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We prove here the existence of boundary blow up solutions for fully nonlinear equations in general domains, for a nonlinearity satisfying Keller-Osserman type condition. If moreover the nonlinearity is non decreasing , we prove uniqueness for boundary blow up solutions on balls for operators related to Pucci's operators.

1. Introduction. The existence of "large " solutions for the partial differential equation ∆u = f (u) on bounded domains has been studied by many authors. "Large solution", or boundary blow up solution, means a solution which is infinite on the boundary of the domain. Throughout this article we refer to such solutions as BBUS. We emphasize the interest of BBUS for nonlinear partial differential equations that satisfy some comparison or maximum principle; actually BBUS provide upper bound for any solution of the PDE on a given bounded domain, regardless of boundary conditions.

The existence of such solutions is linked to wether or not f satisfies some property known as the "Keller Osserman condition". More precisely suppose that F is the primitive of f ≥ 0, which is zero on zero, and define φ(a) =

∞ a 1 √ 2(F (s)-F (a))
ds, then f is said to satisfy the Keller Osserman condition if there exists some a > 0 for which φ(a) < ∞.

There is a great literature on the subject, and the first papers on that question considered particular case of function f : In 1916, Bieberbach [START_REF] Bieberbach | ∆u = e u und die Automorphen Funktionen[END_REF] solved the problem for f (u) = e u and Ω ⊂ IR 2 . In 1940, Rademacher extended its result to higher dimension. Wittiech established the connection with the existence of entire solutions for the equation ∆u = e u . In 1957, Keller [START_REF] Keller | On solutions of ∆u = f (u)[END_REF] and Osserman [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] proved

H(∇u, D 2 u) = f (u) in Ω, u = +∞ on ∂Ω,
where the operator H is supposed to be continuous on IR N \ {0} × S, -where S is the space of symmetric matrix on IR N -, and to satisfy for some α ∈] -1, ∞[ • (H1) H satisfies for all p = 0 in IR N and M ∈ S, and for all t = 0, µ > 0 H(tp, µM ) = |t| α µH(p, M )

• (H2) There exist some constants 0 < a < A, such that for all M and N ≥ 0 in S, and for all p = 0 a|p| α tr(N ) ≤ H(p, M + N ) -H(p, M ) ≤ A|p| α tr(N ).

We shall sometimes assume in addition that

• (H3) H(p, M ) = |p| α H(M )
, where H is invariant under rotation, i.e is such that for any orthogonal matrix O, then H( t OM O) = H(M ).

The function f is supposed to be non negative, C 1 and such that f (0) = 0, and f (r) > 0 for r > 0. The regularity assumption f ∈ C 1 can be relaxed in some places. These assumptions, together with a suitable Keller-Osserman condition (see below), allow us to prove the existence of BBUS. We assume that the function f is non decreasing for uniqueness results. The solutions that we consider are intended in the viscosity sense. We recall that notion in the second section.

Remark 1. When H satisfies (H1), (H2), (H3), due to the rotational invariance, H(M ) depends only on the eigenvalues of M . For instance while u(x) = g(r)

is radial, the eigenvalues of D 2 u are g ′ (r) r with the multiplicity N -1 and g ′′ of multiplicity one. Then the hypothesis on H imply that H(D 2 u) is bounded by below by

A (g ′′ ) -+ N -1 r (g ′ ) -+ a (g ′′ ) + + N -1 r (g ′ ) + ) ,
and by above by

A (g ′′ ) + + N -1 r (g ′ ) + + a (g ′′ ) -+ N -1 r (g ′ ) -) .
This fact concerning radial solutions will be used in the sequel without notice.

Remark 2. Introduce a and A that are some numbers such that 0 < a < A. Let M + a,A (N ) = Atr(N + )-atr(N -) and M - a,A (N ) = atr(N + )-Atr(N -) be the Pucci's operators, where N = N + -N -is the minimal decomposition of the symmetric matrix N into the difference of two positive symmetric matrices. Then the operator H ± (p, M ) = |p| α M ± a,A (M ) satisfies the above assumptions. In the sequel we refer to these operators as operators related to Pucci's operator, or, for shorthand, Pucci's operators. The operators which satisfy (H1)-(H2) are sandwiched between the operators H + and H -. This will allow us to prove estimate on solutions to fully non linear equations from equations involving Pucci's operators. In the sequel we shall denote for simplicity H ± [u] ≡ |∇u| α M ± a,A (D 2 u).

Remark 3. The class of operators related to Pucci's operators, or more generally operators that satisfy (H1), (H2), (H3) and

• (H4) H is convex or concave, ensure more regularity for viscosity solutions (see the definition below). This assumption is not needed for the existence result of BBUS ; nevertheless, we shall use in the sequel this property of Pucci's operators to ensure that radial solutions on small balls are smooth enough. The assumption (H4) is a sufficient condition to get the C 2 regularity of the solutions on points where the gradient is different from zero. For the sake of completeness, let us point out that in [START_REF] Cabre | Caffarelli Interior C 2 regularity theory for a class of nonconvex fully nonlinear elliptic equations[END_REF] the authors present a more general class of operators for which the C 2 regularity of the solutions hold. Let us cite also a recent paper of Nadirashvili and Vladut [START_REF] Nadirashvili | On Axially Symmetric Solutions of Fully Nonlinear Elliptic Equations To appear in Math[END_REF] which prove that for operators Hessian ( which satisfy H( t OM O) = H(M )) and for N ≤ 3 the axially symmetric solutions are C 2 .

As in the case of the Laplacian, the existence of solutions for (P) is related to some condition on the primitive F of f which is zero on 0. This condition is the following : Suppose that F (x) = x 0 f (s)ds and define

Φ(β) = ∞ β ds (F (s) -F (β)) 1 2+α
(1) Definition 1. We shall say that f satisfies the Keller Osserman condition whenever there exists β such that Φ(β) < ∞. Definition 2. We shall say that f satisfies the sharpened Keller Osserman condition whenever lim inf β→+∞ Φ(β) = 0.

In this paper we shall prove the following theorems. The first one is concerned with some existence result.

Theorem 1.1. Suppose that f is C 1 on IR + , f (0) = 0, f (r) > 0 for r > 0.
The following assertions are equivalent 1. f satisfies the Keller Osserman condition. 2. For any operator H which satisfies (H1) and (H2), there exists some ball where there exists a boundary blow up solution. 3. f satisfies the sharpened Keller Osserman condition. 4. For all operators H which satisfy (H1) and (H2), there exists a boundary blow up solution on all arbitrary smooth bounded domain.

The second one describes a uniqueness result.

Theorem 1.2. Consider the particular case |∇u| α ∆u = f (u) on a ball. Assume that f is non decreasing, C 1 and satisfies the Keller Osserman condition. Then there exists a unique BBUS for this problem.

Remark 4. It is worth to point out that the statement of Theorem 1.2 is valid for Pucci's operator H + and H -. In this case, since the function f is non decreasing, then

H + [u] = f (u) (respectively H -[u] = f (u) ) amounts to solve A|∇u| α ∆u = f (u) (respectively a|∇u| α ∆u = f (u)).
It is also worth to emphasize that classical results in the literature are proved under the extra assumption that f (u)/u is increasing (or f is convex) in a neighborhood of ∞. The first result removing this assumption appears in [START_REF] Costin | Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry[END_REF].

This paper is organized as follows : in the second section we recall some basic tools for the existence of viscosity solutions for such partial differential equations, in section 3 we give some local existence's and uniqueness result for radial solutions of H[u] = f (u), together with some qualitative results. Section 4 is devoted to the proof of Theorem 1.1. In section 5 we study the blow up rate of convergence of blow up solutions, under some additional assumption on f , which will be specified in the sequel. In section 6 we prove that when f is non decreasing there is uniqueness of Boundary Blow Up Solutions while the domain is a ball.

2. Some definitions and comparison principle. We begin with recalling the definition of viscosity solution in the present context.

Definition 3.

