Regularity and uniqueness of the first eigenfunction for singular fully non linear operators.

Introduction

The concept of principal eigenvalue for boundary value problems of elliptic operators has been extended, in the last decades, to quasi-nonlinear and fullynonlinear equations (somehow "abusing" the name of eigenvalue) see [START_REF] Anane | Simplicité et isolation de la première valeur propre du plaplacien avec poids. (French) [Simplicity and isolation of the eigenvalue of the p-Laplacian with weight[END_REF][START_REF] Armstrong | Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations[END_REF][START_REF] Ôtani | On the first eigenvalue of some quasi linear elliptic equation[END_REF][START_REF] Quaas | On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF][START_REF] Ishii | Demi-eigenvalues for uniformly elliptic Isaacs operators[END_REF][START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF][START_REF] Juutinen | On the principal eigenvalue of a very badly degenerate equation[END_REF] etc.. In all the cases we know, two features of the operators are requested, homogeneity and ellipticity.

The meta-definition of these principal eigenvalues could be the following: Given a zero order and odd operator H with the same homogeneity than the second order elliptic operator F , and given a domain Ω, λ is a principal eigenvalue if there exists a non trivial solution of constant sign of the problem F (x, ∇u, D 2 u) + λH(u) = 0 in Ω u = 0 on ∂Ω; not surprisingly, that function will be called the "eigenfunction".

Of course when F is a second order linear elliptic operator and H(u) = u, the principal eigenvalue is just the first eigenvalue in the "classical" sense, it is well known that it is both simple and isolated.

It is interesting to notice that when the operator is not "odd" with respect to the Hessian, it can be expected that there are two principal eigenvalues, one corresponding to a positive eigenfunction and one corresponding to a negative eigenfunction, and this is the case for example when F is one of the Pucci operators e.g. for some 0 < a < A F (D 2 u) := M + a,A (D 2 u) := a

e i <0 e i + A e i >0 e i
where the e i denote the eigenvalues of the matrix D 2 u (see [START_REF] Busca | Nonlinear eigenvalues and bifurcation problems for Pucci's operator[END_REF]). In these cases, or in general when the operator is uniformly elliptic and homogenous of degree 1, the principal eigenvalues have been proved to be simple and isolated (see [START_REF] Quaas | On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators[END_REF][START_REF] Ishii | Demi-eigenvalues for uniformly elliptic Isaacs operators[END_REF][START_REF] Patrizi | The Neumann problem for singular fully nonlinear operators[END_REF]). When the operator is "quasi linear" but in divergence form , for example in the case of the p-Laplacian, it is well known that the principal eigenvalue can be defined through the Rayleigh quotient and it was proved, independently by Anane [START_REF] Anane | Simplicité et isolation de la première valeur propre du plaplacien avec poids. (French) [Simplicity and isolation of the eigenvalue of the p-Laplacian with weight[END_REF] and by Otani and Teshima [START_REF] Ôtani | On the first eigenvalue of some quasi linear elliptic equation[END_REF], that it is simple and isolated (see also [START_REF] Lucia | Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight[END_REF]). The variational structure plays a key role there. On the other hand, for the ∞-Laplacian (see [START_REF] Juutinen | On the principal eigenvalue of a very badly degenerate equation[END_REF]), the question of the simplicity of the principal eigenvalue is still open.

The cases treated in this paper concern operators that have the "homogeneity" of the p-Laplacian, but are "fully-nonlinear" and hence are not variational. In previous works, we proved the existence of the principal eigenvalues for this large class of operators and many features related to them ( [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF],. . ., [START_REF] Birindell | Demengel The Dirichlet problem for singular fully nonlinear operators[END_REF]). The inspiration for these definitions and results was the acclaimed work of Berestycki, Nirenberg and Varadhan [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] where the eigenvalue for linear elliptic operators in general bounded domains was defined through the maximum principle.

The main questions left open in our previous works were: are these eigenvalues "simple" ? are they "isolated"?

We shall now proceed to describe the results obtained in this note but for the sake of comprehension we shall do it for an operator that exemplifies well the cases treated here (the general conditions and hypothesis will be given in the next section). For some 0 ≥ α > -1, and some Hölder continuous function h of exponent smaller than 1 + α, let:

F [u] := F (x, ∇u, D 2 u) = |∇u| α M + a,A (D 2 u) + h(x) • ∇u|∇u| α .
Suppose that Ω is a bounded, smooth domain of IR N . Then we can define λ + := sup{λ; ∃φ > 0, φ ∈ C(Ω), F [φ] + λφ 1+α ≤ 0 in Ω}, λ -:= sup{λ; ∃φ < 0, φ ∈ C(Ω), F [φ] + λφ|φ| α ≥ 0 in Ω}.

It is clear that the inequalities are meant in the "viscosity sense" adapted to these non smooth operators (see the next section for a precise definition). For a much more general context and for any α > -1 we proved in [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF] that these are well defined; that for any λ < λ + the maximum principle holds i.e. considering the problem

F [u] + λu|u| α = 0 in Ω u = 0 on ∂Ω, (1.1) 
if u is a viscosity subsolution of (1.1) then u ≤ 0 in Ω and for any λ ≤ min{λ + , λ -} and any continuous f there exists a solution of

F [u] + λu|u| α = f in Ω u = 0 on ∂Ω, (1.2) 
which is Lipschitz continuous. Of course we also proved that there exists φ + and φ -respectively positive and negative eigenfunctions in the sense that e.g. for λ = λ + there exists φ + > 0 viscosity solution of (1.1).

One of the question we raise here is , if φ > 0 is another solution of (1.1) with λ = λ + , is it true that there exists t > 0 such that φ + = tφ? The answer is yes for α ∈ (-1, 0], for any domain Ω such that ∂Ω has only one connected component. When ∂Ω has two connected components we can prove the result when N = 2.

Let us recall that for any α > -1 and any N the simplicity of the eigenvalue has been proved in [START_REF] Birindell | Demengel The Dirichlet problem for singular fully nonlinear operators[END_REF] in the case of radial solutions.

It is clear that these results are somehow equivalent to a "strong comparison principle" i.e. it is equivalent to know that if two solutions are one above the other in some open set O and they "touch" at some point of O then they coincide in O. Now in Proposition 4.3, we prove such a result when at least one of the solutions has the gradient away from zero in O.

This restriction implies that in order to apply Proposition 4.3 we need to know that there is some subset O of Ω where this condition is satisfied. Naturally the Hopf's lemma together with a C 1 regularity is the convenient ingredient since it guarantees that the gradient is away from zero in a neighborhood of ∂Ω. This explains why we start by proving a W 2,p regularity result, which is interesting in itself but furthermore is essential in the proof of the simplicity of the principal eigenvalue. This is done through a fixed point theorem. Let us mention that in general the tools to prove regularity are the Alexandrov-Bakelman-Pucci inequality and some "sub-linearity" of the operator. In a recent paper Davila, Felmer and Quaas have proved ABP [START_REF] Davila | Inequality For Singular Fully Nonlinear Operators and some existence results[END_REF] for singular fullynonlinear operators, but in this case it does not seem to be useful to prove W 2,p regularity because the difference of a sub and super solution may not be a sub-solution of an elliptic equation. It is interesting to remark that Imbert [START_REF] Imbert | Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations[END_REF] used ABP to prove a local Hölder regularity.

The dimensional restriction is due to the fact that when there are two connected components of the boundary of Ω, we use Sard's Theorem. A famous counterexample of Whitney shows that Sard's theorem doesn't hold if the functions are only C 1 . It seems that the least regularity that can be asked is W N,p (see e.g. [START_REF]FigalliA simple proof of the Morse-Sard Theorem in Sobolev Spaces[END_REF]), and since the solutions are in W 2,p we have to take N = 2.

