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1 Introduction

The concept of principal eigenvalue for boundary value problems of elliptic
operators has been extended, in the last decades, to quasi-nonlinear and fully-
nonlinear equations (somehow ”abusing” the name of eigenvalue) see [1, 2, 28,
31, 24, 6, 25] etc.. In all the cases we know, two features of the operators are
requested, homogeneity and ellipticity.

The meta-definition of these principal eigenvalues could be the following:
Given a zero order and odd operator H with the same homogeneity than the
second order elliptic operator F , and given a domain Ω,

λ is a principal eigenvalue if there exists a non trivial solution of constant
sign of the problem{

F (x,∇u,D2u) + λH(u) = 0 in Ω
u = 0 on ∂Ω;

not surprisingly, that function will be called the ”eigenfunction”.

Of course when F is a second order linear elliptic operator and H(u) = u,
the principal eigenvalue is just the first eigenvalue in the ”classical” sense, it is
well known that it is both simple and isolated.

It is interesting to notice that when the operator is not ”odd” with respect
to the Hessian, it can be expected that there are two principal eigenvalues, one
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corresponding to a positive eigenfunction and one corresponding to a negative
eigenfunction, and this is the case for example when F is one of the Pucci
operators e.g. for some 0 < a < A

F (D2u) :=M+
a,A(D2u) := a

∑
ei<0

ei + A
∑
ei>0

ei

where the ei denote the eigenvalues of the matrix D2u (see [10]). In these cases,
or in general when the operator is uniformly elliptic and homogenous of degree
1, the principal eigenvalues have been proved to be simple and isolated (see
[31, 24, 29]).

When the operator is ”quasi linear” but in divergence form , for example in
the case of the p-Laplacian, it is well known that the principal eigenvalue can
be defined through the Rayleigh quotient and it was proved, independently by
Anane [1] and by Otani and Teshima [28], that it is simple and isolated (see
also [27]). The variational structure plays a key role there. On the other hand,
for the ∞-Laplacian (see [25]), the question of the simplicity of the principal
eigenvalue is still open.

The cases treated in this paper concern operators that have the ”homogene-
ity” of the p-Laplacian, but are ”fully-nonlinear” and hence are not variational.
In previous works, we proved the existence of the principal eigenvalues for this
large class of operators and many features related to them ([5],. . .,[8]). The in-
spiration for these definitions and results was the acclaimed work of Berestycki,
Nirenberg and Varadhan [4] where the eigenvalue for linear elliptic operators in
general bounded domains was defined through the maximum principle.

The main questions left open in our previous works were: are these eigen-
values ”simple” ? are they ”isolated”?

We shall now proceed to describe the results obtained in this note but for
the sake of comprehension we shall do it for an operator that exemplifies well
the cases treated here (the general conditions and hypothesis will be given in
the next section). For some 0 ≥ α > −1, and some Hölder continuous function
h of exponent smaller than 1 + α, let:

F [u] := F (x,∇u,D2u) = |∇u|αM+
a,A(D2u) + h(x) · ∇u|∇u|α.

Suppose that Ω is a bounded, smooth domain of IRN . Then we can define

λ+ := sup{λ;∃φ > 0, φ ∈ C(Ω), F [φ] + λφ1+α ≤ 0 in Ω},
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λ− := sup{λ; ∃φ < 0, φ ∈ C(Ω), F [φ] + λφ|φ|α ≥ 0 in Ω}.
It is clear that the inequalities are meant in the ”viscosity sense” adapted to
these non smooth operators (see the next section for a precise definition).

For a much more general context and for any α > −1 we proved in [6] that
these are well defined; that for any λ < λ+ the maximum principle holds i.e.
considering the problem{

F [u] + λu|u|α = 0 in Ω
u = 0 on ∂Ω,

(1.1)

if u is a viscosity subsolution of (1.1) then u ≤ 0 in Ω and for any λ ≤
min{λ+, λ−} and any continuous f there exists a solution of{

F [u] + λu|u|α = f in Ω
u = 0 on ∂Ω,

(1.2)

which is Lipschitz continuous.
Of course we also proved that there exists φ+ and φ− respectively positive

and negative eigenfunctions in the sense that e.g. for λ = λ+ there exists φ+ > 0
viscosity solution of (1.1).

One of the question we raise here is , if φ > 0 is another solution of (1.1)
with λ = λ+, is it true that there exists t > 0 such that φ+ = tφ? The answer
is yes for α ∈ (−1, 0], for any domain Ω such that ∂Ω has only one connected
component. When ∂Ω has two connected components we can prove the result
when N = 2.

Let us recall that for any α > −1 and any N the simplicity of the eigenvalue
has been proved in [8] in the case of radial solutions.

It is clear that these results are somehow equivalent to a ”strong comparison
principle” i.e. it is equivalent to know that if two solutions are one above the
other in some open set O and they ”touch” at some point of O then they
coincide in O. Now in Proposition 4.3, we prove such a result when at least
one of the solutions has the gradient away from zero in O.

This restriction implies that in order to apply Proposition 4.3 we need to
know that there is some subset O of Ω where this condition is satisfied. Natu-
rally the Hopf’s lemma together with a C1 regularity is the convenient ingredi-
ent since it guarantees that the gradient is away from zero in a neighborhood
of ∂Ω. This explains why we start by proving a W 2,p regularity result, which
is interesting in itself but furthermore is essential in the proof of the simplicity
of the principal eigenvalue.
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This is done through a fixed point theorem. Let us mention that in general
the tools to prove regularity are the Alexandrov-Bakelman-Pucci inequality
and some ”sub-linearity” of the operator. In a recent paper Davila, Felmer
and Quaas have proved ABP [16] for singular fullynonlinear operators, but in
this case it does not seem to be useful to prove W 2,p regularity because the
difference of a sub and super solution may not be a sub-solution of an elliptic
equation. It is interesting to remark that Imbert [23] used ABP to prove a local
Hölder regularity.

The dimensional restriction is due to the fact that when there are two con-
nected components of the boundary of Ω, we use Sard’s Theorem. A famous
counterexample of Whitney shows that Sard’s theorem doesn’t hold if the func-
tions are only C1. It seems that the least regularity that can be asked is WN,p

(see e.g. [21]), and since the solutions are in W 2,p we have to take N = 2.
On the other hand the restriction on α negative is only due to the fact that

we can prove C1,β regularity for those α.
Other important results concerning eigenvalues are given as a consequence

of simplicity. In particular we prove that there are no eigenfunctions that
change sign for λ = λ±. Further results include the strict monotonicity of
the eigenvalue with respect to the inclusion of domains. And finally that the
eigenvalues are isolated.

The paper is organized as follows: In the next section we give the precise
hypothesis concerning the operator and we recall the known results concerning
singular operators. In section three we prove the C1,β regularity of the solu-
tions. Section four is devoted to the strict comparison principle and simplicity
of the principal eigenvalues. We end the paper with other properties of the
eigenvalues.

2 Assumptions and known results

Let Ω be a bounded regular domain of IRN .
Let us recall what we mean by viscosity solutions, adapted to our context.

Definition 2.1 Let Ω be a bounded domain in IRN , let g be a continuous func-
tion on Ω × IR, then v, continuous on Ω is called a viscosity super-solution
(respectively sub-solution) of F (x,∇u,D2u) = g(x, u) if for all x0 ∈ Ω,

-Either there exists an open ball B(x0, δ), δ > 0 in Ω on which v = cte = c
and 0 ≤ g(x, c), for all x ∈ B(x0, δ) (respectively 0 ≥ g(x, c) for all x ∈
B(x0, δ)).
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-Or ∀ϕ ∈ C2(Ω), such that v − ϕ has a local minimum (respectively local
maximum) at x0 and ∇ϕ(x0) 6= 0, one has

F (x0,∇ϕ(x0), D2ϕ(x0)) ≤ g(x0, v(x0)).