Let Ω be a domain in IR N , let f (x, u) be a continuous function on Ω × IR, suppose that H satisfies (H1) and (H2), then v, continuous in Ω is called a viscosity super-solution (respectively sub-solution) of H(∇u, D 2 u) = f (x, u) if for all x 0 ∈ Ω, -Either there exists an open ball B(x 0 , δ), δ > 0 in Ω on which v equals some constant c and 0 ≤ f (x, c), for all x ∈ B(x 0 , δ) (respectively 0 ≥ f (x, c) for all x ∈ B(x 0 , δ))

-Or ∀ϕ ∈ C 2 (Ω), such that v -ϕ has a local minimum (respectively local maximum) at x 0 and ∇ϕ(x 0 ) = 0, one has H(∇ϕ

(x 0 ), D 2 ϕ(x 0 )) ≤ f (x 0 , v(x 0 )) (respec- tively H(∇ϕ(x 0 ), D 2 ϕ(x 0 )) ≥ f (x 0 , v(x 0 ))).
A viscosity solution is a function which is both a super-solution and a subsolution.

With this definition we have the following comparison principle.

Theorem 2.1. [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF] Let Ω be a bounded open set in IR N . Suppose that H satisfies conditions (H1) and (H2). Suppose that f is some continuous and increasing function on IR, such that f (0) = 0. Suppose that u ∈ C(Ω) is a viscosity sub-solution of

H = f and v ∈ C(Ω) is a viscosity super-solution of H = f . Then if u ≤ v on ∂Ω, u ≤ v in Ω.
If f is nondecreasing, the same result holds when furthermore v is a strict supersolution or vice versa when u is a strict sub-solution.

Remark 5. If Ω is a ball, when H satisfies is addition (H3) and f is nondecreasing, the comparison principle is valid for radial sub and super-solution, not only for strict sub and super-solution.

This comparison theorem permits to prove the uniqueness of viscosity solution for Dirichlet problem when f is increasing. Furthermore using Perron's method adapted to the present context one gets the existence of solution as soon as there exists a sub and a super-solution that are ordered.

As a consequence, one can solve the Dirichlet problem on regular domains, by using some function of the distance to the boundary as a super-solution. Of course the solutions of H[u] -f (u) ≤ 0 with non negative boundary conditions are non negative.

In the paper we will frequently use the compactness of sequences of bounded solutions. We specify the result that we use, which is a consequence of Harnack's inequality, [START_REF] Davila | Harnack Inequality for singular fully nonlinear operators and some existence's results[END_REF], [START_REF] Birindelli | Eigenfunctions for singular fully nonlinear equations in unbounded domains[END_REF], [START_REF] Imbert | Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations[END_REF].

Theorem 2.2. Suppose that Ω is an open set in IR N . Suppose that H satisfies (H1) and (H2). Suppose that (f n ) n is a sequence of continuous functions, and uniformly bounded on compacts sets of Ω and (u n ) n is a sequence of continuous viscosity solutions, uniformly bounded on compacts sets of Ω, of

H[u n ] = f n .
Then for every compact set K in Ω, the sequence (u n ) is relatively compact in C(K).

3. The minimality principle. We begin to enounce an existence's result as soon as one has a sub-and a super-solution of the equation. Proposition 1. [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF], [START_REF] Birindelli | The Dirichlet problem for singular fully nonlinear operators Discrete and Continuous Dynamical Sytems[END_REF] Suppose that Ω is some bounded C 2 domain in IR N , that f ∈ C 1 (IR) and g ∈ W 2,∞ (∂Ω), and H satisfies (H1) and (H2).

Suppose that there exists u and u continuous on Ω, such that u ≤ u and u and u are respectively nonnegative solutions of

H[u] ≥ f (u) in Ω u ≤ g on ∂Ω, H[u] ≤ f (u) in Ω u ≥ g on ∂Ω.
Then there exists u, u ≤ u ≤ u which is a solution of the equation.

Remark 6. This result uses some existence's result for Dirichlet problem, [START_REF] Birindelli | The Dirichlet problem for singular fully nonlinear operators Discrete and Continuous Dynamical Sytems[END_REF]. In [START_REF] Davila | Harnack Inequality for singular fully nonlinear operators and some existence's results[END_REF] the authors extend these existence's results to Hölder's continuous boundary data.

The proof of Proposition 1 can be found in [START_REF] Birindelli | The Dirichlet problem for singular fully nonlinear operators Discrete and Continuous Dynamical Sytems[END_REF]. We give a short proof for the convenience of the reader. Let Λ = sup [u,u] |f ′ |. We define a sequence u k by a recursive way

H[u k+1 ] -Λu k+1 = f (u k ) -Λu k in Ω u k+1 = g on ∂Ω
beginning with u 0 = u. Using the comparison principle in Theorem 2.1 for proper operators of this type one gets that the sequence (u k ) k is increasing , u k is a subsolution for all k, u k lies between u and u and converges to u. By standard elliptic estimates one gets that u is a solution. We now define as in [START_REF] Dumont | Back to the Keller-Osserman Condition for Boundary Blow up solutions[END_REF] the notion of minimal solution.

Proposition 2. Under the previous assumptions, there exists a minimal solution to the Dirichlet problem

H[u] = f (u) in Ω u = g on ∂Ω,
relative to u, i.e., a solution u such that u ≤ u, which satisfies for all ω ⊂ Ω smooth and for all v which satisfies H[v] ≤ f (v) in ω with v ≥ u on ∂ω and v ≥ u in ω, then u ≤ v. We call u the minimal solution relative to u.

The proof of this proposition is a carbon copy of the proof of the related proposition in [START_REF] Dumont | Back to the Keller-Osserman Condition for Boundary Blow up solutions[END_REF]. We check that at each step u k ≤ v in ω and the result holds true thanks to a limiting argument.

Remark 7. It is clear that the minimal solution is unique. Then, assuming that (H3) holds true, if Ω = B(R) is a ball centered at the origin and u is radial the minimal solution relative to u is radial, since for every isometry O, v(x) = u(O(x)) satisfies the equation and is minimal relative to u.

4.

Local existence, uniqueness and regularity of radial solutions. We begin with some proposition about existence, uniqueness of the radial solutions to equations involving Pucci's operators, together with some remarks on the sign of their derivatives. In the sequel we denote by ]0, r 0 [ either the interval, or the annulus {0 < |x| < r 0 }; this does not lead to any confusion. This proposition is a particular case of a general proposition that appeared in [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF], [START_REF] Birindelli | Regularity of radial solutions for degenerate fully Nonlinear equations[END_REF]; see also [START_REF] Caffarelli | Interior a priori estimates for solutions of fully non-linear equations[END_REF], [START_REF] Cabre | Caffarelli Regularity for viscosity solutions of fully nonlinear equations F(D2u) = 0, Topological Meth[END_REF], [START_REF] Cabre | Caffarelli Interior C 2 regularity theory for a class of nonconvex fully nonlinear elliptic equations[END_REF] for other references concerning the regularity of solutions to fully nonlinear PDE. Proposition 3. Let f be positive for r > 0, f (0) = 0 and locally Lipschitz. Suppose that (u 0 , u 1 ) is given, with u 0 > 0, and either u 1 > 0, r 0 > 0 or u 1 = r 0 = 0. Then there exists δ > 0 and there exists a unique radial solution of

H ± [ϕ] = f (ϕ) on ]r 0 , r 0 + δ[ ϕ(r 0 ) = u 0 , ϕ ′ (r 0 ) = u 1 .
Furthermore the solution satisfies ϕ ′ (r) > 0 for r > 0, ϕ is C 2 on ]r 0 , r 0 + δ[ and ϕ ′′ > 0 on a neighborhood on the right of r 0 .

Proof.

We first outline the proof, and we treat the case of H + , the other can be done with similar obvious arguments. The first step is devoted to construct a solution of A|∇ϕ| α ∆ϕ = f (ϕ) on a neighborhood of zero by a fixed point argument. Let us recall that by Remark 3 we know that the solution is C 2 except maybe on zero. It turns out that on some neighborhood of zero, ϕ ′′ ≥ 0 and ϕ ′ > 0. Then ϕ is a solution of the equation with H + on a neighborhood of zero. On the other hand, the uniqueness for solutions of Dirichlet problem ensures that this ϕ is the solution of the equation. In a last step we prove, by classical theorem in ordinary differential equations, that this local solution extends to a global one.