On the other hand the restriction on α negative is only due to the fact that we can prove C 1,β regularity for those α.

Other important results concerning eigenvalues are given as a consequence of simplicity. In particular we prove that there are no eigenfunctions that change sign for λ = λ ± . Further results include the strict monotonicity of the eigenvalue with respect to the inclusion of domains. And finally that the eigenvalues are isolated.

The paper is organized as follows: In the next section we give the precise hypothesis concerning the operator and we recall the known results concerning singular operators. In section three we prove the C 1,β regularity of the solutions. Section four is devoted to the strict comparison principle and simplicity of the principal eigenvalues. We end the paper with other properties of the eigenvalues.

Assumptions and known results

Let Ω be a bounded regular domain of IR N .

Let us recall what we mean by viscosity solutions, adapted to our context.

Definition 2.1

Let Ω be a bounded domain in IR N , let g be a continuous function on Ω × IR, then v, continuous on Ω is called a viscosity super-solution (respectively sub-solution) of F (x, ∇u, D 2 u) = g(x, u) if for all x 0 ∈ Ω, -Either there exists an open ball B(x 0 , δ), δ > 0 in Ω on which v = cte = c and 0 ≤ g(x, c), for all x ∈ B(x 0 , δ) (respectively 0 ≥ g(x, c) for all x ∈ B(x 0 , δ)).

-Or ∀ϕ ∈ C 2 (Ω), such that v -ϕ has a local minimum (respectively local maximum) at x 0 and ∇ϕ(x 0 ) = 0, one has

F (x 0 , ∇ϕ(x 0 ), D 2 ϕ(x 0 )) ≤ g(x 0 , v(x 0 )).
(respectively

F (x 0 , ∇ϕ(x 0 ), D 2 ϕ(x 0 )) ≥ g(x 0 , v(x 0 )).)
A viscosity solution is a function which is both a super-solution and a subsolution.

Remark 2.2 When F is continuous in p, and F (x, 0, 0) = 0, this definition is equivalent to the classical definition of viscosity solutions, as in the User's guide [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF].

We now state the assumptions satisfied by the operator F . Let S be the set of N × N symmetric matrices, and let

α ∈] -1, 0[. Then F defined on Ω × IR N \ {0} × S satisfies F (x, p, M ) = |p| α ( F (x, M ) + h(x) • p).
(2.1) on F we suppose (F) F (x, tM ) = t F (x, M ) for any t ∈ IR + , and there exist A ≥ a > 0 such that for any M ∈ S, and any N ∈ S such that N ≥ 0

atr(N ) ≤ F (x, M + N ) -F (x, M ) ≤ Atr(N ). (2.2) Furthermore (x, M ) → F (x, M ) is continuous.
(J) There exists a continuous function ω with ω(0) = 0, such that if (X, Y ) ∈ S 2 and ζ ∈ IR + satisfy

-ζ I 0 0 I ≤ X 0 0 Y ≤ 4ζ I -I -I I
and I is the identity matrix in IR N , then for all (x, y) ∈ IR N , x = y

F (x, X) -F (y, -Y ) ≤ ω(ζ|x -y| 2 ).
On h we suppose that : (H) h is Hölder continuous of exponent 1 + α.

Remark 2.3 Since α < 0, if F satisfies condition (J), then so does F i.e. for X, Y and ζ as above

F (x, ζ(x -y), X) -F (y, ζ(x -y), -Y ) ≤ ω(ζ|x -y| 2 ).
Example 2. [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] We suppose that h satisfies (H). 1) Let 0 < a < A and M + a,A (M ) be the Pucci's operator M + a,A (M ) = Atr(M + ) -atr(M -) where M ± are the positive and negative part of M , and

M - a,A (M ) = -M + a,A (-M ).
Then F defined as

F (x, p, M ) = |p| α (M ± a,A (M ) + h(x) • p) satisfies the assumptions.
2) More generally let B(x) be some matrix with Lipschitz coefficients which is invertible for all x ∈ Ω. Let us consider A(x) = B B(x) and the operator F (x, p, M ) = |p| α (tr(A(x)(M )) + h(x) • p), then F satisfies (F) and (J), arguing as in [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF], example 2.4.

We begin to recall some of the results obtained in [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF] which will be needed in this article.

Theorem 2.5 Suppose that F , h are as above and c is continuous and bounded and satisfies c ≤ 0.

Suppose that f 1 and f 2 are continuous and bounded and that u and v satisfy

F (x, ∇u, D 2 u) + c(x)|u| α u ≥ f 1 in Ω F (x, ∇v, D 2 v) + c(x)|v| α v ≤ f 2 in Ω u ≤ v on ∂Ω. Suppose that f 2 < f 1 , then u ≤ v in Ω. Moreover if c < 0 in Ω, and f 2 ≤ f 1 the result still holds.
This comparison theorem allows to prove, using the existence of sub-and supersolutions constructed with the aid of the distance function to ∂Ω, together with Perron's method adapted to our context, the following existence's result : Theorem 2.6 Suppose that F , h and c are as above and that c ≤ 0. Suppose that f is continuous and bounded, then there exists a continuous solution to

F (x, ∇u, D 2 u) + c(x)|u| α u = f in Ω u = 0 on ∂Ω (2.3)
If furthermore f ≤ 0, u ≥ 0, and if f ≥ 0, u ≤ 0. Moreover if c < 0 in Ω, the solution is unique.

Remark 2.7 The Hopf principle asserts that if O is a smooth bounded domain, and u is a solution of

F (x, ∇u, D 2 u) ≤ 0 (2.4)
in O, such that u > c inside O and u(x) = c at some boundary point of O then " ∂u ∂n (x)" < 0.

In particular this implies that a non constant solution of (2.4) in a domain Ω has no interior minimum.

We also recall some regularity results Proposition 2.8 Suppose that F satisfies (F), (J) and h is continuous. Let f be some continuous function on Ω. Let u be a viscosity non-negative bounded solution of

F (x, ∇u, D 2 u) = f in Ω u = 0 on ∂Ω. (2.5) 
Then, for any γ ≤ 1 there exists some constant C which depends only on |f | ∞ , |h| ∞ and |u| ∞ such that :

|u(x) -u(y)| ≤ C|x -y| γ for any (x, y) ∈ Ω 2 .
This Proposition implies some compactness for bounded sequences of solutions, this will be used in section 3.

We shall also need in the proof of Theorem 4.1 the following comparison principle, proved in [START_REF] Birindelli | Uniqueness of the first eigenfunction for fully nonlinear equations: the radial case[END_REF].

Theorem 2.9 Suppose that F satisfies (F), (J), and h satisfies (H), that c is continuous and bounded. Suppose that c + λ is positive on Ω and that u and v are respectively positive continuous super and sub solutions of

|∇u| α F (x, D 2 u) + h(x).∇u + (c(x) + λ)u 1+α = 0 1) If u ≥ v > 0 on ∂Ω then u ≥ v in Ω. 2) If u > v on ∂Ω then u > v on Ω.

Regularity

In this section for α ≤ 0 we establish that the solutions of (2.5) are W 2,p for all p < ∞, and consequently also C 1,β ; this will be derived from the known regularity results in the case α = 0.

We expect that some C 1,β regularity of the solutions be true for more general operators i.e. operators that are only homogeneous and singularly elliptic but not necessarily of the form given in (2.1). As an example, in the second subsection we illustrate this for a class of operators which does not satisfy (2.1) and is somehow close to the ∞-Laplacian, though not as degenerate.

