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Reduced locomotion dynamics with passive interne
DoFs: Application to non-holonomic and soft
robotics

Frédéric Boyer, Ayman Belkhiri

Abstract—This article proposes a general modelling approach the most efficient climbing artifacts [9], [10]. In the cask o
for locomotion dynamics of Mobile Multibody Systems (MMS) swimming, experiments and modelling works have recently
containing passive intemal degrees of freedom (dofs) coen-  ghown that a compliant dead fish can resonate in a Karman

trated into (ideal or not) joints and/or distributed along de- . .
formable bodies of the system. The approach embraces the eas vortex street and extract from the ambient vorticity thergpe

of non-holonomic mobile multibody systems with passive wheds, required to resist drag forces and maintain its positiornia t
the pendular climbers and the locomotion systems bio-inspgd  flow [11], [12]. Similarly, the hovering flight of moths inveés

by animals that exploit the advantages of soft appendages sl a (passive) wing twisting deformation which is the key of
as the fish swimming with their caudal fin or the moths using the i generation. Beyond these natural examples, many cistfi

softness of their flapping wings to improve flight performane. heeled t . heels t it | K
The article proposes a general structured modelling approeh of WNeeled systems use passive wheels to self-propel (snake-

MMS with tree-like structures along with efficient computational  like robots, snake-board) [13] or to self-stabilize (theykoie)
algorithms of the resulting equations. The approach is illstrated [14]. Known today as dynamic non-holonomic systems, these

through non-trivial examples such as the 3D bicycle and a systems differ from kinematic non-holonomic systems by the
compliant version of the snake-board. fact that the time-evolution of their external dofs reqsire
Index Terms—Locomotion dynamics, biologically inspired dynamics to be modelled [1], [15].

robots, soft robotics, non-holonomic systems. To date and so far, there is no unified modelling framework
able to embrace all these systems and in particular thosghwhi
I. INTRODUCTION contain bodies with distributed compliancies. Therefdhe,

ATURAL or artificial, any locomotion system undergoe®urpose of this article is to contribute to such a framework.
N two types of motion. The first are overall rigid motions ofn order to achieve this objective, we consider any robot (or
degrees of freedom (dofs) called "external dofs" becausg ttRNY animal in a bio-mimetic approach) as a Mobile Multibody
are measured by an observer outside the system. Since thaggem (MMS), i.e. a set of solid bodies connected by interna
dofs are not directly actuated, their time evolution is gaeel joints whose time-variations produce (by reaction) exaérn
by a model of locomotion (i.e. the contact between the systdffces that generate the expected "net displacementdtwrol
and the world). The second type includes the motions of tHtd geometric mechanics [2], [13], [16], [17], the model of
internal dofs or shape dofs [1]-[3]. Among these interndsdo these systems is derived by applying the laws of dynamics on
some are "unactuated" or "passive” and play a key role dspace of configuratior(g, ) whereg is the transformation
the locomotion of animals and robots [4], [5]. For instanc®f & Lie groupG which parameterizes the net motion of the
they can help to simplify the control laws or to increase tHdMS, while r parameterizes the shape of the MMS and coor-
number of dofs used in locomotion without increasing th@inatizes a manifold, named the "shape space" of the MMS.
number of actuators. They also allow one to save consum8dthe rest of the article, we consider MMS that are possibly
energy, to extract it from the environment and to store it ipubject to external forces depending on the current positio
some of the internal dofs before restoring it in the extern¥glocities and accelerations of the system and/or to eaéntu
dofs. They can also be used to increase the instantanebii@matic (external) constraints which can, for instamcedel
power beyond the intrinsic capabilities of actuators [65 Athe contacts of the system with a rigid substrate. In the
illustrations from natural world, let us mention the climpi Cconstrained case, an outstanding study revealing the ggome
animals which use pendular locomotion or those which u§gsights of non-holonomic systems has been proposed in [18]
compliant appendages to generate thrust or lift as in swigmiHowever, this general approach is restricted to rigid fully
of fish or hovering flight of moths [7]. In the first case, théictuated MMS. By contrast, we here consider the case of MMS
animal does not seek to resist the gravity field as in stapdth internal unactuated (passive) degrees of freedomesom
locomotion, but on the contrary, uses its potential enegy gf them accounting for eventual flexibilities distributeldray
a resource of motivity by swinging up by the supports [8fhe bodies. As such, the article here presented, proposes an

Inspired by gibbons' brachiation, this strategy is ex@diby extension of the context of [18] to the case of soft MMS.
Another novelty of the article concerns the dynamic model

F_. Boyer and A._Belkhiri are with the Institut de Recherche(_mmmuni— of the internal actuated dofs, which is studied not only o it
cation et Cybernétique de Nantes (IRCCyN) and Ecole des dviileeNantes, L .
Nantes, France. forward form but also in its inverse form. All, these extemsi

Manuscript received April 3, 2013; revised Septembre 6,3201 raise new difficulties. In particular, they need to tackleain
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unified formalism systems whose passive dofs can be rule:
by kinematic constraints (as the angle of the front wheel of a
bicycle), or actual dynamic equations (as the deformatains
a flapping wing or those of the elastic rotor of a soft snake-
board). Moreover, addressing the dynamics of the interna
actuated dofs in the inverse form, needs to tackle redundar
degrees of freedom in torque inputs which do not produce an
passive or active motion and simply serve to cancel eachr othe
as is the case for a planar mobile robot with two redundan
wheels operating in opposition. As a result, this other new
aspect can help roboticists to address locomotion problem
where the control objectives are not only related to the nei 4
motions but also to hyperstatic forces as those involvetién t ‘e
stability of redundant legged locomotion or hyper-redurtida
shakes.

In order to achieve these extensions, the dynamics oi

the passive (internal and external) velocities (more simpl A | . ” e bodies belled
" ; [ : Fig. 1. Mechanical structure of a tree-like MMS: The bodies kbelle

name,d paS,SIVe dyna.mlcs ) are prOjected onto the ,keme_l ir¢q|ncreasing order from the reference body to the tips. la tase 39 and

the kinematic constraints locked in the current configorati s, are two terminal compliant organs whifé; is an intermediate compliant

of the actuated dofs. This choice provides a systematiedy.

modelling approach structured in a kinematic and a dynamic

stage. As regards the compliances, they can be localised bl fits efficient calculation i tion V. Senti
on passive joints or distributed along the bodies. In th[g€ problem of its efficient calculation in section V. Senso

latter case, the body deformations are modelled by usi and Vil are devoted to the application of the approach on

the floating frame approach [19] and the assumed mod strative example_ts. At last, section VIII closes theicet
method [20] as initially developed in the context of flexibld¥Ith SOme concluding remarks.
multibody systems dynamics [21], [22], [23]. This choice is
motivated by the dramatic reduction of resulting equations Il. PREAMBLE
a useful characteristic for roboticists working on feedbac The purpose of this preamble is twofold. First, it introdsice
control, optimization, etc. In addition to offering a molitey the context of the following results, in particular the asgd
framework to a wide range of systems, the article alsfons, conventions and basic notations on which they arecbas
proposes some efficient algorithmic tools for the practic8econd, it presents the final set of dynamic equations.
calculation of the models of these systems. In particule, t
kinematic modeling is investigated under the generic poiRt
of view of generalized inversion while the dynamics of a~
MMS possibly containing compliant bodies is computed !N the subsequent developments, we will consider a trase-lik
thanks to an extension of the Luh algorithm [24], proposddMS as that pictured in Fig. 1. Such a system is composed
in [23] and here used in a way which to our knowledg@f V solid bodies possibly compliant, and connected by one-
is new in itself. For the sake of illustration, the approacfiof joints that for the sake of simplicity we will assume
is finally applied to several non-trivial examples such &8 Pe of angular nature. The deformation of each compliant
the 3D bicycle and an elastic (soft) version of the snakehoaPody is measured with respect to a mobile rigid configuration
defined at each instant as the extension of the resting gepmet
The article is structured as follows. In section II, wéf the body from the joint which precedes it in the chain
consider the kinematic model of a MMS subject to an arbitrafirawn in dotted line on Fig. 1). According to a Rayleigh#Rit
number of non-holonomic constraints, then we introduce t@®@Proach [20], these deformation fields are then reduced on a
problem we will address in the rest of the article. By Yruncated functional basis of assumed modes as for instance
projection process of the MMS dynamics onto the kernel Hpat of the first natural modes of the cantilevered bodies.
the constraints, we derive in section Il the reduced fodvaWith such a finite parametrisation of the bodies’ deformatio
dynamics of the passive (internal and external) dofs cdatto @ny configuration of the MMS is naturally defined by a pair
by the internal actuated dofs. Once these dynamics are knowh ) € G x S whereG is the group of the net displacements
it becomes possible to reconstruct the motion of all the dof@@mely a subgroup of £(3) or SE(3) itself) of a reference
(internal and external, actuated and passive) and to canpli@me attached to an arbitrarily distinguished body, named
the internal torques which have to be applied onto the aetiiateference body, and is the shape space, parameterized by
joints by the actuators to ensure these motions. It is thstb the joint and Rayleigh-Ritz coordinates gathered in thearec
of section IV to derive this model which is nothing else thafi» Which defines the "internal dofs". The active and passive
the inverse internal dynamics of the MMS. When the number, I _ . :
. . ceps Such a reference configuration defines at each instant a frdnich floats
of bodies exceeds a few ones, it becomes too much difficult{Qung the real body. For this reason, the approach was ommerkas the
calculate its dynamic model by hand. Therefore, we addressating frame approach” [19].