The proof divides into two steps, depending if r 0 is 0 or strictly positive. First consider r 0 = 0 and then u 1 = 0. To begin with, we tackle the fixed point argument.

We use here a Picard's fixed point argument, but one can also use the Schauder's fixed point theorem, as it is done in [START_REF] Pino | Global bifurcation from the eigenvalues of the p-Laplacian[END_REF] for the p-Laplacian. Let Φ α (X) = |X| 1 1+α -1 X and let us introduce the map T defined on C([0, δ]) as

T (ϕ)(r) = u 0 + r 0 Φ α 1 + α As (N -1)(1+α) s 0 λ (N -1)(1+α) f (ϕ(λ))dλ ds.
(2)

Let Λ f = sup [ 2u 0 3 , 4u 0 3 ] f ′ and M f = sup [ 2u 0 3 , 4u 0 3 ] f , m f = inf [ 2u 0 3 , 4u 0 3 ] f . We choose δ so that Λ f δ 2+α α+1 sup(M -α 1+α f , m -α 1+α f ) A 1 1+α < 1 3 , (3) 
and such that

M 1 1+α f δ α+2 α+1 α+2 α+1 A 1 1+α ≤ u 0 3 . (4) 
Then

|T (ϕ(r)) -u 0 | ≤ | r 0 Φ α 1 + α As (N -1)(1+α) s 0 λ (N -1)(1+α) f (ϕ(λ))dλ ds| ≤ M f A 1 α+1 r 0 1 + α s (N -1)(1+α) s 0 λ (N -1)(1+α) dλ 1 1+α ds ≤ M f A 1 1+α (1 + α) (N -1)(1 + α) + 1 1 1+α r 0 s 1 1+α ds ≤ M 1 1+α f r 1 1+α +1 α+2 α+1 A 1 1+α ≤ u 0 3 .
We now prove that under the assumptions, T is contracting on the ball B(u 0 , u0 3 ). We shall use the inequality for

U, V ∈ [m f , M f ] |Φ α (U ) -Φ α (V )| ≤ |U -V | 1 1 + α max(sup U -α α+1 , sup V -α α+1 ), (5) 
that we apply here with

U (s) = 1 + α s (N -1)(1+α) s 0 λ (N -1)(1+α) f (u(λ)) A dλ , (6) 
and

V (s) = 1 + α s (N -1)(1+α) s 0 λ (N -1)(1+α) f (v(λ)) A dλ . (7) 
Then

|U (s) -V (s)| ≤ |f (u) -f (v)| ∞ A s(1 + α) (N -1)(1 + α) + 1 ≤ Λ f |u -v| ∞ s(1 + α) A((N -1)(1 + α) + 1) , (8) 
and

U (s) -α α+1 ≤ sup(M -α α+1 f , m -α α+1 f ) s(1 + α) A((N -1)(1 + α) + 1) -α α+1 . ( 9 
)
Then one has using ( 5) and ( 9)

|T (u) -T (v)|(r) ≤ | r 0 Φ α 1 + α s (N -1)(1+α) s 0 λ (N -1)(1+α) f (u(λ)) A dλ dr - r 0 Φ α 1 + α s (N -1)(1+α) s 0 λ (N -1)(1+α) f (v(λ)) A dλ dr| ≤ (α + 1) sup(M -α 1+α f , m -α 1+α f ) (2 + α)A 1 1+α r α+2 α+1 Λ f |u -v| ∞ .
Then by the classical fixed point theorem, there exists a neighborhood on the right of 0 on which there exists a unique solution ϕ of the equation. Since the fixed point satisfies in a neighborhood of zero d dr (r (N -1)(1+α) |ϕ ′ | α ϕ ′ ) > 0, one gets that ϕ ′ (r) > 0 for r close to zero.

Let us pretend that lim

r→0 ϕ ′ 1+α (r) r = (1+α)f (u0)
A(N -1)(1+α)+A is valid; we shall check this in the sequel. This implies that in a neighborhood of zero,

|ϕ ′ | α ϕ ′′ ≥ f (ϕ(0)) A((N -1)(1 + α) + 1) . ( 10 
)
Then ϕ ′′ > 0 in a neighborhood on the right of zero, say [0, δ 1 ]. We argue as in [START_REF] Birindelli | The Dirichlet problem for singular fully nonlinear operators Discrete and Continuous Dynamical Sytems[END_REF]; let v be the unique solution, according to Remark 5, of the problem

H + [v] = f (ϕ) on B(0, δ 1 ), v(δ 1 ) = ϕ(δ 1 ).
We get that v = ϕ is the solution of our problem and then ϕ ′′ > 0 on a neighborhood of zero.

To prove that lim r→0

ϕ ′ 1+α (r) r = (1+α)f (uo) A(N -1)(1+α)+A , let us note that since ϕ is a fixed point of T r (N -1)(1+α) (ϕ ′ ) 1+α (r) = 1 + α A r 0 f (ϕ(s))s (N -1)(1+α) ds ∼ r→0 (1 + α)f (ϕ(0)) A r (N -1)(1+α)+1 (N -1)(1 + α) + 1
This ends the proof by dividing by r (N -1)(1+α)+1 on each side. We have proved both the existence of a solution for H + [u] = f (u), u(0) = u 0 , u ′ (0) = 0 and in the same time that u ′′ ≥ 0 on a neighborhood of zero.

We now consider the case u 1 > 0 and r 0 > 0. Let us define h a,A (x) = Ax + -ax -and let us observe that the equation can be written as an ordinary differential equation

w ′′ = h 1 A , 1 a f (w) -h a,A (w ′ ) (N -1) r |w ′ | α
with a right hand side which is Lipschitzian around points where w ′ = 0. So the Cauchy Lipschitz theorem ensures local existence and uniqueness.

Suppose that u 1 and u 2 are two radial solutions. If

u 1 (0) = u 2 (0) since u ′ 1 (0) = u ′
2 (0) = 0, using the local uniqueness result one gets that u 1 = u 2 in a neighborhood of zero, and using the local uniqueness on every r 0 = 0 one gets that u 1 ≡ u 2 .

Existence of boundary blow up solutions.

The strategy is to prove first the existence of BBUS for Pucci's operators on small ball, and then to use these to tackle the more general setting, since the general operators that we consider are sandwiched into two Pucci's operators. In a first subsection we introduce preliminary material, then we attack the core of the proof of Theorem 1.1 in the next two subsections.

5.1. Preliminary results. We begin with an existence's result of boundary blow up solution as soon as one has a boundary blow up super-solution.

Theorem 5.1. Let Ω be a bounded C 1 domain of IR N , and f ∈ C 1 (IR). Suppose that H satisfies (H1) and (H2). Assume that there exists a function U in C(Ω) which is a sub-solution of the equation in Ω and a function v ∈ C(Ω) which is a boundary blow up super-solution of the equation, and v ≥ U . Then there exists u a unique boundary blow up solution of the equation, with U ≤ u and u is less than any blow up super-solution in ω ⊂ Ω.

We call such a solution the minimal BBUS of (P), relatively to U . Proof.

Let k denote an integer k > |U | ∞ and let u k be the minimal solution relative to U of

H[u k ] = f (u k ) in Ω, u k = k on ∂Ω.
Using the minimality principle (see the proof of Proposition 2), the sequence u k is non decreasing. At each step we have by minimality principle that v ≥ u k in Ω. Then (u k ) k is bounded on every compact set of Ω and by Theorem 2.2, converges to some function u which is such that u ≤ u ≤ v. Consider now an open subset ω such that ω ⊂ Ω, and on which there exists a BBUS ṽ. Using once again the minimality principle, since ṽ|∂ω ≥ u |∂ω then we have that ṽ ≥ u on ω.