Regularity result for α ≤ 0

To prove the regularity results announced (which will be stated precisely in Corollary 3.3) , we remark that the solutions of the Dirichlet problem can be obtained as a fixed point of some operator acting in

C o (Ω) ∩ W 1,∞ .
We define C o (Ω) as the space of continuous function on Ω which are zero on the boundary, and

L(Ω) := {u ∈ C o (Ω); u is Lipschitz } with the norm |u| L := sup x,y∈Ω,x =y |u(x) -u(y)| |x -y| .
And we suppose here that g : IR + → (IR + ) is continuous and decreasing, while l → lg(|l|) is increasing on IR. Proposition 3.1 Suppose that F , h satisfy respectively (F), (J) and (H). Let f ∈ L ∞ (Ω), let T be the operator L → L such that T u = v, where v is the unique solution of

F (x, D 2 v) + h(x) • ∇v = (f + g(|u|)u) 1 g(|∇u|)
in Ω v = 0 on ∂Ω then there exists o small enough in order that for < o , T has a non trivial fixed point in L.

Remark 3.2

The solution is taken in the sense of L p viscosity solutions,see [START_REF] Caffarelli | On Viscosity Solutions of Fully Nonlinear Equations with measurable Ingredients[END_REF] and [START_REF] Winter W 2 | p and W 1,p estimates at the boundary for solutions of fully nonlinear uniformly elliptic equations[END_REF].

Before giving the proof of the Proposition 3.1 we shall prove the main result of this section i.e. the following Corollary 3.3 Suppose that F , h satisfy respectively (F) (J) and (H) and that f ∈ C(Ω). Let u be a solution in the sense of Definition 2.1 of

|∇u| α F (x, D 2 u) + h(x) • ∇u = f in Ω u = 0 on ∂Ω Then u ∈ W 2,p (Ω) for all p < ∞, hence it is C 1,β (Ω) for all β ∈ (0, 1).
Proof of Corollary 3.3. We prove first the announced regularity result for the equation

|∇u| α F (x, D 2 u) + h(x) • ∇u -|u| α u = f in Ω u = 0 on ∂Ω for small enough. Let δ > 0 and suppose that v δ is a fixed point for T with g(l) = (|l| 2 + δ 2 ) α 2
which exists by Proposition 3.1. We shall prove that it is the unique solution, in the sense of Definition 2.1, of

(|∇u| 2 + δ 2 ) α 2 F (x, D 2 u) + h(x) • ∇u -(δ 2 + |u| 2 ) α 2 u = f in Ω u = 0 on ∂Ω.
(3.1) Observe first that since F satisfies (F), by standard regularity results v δ ∈ W 2,p (Ω) for all p < ∞ (see Evans [START_REF] Evans | Classical Solutions of Fully Nonlinear, Convex, Second-Order Elliptic Equations[END_REF], Caffarelli-Cabré [START_REF] Caffarelli | Fully-nonlinear equations Colloquium Publications[END_REF] and Winter [START_REF] Winter W 2 | p and W 1,p estimates at the boundary for solutions of fully nonlinear uniformly elliptic equations[END_REF]).

We prove only the super-solution case. Let x ∈ Ω and ϕ be in

C 2 such that (v δ -ϕ)(x) ≥ (v δ -ϕ)(x) = 0, with ∇ϕ(x) = 0 . Since v δ is C 1,β , ∇ϕ(x) = ∇v δ (x)
and since v δ is a super-solution of the fixed point equation:

F (x, D 2 ϕ(x)) + h(x) • ∇ϕ(x) ≤ (f (x) + (|v δ (x)| 2 + δ 2 ) α 2 v δ (x))(|∇v δ | 2 (x) + δ 2 ) -α 2 = (f + (|ϕ(x)| 2 + δ 2 ) α 2 ϕ(x))(|∇ϕ| 2 (x) + δ 2 ) -α 2 i.e. (|∇ϕ| 2 (x) + δ 2 ) α 2 F (x, D 2 ϕ(x)) + h(x) • ∇ϕ(x) -(|ϕ(x)| 2 + δ 2 ) α 2 ϕ(x) ≤ f.
and then v δ is a supersolution of (3.1).

We suppose now that for some c o , v δ (x) = c o for x in a neighborhood of x. From the equation we get that -

(δ 2 + c 2 o ) α 2 c o ≤ f in a neighborhood of
x which is the same condition required in the Definition 2.1.

Proceeding similarly for the subsolution we have obtained that v δ is a solution of (3.1) and there exists C depending only on the structural constants of F and h such that

v δ W 2,p (Ω) ≤ C(|f | ∞ + |v δ | 1+α ∞ )(|∇v δ | 2 ∞ + δ 2 ) -α 2 ≤ C(|f | ∞ + |v δ | 1+α ∞ )(|∇v δ | 2 ∞ + 1) -α 2 .
Arguing as in ( [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF]), one can prove that v δ is uniformly Lipschitz; this implies both that the bounds on the W 2,p norm don't depend on δ and that we can pass to the limit in the equation (3.1); hence we obtain the same estimate for δ = 0. Stability of viscosity solutions implies that v δ converges to the unique solution of

|∇u| α F (x, D 2 u) + h(x) • ∇u -|u| α u = f in Ω u = 0 on ∂Ω.
We now consider the case = 0. We write the equation in the following way

|∇u| α F (x, D 2 u) + h(x) • ∇u -|u| α u = f -|u| α u.
Replacing f by f -|u| α u since u ∈ L ∞ , it gives the W 2,p regularity of u and ends the proof.

Remark 3.4 Under the hypothesis of Corollary 3.3 if g : Ω × IR → IR is continuous and bounded, then any solution of

|∇u| α F (x, D 2 u) + h(x) • ∇u + g(x, u) = f in Ω u = 0 on ∂Ω is in W 2,p (Ω) for any p < ∞.
Proof of Proposition 3.1. Clearly L(Ω), equipped with the norm |.| L is a Banach space. It is well known that for any k ∈ L ∞ there exists a unique solution v of

F (x, D 2 v) + h(x) • ∇v = k in Ω v = 0 on ∂Ω.
Furthermore v is Lipschitz continuous and there exists some constant c which depends only on the structural data such that

|v| L ≤ c|k| ∞ .
Let be small enough in order that c d Ω < 1 where d Ω is the diameter of Ω.

Let G be the reciprocal function of l → lg(l). Suppose first that d Ω ≤ 1. Then we choose

f o = c|f |∞ 1-c and B = {u ∈ L(Ω), such that |u| L ≤ G (f o )} .
B is a convex and compact set of L. We use the fact that l → lg(|l|) and 1 g are increasing to obtain that, if u ∈ B,

|T (u)| L ≤ c (|f | ∞ + g(d Ω G(f o ))d Ω G(f o )) 1 g (G(f o )) ≤ c (|f | ∞ + f o ) G(f o ) f o = G(f o ).
On the other hand if d Ω ≥ 1, then we choose

f o = c|f |∞ 1-d Ω c
and B as before. Hence if u ∈ B, using that g is decreasing:

|T (u)| L ≤ c (|f | ∞ + g(d Ω G(f o ))d Ω G(f o )) 1 g (G(f o )) ≤ c (|f | ∞ + d Ω g(G(f o ))G(f o )) 1 g (G(f o )) ≤ c (|f | ∞ + d Ω f o ) G(f o ) f o = G(f o ).
In both cases T (B) ⊂ B and furthermore T is continuous and compact, then Schauder's fixed point theorem implies the result.

