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Reduced locomotion dynamics with passive internal
DoFs: Application to non-holonomic and soft

robotics
Frédéric Boyer, Ayman Belkhiri

Abstract—This article proposes a general modelling approach
for locomotion dynamics of Mobile Multibody Systems (MMS)
containing passive internal degrees of freedom (dofs) concen-
trated into (ideal or not) joints and/or distributed along d e-
formable bodies of the system. The approach embraces the case
of non-holonomic mobile multibody systems with passive wheels,
the pendular climbers and the locomotion systems bio-inspired
by animals that exploit the advantages of soft appendages such
as the fish swimming with their caudal fin or the moths using the
softness of their flapping wings to improve flight performance.
The article proposes a general structured modelling approach of
MMS with tree-like structures along with efficient computational
algorithms of the resulting equations. The approach is illustrated
through non-trivial examples such as the 3D bicycle and a
compliant version of the snake-board.

Index Terms—Locomotion dynamics, biologically inspired
robots, soft robotics, non-holonomic systems.

I. I NTRODUCTION

NATURAL or artificial, any locomotion system undergoes
two types of motion. The first are overall rigid motions of

degrees of freedom (dofs) called "external dofs" because they
are measured by an observer outside the system. Since these
dofs are not directly actuated, their time evolution is governed
by a model of locomotion (i.e. the contact between the system
and the world). The second type includes the motions of the
internal dofs or shape dofs [1]–[3]. Among these internal dofs,
some are "unactuated" or "passive" and play a key role in
the locomotion of animals and robots [4], [5]. For instance,
they can help to simplify the control laws or to increase the
number of dofs used in locomotion without increasing the
number of actuators. They also allow one to save consumed
energy, to extract it from the environment and to store it in
some of the internal dofs before restoring it in the external
dofs. They can also be used to increase the instantaneous
power beyond the intrinsic capabilities of actuators [6]. As
illustrations from natural world, let us mention the climbing
animals which use pendular locomotion or those which use
compliant appendages to generate thrust or lift as in swimming
of fish or hovering flight of moths [7]. In the first case, the
animal does not seek to resist the gravity field as in static
locomotion, but on the contrary, uses its potential energy as
a resource of motivity by swinging up by the supports [8].
Inspired by gibbons’ brachiation, this strategy is exploited by
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the most efficient climbing artifacts [9], [10]. In the case of
swimming, experiments and modelling works have recently
shown that a compliant dead fish can resonate in a Karman
vortex street and extract from the ambient vorticity the energy
required to resist drag forces and maintain its position in the
flow [11], [12]. Similarly, the hovering flight of moths involves
a (passive) wing twisting deformation which is the key of
lift generation. Beyond these natural examples, many artificial
wheeled systems use passive wheels to self-propel (snake-
like robots, snake-board) [13] or to self-stabilize (the bicycle)
[14]. Known today as dynamic non-holonomic systems, these
systems differ from kinematic non-holonomic systems by the
fact that the time-evolution of their external dofs requires
dynamics to be modelled [1], [15].
To date and so far, there is no unified modelling framework
able to embrace all these systems and in particular those which
contain bodies with distributed compliancies. Therefore,the
purpose of this article is to contribute to such a framework.
In order to achieve this objective, we consider any robot (or
any animal in a bio-mimetic approach) as a Mobile Multibody
System (MMS), i.e. a set of solid bodies connected by internal
joints whose time-variations produce (by reaction) external
forces that generate the expected "net displacements". Follow-
ing geometric mechanics [2], [13], [16], [17], the model of
these systems is derived by applying the laws of dynamics on
a space of configurations(g, r) whereg is the transformation
of a Lie groupG which parameterizes the net motion of the
MMS, while r parameterizes the shape of the MMS and coor-
dinatizes a manifoldS, named the "shape space" of the MMS.
In the rest of the article, we consider MMS that are possibly
subject to external forces depending on the current position,
velocities and accelerations of the system and/or to eventual
kinematic (external) constraints which can, for instance,model
the contacts of the system with a rigid substrate. In the
constrained case, an outstanding study revealing the geometric
insights of non-holonomic systems has been proposed in [18].
However, this general approach is restricted to rigid fully
actuated MMS. By contrast, we here consider the case of MMS
with internal unactuated (passive) degrees of freedom, some
of them accounting for eventual flexibilities distributed along
the bodies. As such, the article here presented, proposes an
extension of the context of [18] to the case of soft MMS.
Another novelty of the article concerns the dynamic model
of the internal actuated dofs, which is studied not only in its
forward form but also in its inverse form. All, these extensions
raise new difficulties. In particular, they need to tackle ina
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unified formalism systems whose passive dofs can be ruled
by kinematic constraints (as the angle of the front wheel of a
bicycle), or actual dynamic equations (as the deformationsof
a flapping wing or those of the elastic rotor of a soft snake-
board). Moreover, addressing the dynamics of the internal
actuated dofs in the inverse form, needs to tackle redundant
degrees of freedom in torque inputs which do not produce any
passive or active motion and simply serve to cancel each other
as is the case for a planar mobile robot with two redundant
wheels operating in opposition. As a result, this other new
aspect can help roboticists to address locomotion problems
where the control objectives are not only related to the net
motions but also to hyperstatic forces as those involved in the
stability of redundant legged locomotion or hyper-redundant
snakes.