(respectively
F (x0,∇ϕ(x0), D2ϕ(x0)) ≥ g(x0, v(x0)).)

A viscosity solution is a function which is both a super-solution and a sub-
solution.

Remark 2.2 When F is continuous in p, and F (x, 0, 0) = 0, this definition
is equivalent to the classical definition of viscosity solutions, as in the User’s
guide [15].

We now state the assumptions satisfied by the operator F . Let S be the set of
N ×N symmetric matrices, and let α ∈]− 1, 0[. Then F defined on Ω× IRN \
{0} × S satisfies

F (x, p,M) = |p|α(F̃ (x,M) + h(x) · p). (2.1)

on F̃ we suppose

(F) F̃ (x, tM) = tF̃ (x,M) for any t ∈ IR+, and there exist A ≥ a > 0 such
that for any M ∈ S, and any N ∈ S such that N ≥ 0

atr(N) ≤ F̃ (x,M +N)− F̃ (x,M) ≤ Atr(N). (2.2)

Furthermore (x,M) 7→ F̃ (x,M) is continuous.

(J) There exists a continuous function ω with ω(0) = 0, such that if (X, Y ) ∈
S2 and ζ ∈ IR+ satisfy

−ζ
(
I 0
0 I

)
≤
(
X 0
0 Y

)
≤ 4ζ

(
I −I
−I I

)
and I is the identity matrix in IRN , then for all (x, y) ∈ IRN , x 6= y

F̃ (x,X)− F̃ (y,−Y ) ≤ ω(ζ|x− y|2).

On h we suppose that :
(H) h is Hölder continuous of exponent 1 + α.
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Remark 2.3 Since α < 0, if F̃ satisfies condition (J), then so does F i.e. for
X, Y and ζ as above

F (x, ζ(x− y), X)− F (y, ζ(x− y),−Y ) ≤ ω(ζ|x− y|2).

Example 2.4 We suppose that h satisfies (H).
1) Let 0 < a < A and M+

a,A(M) be the Pucci’s operator M+
a,A(M) =

Atr(M+) − atr(M−) where M± are the positive and negative part of M , and
M−

a,A(M) = −M+
a,A(−M). Then F defined as

F (x, p,M) = |p|α(M±
a,A(M) + h(x) · p)

satisfies the assumptions.
2) More generally let B(x) be some matrix with Lipschitz coefficients which

is invertible for all x ∈ Ω. Let us consider A(x) = B?B(x) and the operator
F (x, p,M) = |p|α(tr(A(x)(M)) + h(x) · p), then F̃ satisfies (F) and (J),

arguing as in [5], example 2.4.

We begin to recall some of the results obtained in [6] which will be needed in
this article.

Theorem 2.5 Suppose that F , h are as above and c is continuous and bounded
and satisfies c ≤ 0.

Suppose that f1 and f2 are continuous and bounded and that u and v satisfy

F (x,∇u,D2u) + c(x)|u|αu ≥ f1 in Ω

F (x,∇v,D2v) + c(x)|v|αv ≤ f2 in Ω

u ≤ v on ∂Ω.

Suppose that f2 < f1, then u ≤ v in Ω. Moreover if c < 0 in Ω, and f2 ≤ f1

the result still holds.

This comparison theorem allows to prove, using the existence of sub- and
supersolutions constructed with the aid of the distance function to ∂Ω, together
with Perron’s method adapted to our context, the following existence’s result :

Theorem 2.6 Suppose that F , h and c are as above and that c ≤ 0. Suppose
that f is continuous and bounded, then there exists a continuous solution to
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{
F (x,∇u,D2u) + c(x)|u|αu = f in Ω
u = 0 on ∂Ω

(2.3)

If furthermore f ≤ 0, u ≥ 0, and if f ≥ 0, u ≤ 0. Moreover if c < 0 in Ω, the
solution is unique.

Remark 2.7 The Hopf principle asserts that if O is a smooth bounded domain,
and u is a solution of

F (x,∇u,D2u) ≤ 0 (2.4)

in O, such that u > c inside O and u(x̄) = c at some boundary point of O then
”∂u
∂n

(x̄)” < 0.
In particular this implies that a non constant solution of (2.4) in a domain

Ω has no interior minimum.

We also recall some regularity results

Proposition 2.8 Suppose that F̃ satisfies (F), (J) and h is continuous. Let f
be some continuous function on Ω. Let u be a viscosity non-negative bounded
solution of {

F (x,∇u,D2u) = f in Ω
u = 0 on ∂Ω.

(2.5)

Then, for any γ ≤ 1 there exists some constant C which depends only on |f |∞,
|h|∞ and |u|∞ such that :

|u(x)− u(y)| ≤ C|x− y|γ

for any (x, y) ∈ Ω
2
.

This Proposition implies some compactness for bounded sequences of solu-
tions, this will be used in section 3.

We shall also need in the proof of Theorem 4.1 the following comparison
principle, proved in [7].

Theorem 2.9 Suppose that F̃ satisfies (F), (J), and h satisfies (H), that c is
continuous and bounded. Suppose that c+ λ is positive on Ω and that u and v
are respectively positive continuous super and sub solutions of

|∇u|α
(
F̃ (x,D2u) + h(x).∇u

)
+ (c(x) + λ)u1+α = 0

1) If u ≥ v > 0 on ∂Ω then u ≥ v in Ω.
2) If u > v on ∂Ω then u > v on Ω.
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3 Regularity

In this section for α ≤ 0 we establish that the solutions of (2.5) are W 2,p for
all p < ∞, and consequently also C1,β; this will be derived from the known
regularity results in the case α = 0.

We expect that some C1,β regularity of the solutions be true for more gen-
eral operators i.e. operators that are only homogeneous and singularly elliptic
but not necessarily of the form given in (2.1). As an example, in the second
subsection we illustrate this for a class of operators which does not satisfy (2.1)
and is somehow close to the ∞-Laplacian, though not as degenerate.

3.1 Regularity result for α ≤ 0

To prove the regularity results announced (which will be stated precisely in
Corollary 3.3) , we remark that the solutions of the Dirichlet problem can be
obtained as a fixed point of some operator acting in Co(Ω) ∩W 1,∞.

We define Co(Ω) as the space of continuous function on Ω which are zero
on the boundary, and L(Ω) := {u ∈ Co(Ω); u is Lipschitz } with the norm

|u|L := sup
x,y∈Ω,x 6=y

|u(x)− u(y)|
|x− y|

.

And we suppose here that g : IR+ → (IR+)? is continuous and decreasing,
while l 7→ lg(|l|) is increasing on IR.

Proposition 3.1 Suppose that F̃ , h satisfy respectively (F), (J) and (H). Let
f ∈ L∞(Ω), let Tε be the operator L 7→ L such that Tεu = v, where v is the
unique solution of{

F̃ (x,D2v) + h(x) · ∇v = (f + εg(|u|)u) 1
g(|∇u|) in Ω

v = 0 on ∂Ω

then there exists εo small enough in order that for ε < εo, Tε has a non trivial
fixed point in L.

Remark 3.2 The solution is taken in the sense of Lp viscosity solutions,see
[13] and [34].