Other operators

We now present an example to which the results of the previous section can be extended but which does not satisfy the previous assumptions. Let q ≥ 0, and α ≤ 0,

F(p, M ) = |p| α trM + q M p |p| , p |p| := |p| α F (M, p).
Proposition 3.5 Suppose that u is a viscosity solution of

F(∇u, D 2 u) = f in Ω u = 0 on ∂Ω (3.2)
with f ∈ C(Ω). Then there exists β = β(q, N ) ∈ (0, 1) such that u is in C 1,β (Ω).

Proof

Recall that the (q + 2)-Laplacian is defined by

∆ q+2 u = |∇u| q ∆u + q D 2 u( ∇u |∇u| ), ∇u |∇u| .
We first prove a fixed point property. For > 0 and δ > 0 let T lap be the map u → v where v is the solution of

∆ q+2 (v) = (f + (|u| 2 + δ 2 ) α 2 u)(|∇u| 2 + δ 2 ) q-α 2 
in Ω u = 0 on ∂Ω.

Recall that by regularity results ( [START_REF] Evans | A new proof of local C 1,α regularity for solutions of certain degenerate elliptic PDE[END_REF][START_REF] Benedetto | 1+α local regularity of weak solution of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasi-linear elliptic equations[END_REF][START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF]) of the q + 2-Laplacian, there exist β ∈ (0, 1) and C lap such that

|T lap (u)| C 1,β ≤ C lap (|f | ∞ + (|u| 2 ∞ + δ 2 ) α 2 |u| ∞ ) 1 q+1 (|∇u| 2 ∞ + δ 2 ) q-α 2(q+1) . (3.3) 
For small enough, let l be a solution of

l q+1 = (C lap (|f | ∞ + ((d Ω l ) 2 + δ 2 ) α 2 d Ω l )(l 2 + δ 2 ) q-α 2 ,
and define the closed convex compact set in L(Ω)

B = {u ∈ L(Ω), |u| L ≤ l }.
Then T lap B ⊂ B and using the Schauder fixed point theorem one gets that there exists u δ ∈ C 1,β which solves

∆ q+2 (u) = (f + (|u| 2 + δ 2 ) α 2 u)(|∇u| 2 + δ 2 ) q-α 2 
in Ω u = 0 on ∂Ω.

As before, we can show that in fact u δ is a solution in the sense of definition 2.1 of

(|∇u| 2 + δ 2 ) α-q 2 ∆ q+2 (u) -(|u| 2 + δ 2 ) α 2 u = f in Ω u = 0 on ∂Ω.
Arguing as in the proof of Hölder's and Lipschitz's regularity in [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF], one can prove some uniform Lipschitz estimates on v δ . Then it is clear from the estimates in (3.3) that the C 1,β norm of v δ is independent of δ, we can then let δ go to zero and obtain that u δ converges to a solution u of

|∇u| α ∆u + q(D 2 u( ∇u |∇u| ), ∇u |∇u| ) -|u| α u = f in Ω u = 0 on ∂Ω.
We then obtain the regularity when = 0 by writing the equation

|∇u| α ∆u + q(D 2 u( ∇u |∇u| ), ∇u |∇u| ) = f in Ω u = 0 on ∂Ω when f ∈ L ∞ , under the form |∇u| α ∆u + q(D 2 u( ∇u |∇u| ), ∇u |∇u| ) -|u| α u = f -|u| α u in Ω u = 0 on ∂Ω
Using the fact that u is in L ∞ one gets the regularity result.

Strict comparison principle and uniqueness of the first eigenfunction

We now assume that c(x) is some continuous bounded function, and we consider the principal eigenvalues λ + , λ -for the operator

|∇u| α F (x, D 2 u) + h(x) • ∇u + c(x)|u| α u
as defined in the introduction. We suppose that conditions (F) and (J) are satisfied by F , and h satisfies (H).

We prove the uniqueness result in the case λ + , the changes to bring for λ - being obvious.

Theorem 4.1 Suppose that Ω is a bounded regular domain such that either ∂Ω is connected or N = 2 and ∂Ω has at most two connected components. Suppose that c satisfies c(x) + λ + > 0 in Ω.

If ψ and ϕ are two positive eigenfunctions for the eigenvalue λ + there exists t > 0 such that ψ = tϕ.

Remark 4.2

The condition N = 2 is used only in order to apply Sard's theorem. Indeed in [START_REF]FigalliA simple proof of the Morse-Sard Theorem in Sobolev Spaces[END_REF], Sard's theorem is proved to hold for functions that are in W N,p (IR N ) for p > N but we only know that u is in W 2,p for all p < ∞ .

In order to prove Theorem 4.1 we shall need a few results concerning comparison principle and applications of Hopf's principle. We begin by a strong comparison principle inside Ω for sub and supersolutions u and v which coincide on one point x inside Ω, where |∇u|(x) = 0, or |∇v|(x) = 0: Proposition 4.3 Suppose that u and v are respectively nonnegative C 1 solutions of

F (x, ∇u, D 2 u) ≤ f F (x, ∇v, D 2 v) ≥ g with f ≤ g. Suppose that O is an open connected subset of Ω, such that 1) u ≥ v, in O, 2) ∃ x o ∈ O such that u(x o ) > v(x o ), 3) either |∇u(x)| = 0 or |∇v(x)| = 0 in O, Then u > v in O.
Proof of Proposition 4.3. Using the connectedness of O it is sufficient to prove the result in some ball containing x o instead of O. in Suppose by contradiction that there exists some point x 1 close to x o , such that u(x 1 ) = v(x 1 ) and in the ball B(x o , R), for R = |x 1 -x o |, x 1 is the only point in the closure of that ball on which u and v coincide. One can also assume that B(x o , 3R

2 ) ⊂ Ω. We shall prove that there exists some constant c > 0 and some δ > 0 such that

u ≥ v + δ(e -c|x-xo| -e -3cR 2 
) ≡ v + w in the annulus R 2 ≤ |x -x o | = r ≤ 3R 2 . This will contradict the fact that u = v on x 1 . Let δ = min |x-xo|= R 2 (u -v), so that u ≥ v + w on ∂ B(x o , 3R 2 ) \ B(x o , R 2 
) .

Let ϕ be some test function for v from above, a simple calculation on w implies that, if c ≥ 1 a ( 2(2A(N -1)

R + 2|h| ∞ ) then |∇ϕ + ∇w| α F (x, D 2 ϕ + D 2 w) + h(x) • (∇ϕ + ∇w) ≥ |∇ϕ + ∇w| α F (x, D 2 ϕ) + h(x) • ∇ϕ +|∇ϕ + ∇w| α M -(D 2 w) + h(x) • ∇w ≥ |∇ϕ + ∇w| α g |∇ϕ| α + +|∇ϕ + ∇w| α ac 2 -Ac( N -1 r ) -|h| ∞ c δe -cr ≥ |∇ϕ + ∇w| α g |∇ϕ| α + |∇ϕ + ∇w| α ac 2 2 δe -cr .
We also impose that δ < RL 1 e 16 , which implies in particular that |∇w| ≤ |∇ϕ] 8

We now use the inequalities

||∇ϕ + ∇w| α -|∇ϕ| α | ≤ |α||∇w||∇ϕ| α-1 1 2 α-1 ≤ |∇ϕ| α 2 to get |∇ϕ + ∇w| α F (x, D 2 ϕ + D 2 w) + h(x) • (∇ϕ + ∇w)) ≥ g -|g| ∞ |∇ϕ| -1 |α|2 1-α cδe -cr + L α 2 ac 2 4 δe -cr .
It is now enough to choose

c = sup 2( 2A(N -1) R + |h| ∞ ) a , 2 4-α |g| ∞ aL 1 L α 2 to finally obtain |∇ϕ + ∇w| α F (x, D 2 ϕ + D 2 w) + h(x) • (∇ϕ + ∇w)) ≥ f + ac 2 δL α 2 e -cr 8 .
i.e. F (x, ∇(v + w), D 2 (v + w)) > F (x, ∇u, D 2 u).