Remark 8. When H satisfies (H3), the minimal blow up solution in a ball is radial. Indeed, if u is a minimal solution, v(x) = u(O(x)) is for all isometry O also a minimal blow up solution. Then by the uniqueness result, v(x) = u(x).

Remark 9. Later we shall prove that when f is non decreasing, and H(p, M ) = |p| α tr(M ), there is uniqueness of radial blow up solutions in balls, and then under these assumptions, the radial blow up solution is minimal in the sense defined below.

BOUNDARY BLOW UP SOLUTIONS FOR FULLY NONLINEAR EQUATIONS

We now prove a simple technical lemma for radial solutions for equations involving Pucci's operators.

Proposition 4. Suppose that f > 0 for r > 0, f (0) = 0 and continuous. Suppose that ϕ is a radial solution of

H ± [ϕ] = f (ϕ(r)) (11) 
with ϕ(0) > 0. Then ϕ ′ ≥ 0 and there exists some constant C(a, A, N, α) which depends only on a, A and N and α such that if N ≥ 2 for any 0 < r 1 < r

ϕ(r) ϕ(r1) ds (F (s) -F (ϕ(r 1 )) 1 α+2 ≥ C(a, A, N, α)r 1 (1 - r 1 r (N -1) A a -1
).

If furthermore f is non decreasing then ϕ ′′ ≥ 0.

Proof.

We consider the case H + [ϕ] = f (ϕ), the other case being similar. Let us recall that since ϕ is radial it satisfies

|ϕ ′ | α A(ϕ ′′ ) + -a(ϕ ′′ ) -+ A( (N -1) r ϕ ′ ) + -a( (N -1) r ϕ ′ ) -= f (ϕ). ( 12 
)
Let us recall that according to Proposition 3, ϕ ′ > 0 and ϕ is C 2 as soon as r > 0. The open set {r > 0; ϕ ′′ = 0} divides in a countable number of intervals where either ϕ ′′ > 0 or ϕ ′′ < 0. To begin with, suppose that on [s, r], ϕ ′′ ≤ 0. Then on that set the equation implies

|ϕ ′ | α (aϕ ′′ + N -1 r Aϕ ′ ) ≥ f (ϕ). ( 13 
)
This can also be written as d dr (r

(N -1)(1+α)A a (ϕ ′ ) 1+α ) ≥ r (N -1)(1+α)A a (1 + α)f (ϕ) a , (14) 
and multiplying by r (N -1)A a ϕ ′ and integrating on [s, r] one gets

r (N -1)(2+α)A a (ϕ ′ ) 2+α 2 + α (r) - s (N -1)(2+α)A a (ϕ ′ ) 2+α 2 + α (s) ≥ r s f (ϕ(t)) a t (N -1)(2+α)A a ϕ ′ (t)dt.
This implies

(ϕ ′ ) 2+α 2 + α (r) -( s r ) (N -1)(2+α)A a (ϕ ′ ) 2+α 2 + α (s) ≥ r s f (ϕ(t)) A ( t r ) (N -1)(2+α)A a ϕ ′ (t)dt. ( 15 
)
Alternatively, if on [r, s] ϕ ′′ ≥ 0 then the equation implies

|ϕ ′ | α (ϕ ′′ + (N -1 r ϕ ′ ) ≥ f (ϕ)
A and acting as before

r (N -1)(2+α) (ϕ ′ ) 2+α 2 + α (r) - s (N -1)(2+α) (ϕ ′ ) 2+α 2 + α (s) ≥ r s f (ϕ(t)) A t (N -1)(2+α) ϕ ′ (t)dt.
Dividing by r (N -1)(2+α) and using t r < 1 one obtains once again [START_REF] Caffarelli | Interior a priori estimates for solutions of fully non-linear equations[END_REF]. Consider any interval [r 0 , r]. Dividing (r 0 , r) into a countable union of intervals (r n , r n+1 ) where ϕ ′′ has a constant sign, and summing the inequalities

r (N -1)(2+α)A a n+1 (ϕ ′ ) 2+α 2 + α (r n+1 )-r (N -1)(2+α)A a n (ϕ ′ ) 2+α 2 + α (r n ) ≥ rn+1 rn f (ϕ(t)) A t (N -1)(2+α)A a ϕ ′ (t)dt,
we obtain, eventually dropping

r (N -1)(2+α) 0 (ϕ ′ ) 2+α (r0) 2+α ≥ 0, r (N -1)(2+α)A a (ϕ ′ ) 2+α r 2 + α ≥ r r0 f (ϕ(s)) A s (N -1)(2+α)A a ϕ ′ (s)ds ≥ r (α+2)(N -1)A a 0 A (F (ϕ(r) -F (ϕ(r 0 )).
Dividing by (F (ϕ(r) -F (ϕ(r 0 )), taking the power 1 2+α and integrating on [r 0 , r] one gets

ϕ(r) ϕ(r0) ds (F (s) -F (ϕ(r 0 )) 1 α+2 ≥ 2 + α A 1 α+2 r 0 (N -1)A a -1 (1 - r 0 r (N -1)A a -1
).

This completes the proof of the first assertion. We now assume that f is non decreasing, and to fix the ideas that the operator is H + . Due to Proposition 3, we know that ϕ ′′ is positive on a neighborhood of 0. Suppose now that there exists r 0 such that ϕ ′′ (r) > 0 before r 0 and that ϕ ′′ (r 0 ) = 0. Let us note that for r < r 0 the equation is

|ϕ ′ | α (Aϕ ′′ (r) + N -1 r Aϕ ′ (r)) = f (ϕ)
and multiplying by r |ϕ ′ | α A one has

ϕ ′′ (r)r = f (ϕ(r))r A|ϕ ′ | α -(N -1)ϕ ′ (r).
Then subtracting ϕ ′′ (r 0 )r 0 = 0 = f (ϕ(r0))r0

A|ϕ ′ | α -(N -1)ϕ ′ (r 0 ), dividing by r -r 0 one obtains ϕ ′′ (r)r r -r 0 = 1 A|ϕ ′ | α (r) f (ϕ(r))r -f (ϕ(r 0 ))r 0 r -r 0 + f (ϕ(r 0 ))(r 0 ) r -r 0 1 A|ϕ ′ | α (r) - 1 A|ϕ ′ | α (r 0 ) -(N -1) ϕ ′ (r) -ϕ ′ (r 0 ) r -r 0 .
Taking the limit when r goes to r 0 by the left, using ϕ ′′ (r 0 ) = 0, one gets that lim r→r0,r<r0

ϕ ′′ (r)r r-r0 ≥ 1 A|ϕ ′ | α (r0) (f (ϕ(r 0 ))+r 0 f ′ (ϕ(r 0 ))ϕ ′ (r 0 ))>0
. This implies that r → ϕ ′′ (r)r is increasing for r < r 0 , close to it and contradicts ϕ ′′ (r 0 ) = 0. This ends the proof.

Remark 10. The first statement of Proposition 4 is valid for general operators satisfying (H1)-(H2)-(H3), (H4). The proof is similar, replacing the equality (12) by an inequality, since H is sandwiched between Pucci's operators.

5.2.

Proof of Theorem 1.1; existence of BBUS on some ball. We now attack the core of the proof of Theorem 1.1. We begin with 1. ⇒ 2., i.e. if f satisfies the Keller Osserman condition, then for all operator H satisfying (H1) and (H2), there exists R > 0 and a blow up solution in the ball B(0, R).

We shall prove the existence of a blow up solution u + for the operator H + on some ball B(0, R), next we will derive from this the existence of some blow up solution for any operator H by using the minimality principle relative to 0 on every compact set of B(0, R).