Before giving the proof of the Proposition 3.1 we shall prove the main result
of this section i.e. the following
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Corollary 3.3 Suppose that F̃ , h satisfy respectively (F) (J) and (H) and that
f ∈ C(Ω). Let u be a solution in the sense of Definition 2.1 of{

|∇u|α
(
F̃ (x,D2u) + h(x) · ∇u

)
= f in Ω

u = 0 on ∂Ω

Then u ∈ W 2,p(Ω) for all p <∞, hence it is C1,β(Ω) for all β ∈ (0, 1).

Proof of Corollary 3.3. We prove first the announced regularity result for
the equation{

|∇u|α
(
F̃ (x,D2u) + h(x) · ∇u

)
− ε|u|αu = f in Ω

u = 0 on ∂Ω

for ε small enough.
Let δ > 0 and suppose that vδ is a fixed point for Tε with g(l) = (|l|2 + δ2)

α
2

which exists by Proposition 3.1. We shall prove that it is the unique solution,
in the sense of Definition 2.1, of{

(|∇u|2 + δ2)
α
2

(
F̃ (x,D2u) + h(x) · ∇u

)
− ε(δ2 + |u|2)

α
2 u = f in Ω

u = 0 on ∂Ω.
(3.1)

Observe first that since F̃ satisfies (F), by standard regularity results vδ ∈
W 2,p(Ω) for all p <∞ (see Evans [18], Caffarelli- Cabré [14] and Winter [34]).

We prove only the super-solution case. Let x̄ ∈ Ω and ϕ be in C2 such
that (vδ − ϕ)(x) ≥ (vδ − ϕ)(x̄) = 0, with ∇ϕ(x̄) 6= 0 . Since vδ is C1,β,
∇ϕ(x̄) = ∇vδ(x̄) and since vδ is a super-solution of the fixed point equation:

F̃ (x̄, D2ϕ(x̄)) + h(x̄) · ∇ϕ(x̄) ≤ (f(x̄) + ε(|vδ(x̄)|2 + δ2)
α
2 vδ(x̄))(|∇vδ|2(x̄) + δ2)−

α
2

= (f + ε(|ϕ(x̄)|2 + δ2)
α
2ϕ(x̄))(|∇ϕ|2(x̄) + δ2)

−α
2

i.e.

(|∇ϕ|2(x̄) + δ2)
α
2

(
F̃ (x̄, D2ϕ(x̄)) + h(x̄) · ∇ϕ(x̄)

)
− ε(|ϕ(x̄)|2 + δ2)

α
2ϕ(x̄) ≤ f.

and then vδ is a supersolution of (3.1).
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We suppose now that for some co, vδ(x) = co for x in a neighborhood of
x̄. From the equation we get that −ε(δ2 + c2

o)
α
2 co ≤ f in a neighborhood of x̄

which is the same condition required in the Definition 2.1.
Proceeding similarly for the subsolution we have obtained that vδ is a solu-

tion of (3.1) and there exists C depending only on the structural constants of
F̃ and h such that

‖vδ‖W 2,p(Ω) ≤ C(|f |∞ + ε|vδ|1+α
∞ )(|∇vδ|2∞ + δ2)−

α
2

≤ C(|f |∞ + ε|vδ|1+α
∞ )(|∇vδ|2∞ + 1)−

α
2 .

Arguing as in ([6]), one can prove that vδ is uniformly Lipschitz; this implies
both that the bounds on the W 2,p norm don’t depend on δ and that we can
pass to the limit in the equation (3.1); hence we obtain the same estimate for
δ = 0. Stability of viscosity solutions implies that vδ converges to the unique
solution of{

|∇u|α
(
F̃ (x,D2u) + h(x) · ∇u

)
− ε|u|αu = f in Ω

u = 0 on ∂Ω.

We now consider the case ε = 0. We write the equation in the following way

|∇u|α
(
F̃ (x,D2u) + h(x) · ∇u

)
− ε|u|αu = f − ε|u|αu.

Replacing f by f − ε|u|αu since u ∈ L∞, it gives the W 2,p regularity of u and
ends the proof.

Remark 3.4 Under the hypothesis of Corollary 3.3 if g : Ω × IR → IR is
continuous and bounded, then any solution of{

|∇u|α
(
F̃ (x,D2u) + h(x) · ∇u

)
+ g(x, u) = f in Ω

u = 0 on ∂Ω

is in W 2,p(Ω) for any p <∞.

Proof of Proposition 3.1. Clearly L(Ω), equipped with the norm |.|L is a Banach
space. It is well known that for any k ∈ L∞ there exists a unique solution v of{

F̃ (x,D2v) + h(x) · ∇v = k in Ω
v = 0 on ∂Ω.
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Furthermore v is Lipschitz continuous and there exists some constant c which
depends only on the structural data such that

|v|L ≤ c|k|∞.

Let ε be small enough in order that εc dΩ < 1 where dΩ is the diameter of Ω.
Let G be the reciprocal function of l 7→ lg(l). Suppose first that dΩ ≤ 1.

Then we choose fo = c|f |∞
1−εc and

B = {u ∈ L(Ω), such that |u|L ≤ G (fo)} .

B is a convex and compact set of L. We use the fact that l 7→ lg(|l|) and 1
g

are
increasing to obtain that, if u ∈ B,

|Tε(u)|L ≤ c (|f |∞ + ε g(dΩG(fo))dΩG(fo))
1

g (G(fo))

≤ c (|f |∞ + ε fo)
G(fo)

fo
= G(fo).

On the other hand if dΩ ≥ 1, then we choose fo = c|f |∞
1−εdΩc

and B as before.
Hence if u ∈ B, using that g is decreasing:

|Tε(u)|L ≤ c (|f |∞ + ε g(dΩG(fo))dΩG(fo))
1

g (G(fo))

≤ c (|f |∞ + ε dΩ g(G(fo))G(fo))
1

g (G(fo))

≤ c (|f |∞ + εdΩ fo)
G(fo)

fo
= G(fo).

In both cases Tε(B) ⊂ B and furthermore Tε is continuous and compact, then
Schauder’s fixed point theorem implies the result.

3.2 Other operators

We now present an example to which the results of the previous section can be
extended but which does not satisfy the previous assumptions.

Let q ≥ 0, and α ≤ 0,

F(p,M) = |p|α
(
trM + q〈Mp

|p|
,
p

|p|
〉
)

:= |p|αF̃ (M, p).
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Proposition 3.5 Suppose that u is a viscosity solution of{
F(∇u,D2u) = f in Ω
u = 0 on ∂Ω

(3.2)

with f ∈ C(Ω). Then there exists β = β(q,N) ∈ (0, 1) such that u is in C1,β(Ω).

Proof
Recall that the (q + 2)-Laplacian is defined by

∆q+2u = |∇u|q
(

∆u+ q

(
D2u(

∇u
|∇u|

),
∇u
|∇u|

))
.

We first prove a fixed point property. For ε > 0 and δ > 0 let Tlap be the
map u 7→ v where v is the solution of{

∆q+2(v) = (f + ε(|u|2 + δ2)
α
2 u)(|∇u|2 + δ2)

q−α
2 in Ω

u = 0 on ∂Ω.

Recall that by regularity results ([19, 17, 33, 26]) of the q + 2-Laplacian, there
exist β ∈ (0, 1) and Clap such that

|Tlap(u)|C1,β ≤ Clap(|f |∞ + ε(|u|2∞ + δ2)
α
2 |u|∞)

1
q+1 (|∇u|2∞ + δ2)

q−α
2(q+1) . (3.3)

For ε small enough, let lε be a solution of

lq+1
ε = (Clap(|f |∞ + ε((dΩlε)

2 + δ2)
α
2 dΩlε)(l

2
ε + δ2)

q−α
2 ,

and define the closed convex compact set in L(Ω)

B = {u ∈ L(Ω), |u|L ≤ lε}.