We now are in a position to use the comparison principle in theorem 2.5 and get that

u ≥ v + w in the annulus B(x o , 3R 2 ) \ B(x o , R 2 
), the desired contradiction. This ends the proof of Proposition 4.3.

Another way of formulating this proposition is the following Corollary 4.4 Suppose that u and v are as in Proposition 4.3 but instead of condition 2) we have that there exists

x ∈ O such that u(x) = v(x), then u ≡ v in O.
Another consequence of Proposition 4.3 is the following : Let ∂ ν u be the normal derivative ∇u • ν where ν is the unit outer normal to ∂Ω. Then Proposition 4.5 Suppose that Ω is a smooth bounded domain of IR N . Suppose that u and v are respectively nonnegative C 1 (Ω) solutions of

F (x, ∇u, D 2 u) ≤ f F (x, ∇v, D 2 v) ≥ g with f ≤ g, and u = v = 0 on ∂Ω 1) u ≥ v in Ω, 2) there exists x ∈ ∂Ω such that ∂ ν u(x) = ∂ ν v(x) then there exists > 0 such that u ≡ v in Ω \ Ω
where Ω is the set of points of Ω whose distance to the connected component of the boundary which contains x is greater than .

Proof. First with Hopf Principle |∇u| > 0 and |∇v| > 0 on the boundary and by the regularity results there exist δ > 0, L 1 and

L 2 such that L 1 ≤ |∇u|, |∇v| ≤ L 2 in Ω \ Ω .
If there exists a point x 1 of Ω \ Ω such that u(x 1 ) = v(x 1 ) by the previous Corollary we have nothing to prove. So we can suppose by contradiction that there exists a ball B ⊂ Ω which is tangent to ∂Ω in x where u > v. Let x 2 be the center of that ball.

Let R = |x -x 2 |. Let w = δ(e -c|x-x 2 | -e -c|x 2 -x| ) where δ is chosen such that δ ≤ inf |x-x 2 |= R 2 (u- v).
Reasoning as in Proposition 4.3 we get that there exists c such that

u ≥ v + w, in the annulus B(x 2 , R) \ B(x 2 , R 2 ) This implies in particular that |∂ ν u(x)| ≥ |(∂ ν v + ∂ ν w)(x)|. Since |(∂ ν v + ∂ ν w)(x)| > |∂ ν v(x)
| this leads to a contradiction. This ends the proof of Proposition 4.5.

In the sequel we shall need the following well known result : Lemma 4.6 Suppose that O is an open bounded set. There exists some point on ∂O where ∂O satisfies the interior sphere condition.

See [START_REF] Bony | Une propriété de la distance d'un point variable à un ensemble fermé de l'espace euclidien[END_REF] for more complete results on that property. Proof of Theorem 4.1.

We suppose first that ∂Ω is connected. Let d(x) denote the distance to the boundary of Ω. Suppose that ψ and ϕ are two positive eigenfunctions and let Γ = sup ψ ϕ . This extremum is well defined because, using Hopf lemma and the comparison principle, there exist c 1 and c 2 such that in a neighborhood of ∂Ω:

c 1 d(x) ≤ ψ(x), ϕ(x) ≤ c 2 d(x),
(see [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF] for the details). Moreover this supremum is achieved on the boundary in the sense that e.g. there exists a sequence (x n ) n which goes to the boundary such that ψ ϕ (x n ) → Γ: Indeed, suppose not, then, there would exist an open set Ω , Ω ⊂⊂ Ω such that on Ω \ Ω ψ ϕ ≤ Γfor some > 0. Using the comparison Theorem 2.9 in Ω , and remarking that λ(Ω) < λ(Ω ) one would get that ψ ≤ (Γ -)ϕ on Ω and finally on all Ω, a contradiction.

We are in a position to apply Corollary 4.4 and Proposition 4.5 and obtain that ψ = Γφ in a neighborhood of ∂Ω. Considering the infimum of the ratio one gets also that if γ = inf ψ ϕ then ψ ϕ = γ on a neighborhood of the boundary, therefore γ = Γ and the conclusion follows.

We now assume that N = 2 and since ∂Ω has at most two connected components there exist Ω 1 and Ω 2 simply connected and smooth such that

Ω 1 ⊂⊂ Ω 2 and Ω = Ω 2 \ Ω 1 .
We define as before Γ = sup ψ ϕ and γ = inf ψ ϕ , and arguing as previously there exists some sequence x n and i ∈ {1, 2} such that x n → ∂Ω i and ψ ϕ (x n ) → Γ. By Corollary 4.4 and Proposition 4.5 with

f := -(c(x) + λ)ψ 1+α ≤ -(c(x) + λ)ϕ 1+α := g, ψ ≡ Γϕ in a neighborhood of ∂Ω i .
In the same manner we prove that the infimum γ = inf ψ ϕ is achieved on the other connected component, and also that ψ = γϕ in a neighborhood of this part of the frontier.

We have obtained that

ψ ≡ Γ 1 ϕ in a neighborhood of ∂Ω 1 and ψ ≡ Γ 2 ϕ in a neighborhood of ∂Ω 2 .
with {Γ 1 , Γ 2 } = {Γ, γ}.

For i = 1, 2, let

A i be the connected component of {x, ψ(x) = Γ i ϕ(x), ∇ψ(x) = 0 or ∇ϕ(x) = 0} whose boundary contains ∂Ω i . A i is open. Indeed if x 1 ∈ A 1 then ψ(x 1 ) = Γ 1 ϕ(x 1
) and there is N x 1 a neighborhood of x 1 where either ∇ψ = 0 or ∇ϕ = 0 and then using Corollary 4.4, in N x 1 , ψ = Γ 1 ϕ and then

N x 1 ⊂ A 1 .
Observe that if ∂A 1 ∩ ∂Ω 2 = ∅ or ∂A 2 ∩ ∂Ω 1 = ∅, this ends the proof of Theorem 4.1 since it would imply that Γ = γ. Hence we suppose that these intersections are empty.

Let G i := A i ; K i := ∂G i ∩ Ω, and

M i := Ω \ G i .
Let us note that K i satisfies that, for all x ∈ K i , ψ(x) = Γ i ϕ(x) and ∇ψ(x) = 0 and ∇ϕ(x) = 0. To see this it is sufficient to observe that ∂G i ⊂ ∂A i since G i is closed, and then it is sufficient to prove that these inequalities are true on the boundary of A i :

The first equality is true by continuity and the others two because otherwise ψ = Γ i ϕ in an open neighborhood of that point with ∇ψ(x) = 0 in that neighborhood , or ∇ϕ(x) = 0 which contradicts the notion of boundary.

Moreover

∂M 1 = ∂Ω 2 ∪ K 1 (and ∂M 2 = ∂Ω 1 ∪ K 2 ). Indeed note that M 1 ∩ ∂Ω 1 = ∅ since A 1 contains an open neighborhood of ∂Ω 1 , then ∂M 1 ⊂ (Ω ∩ ∂G 1 ) ∪ (C(G 1 ) ∩ ∂Ω) ⊂ (Ω ∩ ∂G 1 ) ∪ ∂Ω 1 ∪ ∂Ω 2 and since ∂M 1 ∩ ∂Ω 1 = ∅, hence ∂M 1 ⊂ ∂Ω 2 ∪ K 1 .
To prove the reverse inclusion, let x ∈ K 1 , then for all r > 0, B(x, r) ∩ (IR N \ G 1 ) = ∅. Taking r such that B(x, r) ⊂ Ω one gets x ∈ M 1 . On the other hand x / ∈ M 1 , since if x ∈ M 1 there exists some ball B(x, ) included in M 1 , and

x ∈ K 1 implies B(x, ) ∩ G 1 = ∅, a contradiction.
It is clear that ∂Ω 2 is included in M 1 , and it has no point of M 1 since M 1 is an open subset of Ω.