We use partly the arguments in [START_REF] Dumont | Back to the Keller-Osserman Condition for Boundary Blow up solutions[END_REF]. Suppose to begin with that β is such that Φ(β) < C(a, A, N, α), and let u be the minimal solution relative to 0 in B 1 of

H + [u] = f (u) in B 1 , u = β on ∂B 1 .
Then u is radial and ϕ(r) = u(x) for |x| = r satisfies the equation in Proposition 3. Let β = ϕ(0) = u(0). By the Cauchy Lipschitz Theorem as employed in the proof of Proposition 3 around the point r 0 = 1 where ϕ ′ (1) = 0, ϕ can be extended to a maximal interval [0

, R]. Then on R, either ϕ(R) = ∞ or ϕ ′ (R) = ∞.
Suppose by absurd that ϕ(R) is finite and ϕ ′ (R) = ∞. Then, from the equation

|ϕ ′ | α A(ϕ ′′ ) + -a(ϕ ′′ ) -+ A( (N -1) r ϕ ′ ) = f (ϕ),
we obtain that ϕ ′′ < 0 in a left neighborhood of R, but this would imply that ϕ ′ is decreasing in that interval, which contradicts the fact that ϕ ′ (R) = +∞. There remains to prove that R is finite in order to be sure that u is a blow up solution.

Assume by contradiction that R = +∞. Apply Proposition 4 with r 1 = 1 and r 2 arbitrary large. One obtains

Φ(ϕ(1)) = Φ(β) ≥ C(a, A, N, α)(1 - 1 r 2 (N -1)A a -1
).

Letting r 2 go to infinity one obtains a contradiction with the assumption. The previous arguments show that as soon as inf φ < c(a, A, N, α) there exists R and u a BBUS defined on B(0, R). Suppose now that inf φ ≥ c(A, a, N, α), and define K large enough and β such that

1 K 3+2α 2+α inf φ < c(a, A, N, α). Define φ K (x) = 1 K 3+2α 2+α φ(Kx). inf φ K < c(a, A, N, α). Let f K (x) = K 2+α f (Kx), F K (x) = K 1+α F (Kx), φ K (x) = φ(F K )(x). There exists then v a BBUS for H + [v] = f K (x) on B(0, R). Then u(x) = v( x K
) is a BBUS in B(0, RK) for the right hand side f .

We now prove that on the same ball, for any operator H satisfying (H1), (H2), there exists a boundary blow up solution. Let u + be a blow-up solution for H + in some ball. Such a solution is a super-solution for the equation H[u] = f (u) and then according to Theorem 5.1 there exists a minimal blow up solution relative to 0 and less than u + in the ball. This completes the proof of 1. yields 2. We now prove that 2. implies 1., i. e we assume that there exists some operator H and some ball B(0, R) such that there exists a blow up solution in that ball and we prove that f satisfies the Keller Osserman condition.

Let u be a blow up solution on B(0, R), then u is a blow up super-solution in the ball for H -[u] = f (u), and using once more Theorem 5.1 one gets the existence of a blow up solution for H -relative to 0, that we denote by ϕ. We claim that: for all 0 ≤ s < t

|ϕ ′ | α+2 (t) -|ϕ ′ | α+2 (s) (α + 2) ≤ F (ϕ(t)) -F (ϕ(s)) a . (16) 
To prove the claim, dividing [s, t] into a countable number of intervals on which ϕ ′′ is positive or negative as it is done in the proof of Proposition 4, one can suppose that ϕ ′′ is constant sign on [s, t]. Suppose that it is non positive, then the left hand side of the above inequality is ≤ 0 and the right hand side is ≥ 0 so the result is obvious. We now suppose that ϕ ′′ ≥ 0 on [s, t], then ϕ satisfies

d dr (r (N -1)(1+α) (ϕ ′ ) α+1 ) ≤ (1 + α) a r (N -1)(1+α) f (ϕ(r)). ( 17 
)
Multiplying by r N -1 ϕ ′ one gets

d dr r (N -1)(2+α) (ϕ ′ ) α+2 α + 2 ≤ 1 + α a r (N -1)(2+α) f (ϕ(r))ϕ ′ (r), (18) 
and integrating between t and s one gets

t (N -1)(2+α) (ϕ ′ ) α+2 (t) α + 2 - s (N -1)(2+α) (ϕ ′ ) α+2 (s) α + 2 ≤ 1 + α a t (N -1)(2+α) (F (ϕ(t)) -F (ϕ(s))) . (19) 
We now use -s (N -1)(2+α) ≥ -t (N -1)(2+α) and divide by t (N -1)(2+α) to obtain

|ϕ ′ | α+2 (t) -|ϕ ′ | α+2 (s) (α + 2) ≤ (1 + α) F (ϕ(t)) -F (ϕ(s)) a . ( 20 
)
This completes the proof of [START_REF] Cabre | Caffarelli Regularity for viscosity solutions of fully nonlinear equations F(D2u) = 0, Topological Meth[END_REF]. Using this inequality with s = 0, eventually taking the power 1 α+2 , and next integrating between 0 and R one gets [START_REF] Covei | Existence of solutions to quasilinear elliptic problems with boundary blow up[END_REF] which implies the Keller Osserman condition with β = ϕ(0). This completes the proof of 2. implies 1.

0 ≤ R 0 ϕ ′ (r) ((α + 2)(F (ϕ(r)) -F (ϕ(0))) 1 2+α dr ≤ R(1 + α) 1 2+α a 1 2+α

5.3.

Existence of blow up solutions in arbitrary domains and end of the proof of Theorem 1.1. We want to prove the implications concerning items 3. and 4. in Theorem 1.1.

We then assume that f satisfies the sharpened Keller Osserman condition. As in the previous proof we prove first the existence of a blow up solution for the operator H + on any domain, and we obtain a blow up solution in the same domain for any operator H satisfying (H1) and (H2) by the arguments already employed in section 5.2.

So we suppose that the operator is H + . We begin to establish the following claim. Define R 0 = inf{R, there exists a blowup solution in B R }. Then R 0 = 0.

(22) To prove the claim we assume by contradiction that R 0 > 0. Let β n be a sequence of real numbers going to infinity, such that Φ(β n ) → 0. Let ū = β n and u = 0, and let u be the minimal solution relative to u in B R 0 2 , with the boundary condition

u = β n on ∂B R 0 2
. Then u is radial and can be extended as a radial solution ϕ of the equation in B(0, R 0 ). Indeed, since ϕ ′ ( R0

2 ) = 0, by the Cauchy-Lipschitz theorem as employed in the proof of Proposition 3, there exists around R0 2 some C 2 solution of the equation, and there exists a maximal interval ]0, R] on which ϕ is defined, C 2 and satisfies the equation. If we assume that R < R 0 , then we prove as before that ϕ(R) = +∞, and this contradicts the definition of R 0 . Finally R ≥ R 0 . We use Proposition 4 with r 1 = R0 2 and r 2 = R 0 to get

Φ(β n ) ≥ ϕ(R0) ϕ( R 0 2 ) ds (F (s) -F (ϕ( R0 2 
))

1 2+α ≥ C(a, A, N, α)(1 -( 1 2 ) 
(N -1)A a -1 ). ( 23)

We thus have obtained a contradiction. This completes the proof of claim [START_REF] Davila | Harnack Inequality for singular fully nonlinear operators and some existence's results[END_REF]. We now prove the existence of a blow up solution for H + in any domain Ω. We shall obtain u as the limit of solutions which satisfy u k = k on the boundary. So let u k be the minimal solution relative to u = 0 with the boundary condition u k = k on ∂Ω.

For x ∈ Ω there exists some ball B(x, r) ⊂ Ω and some blow up solution u r in B(x, r). By the minimality of u k , u k ≤ u r . As a consequence the sequence (u k ) k is uniformly bounded in B(x, r 2 ). Let K be a compact set in Ω. Recovering K by a finite number of balls B(x i , ri

2 ) one gets that (u k ) k is uniformly bounded on K. Moreover by the minimality principle u k ≤ u k+1 , which implies using in addition properties of limit of viscosity solutions as enounced in Theorem 2.2, that (u k ) k converges uniformly on K to some solution u of the equation. Since K is arbitrary chosen we have obtained a solution in Ω. There remains to prove that u is +∞ on the boundary. Let x 0 ∈ ∂Ω and let x l be some sequence of points in Ω such that x l → x 0 when l goes to infinity. Since u ≥ u k , lim inf l→+∞ u(x l ) ≥ lim inf l→+∞ u k (x l ) = k and letting k go to infinity one gets the result.