Then TlapB ⊂ B and using the Schauder fixed point theorem one gets that
there exists uδ ∈ C1,β which solves{

∆q+2(u) = (f + ε(|u|2 + δ2)
α
2 u)(|∇u|2 + δ2)

q−α
2 in Ω

u = 0 on ∂Ω.

As before, we can show that in fact uδ is a solution in the sense of definition
2.1 of {

(|∇u|2 + δ2)
α−q

2 ∆q+2(u)− ε(|u|2 + δ2)
α
2 u = f in Ω

u = 0 on ∂Ω.
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Arguing as in the proof of Hölder’s and Lipschitz’s regularity in [6], one can
prove some uniform Lipschitz estimates on vδ. Then it is clear from the esti-
mates in (3.3) that the C1,β norm of vδ is independent of δ, we can then let δ
go to zero and obtain that uδ converges to a solution u of{

|∇u|α
(

∆u+ q(D2u( ∇u|∇u|),
∇u
|∇u|)

)
− ε|u|αu = f in Ω

u = 0 on ∂Ω.

We then obtain the regularity when ε = 0 by writing the equation{
|∇u|α

(
∆u+ q(D2u( ∇u|∇u|),

∇u
|∇u|)

)
= f in Ω

u = 0 on ∂Ω

when f ∈ L∞, under the form{
|∇u|α

(
∆u+ q(D2u( ∇u|∇u|),

∇u
|∇u|)

)
− ε|u|αu = f − ε|u|αu in Ω

u = 0 on ∂Ω

Using the fact that u is in L∞ one gets the regularity result.

4 Strict comparison principle and uniqueness

of the first eigenfunction

We now assume that c(x) is some continuous bounded function, and we consider
the principal eigenvalues λ+, λ− for the operator

|∇u|α
(
F̃ (x,D2u) + h(x) · ∇u

)
+ c(x)|u|αu

as defined in the introduction. We suppose that conditions (F) and (J) are
satisfied by F̃ , and h satisfies (H).

We prove the uniqueness result in the case λ+, the changes to bring for λ−

being obvious.

Theorem 4.1 Suppose that Ω is a bounded regular domain such that either ∂Ω
is connected or N = 2 and ∂Ω has at most two connected components. Suppose
that c satisfies c(x) + λ+ > 0 in Ω.

If ψ and ϕ are two positive eigenfunctions for the eigenvalue λ+ there exists
t > 0 such that ψ = tϕ.
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Remark 4.2 The condition N = 2 is used only in order to apply Sard’s theo-
rem. Indeed in [21], Sard’s theorem is proved to hold for functions that are in
WN,p(IRN) for p > N but we only know that u is in W 2,p for all p <∞ .

In order to prove Theorem 4.1 we shall need a few results concerning comparison
principle and applications of Hopf’s principle. We begin by a strong comparison
principle inside Ω for sub and supersolutions u and v which coincide on one point
x̄ inside Ω, where |∇u|(x̄) 6= 0, or |∇v|(x̄) 6= 0:

Proposition 4.3 Suppose that u and v are respectively nonnegative C1 solu-
tions of

F (x,∇u,D2u) ≤ f

F (x,∇v,D2v) ≥ g

with f ≤ g. Suppose that O is an open connected subset of Ω, such that
1) u ≥ v, in O,
2) ∃ xo ∈ O such that u(xo) > v(xo),
3) either |∇u(x)| 6= 0 or |∇v(x)| 6= 0 in O,

Then u > v in O.

Proof of Proposition 4.3. Using the connectedness of O it is sufficient to
prove the result in some ball containing xo instead of O. in Suppose by con-
tradiction that there exists some point x1 close to xo, such that u(x1) = v(x1)
and in the ball B(xo, R), for R = |x1−xo|, x1 is the only point in the closure of
that ball on which u and v coincide. One can also assume that B(xo,

3R
2

) ⊂ Ω.
We shall prove that there exists some constant c > 0 and some δ > 0 such

that
u ≥ v + δ(e−c|x−xo| − e

−3cR
2 ) ≡ v + w

in the annulus R
2
≤ |x− xo| = r ≤ 3R

2
. This will contradict the fact that u = v

on x1.
Let δ = min

|x−xo|=R
2

(u− v), so that

u ≥ v + w on ∂

(
B(xo,

3R

2
) \B(xo,

R

2
)

)
.

Let ϕ be some test function for v from above, a simple calculation on w
implies that, if c ≥ 1

a
(2(2A(N−1)

R
+ 2|h|∞) then
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|∇ϕ+∇w|α
(
F̃ (x,D2ϕ+D2w) + h(x) · (∇ϕ+∇w)

)
≥ |∇ϕ+∇w|α

(
F̃ (x,D2ϕ) + h(x) · ∇ϕ

)
+|∇ϕ+∇w|α

(
M−(D2w) + h(x) · ∇w

)
≥ |∇ϕ+∇w|α g

|∇ϕ|α
+

+|∇ϕ+∇w|α
(
ac2 − Ac(N − 1

r
)− |h|∞c

)
δe−cr

≥ |∇ϕ+∇w|α g

|∇ϕ|α
+ |∇ϕ+∇w|αac

2

2
δe−cr.

We also impose that δ < RL1e
16

, which implies in particular that |∇w| ≤ |∇ϕ]
8

We now use the inequalities

||∇ϕ+∇w|α − |∇ϕ|α| ≤ |α||∇w||∇ϕ|α−1

(
1

2

)α−1

≤ |∇ϕ|
α

2

to get

|∇ϕ+∇w|α
(
F̃ (x,D2ϕ+D2w) + h(x) · (∇ϕ+∇w))

≥ g − |g|∞|∇ϕ|−1|α|21−αcδe−cr + Lα2
ac2

4
δe−cr.

It is now enough to choose

c = sup

{
2(2A(N−1)

R
+ |h|∞)

a
,
24−α|g|∞
aL1Lα2

}

to finally obtain

|∇ϕ+∇w|α
(
F̃ (x,D2ϕ+D2w) + h(x) · (∇ϕ+∇w))

≥ f +
ac2δLα2 e

−cr

8
.

i.e.
F (x,∇(v + w), D2(v + w)) > F (x,∇u,D2u).
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We now are in a position to use the comparison principle in theorem 2.5 and
get that

u ≥ v + w

in the annulus B(xo,
3R
2

) \ B(xo,
R
2

), the desired contradiction. This ends the
proof of Proposition 4.3.

Another way of formulating this proposition is the following

Corollary 4.4 Suppose that u and v are as in Proposition 4.3 but instead of
condition 2) we have that there exists x̄ ∈ O such that u(x̄) = v(x̄), then u ≡ v
in O.

Another consequence of Proposition 4.3 is the following : Let ∂νu be the
normal derivative ∇u · ~ν where ~ν is the unit outer normal to ∂Ω. Then

Proposition 4.5 Suppose that Ω is a smooth bounded domain of IRN . Suppose
that u and v are respectively nonnegative C1(Ω) solutions of

F (x,∇u,D2u) ≤ f

F (x,∇v,D2v) ≥ g

with f ≤ g, and u = v = 0 on ∂Ω
1) u ≥ v in Ω,
2) there exists x̄ ∈ ∂Ω such that ∂νu(x̄) = ∂νv(x̄)

then there exists ε > 0 such that

u ≡ v in Ω \ Ωε

where Ωε is the set of points of Ω whose distance to the connected component
of the boundary which contains x̄ is greater than ε.

