |xδ − yδ|k
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and then the infimum infy,|y|≤δ{u(y)− 1
2
〈M(xδ− y), xδ− y〉+ |xδ− y|k} is achieved

on some point zδ different from xδ. This implies that the function

ϕ(z) := u(zδ)+
1

2
〈M(xδ−z), xδ−z)−|xδ−z|k−

1

2
〈M(xδ−zδ), xδ−zδ〉+ |xδ−zδ|k

touches u by below at the point zδ. But

∇ϕ(zδ) = M(zδ − xδ)− k|xδ − zδ|k−2(zδ − xδ),

cannot be zero since, if it was, zδ − xδ would be an eigenvector for the eigenvalue
k|xδ−zδ|k−2 which is supposed to be strictly less than the modulus of any eigenvalue
of M .

We have obtained that ∇ϕ(zδ) 6= 0 and then, since u is a supersolution in the
sense of Definition 2.1,

F (zδ,M(zδ − xδ)− k|xδ − zδ|k−2(zδ − xδ),M −
d2

dz2
(|xδ − z|k)(zδ)) ≤ g(zδ, u(zδ)).

By passing to the limit we obtain

0 ≤ g(0, u(0)),

which is the desired conclusion.
Of course we can do the same for sub-solutions.
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