As we said at the beginning of the proof one can use the arguments already employed in subsection 5.2 to get that for any operator H satisfying (H1), (H2), and for any smooth bounded domain Ω, there exists a boundary blow up solution. This is 3. implies 4. We now prove that if there exists an operator H satisfying (H1), (H2) for which there exists a boundary blow up solution on every domain Ω, then the sharpened Keller Osserman condition is satisfied. As in section 5.2 the assumptions imply that there exists a blow up solution in any domain for H -. Let u n be the minimal blow up solution as defined in Theorem 5.1 for the operator H - and relative to 0 in the ball B(0, 1 n ). Then u n is radial. Let β n = u n (0). If we can prove that β n is unbounded, then, extracting a subsequence one gets the sharpened Keller Osserman condition with such β n .

To prove that β n is unbounded, suppose that, up to a subsequence, β n converges to some β > 0. Let us apply the estimate [START_REF] Covei | Existence of solutions to quasilinear elliptic problems with boundary blow up[END_REF] 

with R = 1 n one obtains 0 ≤ ∞ βn dt ((α + 2)(F (t) -F (β n )) 1 α+2 ≤ 1 n . (24) 
One concludes by Fatou's lemma that

∞ β dt ((α + 2)(F (t) -F (β)) 1 α+2 = 0, (25) 
which is absurd. Therefore 4. ⇒ 3.

We end this section by proving that Keller Osserman condition and sharpened Keller Osserman condition are equivalent, this will complete the proof of Theorem 1.1. We focus on the proof of 1 implies 3, since the converse statement is obvious. Let F -1 denote the reciprocal function of F and g = (F -1 ) ′ . Then one has

g ′ (F (u)) = (F -1 ) ′′ (F (u)) = - F ′′ (u) (F ′ (u)) 3 . (26) 
Up to translation one can assume that

∞ 0 dt (F (t)) 1 2+α
< ∞. This can also be written as

∞ 0 g(u)du u 1 2+α < ∞, (27) 
whereas the Sharpened Keller Osserman condition can be written as

lim inf ∞ β g(u) (u -β) 1 2+α du = 0. ( 28 
)
Let us observe that lim sup

β→+∞ ∞ 2β g(u) (u -β) 1 2+α du = 0. ( 29 
) Indeed, u ≥ 2β implies u ≤ 2(u -β) and then lim sup β→+∞ ∞ 2β g(u) (u -β) 1 2+α du ≤ 2 1 2+α lim sup β→+∞ ∞ 2β g(u) u 1 2+α du = 0. (30) 
Hence ( 29) is proved. So we need to prove that lim inf

β→+∞ 2β β g(u) (u -β) 1 2+α du = 0. ( 31 
)
We assume by contradiction that there exists some constant C > 0 and some B large such that for β > B,

2β β g(u) (u-β) 1 2+α
du ≥ C. We make a first change of variables to get

β 1 2+α 0 g(u 2+α + β)u α du ≥ C or equivalently β 0 g(u 2+α + β 2+α )u α du ≥ C. (32) 
Integrating this inequality on

[B, R] with R > 2B one obtains C R 2 ≤ C(R -B) ≤ R B β 0 g(u 2+α + β 2+α )u α dudβ ≤ R 0 R 0 g(u 2+α + β 2+α )u α dudβ. Let us define for θ ∈ [0, π 2 ] u = ρ cos 2 2+α θ, β = ρ sin 2 2+α
θ, so that with c = cos θ and s = sin θ,

du ∧ dβ = 2 2 + α ρ(cs) 2 
2+α -1 dρ dθ.

BOUNDARY BLOW UP SOLUTIONS FOR FULLY NONLINEAR EQUATIONS

Let us note that the set [0

, R] × [0, R] is contained in the set {ρ ∈ [0, 2 1 2+α R], θ ∈ [0, π 2 ]}. We have obtained (2 + α)CR 4 ≤ 2 1 2+α R 0 π 2 0 g(ρ 2+α )ρ 1+α c 2α 2+α (cs) 2 2+α -1 dθdρ = 2 1 2+α R 0 π 2 0 g(ρ 2+α )ρ 1+α c α 2+α s -α 2+α dθdρ.
The integral

π 2 0 c α 2+α s -α 2+α dθ is finite since α ∈] -1, +∞[. We have obtained that CR ≤ 4 2 + α cR 0 g(ρ 2+α )ρ 1+α dρ = F -1 ((cR) 2+α ). ( 33 
)
This implies that F (R) ≤ cteR 2+α , which contradicts the Keller Osserman condition. This completes the proof of Theorem 1.1.

Miscellaneous results.

We complete this section with some results concerning boundary blow up solutions on a given annulus. Let us point out that these solutions are not strictly speaking BBUS since they do not blow up on the whole boundary, but on a part of the boundary, that is either the interior or the exterior of the annulus boundary. This result will be used in the sequel.

Proposition 5. Assume that f satisfies the Keller Osserman condition. Assume that H satisfies (H1) (H2), (H3), (H4). There exists a minimal nonnegative solution in the annulus

R 1 < |x| < R 2 with    H[u] = f (u) in B(0, R 2 ) \ B(0, R 1 ), u = 0 on |x| = R 1 , u = +∞ on |x| = R 2 .
Furthermore u is radial and satisfies u ′ (r) > 0 for r ∈]R 1 , R 2 [. Of course the symmetric result holds : There exists a minimal nonnegative solution in the annulus

R 1 < |x| < R 2 with    H[u] = f (u) in B(0, R 2 ) \ B(0, R 1 ), u = +∞ on |x| = R 1 , u = 0 on |x| = R 2 .
with u radial and satisfies u ′ (r

) < 0 for r ∈]R 1 , R 2 [
Proof.

The existence can be obtained by considering for k ∈ IN the minimal solution relative to 0 of

   H[u] = f (u) in B(0, R 2 ) \ B(0, R 1 ), u = 0 on |x| = R 1 , u = k on |x| = R 2 .
This solution u k is radial and the sequence (u k ) k is nondecreasing by the minimality. Furthermore it is radial. We prove now that each u k is increasing in r.

We begin to observe, using Hopf's principle and the arguments in the proof of Proposition 3 that u ′ k > 0, Arguing as in the proof of Theorem 1.1, i. e. among other things using the existence of BBUS on balls, one observes that (u k ) k is locally uniformly bounded, and passing to the limit u k tends to u on every compact set of B(0, R 2 ) \ B(0, R 1 ), finally using once more the arguments in Proposition 3 one gets that u is increasing. Of course a symmetric observation permits to prove that in the second case the corresponding u is decreasing. [START_REF] Bieberbach | ∆u = e u und die Automorphen Funktionen[END_REF]. Some results about the blow-up rate of solutions. 6.1. Blow-up rate of radially symmetric solutions. In this section, we are concerned to provide the blow-up rate for solutions in an implicit form. We assume that H[u] = |∇u| α ∆u. Actually, we focus on this operator since for general fully non-linear operators, we just can expect inequalities and not equivalents. We now state Proposition 6. We suppose that f satisfies the Keller Osserman condition and that ϕ is a radial BBUS in the ball B 1 . Then

∞ ϕ(r) ds F (s) 1 2+α ∼ r→1 (2 + α) 1 2+α (1 -r). ( 34 
)
Remark 11. The results here enclosed can be extended to the case where H = H ± and f is nondecreasing near infinity, with some obvious changes. Indeed, in that case we have seen that ϕ ′′ is > 0 for r close to the boundary and then the equation in that set is either a|∇u| α ∆u = f (u) for H -or A|∇u| α ∆u = f (u) for H + . As a consequence in the case of H + one has ∞ ϕ(r) ds F (s)

1 2+α ∼ r→1 2 + α A 1 2+α (1 -r). (35) 
and in the case of H - ∞ ϕ(r) ds F (s)

1 2+α ∼ r→1 2 + α a 1 2+α (1 -r). ( 36 
)
It is worth to emphasize that we assume here f nondecreasing near infinity to ensure that ϕ ′′ > 0 near to the boundary, and then to allow us to perform computations on a well-defined equality.