Proof. First with Hopf Principle |∇u| > 0 and |∇v| > 0 on the boundary and by
the regularity results there exist δ > 0, L1 and L2 such that L1 ≤ |∇u|, |∇v| ≤
L2 in Ω \ Ωε.

If there exists a point x1 of Ω \ Ωε such that u(x1) = v(x1) by the previous
Corollary we have nothing to prove. So we can suppose by contradiction that
there exists a ball B ⊂ Ω which is tangent to ∂Ω in x̄ where u > v. Let x2 be
the center of that ball. Let R = |x̄− x2|.
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Let w = δ(e−c|x−x2|−e−c|x2−x̄|) where δ is chosen such that δ ≤ inf |x−x2|=R
2
(u−

v).
Reasoning as in Proposition 4.3 we get that there exists c such that

u ≥ v + w,

in the annulus B(x2, R) \B(x2,
R
2

)
This implies in particular that

|∂νu(x̄)| ≥ |(∂νv + ∂νw)(x̄)|.
Since |(∂νv + ∂νw)(x̄)| > |∂νv(x̄)| this leads to a contradiction. This ends the
proof of Proposition 4.5.

In the sequel we shall need the following well known result :

Lemma 4.6 Suppose that O is an open bounded set. There exists some point
on ∂O where ∂O satisfies the interior sphere condition.

See [11] for more complete results on that property.
Proof of Theorem 4.1.

We suppose first that ∂Ω is connected. Let d(x) denote the distance to the
boundary of Ω. Suppose that ψ and ϕ are two positive eigenfunctions and let
Γ = sup ψ

ϕ
. This extremum is well defined because, using Hopf lemma and the

comparison principle, there exist c1 and c2 such that in a neighborhood of ∂Ω:

c1d(x) ≤ ψ(x), ϕ(x) ≤ c2d(x),

(see [6] for the details). Moreover this supremum is achieved on the boundary
in the sense that e.g. there exists a sequence (xn)n which goes to the boundary
such that ψ

ϕ
(xn)→ Γ:

Indeed, suppose not, then, there would exist an open set Ω′, Ω′ ⊂⊂ Ω such
that on Ω \ Ω

′

ψ

ϕ
≤ Γ− ε

for some ε > 0. Using the comparison Theorem 2.9 in Ω′, and remarking that
λ(Ω) < λ(Ω′) one would get that ψ ≤ (Γ − ε)ϕ on Ω′ and finally on all Ω, a
contradiction.

We are in a position to apply Corollary 4.4 and Proposition 4.5 and obtain
that ψ = Γφ in a neighborhood of ∂Ω. Considering the infimum of the ratio
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one gets also that if γ = inf ψ
ϕ

then ψ
ϕ

= γ on a neighborhood of the boundary,
therefore γ = Γ and the conclusion follows.

We now assume that N = 2 and since ∂Ω has at most two connected
components there exist Ω1 and Ω2 simply connected and smooth such that
Ω1 ⊂⊂ Ω2 and Ω = Ω2 \ Ω1.

We define as before Γ = sup ψ
ϕ

and γ = inf ψ
ϕ

, and arguing as previously there

exists some sequence xn and i ∈ {1, 2} such that xn → ∂Ωi and ψ
ϕ

(xn) → Γ.

By Corollary 4.4 and Proposition 4.5 with f := −(c(x) + λ)ψ1+α ≤ −(c(x) +
λ)ϕ1+α := g,

ψ ≡ Γϕ in a neighborhood of ∂Ωi.

In the same manner we prove that the infimum γ = inf ψ
ϕ

is achieved on the
other connected component, and also that ψ = γϕ in a neighborhood of this
part of the frontier.

We have obtained that

ψ ≡ Γ1ϕ in a neighborhood of ∂Ω1

and
ψ ≡ Γ2ϕ in a neighborhood of ∂Ω2.

with {Γ1,Γ2} = {Γ, γ}.
For i = 1, 2, let

Ai be the connected component of {x, ψ(x) = Γiϕ(x), ∇ψ(x) 6= 0 or∇ϕ(x) 6= 0}

whose boundary contains ∂Ωi.
Ai is open. Indeed if x1 ∈ A1 then ψ(x1) = Γ1ϕ(x1) and there is Nx1 a

neighborhood of x1 where either ∇ψ 6= 0 or ∇ϕ 6= 0 and then using Corollary
4.4, in Nx1 , ψ = Γ1ϕ and then Nx1 ⊂ A1.

Observe that if ∂A1 ∩ ∂Ω2 6= ∅ or ∂A2 ∩ ∂Ω1 6= ∅, this ends the proof of
Theorem 4.1 since it would imply that Γ = γ. Hence we suppose that these
intersections are empty.

Let Gi := Ai; Ki := ∂Gi ∩ Ω, and Mi := Ω \Gi.
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Let us note that Ki satisfies that, for all x ∈ Ki, ψ(x) = Γiϕ(x) and
∇ψ(x) = 0 and∇ϕ(x) = 0. To see this it is sufficient to observe that ∂Gi ⊂ ∂Ai
since Gi is closed, and then it is sufficient to prove that these inequalities are
true on the boundary of Ai:

The first equality is true by continuity and the others two because otherwise
ψ = Γiϕ in an open neighborhood of that point with ∇ψ(x) 6= 0 in that
neighborhood , or ∇ϕ(x) 6= 0 which contradicts the notion of boundary.

Moreover ∂M1 = ∂Ω2 ∪K1 (and ∂M2 = ∂Ω1 ∪K2).
Indeed note that M1 ∩ ∂Ω1 = ∅ since A1 contains an open neighborhood of

∂Ω1, then ∂M1 ⊂ (Ω ∩ ∂G1) ∪ (C(G1) ∩ ∂Ω) ⊂ (Ω ∩ ∂G1) ∪ ∂Ω1 ∪ ∂Ω2 and
since ∂M1 ∩ ∂Ω1 = ∅, hence ∂M1 ⊂ ∂Ω2 ∪K1. To prove the reverse inclusion,
let x ∈ K1, then for all r > 0, B(x, r) ∩ (IRN \ G1) 6= ∅. Taking r such that
B(x, r) ⊂ Ω one gets x ∈M1. On the other hand x /∈M1, since if x ∈M1 there
exists some ball B(x, ε) included in M1, and x ∈ K1 implies B(x, ε) ∩ G1 6= ∅,
a contradiction.

It is clear that ∂Ω2 is included in M1, and it has no point of M1 since M1 is
an open subset of Ω.

Let us admit for a while these three simple claims,
Claim 1 Mi is connected for i = 1, 2.
Claim 2 ∂Gi has at most two connected components i.e. Ki is connected.
Claim 3 ∂(M1 ∩M2) = K1 ∪K2,
and let us finish the proof. Using the fact that both Ki are connected, since
ψ ∈ W 2,p for all p <∞ we can apply Sard’s theorem in Sobolev spaces [21], to
conclude that there exists two constants ci such that ψ|Ki = ci for i = 1 and
i = 2, .

Suppose that there exists one point x̄ ∈ M = M1 ∩M2 such that ψ(x̄) <
min(c1, c2). Then ψ would have a local minimum inside M , a contradiction
with Hopf principle, see Remark 2.7. Then the minimum is achieved on the
boundary of M , suppose to fix the ideas that c1 ≤ c2. Now take a ball in M
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where ψ > c1 that touches K1 at some point x1, by Hopf’s principle ∇ψ(x1) 6= 0
which contradicts the fact that, for all x ∈ Ki, ∇ψ(x) = 0.