Basic framework
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internal dofs are distinguished by splitting the shape spaly the contacts when the actuated joints are free to move
Sinto § = §, x S,, with S, the space of the passiveaccording to their imposed time evolution (which is assumed
shape dofs and, that of the active ones. The dimensiorio be compatible with the mobility of the MMS), while (3)
of the fiber is notedn, that of S is s while s, and s, are represents the same constraints but when the actuateshjgint
those ofS, and S, with s = s, + s, andr = (r],7L)T are locked in their current position. Based on this distimt

is the "passive-active" block partition of The influence of we denote bym® (m° < m) the total number of independent
the environment is modelled through external forces gélyeralocked constraints, and by, that of unlocked constraints.
depending on the current state of the system and/or a set

of m independent persistent and non-holonomic kinematic )

constraints. In these conditions, a first formulation oféhére B. Statement of & locomotion problem

(external and internal) dynamics is given by applying the To derive the expected model, we address the following fun-
principles of Lagrangian dynamics on the configurationg€epadamental locomotion problem [15]. Considering the actiate
G x S, x S, which leads to: joint variables ofr, as imposed control inputs given by their
time evolutiont — r,(¢), solve the forward passive (external

MMy Mg U and internal) d ics, i i
X ynamics, i.e. compute at each step of time
My, mpp Mpa "p = (1) of an integration time-loop: the passive accelerations’, )
Ma  Map  Maa Ta from the knowledge of the current stagg £,, 9, ) and that of
f AT the current inputgr,, 74, 7', ) (t). This first subproblem corre-
Qp + B; A, sponds to solve the forward passive dynamics controlletiby t
Qu+ Ta B, actuated dofs. Oncéyj,,) computed, a second subproblem

where from left to right, we find: the-dependent inertia ma- consists in calculating the current value of the joint t@sju

trix of the system. The vector of accelerations@x S, x S, '@ required by the motions of all the (passive and actuated)
with n = g~1¢ an element of the Lie algebrgof G whicﬁ dofs, i.e. to derive and solve the inverse internal actuated

defines the velocity of the reference frame in its mobile axidynamics. Note here that, more than leading to the expected

The vector of inertial, external and internal forces inahgthe mode_l, this problem hgs also a strong_practifzal interest in
torques provided by the actuatetsalong with the friction and robotlc_s ar_ld cont_rt_)l, since the locomotion gaits of a rqbot
restoring forces introduced by the compliances concertraf'€ Primarily specified in terms of shape motions, while in a
on some of the passive joints or distributed along the campli second step the torques are computed to check the feasibilit

bodieg. Finally, the last term (on the right) represents th?f the shaple moltion pon'ilroﬁ Finally, when addlressing this
vector of generalized forces imposed by the constraintt) w undamental problem, in all the subsequent developmeres, t

) a set of Lagrange multipliers forcing the constraints. Witme dependency of actuated variables is explicitly intida

our definition of the configuration space, these constraiats (-€: 7a = 7a(t)) while all the other (passive) variableg
be written under the general form: and g depend on the time only implicitly, i.e. through the

dynamics that we are seeking for. At last, we will see that
An + Bprp + Barq = 0, (2) the forward dynamics of actuated dofs can be easily deduced

] ] from its inverse version.
with A, B, and B, beingm x n, m x s, and m X s,

matrices which only depend an Exploiting these constraints,
we will see that the time evolution of some of the pags. Introduction to the final set of equations

sive coordinates can be deduced directly from the actuateqggtqre pursuing, let us comment a little further on (1-2). In

ones through kinematics, while others will require invaking, et thjs first formulation cannot be deduced from Lagrange
dynamics. The first type of coordinates are named "passigations but rather from Poincaré equations [25], [26cwhi
kinematic coordinates” and denotegl.i, while the others are gyteng Lagrange equations to systems whose configuration
named "passive dynamic coordinates” and noteg,.. We  gpace is defined as a non commutative Lie group (in our case
will distinguish the "unlocked" constraints (2).wh|ch reda G x R*). Compared to any formulation derived from Lagrange
together the components cﬁﬁ”_p’m) from their "locked" gqations, the advantage of the Poincaré formulation fies i
counterpart which are given by: the fact that in (1-2), the dependenceqfs confined to the
An+ By, =0, 3) vector of external forces through_ gravity or any force which
breaks the symmetry of the ambient space. As a result, (1-2)
i.e. by imposingr, = 0 in (2). Physically, the unlocked is more simple than any formulation derived from Lagrange
constraints (2) represent the kinematic conditions imgosequations where the net motions are parameterize®®n
using Euler angles for instance. In the language of geometri
2Going further into the details, the forces exerted on theere and mechanics, when it does not contain anydependent external
internal actuated dofs can be decomposed in inertial (C®@md centrifugal T . .
forces) and external ones (excluding those imposed by thetaints) as Torces, the Intrinsic formu_lat'on (1-2) can be interprets
follows: f = finert(r,#m) + feat, Qa = Qa,inert(r,7n) + Qa,eze  the result of a first (preliminary) reduction (frofg, g) to n)
while Qp = Qp,inert + Qpeat + Qp,int CONtains a third component of the system dynamics. In the following, we will deal with
Qp,int(rp, 7p) modelling the passive restoring and friction internal &sc a second reduction process which aims at removing reaction

As regards the external forces, in the general case, thegndepn the entire I ] ) :
state(g, r, 1, 7). unknowns) (and their associated constraints) in (1-2). At the
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TABLE | dofs’. Alternatively, the forward formulation of the dynamics
VALUES OF H AND Astat IN (4-8). of the MMS controlled by the vector of torques = 7,(t)
- ~ can be easily deduced from equations (4-8) by replacing in
m=m m>m them, r.(t) by r,, while the inverse dynamics (6) have to be
n+ sp = mP° Astat =0, H=20 Astat 0, H=20 replaced by
n+ sp > me Astat =0, H #0 Astat 0, HF#O 7./:0, _ ﬁl;al(’ra(t) + @'a% (9)

where \,;,; does not appear anymore in the forward éase

end of this second reduction process, we will see that the-tim
evolution of a MMS which contains passive internal degrdes o |ll. FORWARD DYNAMICS OF THE PASSIVE DOFS
freedom (including those induced by distributed comples)c  According to the objectives of section II-B, we derive in
and actuated internal dofs, can be stated as follows: this section a model allowing to reconstruct the motion of
passive (internal and external) defsandg from the motions
Ny = M;lj?h (4) imposed to the internal actuated dofs. To derive such a
) model, the idea consists in trying to express the maximum of

. -1 A
T =m . . . .
podyn ppr @ passive dofs as a function of the actuated ones with the lielp o

Ta = Maata(t) = Qu + By Astat, (6) the kinematic constraints. In doing so, we will make appear a
9= g(JextTa(t) + Heeny + Heplp dyn)s (7) residual set of coordinates requiring a further dynamic ehod
Fp = JintTa(t) + Dry ayn. 8) To that end, we start from the dynamics (1-2) and consider

kinematics further.