Remark 12. One can also consider the case of the operators of the form

H(p, M ) = |p| α q 1 tr(M ) + q 2 M p |p| , p |p|
with q 1 > 0, q 1 + q 2 > 0. This class of operators includes the case of the pLaplacian for which q 1 = 1 and q 2 = p -2, but also some operators which cannot be written in divergence form. Even though these operators do not satisfy (H3), for radial solutions one has

H[ϕ] = |ϕ ′ | α (q 1 + q 2 )ϕ ′′ + q 2 (N -1) r ϕ ′
and it is clear that the arguments used for the regularity of the radial solution for the operators satisfying (H1), (H2), (H3) are still valid. As a consequence the solutions are C 2 for r > 0. One can note in addition that in the case α ≤ 0 it is proved in [START_REF] Birindelli | Regularity and uniqueness of the first eigenfunction for singular fully non linear operators[END_REF] that any solution of the equations F (∇u,

D 2 u) = f (u) (not only radial) are C 2 .
In that case the rate of convergence is

∞ ϕ(r) ds F (s) 1 2+α ∼ r→1 2 + α p 1 + p 2 1 2+α
(1 -r). and the proof is left to the reader.

We now move on the proof of Proposition 6.

Proof.

Multiplying the equation satisfied by ϕ by r (N -1)(2+α) ϕ ′ and integrating par parts the right hand side, one obtains

r (N -1)(2+α) |ϕ ′ | 2+α = (2 + α)[s (N -1)(2+α) F (ϕ(s))] r 0 -(α + 2) 2 (N -1) r 0 F (ϕ(s))s (N -1)(2+α)-1 ds.
Dividing by r (N -1)(2+α) one gets

|ϕ ′ | 2+α = (2 + α)F (ϕ(r)) -(N -1) (2 + α) 2 r r 0 F (ϕ(s)) s r (N -1)(2+α)-1 ds (37) = (2 + α) (F (ϕ(r)) -G ϕ (r)) , with G ϕ (r) = (N -1) (2+α) r r 0 F (ϕ(s)) s r (N -1)(2+α)-1 ds. Observe that G ϕ (r) =
o(F (ϕ(r)) when r goes to 1. Indeed let r < 1 and ǫ such that 1 -ǫ < r. One cuts the integral using the fact that F is non decreasing and get

G ϕ (r) F (ϕ(r)) = (N -1) (2 + α) r 1-ǫ 0 s r (N -1)(2+α)-1 F (ϕ(s)) F (ϕ(r)) ds 
+ (N -1) (2 + α) r r 1-ǫ s r (N -1)(2+α)-1 F (ϕ(s)) F (ϕ(r)) ds ≤ F (ϕ(1 -ǫ)) F (ϕ(r)) + Cǫ.
Since ϕ(r) → +∞ when r goes to 1, let r be large enough, in order that F (ϕ(r)) >

F (ϕ(1-ǫ)) ǫ
, then letting ǫ go to zero we get the result. We have obtained that

ϕ ′ ((2 + α)F (ϕ(r))) 1 2+α = 1 - G ϕ (r) F (ϕ(r)) 1 2+α ∼ r→1 1. (38) 
Hence integrating between r and 1 one gets,

1 r ϕ ′ (r)dr ((2 + α)F (ϕ(r)) 1 2+α ∼ (1 -r).
We have obtained the result since the integral on the left can be written after changing variable

∞ ϕ(r) ds ((2+α)F (s)) 1 2+α
. Remark 13. It is contained in the proof of the previous proposition that if f is non decreasing near infinity, there exists some positive constant C such that for r close to 1,

F (ϕ) C ≤ (ϕ ′ ) 2+α ≤ CF (ϕ).
This inequality is a mere consequence of (38). This will be used in the last section about uniqueness of radial solutions when f is non decreasing.

The following statement provides inequalities for radial solutions to general fully nonlinear equations.

Corollary 1. Suppose that f satisfies the Keller Osserman condition, is non decreasing and that H is an operator which satisfies (H1) and (H2). Let ϕ be the minimal blow up solution relative to 0 of H[u] = f (u) in the ball. B(0, 1). Then

2 + α a 1 2+α (1 -r) + o(1 -r) ≥ ∞ ϕ(r) ds F (s) 1 2+α ≥ 2 + α A 1 2+α (1 -r) + o(1 -r).

Proof.

Let us recall that if ϕ + is a blow up solution for H + in the ball, it is a blow up supersolution for H[u] = f (u) and according to Theorem 5.1 0 ≤ ϕ ≤ ϕ + . As a consequence one gets the right hand side inequality.

For the left hand side, let us note that ϕ is a boundary blow up super-solution for the equation H -[u] = f (u), and then there exists ϕ -a boundary blowup solution for H -[ϕ -] = f (ϕ -), relative to zero with ϕ -≤ ϕ ≤ ϕ + . Then the inequality on the left can easily be derived from the estimate for ϕ -proved before.

We complete this section by a precision concerning the rate of convergence for solutions which blow up on part of the boundary of an annulus. Proposition 7. We assume that H[u] = |∇u| α ∆u. We suppose that f satisfies the Keller Osserman condition and that ϕ is a radial minimal solution on the annulus

R 1 < |x| < R 2 of    H[u] = f (u) in Ω, u = +∞ on |x| = R 1 , u = 0 on |x| = R 2 . Then ∞ ϕ(r) ds F (s) 1 2+α ∼ r→R1 (2 + α) 1 2+α (r -R 1 ). ( 39 
)
Proof.

We act as before by observing that in place of ϕ ′ one must deal with

|ϕ ′ | = -ϕ ′ . So we get -ϕ ′ ((2 + α)F (ϕ(r))) 1 2+α = 1 - G ϕ (r) F (ϕ(r) 1 2+α ∼ r→R1 1. ( 40 
)
Hence integrating between R 1 and r one gets

∞ ϕ(r) ds ((2 + α)F (s)) 1 2+α ∼ r→R1 (r -R 1 ). ( 41 
)
Remark 14. The previous result is still valid for fully nonlinear operator satisfying (H1), (H2) and (H3), if we assume moreover that f is nondecreasing near infinity, once again to enforce ϕ ′′ > 0.

Blow up rates of boundary blow up solutions in arbitrary domains.

We still assume in this section that H[u] = |∇u| α ∆u. We want to extend the estimate near the boundary for radial solutions in balls to blow up solutions in arbitrary domains.

Theorem 6.1. Assume that Ω satisfies the uniform interior and exterior sphere condition. Assume that f satisfies the Keller Osserman condition and let u be a blow up solution in Ω. Then for all x 0 ∈ ∂Ω, for all x that converges towards x 0 in such a way that the open ball centered at x and of radius |x -

x 0 | is included in Ω lim x→x0 ∞ u(x) dt ((2+α)F (t)) 1 2+α d(x, ∂Ω) = 1.
Proof.

We argue as in [START_REF] Dumont | Back to the Keller-Osserman Condition for Boundary Blow up solutions[END_REF]. Let x close to Ω and B(x, |x 0 -x|) be a ball tangent to ∂Ω on x 0 . Let η be <

1. Let v(y) = sup O∈O(IR N ) u(O(y -x) + x). Then v is a sub-solution in B(x, η|x -x 0 |) , it is radial and u ≤ v. Consider the minimal blow up solution ϕ on B(x, η|x -x 0 |) relative to v. Then ∞ u(x) dt (F (t)) 1 2+α ≥ ∞ ϕ(x) dt (F (t)) 1 2+α ∼ (2 + α) 1 2+α η|x -x 0 |. (42) 
This leads to, letting η going to 1, (43) 7. The uniqueness of radial BBUS in the case where f is nondecreasing. In this section we assume that f satisfies the Keller Osserman condition, is nondecreasing, and we prove the uniqueness of radial BBUS for the operators H ± . We also prove the uniqueness of BBUS on balls. Proposition 8. Suppose that f is non decreasing. The radial solutions of

H ± [ϕ] = f (ϕ) ( 44 
)
in the ball B(0, R) are ordered.