Now since ψ cannot be locally constant we have proved that M = ∅ and
then Γ1 = Γ2, hence Γ = γ. This ends the proof of Theorem 4.1 provided we
prove the claims.
Proof of Claim 1

To fix the ideas we consider the case of i = 1.
Let us recall that ∂M1 = (∂G1 ∩ Ω) ∪ ∂Ω2. Suppose that M1 has at least

two connected components, M1,1 and M1,2 and one of them, say M1,2, has a
boundary which contains ∂Ω2. Then ∂M1,1 ⊂ K1 = Ω ∩ ∂G1. Then M1,1 is a
connected open set on the boundary of which ψ and φ have their gradient equal
to zero.

We prove that M1,1 is simply connected.
If not there exists some open regular domain O′, O′ ⊂ Ω2, with ∂O′ ⊂M1,1,

O′ is not included in M1,1, and ∂M1,1 is not included in O′. Let x ∈ O′ \M1,1,
then x ∈ G1 and hence G1 ∩O′ 6= ∅.

Either G1 ⊂ O′, then ∂M1,1 ⊂ K1 ⊂ O′ and the contradiction is in the
choice of O′.

Or G1 ∩ C(O′) 6= ∅ which contradicts that ∂O′ ⊂ M1,1. We have obtained
that M1,1 is simply connected.

By Sard’s theorem there exists a constant c1,1 such that ψ = c1,1 on ∂M1,1.
Then one gets a contradiction with Hopf’s principle (because either there exists
a minimum inside M1,1 and this contradicts Remark 2.7, or c1,1 is a minimum for
ψ and taking some point on the boundary of M1,1 which possesses the interior
sphere condition, one gets once more a contradiction with Hopf’s principle).

We have obtained that M1,1 = ∅ and M1 is connected.
Proof of Claim 2.

We prove this claim by establishing that G1 ∪ Ω1 is simply connected. Let
O be a simply connected open set , such that O ⊂ Ω2 , ∂O ⊂ G1 ∪ Ω1. We
need to prove that O ⊂ G1 ∪ Ω1.

If O ⊂ Ω1 it is true. If not, O ∩ G1 6= ∅ and if O ⊂ G1 the result holds, so
we assume that O ∩G1 6= ∅ and also O ∩ C(G1) 6= ∅. Then O ∩M1 6= ∅. Since
M1 is a connected set which meets O we claim that ∂O ∩M1 6= ∅. Indeed,
if not M1 ⊂ O. Then one would have M1 ⊂ O ⊂ Ω2, a contradiction since
∂Ω2 ⊂ M1. Then ∂O ∩M1 6= ∅ which implies that M1 ∩ (G1 ∪ Ω1) 6= ∅ once
more a contradiction.

To prove that K2 is a connected set, one proves proceeding as above that
M2 ∪ Ω1 is simply connected.

20



Proof of Claim 3.
We already have

∂(M1 ∩M2) = M1 ∩M2 \ (M1 ∩M2)

⊂ M1 ∩M2 ∩ ((Ω \M1) ∪ (Ω \M2))

⊂ (∂M1 ∩M2) ∪ (∂M2 ∩M1)

⊂ K1 ∪K2.

To prove the reverse inclusion, we recall that, by hypothesis, G1 ∩G2 = ∅.
Then K1 ⊂ G1 ⊂ M2. Let x ∈ K1 and r > 0. We need to prove that

Br(x) ∩ (M1 ∩ M2) 6= ∅. Since M2 is open there exists a ball Bε(x) ⊂ M2.
One can assume that ε < r. Since x ∈ K1 ⊂ ∂M1, Bε(x) ∩M1 6= ∅ and also
Bε(x)∩M1 6= ∅. Finally Bε(x)∩M1∩M2 ⊂ Br(x)∩M1∩M2 hence x ∈M1 ∩M2.
x ∈ K1 implies x /∈M1 hence x /∈M1 ∩M2 i.e. K1 ⊂ ∂(M1 ∩M2). In the same
manner K2 ⊂ ∂(M1 ∩M2).

We have also obtained the following strong comparison principle

Theorem 4.7 Suppose that N = 2 and that Ω and ∂Ω are connected. Suppose
that u and v are W 2,p(Ω) for some p > 2 respectively super and sub solution of

F (x,∇u,D2u) = f in Ω
u = 0 on ∂Ω

with f ≤ 0, and f not identically zero. Suppose that u ≥ v in Ω.
Then either u > v inside Ω or u ≡ v.

Proof :
First we remark that u > 0 since if not u is identically zero by the strict

maximum principle, and then f ≡ 0.
Then by Hopf’s principle ∂nu < 0 on the boundary.
We begin to prove that there exists a neighborhood of the boundary where

either u ≡ v or u > v and in that last case one can conclude by using the
comparison principle in Theorem 2.9, and u > v everywhere. We then consider
the case where u ≡ v on a neighborhood of ∂Ω. As in the previous proof, let

A be the connected component of {x, u(x) = v(x), ∇u(x) 6= 0, or ∇v(x) 6= 0}

whose boundary contains ∂Ω. Let G := A, K := ∂G ∩ Ω, M = Ω \G.
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We want to prove that M = ∅. Suppose not, proceeding as in the proof of
Theorem 4.1, it can be proved that M and K are connected, hence ∂M = K.
Furthermore, on K, ∇u = 0 and ∇v = 0.

Then, using Sard’s theorem, u = cte on K and, since M cannot contain a
local minimum of u, the minimum of u is achieved on the boundary i.e. on
K; this contradicts the Hopf principle on some point where the interior sphere
condition is satisfied, since ∇u = 0 on K. Finally M = ∅ and u = v in Ω.

5 Further results about the principal eigenval-

ues

In all this section we suppose that F is given by (2.1) and F̃ satisfies (F) and
(J) and h satisfies (H).

5.1 Properties concerning the dependance on the do-
main of the eigenvalues.

From the definition of λ+ and λ− it is clear that Ω1 ⊂ Ω2 implies λ+(Ω1) ≥
λ+(Ω2). The next two theorems concern the strict monotonicity of the principal
eigenvalues with respect to the domain inclusion. We state them in the case
of the eigenvalue λ+(Ω), the symmetric results hold for λ−(Ω) with obvious
changes. In the sequel when no ambiguities arise we shall write λ+ without
writing the dependence on the domain.

Theorem 5.1 Suppose that Ω is a smooth bounded domain in IRN . Suppose
that c(x) + λ+ > 0 in Ω. If u is a positive solution of

F (x,∇u,D2u) + (c(x) + λ+)u1+α = 0 in Ω,

then there exists (∂Ω)′ a connected component of ∂Ω such that

u = 0 on (∂Ω)′.

Proof. To begin with, let us note that u must be zero somewhere on ∂Ω.
Suppose not, i.e. u > 0 on Ω. Using the hypothesis c(x) + λ+ > 0, this implies
that there exists ε > 0 and λ′ > λ+ such that uε := u− ε > 0 is a solution of

F (x,∇uε, D2uε) + (c(x) + λ′)u1+α
ε ≤ 0,
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which contradicts the definition of λ+.
Let v be an eigenfunction associated to λ+, so that v > 0 in Ω and v = 0

on ∂Ω. We now consider τ = sup v
u

which exists and is finite.
Indeed, it is sufficient to prove it near the boundary. As seen in the proof

of Theorem 4.1 there exists some constant c1 such that v ≤ c1d; on the other
hand by Hopf’s principle there exists co such that u ≥ cod; this implies that τ
is finite.