From top to bottom, we find the forward dynamics of the

net reduced velocities, the forward dynamics of the passifle Reduced kinematics of the passive dofs

dynamic dofs, the inverse dynamics of the actuated dofs,Sincer, is known through its time evolution — ra(t),
the reconstruction equation of the net motions and the e implicit linear algebraic system (2), can be rewritten
construction equation of the passive internal shape mstioalternatively as:

Without entering too much into the details of the expression £3 _

we introduced the following notations. The indexmeans A*nt 4 Bara(t) = 0, (10)
“reduced”, while a tilde over a matrix denotes a "modifiedy;in 4t — (A, B,) amx (n-+s,) matrix, andy* = (nT’T-.IT)’)T’

version of this matrix in a certain sense we will expla|@he (n +s,) x 1 vector of the passive (external and internal)

later and which is such that when there are no passiygigcities. By generalized inversion of (10), we deduce the
dofs, the modified matrices coincide with the original onegeneral kinematic model under the following form:

M..(r) and F,(g,r,7 i (t),n) represent the inertia matrix

and the vector of external and inertial generalized fordes o nt = Jra(t) + Hnf, (11)
h I i f i : : L

the reducgdﬂexterna dynam.|cs (9 net ”_“O“Omw (r) and whereJ can be detailed as (the upper scriptl) indicates a
Qp.r(g,7,7,74(t),n) are the inertia matrix and the vector of eneralized inversion):
internal, external and inertial generalized forces of thespve g '

dynamic dofsma, (r) and Q. (g, , 7,7 (t),n) are the inertia J=—(aH=vR,, (12)
matrix and the vector of generalized external and inertial

forces applied onto the active internal dofs, Whild A, while the second term of (11) represents the general form of

is the vector of the generalized forces (reaction torqud§Ms living in the kernel oft? notedIC_(Ai),wmch is nothing
possibly exerted by the constraints when they are redundiHf the kernel of the locked constraints (3). Going furtiieg,
i.e. hyperstatic. Finally, all the reminding matrices cam b-olumns offf span a basis 9“3_(141) andy; stands for a vector
deduced from (2). In particulat],,; , Jin: represent some of reduced (passwe) velocities. Now block—pgrtltlom.rigx,
Jacobian matrices while the columns Bf., H., and D are allows one to detail the general form of the kinematic model

sub-blocks of H, a matrix whose columns span the kernétS:

of the locked constraints. Equations (4-8) define the géner n | Jeat ) H.,. Hp Nr
formulation of an arborescent MMS containing internal Io—a< Tp ) - ( Jint )r“(t) + ( Hye Hy, ) ( Tp.r )
calized or distributed passive dofs, subject to externalef® (13)
and non-holonomic constraints. Furthermore, we will sed th

depending on the relative valuesiefandm?, these equations ., - 5 -4 snake-like robots for instance.

can be specified as indicated in Table I. Before closing thistThis forward formulation of the dynamics is in fact related the

section, let us make a further remark. formulation proposed by the geometric locomotion theoryrigid fully-
R kK 1B 4-8) is th luti f the | . _actuated MMS. In fact, in the case where the external fordeglp are
emark 1:Because (4-8) is the solution of the OCOmOt'o'}}—independentg can be removed frond,, Qp,» and Q.. Furthermore,

problem of section II-B, the dynamics of internal actuateidithe internal dofs are all actuated, one can forge= r and 7, (t) = 7(t)

dofs appear in their inverse form (6), wherg is imposed in (4), (7) and (9) while (5) and (8) are simply removed. Insthaestricted
conditions, replacing the reduced twigt by its conjugate momentum named

by its time-evolution, and\;,; represents contact reactiornon.holonomic momentum and denoted, allows to rewrite the forward
forces which do not produce any acceleration of the passiygamics (4,5,9,7,8) in the form of [1], [18].

3These forces appear in redundant locomotion systems asicabe of
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wheren, andr,, respectively denote the (possible) reducetthese constraints could mix the external and internal dofs
external and internal velocities. This last relation wiél bsed in such a manner that the "external-internal" partition is
in the following as a reduction process applied to the passimot justified anymore. Finally,(nf,f;,.)T could be more
dynamics inG x S,. In this context, (13) will be seen asgenerally replaced by a vector of reduced non-integrable
a relation allowing to change the parametrization of matiorvelocitiesv,.,.

from the set of passive velocitieg = (n”,+1)” to the set

of reduced ones! = (n], 1 )" (with of coursedim(n}) < Remark 5:In any case, each passive coordinate is either
dim(n*) = n + s,). The unreduced velocitiegt belong to entirely determined by the active coordinates through the
the tangent space G x S,, while the reduced oneln} live kinematic model of constraints, or defined by a dynamic
in the constrained subspace of the tangent spac& f0S,. model. Thus, we will gather the former type of dofs into the
As such, these velocities are said to be compatible with thiectors, ., of kinematic passive velocities, while the latter is
constraints, and the space of the compatible velocitieseifi gathered inta*, 4., the vector of dynamic passive velocities.
in each point ofG x S, is the admissible space of velocitiesFormally, we will have:

B. Remarks Fpadyn = STp s Fpin = STy, (15)
Remark 2:Invoking the definition ofy = ¢~'¢, along whereS andS are matrices of 0 and 1 which select the coordi-
with (13), shows that if we can compuigf, then we can Nates of dynamic and kinematic nature among the components

completely reconstruct the motion of the system using ti#é 7. In @ complementary way, we will have:
following reconstruction equation:

f‘p = Di‘p,kin + D?Lp,dyny (16)
L] ( 9 > - < g(Jth;“(t) +II{{6€ "Ir +g€1’ 7_'“1)77‘) ), where D = ST and D = ST are matrices allowing to
dt \ 7p Jint Ta(t) + Hpe 1 + Hyp Tp,r distribute the dynamic and kinematic dofs on the vector of

(14) . : o .
whose first (top) row can be numerically time-integratemwitthe passive dOfS'. Furthermore, since b_y deflnltlon.the iatler
passive kinematic velocities are entirely specified by the

an intrinsic geometric integrator o [27], or alternatively internal active velocities, the general kinematic mode3) (1
with a quaternion-based integrator, while the second roky o kes the particular formz 9
requires standard schemas on linear spaces. In the remainde P '

of this section, we will show how} can be computed. -
Vm p n _ Hee Hep Jewt . K (17)
. . . A . 7 - 0 D J. . T-p,dyn .
Remark 3: Using the notations introduced in section P . 7q(t)

lI-A, the inversion of (11) shows that the model _ , -
of the time-evolution of the passive dofs require¥NereJin: takes the form/,, = D.Jy,, which defines/i,.
addressing two cases depending on the relative values

of m® = rank(A4, B,) = rank(A*) andn + sp = dim(n*) C. Reduced dynamics of the passive dofs

Ers]eef Eable D: 1) Ifmi - g t s (tPhiESmcgrreOspor&dfh 0 In this subsection, we consider the case 2 of remark 3 where
e fully- or over-constrained case), = U and € he time integration of the passive dofs evolution requines
model of passive dofs is pure_ly kinematic. In. this Caseod of a dynamic model (i.6C(Af) # @). This residual
we h?jve two §u1b;ases depending on the rt;:la_twe dvaluesdg;ﬁamic model corresponds to the reduced passive dynamics
?ﬁ anJ TiJr Sﬁ'i(,'l)gm >h " +ﬂs]p (over—c?_ns(;a!ne Case) of the MMS controlled by the time evolutioh— r,(t). It is

enJ = — _Par W ereo Ne generajlized INVerse calyy iy eq by projecting the passive dynamics from the tangent
be deduced by inversion af:° independent rows of (10), space ta xS, to its admissible sub-spad&(A*). Then, time-

while the others play the role of compatibility equation.ﬁ"ntegrating once these dynamics will allow to compute the

that the actuated dofs have to satisfy to preserve mOb"'%duced velocities, andi,, that can be used in a second step

527) mAiig +2 Sflﬂf (fglly-constrame((jj case),t in th(;s CaS&y reconstruct the entire motion of the MMS in space through
- Ja ) [tm? <n + S (un er-constraine Cas’e)'the time-integration of the reconstruction equation (I#)e
the constraints are not sufficient to define univocally thS

: ¢ | and int | locities f the aemiat rojection leading to the reduced dynamics is achieved in
passive (external and internal) velocities from the a Ao steps each one corresponding to the application of the

ones. This results in the existence of a non-zero kerr}% . . . .
. . . . . reduction process (13) on the real and virtual motions,in.e.
(H # 0) of the constraints in which the passive velocitie P (13)

led b q . del. In thi the space of velocities and in its dual, that of forces. Iis thi
are rulec by a dynamic model. In this case, once agaﬁ%rspective, let us reconsider the reduction equation. (17)

— _AFD i ' s .
J A Ba, while the elemgnts in the ke_rnel of ..has for consequences on the (real) accelerations:
represent the (external and/or internal) passive ve&xiti
allowed by the constraints when they are locked in the ctirren . Ty
n _ H,. Hep Jeat -
values ofr,. P = 0 D J Tp,dyn
2 wnt fa(w

Remark 4:In (13), 7, , represents a vector of reduced . . . m
internal passive velocities modelling eventual holonomic +( Hee Hep  Jewt ) Fodyn | - (18)
constraints relating the internal passive dofs. More gaher 0 0 Jint .