Let us admit for a while these three simple claims, Claim 1 M i is connected for i = 1, 2. Claim 2 ∂G i has at most two connected components i.e. K i is connected.

Claim 3 ∂(M 1 ∩ M 2 ) = K 1 ∪ K 2 ,
and let us finish the proof. Using the fact that both K i are connected, since ψ ∈ W 2,p for all p < ∞ we can apply Sard's theorem in Sobolev spaces [START_REF]FigalliA simple proof of the Morse-Sard Theorem in Sobolev Spaces[END_REF], to conclude that there exists two constants c i such that ψ |K i = c i for i = 1 and i = 2, .

Suppose that there exists one point x ∈ M = M 1 ∩ M 2 such that ψ(x) < min(c 1 , c 2 ). Then ψ would have a local minimum inside M , a contradiction with Hopf principle, see Remark 2.7. Then the minimum is achieved on the boundary of M , suppose to fix the ideas that c 1 ≤ c 2 . Now take a ball in M where ψ > c 1 that touches K 1 at some point x 1 , by Hopf's principle ∇ψ(x 1 ) = 0 which contradicts the fact that, for all x ∈ K i , ∇ψ(x) = 0. Now since ψ cannot be locally constant we have proved that M = ∅ and then Γ 1 = Γ 2 , hence Γ = γ. This ends the proof of Theorem 4.1 provided we prove the claims.

Proof of Claim 1

To fix the ideas we consider the case of i = 1.

Let us recall that ∂M 1 = (∂G 1 ∩ Ω) ∪ ∂Ω 2 . Suppose that M 1 has at least two connected components, M 1,1 and M 1,2 and one of them, say M 1,2 , has a boundary which contains

∂Ω 2 . Then ∂M 1,1 ⊂ K 1 = Ω ∩ ∂G 1 . Then M 1,1 is
a connected open set on the boundary of which ψ and φ have their gradient equal to zero.

We prove that M 1,1 is simply connected.

If not there exists some open regular domain

O , O ⊂ Ω 2 , with ∂O ⊂ M 1,1 , O is not included in M 1,1 , and ∂M 1,1 is not included in O . Let x ∈ O \ M 1,1 , then x ∈ G 1 and hence G 1 ∩ O = ∅. Either G 1 ⊂ O , then ∂M 1,1 ⊂ K 1 ⊂ O and the contradiction is in the choice of O . Or G 1 ∩ C(O ) = ∅ which contradicts that ∂O ⊂ M 1,1 .
We have obtained that M 1,1 is simply connected. By Sard's theorem there exists a constant c 1,1 such that ψ = c 1,1 on ∂M 1,1 . Then one gets a contradiction with Hopf's principle (because either there exists a minimum inside M 1,1 and this contradicts Remark 2.7, or c 1,1 is a minimum for ψ and taking some point on the boundary of M 1,1 which possesses the interior sphere condition, one gets once more a contradiction with Hopf's principle).

We have obtained that M 1,1 = ∅ and M 1 is connected. Proof of Claim 2.

We prove this claim by establishing that

G 1 ∪ Ω 1 is simply connected. Let O be a simply connected open set , such that O ⊂ Ω 2 , ∂O ⊂ G 1 ∪ Ω 1 . We need to prove that O ⊂ G 1 ∪ Ω 1 . If O ⊂ Ω 1 it is true. If not, O ∩ G 1 = ∅ and if O ⊂ G 1 the result holds, so we assume that O ∩ G 1 = ∅ and also O ∩ C(G 1 ) = ∅. Then O ∩ M 1 = ∅. Since M 1 is a connected set which meets O we claim that ∂O ∩ M 1 = ∅. Indeed, if not M 1 ⊂ O. Then one would have M 1 ⊂ O ⊂ Ω 2 , a contradiction since ∂Ω 2 ⊂ M 1 . Then ∂O ∩ M 1 = ∅ which implies that M 1 ∩ (G 1 ∪ Ω 1 ) = ∅ once more a contradiction.
To prove that K 2 is a connected set, one proves proceeding as above that M 2 ∪ Ω 1 is simply connected. which contradicts the definition of λ + .

Let v be an eigenfunction associated to λ + , so that v > 0 in Ω and v = 0 on ∂Ω. We now consider τ = sup v u which exists and is finite. Indeed, it is sufficient to prove it near the boundary. As seen in the proof of Theorem 4.1 there exists some constant c 1 such that v ≤ c 1 d; on the other hand by Hopf's principle there exists c o such that u ≥ c o d; this implies that τ is finite.

Again reasoning as in Theorem 4.1, the supremum must be achieved at least on one point of the boundary in the sense that there exists a sequence x n ∈ Ω,

x n → x ∈ ∂Ω such that v(xn)
u(xn) → τ . Let (∂Ω) be the connected component of ∂Ω that contains x. Let Γ + = {x ∈ (∂Ω) , u(x) > 0}. We want to prove that Γ + = ∅.

For that aim we consider the set

A = {x ∈ (∂Ω) , lim sup y→x v(y) u(y) < τ }.
We shall prove that A is both closed and open in (∂Ω) . If we suppose that Γ + is non empty, it will imply that A is not empty since Γ + ⊂ A and therefore A = (∂Ω) . We will have obtained that lim sup y→x v(y) u(y) < τ everywhere on (∂Ω) , contradicting the previous observation. By Hopf principle and the regularity result one has |∇v| ≥ L 1 > 0, on a neighborhood of the boundary. In the sequel for x ∈ ∂Ω, we denote as B x (r 1 ) some ball such that B x (r 1 ) ⊂ Ω and B x (r 1 ) ∩ ∂Ω = {x}. The existence of such ball for every point x ∈ ∂Ω is implied in particular by the assumption that ∂Ω is C 2 . Claim : The complement of A is closed in (∂Ω) .

We want to prove that if x n is some sequence in (∂Ω) which converges to

x ∈ (∂Ω) such that lim sup

y→xn v(y) u(y) = τ , then lim sup y→x v(y) u(y) = τ.
In particular u(x) = 0. By the strict comparison principle Corollary 4.4 one has that there exists r 1 independent of n such that v = τ u in B xn (r 1 ). Since B xn (r 1 ) ∩ B x (r 1 ) = ∅ for n large enough, there exists y n ∈ B x (r 1 ), v(y n ) = τ u(y n ), again using Corollary 4.4 we get that v = τ u in all the ball B x (r 1 ) and then x does not belong to A. ) such that v(y) < τ u(y), which implies that v < τ u in all the ball B x(r 1 ).

There are two cases either v(x) = 0 < u(x), then x ∈ A and we are done.

Or v(x) = τ u(x) = 0 and we need to prove that lim sup y→x v(y) u(y) < τ. If not, acting as in the proof of Proposition 4.5, we obtain v = τ u in the whole ball B x(r 1 ), a contradiction, so x ∈ A. This ends the proof.

It is an immediate consequence of the definition, that if Ω ⊂ Ω then λ ± (Ω ) ≥ λ ± (Ω). In the next Theorem we shall prove that the monotonicity is strict.