Again reasoning as in Theorem 4.1, the supremum must be achieved at least
on one point of the boundary in the sense that there exists a sequence xn ∈ Ω,
xn → x̄ ∈ ∂Ω such that v(xn)

u(xn)
→ τ .

Let (∂Ω)′ be the connected component of ∂Ω that contains x̄. Let Γ+ =
{x ∈ (∂Ω)′, u(x) > 0}. We want to prove that Γ+ = ∅.

For that aim we consider the set

A = {x ∈ (∂Ω)′, lim sup
y→x

v(y)

u(y)
< τ}.

We shall prove that A is both closed and open in (∂Ω)′. If we suppose that Γ+

is non empty, it will imply that A is not empty since Γ+ ⊂ A and therefore

A = (∂Ω)′. We will have obtained that lim sup
y→x

v(y)

u(y)
< τ everywhere on (∂Ω)′,

contradicting the previous observation.
By Hopf principle and the regularity result one has |∇v| ≥ L1 > 0, on a

neighborhood of the boundary. In the sequel for x ∈ ∂Ω, we denote as Bx(r1)
some ball such that Bx(r1) ⊂ Ω and Bx(r1) ∩ ∂Ω = {x}. The existence of such
ball for every point x ∈ ∂Ω is implied in particular by the assumption that ∂Ω
is C2.
Claim : The complement of A is closed in (∂Ω)′.

We want to prove that if xn is some sequence in (∂Ω)′ which converges to

x ∈ (∂Ω)′ such that lim sup
y→xn

v(y)

u(y)
= τ , then

lim sup
y→x

v(y)

u(y)
= τ.

In particular u(x) = 0. By the strict comparison principle Corollary 4.4 one
has that there exists r1 independent of n such that v = τu in Bxn(r1).

Since Bxn(r1) ∩ Bx(r1) 6= ∅ for n large enough, there exists yn ∈ Bx(r1),
v(yn) = τu(yn), again using Corollary 4.4 we get that v = τu in all the ball
Bx(r1) and then x does not belong to A.
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Claim : The set A is closed.

Let xn ∈ ∂Ω such that for all n, lim sup
y→xn

v(y)

u(y)
< τ and xn converges to

x̄ ∈ (∂Ω)′, let us prove that x̄ ∈ A. Using Proposition 4.3, there exists r1

such that v < τu in Bxn(r1) , and since Bxn(r1) ∩ Bx̄(r1) ∩ Ω 6= ∅, there exists
y ∈ Bx̄(r1) such that v(y) < τu(y), which implies that v < τu in all the ball
Bx̄(r1).

There are two cases either v(x̄) = 0 < u(x̄), then x̄ ∈ A and we are done.

Or v(x̄) = τu(x̄) = 0 and we need to prove that lim sup
y→x̄

v(y)

u(y)
< τ. If not, acting

as in the proof of Proposition 4.5, we obtain v = τu in the whole ball Bx̄(r1),
a contradiction, so x̄ ∈ A. This ends the proof.

It is an immediate consequence of the definition, that if Ω′ ⊂ Ω then
λ±(Ω′) ≥ λ±(Ω). In the next Theorem we shall prove that the monotonicity is
strict.

Theorem 5.2 Let Ω be a domain with a connected boundary, and Ω′ a subdo-
main of Ω.

Suppose that ∂Ω is not included in ∂Ω′ or, for N = 2, suppose only that
Ω′ 6= Ω. Then

λ±(Ω′) > λ±(Ω).

Proof: Let us begin by the first case i.e. we suppose that there exists x0 ∈ ∂Ω
such that x0 6∈ ∂Ω′ and hence, there exists δ > 0, such that B(x0, δ) ⊂ IRN \Ω′.

Let Ω′′ be a smooth domain whose boundary has only one connected com-
ponent and such that

Ω′ ⊂ Ω′′ ⊂ Ω \B(x0, δ).

We know that

λ+(Ω′) ≥ λ+(Ω′′) ≥ λ+(Ω \B(x0, δ)) ≥ λ+(Ω).

Suppose by contradiction that λ+(Ω′) = λ+(Ω); this implies that λ+(Ω′′) =
λ+(Ω) := λ+.

Let v be an eigenfunction for Ω. So in particular it is positive in Ω. On the
other hand it is also a solution of

F (x,∇ϕ,D2ϕ) + (c(x) + λ+)ϕ1+α = 0,
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in Ω′′, then using Theorem 5.1, this would imply that v = 0 on ∂Ω′′, a contra-
diction with the fact that v > 0 in ∂Ω′′ ∩ Ω. This ends the first case.

We are left to prove the case N = 2 and ∂Ω ∩ ∂Ω′ = ∂Ω. By contradiction
we shall suppose that λ+(Ω′) = λ+(Ω). We can assume that Ω′ is regular by
replacing Ω′ by some regular subset Ω′′ such that ∂Ω′′∩∂Ω = ∂Ω which contains
Ω′ since it satisfies also λ+(Ω′′) = λ(Ω). For simplicity we rename this set Ω′

and we consider the respective eigenfunctions φ and φ′. By hypothesis they
satisfy the same equation in Ω′.

Let

τ = sup
Ω′

φ′

φ
,

proceeding as in the proof of Theorem 4.1, it is possible to prove that τ is
bounded and achieved on ∂Ω.

Using Proposition 4.5 there exists G a closed connected neighborhood of ∂Ω
where φ′ = τφ and such that

∇φ = ∇φ′ = 0 in K := ∂G ∩ Ω.

Hence using Sard’s theorem for functions in W 2,p, there exists a constant c such
that

φ = c, φ′ = τc, in K.

This of course leads to a contradiction, because either φ < c somewhere in
Ω \G and then φ would have a local minimum which contradicts Remark 2.7.
Or φ ≥ c in Ω \G and then by Hopf’s Lemma and Lemma 4.6 there is a point
where ∇φ 6= 0 in K which is again a contradiction. This ends the proof.

To fix the ideas, in the next theorem we suppose λ+ < λ−, with obvious
symmetric results in the other case.

Theorem 5.3 Suppose that Ω is a bounded regular domain. Suppose that f ≤
0, then there exists no solution u for the equation{

F (x,∇u,D2u) + (c(x) + λ+)u1+α = f in Ω
u = 0 on ∂Ω.

such that u(xo) < 0 for some xo ∈ Ω.

25



Suppose in addition that ∂Ω is connected, that (c(x) + λ−) > 0, that f ≤ 0
and that f < 0 somewhere near the boundary, then there is no solution to{

F (x,∇u,D2u) + (c(x) + λ−)|u|αu = f in Ω
u = 0 on ∂Ω

In the case where N = 2 the assumption f < 0 somewhere near the boundary
can be removed, and the conclusion is that f ≡ 0 and u is an eigenfunction for
λ−.

Proof of Theorem 5.3: The first part is a mere application of the minimum
principle : Since f ≤ 0 and λ+ < λ−, and since u = 0 on the boundary, u ≥ 0,
which contradicts the assumption.

We now prove the second part.
We suppose first that u ≥ 0. Then since f ≤ 0 the strict maximum principle

implies that either u ≡ 0 or u > 0, and this contradicts the definition of λ+ and
λ+ < λ−. We now then assume that u(xo) < 0 for some xo. Let −ϕ− be some
normalized eigenfunction for λ−. Let us note that −u− is a supersolution of the
equation in Ω. Let us define Γ = inf{t, u− ≤ tϕ−}. Then Γ > 0 and u− ≤ Γϕ−.
We prove that the supremum Γ = sup u−

ϕ−
is achieved on the boundary. If not

there exists some compact set K large enough in order that u−

ϕ−
≤ Γ′ on Ω \K

and Γ′ < Γ.
Since −u− is a supersolution and −u− ≥ −Γ′ϕ− on ∂K, then using the

comparison Theorem 2.9 in its form for negative solutions, −u− ≥ −Γ′ϕ− in
K, finally −u− ≥ −Γ′ϕ− in the whole of Ω, which yields a contradiction.