Ta(t)
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In the same manner, we have on the virtual (dual) side the, — Mg:rm;p{rM,,,,., Fr = fr — Mgrm;p{er,,., and
following reduction relation, which means that the field of), . = Q,., — M, .M 'F,, so defining the tilde symbol.
virtual displacement used hereafter is compatible with the

constraints (2): IV. INVERSE (AND FORWARD) DYNAMICS OF THE ACTIVE

6C [ Hee Hep ¢ 19 DOFS
(o )= (% ) (o) w0 . -
P P, dy Pursuing the resolution of the problem of section II-B, we

Note that equation (19) defines the vector of reduced virtua®w see that the passive motions can be entirely deduced from
displacements (on the right), which is deduced from thewvirtthe time integration of (4), (5), (7) and (8). In a furthergste
alization of (175. Now, let us consider the passive dynamicgne can use the dynamics of the MMS before the projection,
in G x S, controlled by the time evolution — r,(t), i.e. i.e. (1) to calculate the external contact foréesTo that end,
the two first rows of (1) withr,, 7, and#, considered as let us first rewrite (1) in the "passive-active" block-paotied
exogenous variables specified by their time-evolution. \Afe cform:
restate them into the form of the balance of virtual workg[28 ( ME - MET ) ( nt )

and write that for any(d¢, o7 ): M Mgq P t)
M MT 7 fi AT
T T P _
(a¢”,ory) ( M, my, ) ( i, > = (20) ( O tr, ) T Br )M (24)
(6¢7, 6¢7) ( (f - Man“'g(t)) + ATT)\ ) where )\ and 7, are unknown while all the motion variables
TP (@ = mpaia(t)) + By A ) are known. Thus, one can consider the first row of (24) as an

where according to footnote 8, = Q. inert +Qp.cxt+Qpint algebraic system ruling along time, i.e.:

and @, i+ accounts for the internal forces exerted on the ATV 1 ((FF — MITH () — M) = 0 25

passive dofs. For instance, if thé" dof is a passive one (A7) ((/ a Fal0)) ) ' (25)

introduced by a localised or a distributed compliance (onThe algebraic system (25) can be considered as the dual of the

joint or along a body respectively), the corresponding compkinematic one (10). By generalized inversion of this system

nent of @, .in: is modelled by a friction and a restoring forceve find:

given by (withZ{(r,) a strain energy an@®(r,,) a dissipation B i .

function): ’ ’ A= (4D (M7 — (FF = MIT7a(t))) + Astar » (26)
Qpint. = —OU /01y — OD iy, (1) with Ay € KC(AT). This Iast. expressipn corrgsponds to the

most general form of\. The first term in (26) is the vector

while, if the k' dof is introduced by an ideal passive joint, weof reaction contact forces required by the motions, i.e. the

simply haveQ, i:,x = 0. Taking the reduction relations (18)part of reaction forces directly deducible from the motions

and (19) into account allows rewriting the balance of virtuan the other hand, the second term of (26) models internal

works (20) in the reduced form: tensions which do not produce any generalized force on the
M. MT i passive (internal and external) dofs. Consequently, #rigt
(5@,7, 5r£dyn) << o ’ . ) ( " ;” )> = will not generate any passive accelerations and will be mame
p,r Pp,T p,ayn

(hyper)static reaction loading and not&g,;. Now, injecting

(5@?757«;@”) ( fr ) (22) (26) in the second row of (24) and using (11) along with
’ Qp.r JT = —(AM=DB)T gives:

which represents the projection of the passive dynamias fro

_ 1 VE: TariTys:
the tangent space t&' x S,, onto the reduced subspace of Ta = (m“i“ + ]\fa‘]j J /i\/l J_fr J Ma_ )I“(t)
admissible velocities. In (22), we introduced reduced ivesr + (Mg +J° M) (Hny + Jra(t) + Hny)
(indexed with a ") whose detailed expressions are given — Q.- JTf 4+ B My 27)

in Appendix 2. Finally, (22) being satisfied for any virtual __ ) o ~ = ) o
reduced displacement, the reduced dynamics are governed Bi@lly: inserting). = M,"F, into (27) gives (6) which is the

the following equations: general form of th_e_internal torques e?<erted_ by the actsator
. _ onto the actuated joints. At last, removiig,; in (27) allows
( M, M,, ) ( M ) _ ( fr ) , (23) one to derive the forward dynamics of actuated joints (9).
Mp,'r Mpp,r rp,dyn Qp,r

which once completed with the reconstruction equation,(14). Remarks:
allow one to restate the reduced forward dynamics of passiv

dofs in the form of (4), (5), (7) and (8) WithAl, — eRemark 6:Going further into the details of the solutions

of (25) allows to fix Ase¢ @s given in Table I. Indeed,
5Basically, such a virtualization consists in replacidgdt by 6. and by We Will have two cases depending on the relative values
forcing 6rq (t) = 0, since the actuated dofs are defined by their time evolutiopf m° = rank(AiT) and m. When m® = m, the system

which is frozen along any virtual displacement [28] is under- or fuIIy—constrained and,,,; = 0, while when
SNote that due to the ideal character of contacts, the exteomact forces

do not appear in these expressions, since they have a njgcpon in the m? < m, the system is over-constrained akg,; # 0.
admissible space.
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Remark 7:When the system is over-constrained, the s@omputed and time-integrated once in a global time loop.eOnc
lutions (26) and the corresponding control torques are nalt the motion state and acceleration variables are knowlmeat
univocally determined. As a result, further consideratiane current time, the current value of the torques supplied ley th
required to find the solutions. For instance, in a controbproactuated joints,, can be computed before increasing the time
lem, one can consideY,;,; as an additional freeness that castep and to restart the algorithm. Regarding the free dycgmi
be exploited to address other objectives than those achi®ve when the number of bodies increases, its calculation besome
the motion control lawt — r,(¢). In particular, depending on more and more complex. Consequently, the derivation of
the friction between the bodies and the substrate, stal#ih this model based on the direct calculation of the Lagrangian
be improved by controlling these internal tensions as in tlad the use of Lagrange-like equations as those of Poincare,
case of snakes in lateral undulation [29]. From the modglliquickly becomes unfeasible by hand. In order to circumvent
point of view, the indetermination of (26) can be removed biis difficulty, we now propose an automatic and efficient
invoking a further model capturing the effects of other sesr computation of the free dynamics based on an extension of the
of compliance. As a result, these new compliances incrgasimecursive inverse dynamic algorithm due to Luh and Walker
the dimension ofr,, they will add new columns tod* and [24]. This well known algorithm is based on the Newton-
new rows toA*”. Thus, they will increase the rank @ff” up Euler model of fully actuated Rigid Multibody Systems (RMS)
to fulfill the conditionm = m? for which the internal torques [30]. Exploiting the recursive character of the Newton-&tul

are univocally deducible from (27), withs: = 0. model, it allows to efficiently (and automatically) compute
the joint torques and the reaction forces respectivelyteser
V. PRACTICAL IMPLEMENTATION OF THE APPROACH on the joint axes and the rigid basis of a RMS, when it is
A. Summary of the modelling approach submitted to joint (shape) motioris — (r,7,#)(t)) and rigid