Proof.

Since f is nondecreasing we know that the equation satisfied by radial solutions is either A|∇u| α ∆u = f (u) or a|∇u| α ∆u = f (u) so, up to changing f by f a or f A , we can assume that a = A = 1. Suppose that u 1 (0) = u 2 (0), by u ′ 1 (0) = 0 = u ′ 2 (0), then Proposition 3 gives that u 1 ≡ u 2 .

Suppose that u 1 (0) > u 2 (0), and suppose by contradiction that r 0 is such that for r 0 > r > u 1 > u 2 and u 1 (r 0 ) = u 2 (r 0 ). Then by the mean value theorem there exists r 1 ∈]0, r 0 [, with (u 1 -u 2 ) ′ (r 1 ) < 0. Now we observe that for all r ∈ ]0, r 0 [, r (N -1)(1+α) (u ′ 1 ) 1+α (r) -r (N -1)(1+α) (u ′ 2 ) 1+α (r) = r 0 s (N -1)(1+α) (f (u 1 (s)f (u 2 )(s))ds ≥ 0. This implies that (u 1 -u 2 ) ′ (r) ≥ 0 for r ∈]0, r 0 [, a contradiction.

Let us observe that this Proposition has also the following consequence :

If u and v are two radial solutions in B(0, R) and u < v on ∂B(0, R), u < v in Ω.

This will be used in step 1 in Theorem 7.1.

Theorem 7.1. Suppose that f satisfies the Keller Osserman condition, that f is a nondecreasing and C 1 function such that f (0) = 0. Consider the fully nonlinear equation H ± [u] = f (u). There exists a unique boundary blow up solution for this equation on the unit ball.

Proof.

As in the previous proof one can assume that a = A = 1.

Step 1: To begin with we observe that any boundary blow up solution u can be sandwiched between two radial boundary blow up solutions. By below by the minimal boundary blow up solution, that is radial. By above, as follows. Consider a smaller ball of radius R < 1 than the unit ball and the minimal BBUS u R corresponding to this ball. Then for ε < R small enough, u < u R on B(0, R) \ B(0, R -ε). Hence by the maximum principle u < u R everywhere on the ball of radius R -ε, and then on the ball of radius R. Since f is non decreasing, using the argument in the end of the proof of Proposition 8 the sequence R → u R is decreasing and converges to a BBUS which is radial and larger than u.

Step 2: Consider u 1 and u 2 two radial boundary BBUS. Using Proposition 8 we can assume that u 1 (r) < u 2 (r) for any r. Let us recall that any radial BBUS satisfies

|u ′ | α (u ′′ + N -1 r u ′ ) = f (u). ( 45 
)
We use the change of variable introduced by Costin and Dupaigne, [START_REF] Costin | Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry[END_REF]. Instead of considering u as a function of r, we consider r as a function of u, so we define g(u(r)) = r, that we differentiate to obtain 1 = g ′ (u(r))u ′ (r). Let V (u) = u ′ (g(u)).

≥ 1 .∞ 1 2+α ( 2

 112 We now move to the reverse inequality. We consider some ball B(x 1 , |x 1 -x 0 |) included in IR N \ Ω with B(x 1 , |x 1 -x 0 |) ∩ Ω = {x 0 }. Let B(x 1 , R ′ ) with R ′ large enough which contains Ω. Let η be < 1. Consider the annulus B(x 1 , R ′ ) \ B(x 1 , η|x 1 -x 0 |). Let v be the minimal solution in the annulus of    H[v] = f (v) in B(x 1 , R ′ ) \ B(x 1 , η|x 1 -x 0 |) v = +∞ on |y -x 1 | = η|x 1 -x 0 | v = 0 on |y -x 1 | = R ′ Since v < +∞ on ∂Ω, then u ≥ v on Ω. Then for x ∈ Ω such that x 0 -x = x 1 -x 0 2 -η)(|x -x 0 |)) ∼ (2 + α) -η)d(x, ∂Ω), using the estimate in Proposition 7. We let η → 1 to obtain the result.Remark 15. Of course arguing as in the proof of Corollary 1 , if H is any operator satisfying (H1) (H2), and if f is non decreasing, any BBUS for H in Ω satisfies the inequalities
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Differentiating one obtains V ′ (u) = u ′′ (g(u))g ′ (u) and then u ′′ (g(u)) = V ′ (u)V (u). In the following we will denote for simplicity g as r(u).

The previous equation reads then

One has r ′ (u) = 1 V (u) and then r ′ (u)u ′ (r) = u ′ (r) V (u(r)) . Let us integrate between r and 1 and use the change of variable u(r) to get g(u(1)) -g(u(r))

Step 3: To u 1 (respectively u 2 ) we associate r 1 , V 1 (respectively r 2 , V 2 ). We claim and prove that r 2 < r 1 . Actually, r 1 (u) is the time r when the trajectory u 1 (r) reaches the level u. Since u 1 < u 2 , the trajectory u 2 reaches the level u before u 1 .

Step 4: We state and prove: V 2 < V 1 for u large enough. Assume that this inequality is not valid. Then two cases may occur. Either V 1 < V 2 for u large enough, or there exists a sequence

In the former case, we have

and then a contradiction with Step 3. In the latter case, we write

Computing this at u = u 2k leads to a contradiction.

Step 5: We now prove that V 1 -V 2 converges to 0 while u goes to +∞. In this step we prove an inequality. Introduce now the function

We infer from (46) that

).

(50)

Therefore, due to the previous step, the function w is non decreasing. We plan to integrate this identity between u 0 = u 2 ( 1 2 ) and u . Before this, we make an observation on the choice of u 0 .

Let us recall (see Remark 13) that there exists some constant C * such that for any blow up solution u and for some u ′ 0 large enough and

Define then c(N, α) = (N -1)2 (2α+3)(N -1)-1 C * α+3 and take u ′ 0 large enough such that for u 0 ≥ u ′ 0 , due to Keller-Osserman hypothesis

If this is not valid for our choice u ′ 0 = u 2 ( 1 2 ) , we set u ′ 0 = u 2 (r 0 ) for r 0 close enough to 1. We set u 0 = u 2 ( 12 ) to fix ideas. On that set r 2 , r 1 ≥ 1 2 , so we get [(r

Introducing C which denotes a generic constant that depends on u 1 , u 2 and that may vary from one line to one another, the previous inequality reads also

Going back to the very definition of r = 1 -

2

) and we obtain using (51)

On the other hand, since r 1 ≥ r 2 ≥ 1 2 , then

Gathering all these inequalities together we obtain that

We now integrate by parts to obtain, recalling that

We now observe that since w is non decreasing

dv.

(59)

we are led to

Step

ds. On the one hand, due to Keller-

Osserman assumption, lim u→+∞ G(u) = 0; this is valid since w(s) ≤ CF (s). On the other hand, due to (60), we have

Therefore, this implies

Integrating this between u and +∞, and using Keller-Osserman assumption, we have that there exists a constant C such that

Going back to (60) we have that w is a bounded function of u. Therefore, using (56)

Step 7: We prove that u 2 -u 1 → 0 when r goes to 1. We start from

This leads to

Using (51), (66), ( 55) and (64) we then have

(67) and finally

From this one derives that lim r→1 (u 2 -u 1 ) = 0.

Step 8 Consider u 1 < u 2 two radial solutions. Then d dr (r (N -1)(1+α) (u 2 -u 1 ) = (f (u 2 ) -f (u 1 ))r (N -1)(1+α) ≥ 0.

(69)

Then r → r (N -1)(1+α) (u 2 -u 1 ) is positive nondecreasing, bounded and goes to zero when r tends to 1. Then suppose that there exists 0 < r 0 < 1 with u 2 (r 0 ) > u 1 (r 0 ) and let r > r 0 so that by the asymptotic behaviour, r (N -1)(1+α) (u 2 -u 1 )(r) < r (N -1)(1+α) 0 (u2-u1)(r0) 2

, then we get a contradiction.