Theorem 5.2 Let Ω be a domain with a connected boundary, and Ω a subdomain of Ω.

Suppose that ∂Ω is not included in ∂Ω or, for N = 2, suppose only that Ω = Ω. Then λ ± (Ω ) > λ ± (Ω).

Proof: Let us begin by the first case i.e. we suppose that there exists x 0 ∈ ∂Ω such that x 0 ∈ ∂Ω and hence, there exists δ > 0, such that B(x 0 , δ) ⊂ IR N \ Ω .

Let Ω be a smooth domain whose boundary has only one connected component and such that Ω ⊂ Ω ⊂ Ω \ B(x 0 , δ).

We know that

λ + (Ω ) ≥ λ + (Ω ) ≥ λ + (Ω \ B(x 0 , δ)) ≥ λ + (Ω).
Suppose by contradiction that λ + (Ω ) = λ + (Ω); this implies that λ + (Ω ) = λ + (Ω) := λ + .

Let v be an eigenfunction for Ω. So in particular it is positive in Ω. On the other hand it is also a solution of

F (x, ∇ϕ, D 2 ϕ) + (c(x) + λ + )ϕ 1+α = 0,
in Ω , then using Theorem 5.1, this would imply that v = 0 on ∂Ω , a contradiction with the fact that v > 0 in ∂Ω ∩ Ω. This ends the first case.

We are left to prove the case N = 2 and ∂Ω ∩ ∂Ω = ∂Ω. By contradiction we shall suppose that λ + (Ω ) = λ + (Ω). We can assume that Ω is regular by replacing Ω by some regular subset Ω such that ∂Ω ∩∂Ω = ∂Ω which contains Ω since it satisfies also λ + (Ω ) = λ(Ω). For simplicity we rename this set Ω and we consider the respective eigenfunctions φ and φ . By hypothesis they satisfy the same equation in Ω .

Let

τ = sup Ω φ φ ,
proceeding as in the proof of Theorem 4.1, it is possible to prove that τ is bounded and achieved on ∂Ω. Using Proposition 4.5 there exists G a closed connected neighborhood of ∂Ω where φ = τ φ and such that ∇φ = ∇φ = 0 in K := ∂G ∩ Ω.

Hence using Sard's theorem for functions in W 2,p , there exists a constant c such that

φ = c, φ = τ c, in K.
This of course leads to a contradiction, because either φ < c somewhere in Ω \ G and then φ would have a local minimum which contradicts Remark 2.7. Or φ ≥ c in Ω \ G and then by Hopf's Lemma and Lemma 4.6 there is a point where ∇φ = 0 in K which is again a contradiction. This ends the proof.

To fix the ideas, in the next theorem we suppose λ + < λ -, with obvious symmetric results in the other case.

Theorem 5.3 Suppose that Ω is a bounded regular domain. Suppose that f ≤ 0, then there exists no solution u for the equation

F (x, ∇u, D 2 u) + (c(x) + λ + )u 1+α = f in Ω u = 0 on ∂Ω. such that u(x o ) < 0 for some x o ∈ Ω.
Suppose in addition that ∂Ω is connected, that (c(x) + λ -) > 0, that f ≤ 0 and that f < 0 somewhere near the boundary, then there is no solution to

F (x, ∇u, D 2 u) + (c(x) + λ -)|u| α u = f in Ω u = 0 on ∂Ω
In the case where N = 2 the assumption f < 0 somewhere near the boundary can be removed, and the conclusion is that f ≡ 0 and u is an eigenfunction for λ -.

Proof of Theorem 5.3: The first part is a mere application of the minimum principle : Since f ≤ 0 and λ + < λ -, and since u = 0 on the boundary, u ≥ 0, which contradicts the assumption.

We now prove the second part. We suppose first that u ≥ 0. Then since f ≤ 0 the strict maximum principle implies that either u ≡ 0 or u > 0, and this contradicts the definition of λ + and λ + < λ -. We now then assume that u(x o ) < 0 for some x o . Let -ϕ -be some normalized eigenfunction for λ -. Let us note that -u -is a supersolution of the equation in Ω. Let us define Γ = inf{t, u -≤ tϕ -}. Then Γ > 0 and u -≤ Γϕ -. We prove that the supremum Γ = sup u - ϕ -is achieved on the boundary. If not there exists some compact set K large enough in order that u - ϕ -≤ Γ on Ω \ K and Γ < Γ.

Since -u -is a supersolution and -u -≥ -Γ ϕ -on ∂K, then using the comparison Theorem 2.9 in its form for negative solutions, -u -≥ -Γ ϕ -in K, finally -u -≥ -Γ ϕ -in the whole of Ω, which yields a contradiction.

Then the supremum is "achieved" on the boundary and then the strict comparison principle in Proposition 4.3 implies that -u -= -Γϕ -around the boundary. In particular one gets f ≡ 0 around the boundary, which is once more a contradiction.

Let N = 2, and f can be zero near the boundary. As in the previous argument if u ≥ 0, one gets u ≡ 0. We now assume that there exists x o such that u(x o ) < 0. By the previous conclusion -u -= -Γϕ -on a neighborhood of the boundary, in fact since we have -u -≥ -Γϕ -everywhere, and u -satisfies

F (-∇u -, D 2 (-u -)) = f + (c(x) + λ -)(u -) 1+α ≤ (c(x) + λ -)(ϕ -) 1+α ≤ F (-∇ϕ -, D 2 (-ϕ -))
using the strict comparison principle one gets that as long as ∇ϕ -= 0 one has u -= Γϕ -. Now applying Theorem 4.7 in its form with f ≥ 0 and negative solutions. one obtains that u -= Γϕ -everywhere and since ϕ -never takes the value 0 one gets that u < 0 and f ≡ 0 This ends the proof.

In recent papers, when α = 0, Armstrong [START_REF] Armstrong | The Dirichlet problem for the Bellman equation at resonance[END_REF], Felmer, Quaas, Sirakov [START_REF] Sirakov | Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon preprint[END_REF][START_REF] Felmer | Sirakov Resonance phenomena for second-order stochastic control equation preprint[END_REF] have studied some sort of "Fredholm" alternative in order to establish for which functions f there exists a solution of the Dirichlet problem when λ -≤ λ ≤ λ + .

Further properties

We want to prove that we can recover some of the standard properties of eigenvalues for linear elliptic equations. We consider the Dirichlet problem

F (x, ∇u, D 2 u) + (c(x) + λ)u 1+α = 0 in Ω u = 0 on ∂Ω. (5.1)
Non trivial solutions of (5.1) will be called eigenfunctions. We now recall the following result, which is an easy consequence of the definitions of λ ± and the maximum and the minimum principle (see [START_REF] Birindell | Demengel The Dirichlet problem for singular fully nonlinear operators[END_REF], [START_REF] Birindell | Demengel Bifurcation for singular fully nonlinear equations to appear in "On the notions of solution to nonlinear elliptic problems: results and developments[END_REF]) Theorem 5.4 Suppose that Ω is a bounded regular domain, 1) If λ > λ 1 = sup(λ + (Ω), λ -(Ω)), then every non trivial solution of (5.1) changes sign in Ω.

2) For any λ between λ + and λ -there are no nontrivial solutions of (5.1)

As a consequence of the previous section, we now have further results regarding the signs of the eigenfunctions.

Theorem 5.5 Suppose that Ω is some bounded smooth domain, and suppose that one of the following holds 1. λ + = λ -and ∂Ω is connected 2. N = 2, λ + = λ -, ∂Ω has at most two connected components 3. N = 2, ∂Ω is connected then any eigenfunction corresponding to λ = λ ± is of constant sign.