Finally, in any case, the modelling approach emerges f%\éerall (net) motions(t + (g,n,7)(t)) transmitted through

. ) © mobile basfs Going further, this algorithm is based on 2
clearly separated into several steps ordered in a two stag

. : . . . . §c§ursions with respect to the bodies index. The first one is
hierarchical approach which can be carried out in a blin . . .
a forward recursion (from the basis to the manipulator tool)

manner. The first stage is of kinematic nature. It starts b hich computes the accelerations of the rigid bodies froen th

?;?tl[]r%etzer?rﬁgsilnof t?reor%ng)ckeisegot?gr%xz&ncghnestf%:]ts(l%nowledge of the current basis and joints accelerat{@ng)
' ' Ja 9 and state(g,r,n, 7). The second (backward) recursion, uses

e o e i Newon Eler cquaons of h rgd bodes o comput
particular form (17) with — (JT’ JT)T given by (1’2) At thie interbody forces from the tool to the basis. Finally, the
eatr vint ' rojection of the interbody forces onto the joint axes gives

e current joint torques while the last interbody force

this kinematic stage, the comparison of the rank of the ldck
and unlocked constraints (i.e. andm°) also allows to predict computed by the backward recursion is nothing but the ctirren

the fmal fo_rm of the expected_model according to Table I'. Irneaction forcef,... exerted onto the basis. Defined as such,
particular, if H = 0, the modelling approach does not requir

X . ) - (freac, 7) are the external forces to be supplied in order to
any further calculation beyond the kinematic stage, Wmle?nsure the desired motion of the RMS. As a result, this

H # 0, the klnerrl]atlc qufl IS not sufficient a_nd the approaczl orithm solves the inverse dynamics of any RMS, and
needs a second "dynamic” stage. The dynamic stage comsists

. . ‘we will symbolically denote it asDyy,4(g, 7,1, 7,7,7) =
palculatmg the dynamics of the system free of any const;r al reacs 7). SiNCe these early works, several extensions of the
i.e. (1) with A = 0. Once computed, these unconstraine,

(or "free™) dynamics are projected according to the forraul uh and Walker algqrithm have been proposed [15], [23], [31]
(66-68) onto the subspace of admissible velocifidst?), to ased on the floating frame and assumed modes approach,

. ; : . . the Luh algorithm has been extended in [23] to the case of
?;;;Vexﬁiéri?‘lézegg;?rm?g %Tﬁ Tr:gsrgt:f)hr?s{)rii?izﬁ \fﬁ:i cr)nultibody systems with compliant bodies whose all the @int
' P €q are actuated. Such an extension requires to derive a gizeefral
Once the forward dynamics of passive dofs are known itjuﬁlewton—Euler model of Flexible Multibody Systems (FMS)
y g%tailed in [32] and reminded here in Appendix B. In this

[Zn;t?lnzr:g c?nmegusti(la trzee';vregssse trtgqgis?\ye}nz)n:\;\f;r;v;h (fn tended Luh algorithm, the elastic accelerations areutsitp
Y sty press the p . WIRAM ¢ the algorithm while the elastic state variables are inpAs
and the actuated inverse dynamics in the alternative for8) (4 . ; : .
. : ; : a result, such a recursive algorithm is symbolically dedote
while the internal actuated dynamics can be put in the fadwar, _; . L . .
(Tea 9,T5,Tes 1, 75,1, rj) = (Tea freacv 7—) with Te the

form (9), so allowing to derive the forward dynamics of a /MS o . .
MMS with passive internal dofs. Yector of (Rayleigh-Ritz) elastic variables angd that of the

joint variables. Now, we are going to see how the Luh recersiv
] algorithm can be used to calculate the free dynamics of a
B. Computational apects flexible MMS, i.e. (1) with A = 0. To that end, we first
Returning to the locomotion problem of section 11.B, weonsider for the sake of pedagogy the simpler case of a RMS
are now capable of numerically solving it through a dynamic
simulation. To that end, the forward dynamics (including th , o
Note here that because the motion of the basis is imposeH,asagstem

reCO_nStrUCtion equation) of the passive dofs controlledi®y s ot properly a Mobile Multibody System (MMS) in the senbattthe net
motion of the actuated dofét +— (r4,74,74)(t)), can be motions are not governed by a locomotion model.
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mounted on a mobile basis whose motions are imposed. Withnamics of any MMS. The point of what follows is to provide
the notations introduced above, the dynamics of such amystsuch an extension. To that end, we first reformulate the model
are trivially given by: (29) in order to conform it to the input-output map ;. In

particular, the elastic accelerations are some outpuf®,df

freae \ _ ( M MT 1 f e o ;
( - )_(M m i) Lo ) (28) whose expression is given by the second row of (29):

which has the same form as (1) except that the passive dofs e = Mg (Qe — Mei) — mij ). (30)

are now removed, and that the external forces transmitted pya, re-injecting (30) into the first and third row of (29)
the constraints take the particular form 0" (4, B.))" = gjlows to express the two other outputs®f.}, ; as:
(L., 07)T. Now, let us remark that in any caseand@ can

reac’

be written as the sum of two components, one depending on/ ... M ]\AJJT n f
the configuration only and the other on both, the configunatio . = ]\Z 7y i) @j . (31)

and the velocitie% i.e.:
® ) ) where we introduced the following set of matrices:
f:fp(g,T)+f (977"77%7“)7

Q=Q"W(g,r)+ Q" (g,r,n, 7). M=M= Mime M, (32)
—1
where Q(")(g,,0,0) = 0 and f*)(g,7,0,0) = 0. Based M = M; = mjemee Me (33)
on this remark, all the constitutive matrices of (28) (i/et, Mjj = My — Mjememi,, (34)
M, m, f and Q) can be computed by applyin’@g}ws to ]?: f—=M'm}Q. , (35)
some sets of specific inputs. In fact, a simple examination ~ _1
of (28) shows that(f®,Q®) = D3l ((g,7,0,0,0,0), Qj = Qj = mjemee Qe (36)
(f,Q) = —Drps(g,m,m,7,0,0) while if we denotedr a Now, a simple examination of (30) and (31) shows
vector with all the components equal to zero exceptife that the matrices (32-36) along witm_'Q., —m_.' M.
which is equal to one, we hayeM ™), — f7), (m),—Q")) = and —m_'m?, appearing in (30) can be recursively

D;%Jiws(gﬂ"voaovoaék) and (M) — f®, (M) — Q®) = computed by applyingD;l,s to specific inputs as
Drars(9,7,0,0,0:,0), where (A),, denotes thek™ column follows (the ~superscripts(p) and (v) denote position
of any matrixA. Thus, making: sweep all its possible valuesang velocity-dependent matrices as in the rigid case):
allows _to recqnstrucM,M_,m,f and@ of (28). Remarkably, DEzlus(Tea 9,74,0,0,0,0,0,0) = (_}"(p)7me—el gp), _@?)),
extending this computational process from RMS to FM3_3 . . . = ~
allows computi : . s (Tes 957357, ,75,0,0,0) = (= f,m . Qe, —Qj)
puting recursively the free dynamics of a MM Dol (rerg,73,0,0,0.0, 6, 0) - (M) —
containing compliant bodies, at least when these bodies ) FMS er 9,730 5 iy (’;3 = k(p) _
terminal one& To show this, we first consider an equivalerd = ym(mege Me)e + me Qe (My)e = Q)
FMS identical to the original MMS but with fully actuatedDrys(re,9,75,0,0,0,0,0,6,) = (M)x — [,
joints and a reference body defined as a mobile basis sulkdmitte(m_'mT.);. + mz1QW () — @5”). Finally, once
to imposed motions. The dynamic model of such a FM&2-36) and(m_!Q., —m_} M., —m_}m?)) known, we can
is the same as that of the MMS, i.e. (1), except that thefer the expressions of all the matrices of (29) by assuming
torque (07, 77)” is now replaced by a full vector while the compliant bodies (if any) to be terminal bodies of the
AMT(A, By, Ba)" = (f£,..07,0T)T. Moreover, separating the tree-like structure. In fact, in this case the computatibmg,
elastic coordinates of the bodiesfrom those of the joints; s straightforward since one simply has. = diagken,, (M)
according to the block-partition = ([, r]), the dynamics with Ny, the set of terminal bodies indexes ordered according

of such an equivalent FMS can be stated as: to 7., and m;, the elastic mass matrices of the generalized
M MT MT 7 ¥ Frene Newton—EuI_er model (69) (see Appendix B). Then, om%
v A . _ is known, simple algebra allows to compupe, M. andm
e Mee My e )= QT % ] 6 (30), from which we easily deducat, f, M. m; and
Mj mje  my; 7 Qj T : y AN