Then the supremum is ”achieved” on the boundary and then the strict
comparison principle in Proposition 4.3 implies that −u− = −Γϕ− around the
boundary. In particular one gets f ≡ 0 around the boundary, which is once
more a contradiction.

Let N = 2, and f can be zero near the boundary. As in the previous
argument if u ≥ 0, one gets u ≡ 0. We now assume that there exists xo such
that u(xo) < 0. By the previous conclusion −u− = −Γϕ− on a neighborhood of
the boundary, in fact since we have −u− ≥ −Γϕ− everywhere, and u− satisfies

F (−∇u−, D2(−u−)) = f + (c(x) + λ−)(u−)1+α ≤ (c(x) + λ−)(ϕ−)1+α

≤ F (−∇ϕ−, D2(−ϕ−))

using the strict comparison principle one gets that as long as ∇ϕ− 6= 0 one has
u− = Γϕ−. Now applying Theorem 4.7 in its form with f ≥ 0 and negative

26



solutions. one obtains that u− = Γϕ− everywhere and since ϕ− never takes the
value 0 one gets that u < 0 and f ≡ 0 This ends the proof.

In recent papers, when α = 0, Armstrong [3], Felmer, Quaas, Sirakov [32, 20]
have studied some sort of ”Fredholm” alternative in order to establish for which
functions f there exists a solution of the Dirichlet problem when λ− ≤ λ ≤ λ+.

5.2 Further properties

We want to prove that we can recover some of the standard properties of eigen-
values for linear elliptic equations. We consider the Dirichlet problem{

F (x,∇u,D2u) + (c(x) + λ)u1+α = 0 in Ω
u = 0 on ∂Ω.

(5.1)

Non trivial solutions of (5.1) will be called eigenfunctions.
We now recall the following result, which is an easy consequence of the

definitions of λ± and the maximum and the minimum principle (see [8],[9])

Theorem 5.4 Suppose that Ω is a bounded regular domain,
1) If λ > λ1 = sup(λ+(Ω), λ−(Ω)), then every non trivial solution of (5.1)

changes sign in Ω.
2) For any λ between λ+ and λ− there are no nontrivial solutions of (5.1)

As a consequence of the previous section, we now have further results regarding
the signs of the eigenfunctions.

Theorem 5.5 Suppose that Ω is some bounded smooth domain, and suppose
that one of the following holds

1. λ+ = λ− and ∂Ω is connected

2. N = 2, λ+ = λ−, ∂Ω has at most two connected components

3. N = 2, ∂Ω is connected

then any eigenfunction corresponding to λ = λ± is of constant sign.

An application of the previous result is the following
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Corollary 5.6 In the hypothesis of Theorem 5.5 the eigenvalues λ+ or λ− are
isolated i.e. there exists δ > 0 such that for any λ ∈]λ±, λ± + δ[, the solutions
of (5.1) are trivial.

Proof of Theorem 5.5. Let λ1 = λ+ = λ− and suppose that ∂Ω is connected.
Suppose by contradiction that there exists a solution of (5.1) which changes
sign. We define Ω+ = {x ∈ Ω; u(x) > 0} and Ω− = {x ∈ Ω; u(x) < 0}. Then
clearly, for any Ω̃+ (respectively Ω̃−) connected component of Ω+ (respectively
Ω−):

λ+(Ω̃+) = λ−(Ω̃−) = λ1.

∂Ω̃+ ∩ ∂Ω 6= ∂Ω is not possible since it would imply, by Theorem 5.2
λ+(Ω̃+) > λ+(Ω). But, on the other hand, if ∂Ω̃+ ∩ ∂Ω = ∂Ω, then ∂Ω̃− ∩
∂Ω 6= ∂Ω, and then the contradiction is given by the fact that it would imply
λ−(Ω̃−) > λ−(Ω).

We now suppose to be in the second case. For i = 1, 2, Ωi denote two open
simply connected sets such that Ω1 ⊂⊂ Ω2 and Ω = Ω2 \ Ω1.

Let ϕ be a positive eigenfunction in Ω and v an eigenfunction which changes
sign. Let Ω± be the set where v is positive (respectively negative). If ∂Ω+ ∩
∂Ωi 6= ∅ then reasoning as in the proof of Theorem 5.1, ∂Ω+ ∩ ∂Ω = ∂Ωi.
The same is true for Ω−, hence one can assume without loss of generality that
∂Ω+ ∩ ∂Ω = ∂Ω1 and ∂Ω− ∩ ∂Ω = ∂Ω2, finally ∂Ω+ ∩ Ω = ∂Ω− ∩ Ω 6= ∅.

Since λ+ = λ−, −ϕ is an eigenfunction corresponding to λ−. Reasoning as
in the proof of Theorem 4.1 we can define Γ = sup v

ϕ
which exists according

to the estimates on v near the boundary and it is ”achieved” on ∂Ω1, and
γ = sup −v

ϕ
”achieved ” on ∂Ω2, and prove that v = Γϕ on a neighborhood of

∂Ω1 and v = −γϕ on a neighborhood of ∂Ω2.
Defining as in the proof of Theorem 4.1 M1 , K1, M2, K2 with ∇v = ∇ϕ = 0

on K1 and K2.
Since ϕ > 0 in M1 ∩M2, using Sard’s theorem ci = ϕ|Ki . Again reasoning

as in Theorem 4.1, ϕ must achieve its infimum on K1 or K2 where its gradient
is zero, a contradiction with Hopf principle.

We consider the last case, i.e. N = 2, λ+ 6= λ− and ∂Ω is connected. It is
clear using the maximum principle that the result is true for the smallest of the
two eigenvalues. We suppose to fix the ideas that λ− < λ+ and we prove that
every eigenfunction corresponding to λ+ is positive.

We denote by ϕ some positive eigenfunction for λ+(Ω) and by ψ some eigen-
function which changes sign. We denote by Ω+ and Ω− the sets where ψ is
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respectively positive and negative. This implies that λ+(Ω+) = λ+(Ω) and
λ−(Ω−) = λ−(Ω); but, in dimension N = 2, this contradicts Theorem 5.2.

Proof of Corollary 5.6. The result needs to be proved for λ1 = sup(λ+, λ−).
Suppose by contradiction that there exists a sequence of eigenvalues λn, such
that λn → λ1, λn > λ1.

Let un be a sequence of solutions of (5.1) with λ = λn such that |un|∞ = 1.
This implies that the Hölder’s norm is uniformly bounded with respect to n
(see Proposition 2.8).

Then (un)n is relatively compact and it converges up to a subsequence in
C(Ω̄) towards a solution u of (5.1) with λ = λ1.

By Theorem 5.5, u must be either positive or negative, which implies that
for n large enough, for any K = Ω1 ⊂ Ω, for n large enough, un has constant
sign in K.

Without loss of generality we can suppose that λ1 = λ+ and u > 0 in Ω and
hence un is positive in K.

We choose Ω1 a regular subset in Ω such that λ−(Ω \ Ω1) > λn.
By minimum principle, since

un ≥ 0, in ∂(Ω \ Ω1)

it implies that un ≥ 0 in Ω \ Ω1 and then un is positive in Ω which contradicts
Theorem 5.4.
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