An application of the previous result is the following Corollary 5.6 In the hypothesis of Theorem 5.5 the eigenvalues λ + or λ -are isolated i.e. there exists δ > 0 such that for any λ ∈]λ ± , λ ± + δ[, the solutions of (5.1) are trivial.

Proof of Theorem 5.5. Let λ 1 = λ + = λ -and suppose that ∂Ω is connected. Suppose by contradiction that there exists a solution of (5.1) which changes sign. We define Ω + = {x ∈ Ω; u(x) > 0} and Ω -= {x ∈ Ω; u(x) < 0}. Then clearly, for any Ω+ (respectively Ω-) connected component of Ω + (respectively Ω -):

λ + ( Ω+ ) = λ -( Ω-) = λ 1 .
∂ Ω+ ∩ ∂Ω = ∂Ω is not possible since it would imply, by Theorem 5.2 λ + ( Ω+ ) > λ + (Ω). But, on the other hand, if ∂ Ω+ ∩ ∂Ω = ∂Ω, then ∂ Ω-∩ ∂Ω = ∂Ω, and then the contradiction is given by the fact that it would imply λ -( Ω-) > λ -(Ω).

We now suppose to be in the second case. For i = 1, 2, Ω i denote two open simply connected sets such that Ω 1 ⊂⊂ Ω 2 and Ω = Ω 2 \ Ω 1 .

Let ϕ be a positive eigenfunction in Ω and v an eigenfunction which changes sign. Let Ω ± be the set where v is positive (respectively negative). If ∂Ω + ∩ ∂Ω i = ∅ then reasoning as in the proof of Theorem 5.1, ∂Ω + ∩ ∂Ω = ∂Ω i . The same is true for Ω -, hence one can assume without loss of generality that ∂Ω + ∩ ∂Ω = ∂Ω 1 and ∂Ω -∩ ∂Ω = ∂Ω 2 , finally ∂Ω + ∩ Ω = ∂Ω -∩ Ω = ∅.

Since λ + = λ -, -ϕ is an eigenfunction corresponding to λ -. Reasoning as in the proof of Theorem 4.1 we can define Γ = sup v ϕ which exists according to the estimates on v near the boundary and it is "achieved" on ∂Ω 1 , and γ = sup -v ϕ "achieved " on ∂Ω 2 , and prove that v = Γϕ on a neighborhood of ∂Ω 1 and v = -γϕ on a neighborhood of ∂Ω 2 .

Defining as in the proof of Theorem 4.1 M 1 , K 1 , M 2 , K 2 with ∇v = ∇ϕ = 0 on K 1 and K 2 .

Since ϕ > 0 in M 1 ∩ M 2 , using Sard's theorem c i = ϕ | K i . Again reasoning as in Theorem 4.1, ϕ must achieve its infimum on K 1 or K 2 where its gradient is zero, a contradiction with Hopf principle.

We consider the last case, i.e. N = 2, λ + = λ -and ∂Ω is connected. It is clear using the maximum principle that the result is true for the smallest of the two eigenvalues. We suppose to fix the ideas that λ -< λ + and we prove that every eigenfunction corresponding to λ + is positive.

We denote by ϕ some positive eigenfunction for λ + (Ω) and by ψ some eigenfunction which changes sign. We denote by Ω + and Ω -the sets where ψ is respectively positive and negative. This implies that λ + (Ω + ) = λ + (Ω) and λ -(Ω -) = λ -(Ω); but, in dimension N = 2, this contradicts Theorem 5.2.

Proof of Corollary 5.6. The result needs to be proved for λ 1 = sup(λ + , λ -). Suppose by contradiction that there exists a sequence of eigenvalues λ n , such that λ n → λ 1 , λ n > λ 1 .

Let u n be a sequence of solutions of (5.1) with λ = λ n such that |u n | ∞ = 1. This implies that the Hölder's norm is uniformly bounded with respect to n (see Proposition 2.8).

Then (u n ) n is relatively compact and it converges up to a subsequence in C( Ω) towards a solution u of (5.1) with λ = λ 1 .

By Theorem 5.5, u must be either positive or negative, which implies that for n large enough, for any K = Ω 1 ⊂ Ω, for n large enough, u n has constant sign in K.

Without loss generality we can suppose that λ 1 = λ + and u > 0 in Ω and hence u n is positive in K.

We choose Ω 1 a regular subset in Ω such that λ -(Ω \ Ω 1 ) > λ n . By minimum principle, since

u n ≥ 0, in ∂(Ω \ Ω 1 )
it implies that u n ≥ 0 in Ω \ Ω 1 and then u n is positive in Ω which contradicts Theorem 5.4.

Claim:

  The set A is closed. Let x n ∈ ∂Ω such that for all n, lim sup y→xn v(y) u(y) < τ and x n converges to x ∈ (∂Ω) , let us prove that x ∈ A. Using Proposition 4.3, there exists r 1 such that v < τ u in B xn (r 1 ) , and since B xn (r 1 ) ∩ B x(r 1 ) ∩ Ω = ∅, there exists y ∈ B x(r 1

Proof of Claim 3.

We already have

To prove the reverse inclusion, we recall that, by hypothesis,

We have also obtained the following strong comparison principle Theorem 4.7 Suppose that N = 2 and that Ω and ∂Ω are connected. Suppose that u and v are W 2,p (Ω) for some p > 2 respectively super and sub solution of

Then either u > v inside Ω or u ≡ v.

Proof : First we remark that u > 0 since if not u is identically zero by the strict maximum principle, and then f ≡ 0.

Then by Hopf's principle ∂ n u < 0 on the boundary. We begin to prove that there exists a neighborhood of the boundary where either u ≡ v or u > v and in that last case one can conclude by using the comparison principle in Theorem 2.9, and u > v everywhere. We then consider the case where u ≡ v on a neighborhood of ∂Ω. As in the previous proof, let

We want to prove that M = ∅. Suppose not, proceeding as in the proof of Theorem 4.1, it can be proved that M and K are connected, hence ∂M = K. Furthermore, on K, ∇u = 0 and ∇v = 0.

Then, using Sard's theorem, u = cte on K and, since M cannot contain a local minimum of u, the minimum of u is achieved on the boundary i.e. on K; this contradicts the Hopf principle on some point where the interior sphere condition is satisfied, since ∇u = 0 on K. Finally M = ∅ and u = v in Ω.

Further results about the principal eigenvalues

In all this section we suppose that F is given by (2.1) and F satisfies (F) and (J) and h satisfies (H).

Properties concerning the dependance on the domain of the eigenvalues.

From the definition of λ + and λ -it is clear that Ω 1 ⊂ Ω 2 implies λ + (Ω 1 ) ≥ λ + (Ω 2 ). The next two theorems concern the strict monotonicity of the principal eigenvalues with respect to the domain inclusion. We state them in the case of the eigenvalue λ + (Ω), the symmetric results hold for λ -(Ω) with obvious changes. In the sequel when no ambiguities arise we shall write λ + without writing the dependence on the domain.

Theorem 5.1 Suppose that Ω is a smooth bounded domain in IR N . Suppose that c(x)

then there exists (∂Ω) a connected component of ∂Ω such that u = 0 on (∂Ω) .

Proof. To begin with, let us note that u must be zero somewhere on ∂Ω.

Suppose not, i.e. u > 0 on Ω. Using the hypothesis c(x) + λ + > 0, this implies that there exists ε > 0 and λ > λ + such that u ε := u -ε > 0 is a solution of F (x, ∇u ε , D 2 u ε ) + (c(x) + λ )u 1+α ε ≤ 0,