29) Q; from (32-36). Finally, we so construct all the matrices
where let us repeat that except”,.,07,77)7, all the ma- appearing in (29), excepf.... and 7 which once replaced

trices are just an alternative block-partition of thoseared PY 0 @nd (07, 74)" in (29) gives the original equations (1)
to the original MMS appearing in (1). As a result, if weVhenA =0, i.e. the free dynamics of the original MMS. At
can extend the previous recursive computational process frlst: returning to the numerical simulation, such calcofet
RMS governed by (28), to FMS governed by (29), we will b§a" be achlevgd numerically at each §tep of a global time
capable of recursively computing (1) with= 0, i.e. the free 100P or symbolically (and once for all) in order to generate
with a commercial symbolic software, customized algorghm

8Typically, the velocity-dependent component contains @wiolis, cen- Which can be executed numerically in a second step [33].
trifugal and friction forces, while the position-depentieomponent accounts
for the restoring elastic forces and the gravity forces.

9Fortunately, this case plays an important role in compli@ebmotion VI. APPLICATION TO WHEELED MULTIBODY SYSTEMS
bio-inspired from animals which exploit the advantages exilile terminal .
organs such as fish tails, insect wings and others. In thergletase (of any We now consider two examples of wheeled systems chosen

compliant bodies) other (non-recursive) algorithms stidae developed. for their illustrative value. The first example belongs t@ th
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which defines] = —A* =1 B,, with IC(A*) spanned by =
(0,1)*. Furthermore, identifying (38) with the general case
(17) allows to define the two nonzero matricés: = (R,0)
and D = 1. Then, we have to compute the free dynamics of
this system in the spac x S, x &,, and find (withy =
9.81Nm? the gravity acceleration, andi/ the total mass of
the system (cart, pendulum and two wheels)):

M mlc3 0 O x mls3rs
mle3 ml*> 0 0 3 | | —mis3y
0 0 Jw 0 7.’:1 - T1 !
0 0 0 Jw 7.’:2 T2
Fig. 2. Frames and parametrization of a mobile pendulum (39)

which is the particular form of (1) (withh = 0) for the mobile

pendulum. Now applying the general reduction process (66)
class of systems containing passive internal joints. It isamd (67), with the only nonzero matrice$4 = M, M, =
mobile pendulum with one internal passive dof coupled tomalc3, m,, = mi?, finert = mlsd3rs, Qp.ext = —mls3y and
wheeled cart supported by two redundant wheels. The seceng, = J, 12, gives:
case belongs to the class of systems whose passive internal 3. .
dofs are purely kinematic. This is the 3D bicycle, a very mi*fs = —mlys3 — miRc31(¢), (40)
familiar system but whose dynamics are rarely exhibited that has to be completed with the reconstruction equation:
their full generality.

z = Rry. (41)

Then, in order to compute the internal torque dynamics (27),

we also need:
This is a planar cart supported by two wheels constrained AT ( 11 > (42)

to roll without slipping along a one-dimensional rail (sdg.F 0 0

2). On the cart, a single pendulum of lendgtend massn, is  \ynose kernel is defined by:

pinned through a single dof angular joint. All the joints and

contacts are assumed to be ideal (no friction, no elastichy K(ATT) = {< +1 ) T T € R} 7 (43)
the mass of the pendulum is concentrated at its tip. The two -1

identical wheels have a mass,, and an inertia momentumthat gives after straightforward computations:

(about their centery,,. This system has four bodies: the two 5 .

wheelsB; andB,, the cart considered as the reference bBgly < T ) — < Jw+ MRE® 0 > < " ) (44)
and the pendulunss. In this trivial case where the constraints T2 0 Jw 2

are holonomic, the space of configuratidRs< S is directly " < mRI(c3i3 — s3757) > n ( R 0 ) ( +1 >T
compatible with the constraints. Thus the reduction preces 0 0 R -1 '

is quite artificial. Nevertheless, for the sake of illuswatwe \yhich is true for any". Finally, the expression of the wheels’
are going to apply the general framework developed in sectigontrol torque (27) appears as the sum of a component sup-
[l to this system when both wheels are active. This exampf{ﬁ),ing the external force required by the motion, and anothe
allows to illustrate the previous general context in theroeveyhich models eventual antagonist internal torques proyci
constrained case where the control torques are not uniggg-motion. Note that due to our choice of generalized inver-
The group of net displacements is identified here to the oggyn, takingl’ = 0 makes the front wheel the leading one. On
dimensional translations € R, wherexz denotes the position the contrary, taking’ = — (M R2i' + mRI(c3i's — s3i-2)) /R

of the cart along the rail. As regards the shape space, Wetsplihifts the external force on the rear wheel, while taking
into S = &, xS, with coordinates;, = rs andry = (r1,72)". 7 = _(MR% + mRI(c375 — s372))/2R distributes the
The constraints are imposed by the rolling without slippingyrces equally between the two wheels. Note that this last
conditions of the two wheels along the rail, i.e.: case could be directly obtained by taking the pseudo-ievers

1 0 i R 0 i 0 as a particular generalized inverse.
(o)) (0 7) () =(0) e
B. The bicycle

The bicycle is modelled by a MMS with four connected
Fr'igid bodies as drawn on Fig. 3, where its frame defines the
reference bodyB, of the MMS. The bicycle moves on a
planar ground without sliding nor slipping, however, it can
tilt. Since we aim at modelling a 3D locomotion system, the

i R 0 " 0\ . configuration space iSE(3) x S with the shape space here
( s ) = ( 0 0 ) ( o ) + ( 1 )TB, (38)  defined byS! x S* x S which stands for the dofs of the

A. The mobile pendulum

which definesA* and B, of (10,68) and shows that =
n+s, =2 andm® = 1. As a result, we are in the case wher
n+ s, > m° andm > m?°, and from Table |, we know that
H # 0 and A\st0r # 0. Now, a generalized inversion of (37)
gives:
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0 0
0 —h
0 0
hsacasl 0
0 0
0 0

i A simple analysis of these constraints shows thet =

rank(A, B,) = 6 = m. Then, sincen +s, =6+ 1 =17,
L we are in the case where:+ s, > m°, m = m°. Hence,
from Table I, we haved # 0 and Ay = 0.

2) Kinematic model:Now, it is possible to use a gener-
alized inversion ofA* = (A, B,) to derive the kinematic
model (13). However, we will derive the model in a more
straightforward way as follows. First, let us remark thatnfir
the first and last row of the constraints (46-47) we find:

iS]
|
coooo

&

Fig. 3. Frames and parametrization of a bicycle

handlebars and the two wheels parameterized by the angles Vox =0, Qoz =0. (48)
r1, 19 andrs respectively. The rear wheel is directly actuated . . . . .
by the two pedals which exert a torqugon it. The handlebars Then, injecting (48) in the third and fifth row of (46-47) gize
are also actuated by while the front wheel is passive but Vi, [scatanl Vo Qe — [ tan 1 v (49)
constrained by the motions of the other dofs. As a result, we °Z ~ \ "7, + 3 LR T\ T ) O

split S into § = &, x S, with 5, and S, coordinatized e (), is undetermined, and as such, defines the kernel
by rp = r2 andr, = (r1,73) respectively. As regards the,¢ 4: Now let us remark that all the other net velocities are

geometric definition of the bicycle, the frames of the bodiedseﬁned byVoy and thatVyy is defined fromis using the
and the design parameters are indicated on Fig. 3. We assW&,q row of (46-47) through the relation:
that the wheels are identical and modelled by two planaisdisc ’

of massm,, and of inertia momentuns,, and.J,,, depending Voy = his. (50)
on whether the corresponding axis, which passes through tklﬂnally

© 40~ i | dicul h all the components of the net velocities are fixed-by
mass centers); andOs, Is coplanar or perpendicular to t _eexcept the tilt velocity2oy which requires a dynamic model to

wheel, respectively. On the other hand, the bicycle fram® ig)o yetermined. This fact is confirmed by the following relati
3D rigid body defined by its mass,, the vector of its first

momenta in the reference frante.Xo, mYy, mZ,)" and the Vox 0 0
matrix of its second momenta: Voy h 0
% l: . 0
XXo XYy XZ in = wdf ity | Qv (81
YX, YY, YZ, |, (45) Qoy 0 1
ZXo ZYy ZZ Qo 0 0
which is nothing more than the angular inertia matrix3fin  with:
its reference frame. Finally, we neglect the inertia of the () = heatan 1 (52)
fork and handlebars around the steering axis, with respect t la+13
that introduced by the front wheel. On the other hand, if we inject the constraints (48), (49) and
1) Kinematic constraintsWe assume that contacts betwee(b1) in the fourth row of (46-47), we find:
the wheels and the ground are perfect (no friction, no defor- Fo = (cl + asl tan 1) Fs — sacasli, (53)

mation). As a result, the constraints reflect the fact thatrip
direction normal to their plane, each wheel cannot peretrathis last constraint (53) allows one to deduce the motiohef t
nor separate from the ground at the contact point, while front free wheel from that of the rear wheel and the handigbar
a direction parallel to their plane, the wheels roll withouboth being actuated. Finally, gathering (51) and (53) with=
slipping. Then, it remains to invoke the parametrizationhe (r1,73)” and Tp = Tpkin = T2, gives the model (17), with
velocities imposed by our definition of the configurationapa D = 0 and H,,, = 0 (since all the passive dofs are kinematic)
(as fiber bundle), to obtain the six constraints in the form @ind the following expressions:

(2) with: 1
JT _gT _ —sacas
1 0 0 0 0 0 int wnt cl + Rasltanl /)’
0 1 0 0 0 0 0 O 0
A 0 0 1 I3 0 0 0 h 0
- 0 —cl  —casl —lycasl 0 0 ' | 0 w3 10
—sasl —casl cl lacy 0 Ilzsacl Jeat = 0 v » Hee = 0 (54)
0 0 0 0 0 1 0 O 1
(46) 0 0 0
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In the next subsection, the kinematic model (54) is used t¢ andr, = —r; the angles of the two axles, ang that of
reduce the bicycle dynamics. the rotor, all measured with respect to the platform (Fig. 4)
3) Reduced passive dynamic#s suggested before, weThe remaining coordinates are defined gy= rj, qyn = re

first derive the free dynamics of the bicycle by applying theith r. the vector of elastic (modal) coordinates of the flexible
previous recursive algorithm in its rigid version, whiclvegs bodies. To fix the idead3; and B, will be modelled as two
the model in the form of (1) with\ = 0. In the case of identical Euler-Bernoulli planar beams undergoing flekura
the bicycle, the expressions of the matrices appearingign tdeformations described in the basis of the cantilever modes
model are given in Appendix C. In a second step, one appliekthe two beams [20]. We will take one mode per beam so
the reduction process (66-68), to obtain the reduced dycsamthat r. = (r.s3,7.4) Where the first coordinate is that of the

equation (23) which here becomes: first mode ofB3 and the second, that &y, i.e.:
M, Qoy = fr, (55) d3(X3) = ¢1(X3) 7e3 , da(Xa) = ¢1(X4) Teq, (59)
with: with d575 andd474 the two fields of transverse deformation
M, = HE MH,,, (56) along the two beam axif0s, X3) and (O, X4) respectively
. . T (Fig. 4) and¢, the first flexural mode of the beam. With all
fr=Hee(f = MJeatia = My JineTa)- (57)  these definitions, stating that the wheels roll on a planauigd

Hereby let us remind that = four + finerts Qp = Qpueat + without slipping nor sliding allowing to write the constnéé
Qpinert ANAQu = Qq.cot + Quinert, While if the rear wheel under the general form (2) withh = m°® =2 andn + s, =
has no frictionQ,, in: = 0. Finally, the reduced dynamics have’ + 2 = 5. Thus from Table I, we havél # 0 and Asir =

to be completed with the kinematic model of net motions: 0. Then, simple handling of these constraints allows one to
derive the kinematic model of the elastic snake-board under

g=g <H€eQOY - Tomt ( ;’1 )) 7 (58) the general form (17) which becomes in this case:
° Vox —2lcos®*(r1) 0 0 0 0 Ny
which once gathered with (53) forms the two reconstructiop /. 0 00 0 0 Fos
equations (7-8) for the bicycle. In all these expressiohs, t| ,, | = sin(2ry) 0 0 0 0 oy ,
matrices appearing in the free dynamics are given in Append} . . 0 100 0 i1 (t)
C, while H.., Jin: and J.,; are detailed in (54). Finally, Fos 0 01 0 0 i5(t)
introducing the same data into the general expression of the (60)
control torques (27) with\sq: = 0, gives the two control Now, in order to compute the external unconstrained dynamic
torquesr, = (1, 73)7. of the system which in this case take the form of (29) with
freae = 0 @and A = 0, one can use the recursive algorithm
VII. A PPLICATION TO SOFT ROBOTICS proposed in section V.B. Remarkably, since there are no more

The third example illustrates a locomotion system mixin%?? two bodies (including,) per branches, the outputs of
non-holonomic constraints and soft robotics. This systefirars (1€ (freac, 7, 7)) Can be computed explicitly by hand
is obtained by reconsidering the snake-board of [1] whef$ follows (we use the_notatlonslof the generalized Newton-
the rigid actuated rotor accumulating the kinetic momentufrtler model reminded in Appendix B):

(which is cyclically transferred to the external dynamics Freae = M 1) Jr]\“jjTi:j 7 (61)
through the constraints), is now replaced by two soft ap-

pendages symmetrically positioned with respect to the mo ith: s
shaft (Fig. 4). This system could be used to explore the M= My+ (62)
potential benefits of cyclically storing and restoring tlieekic 2 4 .
energy in the compliant rotor. > Ady MyAdg, , + > Adh M Ady,
k=1 k=3
A. The soft snake-board and:
For the sake of simplicity, the wheels are not declared in MjTéﬂ'j —f=%F+ (63)

the multibody structure but only taken into account through 2 4 . N

their kinematic model while their mass is added to that of the > " Ady (=M, + Fi) + Y Adg (=M ¢+ FF),

platform. With this choice, the snake-board is a MMS with five k=1 k=3

bodies. The platfornB,, the two axles3; and 5, and finall e o T -1 F+ _ T, 1

the flexible r%tor thatowe model by t\;vo syrr12metric flex)i/ble'Wlth My = My —Mgmy My andFy” = Fy — My my Q.
_ ) > ) n the same manner, the elastic accelerations can be detaile

bodiesB; and B4. These two bodies are rigidly cantllevereqJIS (fork — 3,4):

on a vertical shaft actuated by a motor attached to the phatfo ’

in the origins of the beam frame&3; = O.. The configuration Fer = my ' (—Mg(Ady, o1 + Cr) + Qk), (64)

space isSE(2) x § with § = §, x S, and the coordinates yhjle, the internal torques are given by:

r = (r],r)T. As in [1] we impose that the angles of the . o _

two axles with the platforms are opposite, so that the vector 7k = Aj (M = My my” My )(Adyg, o7 + Cr)

of active coordinates can be reducedrto= (ry,r3)?, with —Fr + MkT m,;le]. (65)
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soft propulsive appendages. More than giving the final fofm o
the equations, the approach also gives access to a clagsifica
of the systems depending on the relative values of some
intrinsic numbers as the dimensions of the passive dofs and
the rank of the locked and unlocked independent constraints
Finally, the article also proposes a simple algorithm to pota

the unconstrained dynamics of these MMS (that have to be
projected after). This algorithm is in itself new, and based
on an extension of the Luh’s recursive algorithm from rigid
to flexible multibody systems. At the end, the approach is
applied to several systems chosen for their illustrativerest.

Fig. 4. Frames and parametrization of an elastic snakedboar In future, this general set of equations will be used to study
more advanced cases of bio-inspired soft locomotion such as
that inspired by the hovering flight of moths or the swimming
of fish with undulating tail. Finally, we also intend to pregn

0'in .(]93). gn{[esf, \:\Ih”f. forcmﬁ (Tj’? N (O’tOBTnd t?klng this algorithm using Mathematica to generate automayicall
specific joint accelerations, allows to construdt’ column customized (optimized) symbolic models.

by column. In the same manner, imposing specific inputs In
the expression of torques (65) and elastic acceleratiofs (6 APPENDIX A

= SR
allows one to computen;; and @;, along with m . Q., EXPRESSIONS OF THE REDUCED MATRICES Of23)

a1 1T i i — i
mee Me and —meg mje. Finally, sinceme. = myilz With o 1o ced inertia matrix can be detailed as:
my1 the modal mass of the first flexural mode of one of the

two identical appendages and the 2 x 2 identity matrix, < M, MpT,r > _ (66)
we can recover all the matrices of (29). Then projecting My mpp

these dynamics onto the admissible space using the reductio HL 0 M MT H.. H.,
formula (66-68) with H.. = (—2lcos?(r1),0, sin(2r1))7, ( HI, DT ) ( ) ( )’
Hep = O3x2, Jear = O3x2, Jins = O2x2 @nd D = 1o, finally  hije the reduced forces are given by:

gives after a few rearrangements, the dynamics in the form of

Then, according to the algorithm of section V.B, forciig=

(4-8).At last, using (27) with the same matrices ang,; = 0, ( Qf'r ) - ( ge;e DOT ) ( g ) , (67)
gives the three expected control torques. pr ep
with:
VIIl. CONCLUSION ( F ) - ( M M )
This article contributes to propose a general formulation Q) My, mpp

for thg [ocomotign dynamics of any mobile multibody system H,eny + Hepf«p,dyn + JewtTa(t) + Jeatia(t) N
containing passive internal degrees of freedom and sutgect JintTa(t) + Jintia(t)

kinematic constraints and/or external forces. The finalo$et T

o . : = M7 (t)

equations includes the forward dynamics of the passive(ext + Q) — myaiialt) ) (68)
nal and internal) degrees of freedom (or "passive dynaics" P pata
along with the (inverse and forward) dynamics of the actate APPENDIX B

joints. The implementation of the approach is systematat an  GeNERALIZED NEWTON-EULER MODEL OF FMS

gf l_<|n<(ajmﬁt|c C(r)]nstramts, flr(_)m which a km((jamanc mﬁdel 'Buler conventions on tree-like structures labeling [34i t
erived throug a general INversion procedure. In t_ N _m(?ﬁHices of bodies increase from the reference bBgyto the
general case, this kinematic model mixes two Comr'buuor\%rminal organs as instantiated in Fig. 1, while the indicesd

The first one is a pure kinematic contribution for which the . yeserved to denote the antecedent and the successer of th
corresponding passive (internal and external) veloCilies o, ont indext, respectively. According to [32], in the case

entirely deducible from the actuated internal ones. Thersgc where the assumed modes used to describe the deformation

contribution is governed by a dynamic model deduced from te o,y of the bodies are cantilevered, such a model can be
projection of the unconstrained dynamics of the MMS onto thsetated as follows:

kernel of the constraints while the actuated joints are édck

i : . . « Generalized Newton-Euler model of the bodies:
The final formulation can cope with a wide range of systems

including MMS with passive (free or compliant) joints rulleg ( My M > < "k ) — (69)
dynamics (as in the case of compliant walkers and pendular My my, Tek

climbers) or free joints ruled by kinematics (as in the case F, — Z Adgfkﬂ

of non-holonomic wheeled MMS). Finally, it can also model Fr 1/ k=a(l) '

MMS which contain bodies with distributed compliances, as < Qx > - Z IR,  Fi

this is the case of bio-inspired robots exploiting the \@gwf 1/ k=a(l)
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« Kinematic model of the transformations:

9k = 9i Gei Yri- (70)
« Kinematic model of the velocities: where:
nk = Adg, , ni + Ry, , @i Tei + Apre. (71)
« Kinematic model of the accelerations:
e = Adg, , 1 + Rg, , ®i Fei + G- (72)

As any Newton-Euler model, this model is structured in two
sets of equations. The first (69) corresponds to the dynamic
balance of isolated bodi¥s the second (70-72) models the
kinematic constraints imposed by the joiitsin (69-72),r,  with:
is the k" joint coordinate,r.;, is the vector of the modal
coordinates of thé&'” body, g, is the transformation mapping
a unique frame fixed to space onto th& body (floating)
frame, n, = gk_lg'k is the corresponding6 x 1) velocity
vector (in the mobile frame), is the inter-body(6 x 1) force
vector exerted by3; onto By, Ad,, , (respect.Ry, ) is the
matrix changing a velocity from thé" floating frame (respect.
basis) to its successor. The transformatipp represents the
(elastic) transformation introduced by the deformatiospin
its connection point with its successor, whibgr.;, = g'ekge_kl

is the corresponding6 x 1) (elastic) velocity vector. The
transformationg,., represents the transformation that would

map thei” floating frame onto its successor, if the MMS MpT =
was rigid (this is the rigid geometric model of the MMS).

Finally, the corresponding velocity idyr; = g;klg',,k which

accounts for the joint velocity whil&, contains the corre-
sponding acceleratior{$y) as well as all the residual velocity
dependent accelerations resulting from the time-difféa¢ion

of (71). The reader interested in the detailed expression of
these quantities is referred to [32]. Finally, sinBg is the
reference body which defines the external motions, one hack-pa

(90,m0,10) = (9,7, 7).

while:

APPENDIXC
FREE DYNAMICS OF THE BICYCLE

The matrices appearing in the bicycle’s free dynamics can

I= lyw Ly 1yz ’
Iza; Izy Izz

Lip = XXo+mu(3+13) + 1, + XX
ey = Lyw = XY + XY,
we=Lo=XZ+XZ,
=YY+ 1, +YY
I.=1,=YZ+YZ,
I.=2Z4Jw+ ZZy+mu(l3 +13),

NN~

XX = sa®(I,c1? + Jyus1) + Iyca?

XY =YX = saca(l,cl® + Ju,s12 — 1)

XZ=7X = (I, — Jy)saslcl

YY = ca?(Ipcl? 4 Jyus1?) + I,sa?
YZ=2Y = (I, — Jy)caslel

77 = I,87 + Juci

0 0 0
0 0 0
0 T _ 0 0
—saslJy, My = cal, 0
—COleJw —SO[IH; 0
Jwcl 0 Jw
Jo 0 0
( Mpp  Mpa ) _ 0 I, O
Map Maa 0 0 Jw

rtition:

Min
(MpT Mg)<Molmg>'

finert,lin

13

(74)

(75)

(76)

In the following expressions we also use the "linear-angula

(77)

As far as the right hand side of (1) is concerned, we have:

be obtained using the recursive algorithm proposed in@ecti Finert = < finert.ang > ' (78)
V. They take the form of (1), withh = 0 and: with:
ml ms7T
M= ( ms I ) : (73) finert,lin Qo x mVp + Qo x (o x ms)
Whose computation, requires the expressions: finert.ang = ms x (0 x Vo) + Qo x (IQ0 + MangT)
oI sacl
m = 2my +m, , + — Qo —Jy | cacl | 71, (79)
87“1
sl
0 mZy  mu(ls — lo) — mYp whereas:
9
—mZ, 0 mX : Ouinon = L ( a0 4 (80)
myw(l2 —13) +mYy —mXg 0 Gmer 2 0
10n (69), one finds from left to right the Generalized Newtan€E inertia + ( 7Jw(sa61QOX +caclfloy + SlQOZ)Tl ) ,
matrix, the vector of body-reference and modal acceleratithe vector of 0
generalized inertia, restoring, and external forces (gixttes inter-body ones), .
and finally the vector of inter-body generalized forces. Qpiinert = Juwr1(saclQox + caclQoy + s1Q072),  (81)

HEquation (70) (for which (71) and (72) are differential cegsences) just
models how one can shift from one floating frame to its suazeakng the
structure.

while @t can model the friction introduced by the rear
wheel’s joint. Finally, since the external forces are ingllic
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