In order to achieve these extensions, the dynamics of
the passive (internal and external) velocities (more simply
named "passive dynamics") are projected onto the kernel of
the kinematic constraints locked in the current configuration
of the actuated dofs. This choice provides a systematic
modelling approach structured in a kinematic and a dynamic
stage. As regards the compliances, they can be localised
on passive joints or distributed along the bodies. In this
latter case, the body deformations are modelled by using
the floating frame approach [19] and the assumed modes
method [20] as initially developed in the context of flexible
multibody systems dynamics [21], [22], [23]. This choice is
motivated by the dramatic reduction of resulting equations,
a useful characteristic for roboticists working on feedback
control, optimization, etc. In addition to offering a modelling
framework to a wide range of systems, the article also
proposes some efficient algorithmic tools for the practical
calculation of the models of these systems. In particular, the
kinematic modeling is investigated under the generic point
of view of generalized inversion while the dynamics of a
MMS possibly containing compliant bodies is computed
thanks to an extension of the Luh algorithm [24], proposed
in [23] and here used in a way which to our knowledge
is new in itself. For the sake of illustration, the approach
is finally applied to several non-trivial examples such as
the 3D bicycle and an elastic (soft) version of the snake-board.

The article is structured as follows. In section II, we
consider the kinematic model of a MMS subject to an arbitrary
number of non-holonomic constraints, then we introduce the
problem we will address in the rest of the article. By a
projection process of the MMS dynamics onto the kernel of
the constraints, we derive in section III the reduced forward
dynamics of the passive (internal and external) dofs controlled
by the internal actuated dofs. Once these dynamics are known,
it becomes possible to reconstruct the motion of all the dofs
(internal and external, actuated and passive) and to compute
the internal torques which have to be applied onto the actuated
joints by the actuators to ensure these motions. It is the subject
of section IV to derive this model which is nothing else than
the inverse internal dynamics of the MMS. When the number
of bodies exceeds a few ones, it becomes too much difficult to
calculate its dynamic model by hand. Therefore, we address
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Fig. 1. Mechanical structure of a tree-like MMS: The bodies are labelled
in increasing order from the reference body to the tips. In this case,B9 and
B10 are two terminal compliant organs whileB7 is an intermediate compliant
body.

the problem of its efficient calculation in section V. Sections
VI and VII are devoted to the application of the approach on
illustrative examples. At last, section VIII closes the article
with some concluding remarks.

II. PREAMBLE

The purpose of this preamble is twofold. First, it introduces
the context of the following results, in particular the assump-
tions, conventions and basic notations on which they are based.
Second, it presents the final set of dynamic equations.

A. Basic framework

In the subsequent developments, we will consider a tree-like
MMS as that pictured in Fig. 1. Such a system is composed
of N solid bodies possibly compliant, and connected by one-
dof joints that for the sake of simplicity we will assume
to be of angular nature. The deformation of each compliant
body is measured with respect to a mobile rigid configuration
defined at each instant as the extension of the resting geometry
of the body from the joint which precedes it in the chain1

(drawn in dotted line on Fig. 1). According to a Rayleigh-Ritz
approach [20], these deformation fields are then reduced on a
truncated functional basis of assumed modes as for instance
that of the first natural modes of the cantilevered bodies.
With such a finite parametrisation of the bodies’ deformation,
any configuration of the MMS is naturally defined by a pair
(g, r) ∈ G×S whereG is the group of the net displacements
(namely a subgroup ofSE(3) or SE(3) itself) of a reference
frame attached to an arbitrarily distinguished body, named
reference body, andS is the shape space, parameterized by
the joint and Rayleigh-Ritz coordinates gathered in the vector
r, which defines the "internal dofs". The active and passive

1Such a reference configuration defines at each instant a framewhich floats
around the real body. For this reason, the approach was once known as the
"floating frame approach" [19].
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internal dofs are distinguished by splitting the shape space
S into S = Sp × Sa, with Sp the space of the passive
shape dofs andSa that of the active ones. The dimension
of the fiber is notedn, that of S is s while sp and sa are
those ofSp and Sa with s = sp + sa and r = (rTp , r

T
a )

T

is the "passive-active" block partition ofr. The influence of
the environment is modelled through external forces generally
depending on the current state of the system and/or a set
of m independent persistent and non-holonomic kinematic
constraints. In these conditions, a first formulation of theentire
(external and internal) dynamics is given by applying the
principles of Lagrangian dynamics on the configurations space
G× Sp × Sa, which leads to:




M MT
p MT
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
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where from left to right, we find: ther-dependent inertia ma-
trix of the system. The vector of accelerations onG×Sa×Sp

with η = g−1ġ an element of the Lie algebrag of G which
defines the velocity of the reference frame in its mobile axis.
The vector of inertial, external and internal forces including the
torques provided by the actuatorsτa along with the friction and
restoring forces introduced by the compliances concentrated
on some of the passive joints or distributed along the compliant
bodies2. Finally, the last term (on the right) represents the
vector of generalized forces imposed by the constraints, with
λ a set of Lagrange multipliers forcing the constraints. With
our definition of the configuration space, these constraintscan
be written under the general form:

Aη +Bpṙp +Baṙa = 0, (2)

with A, Bp and Ba being m × n, m × sp and m × sa
matrices which only depend onr. Exploiting these constraints,
we will see that the time evolution of some of the pas-
sive coordinates can be deduced directly from the actuated
ones through kinematics, while others will require invoking
dynamics. The first type of coordinates are named "passive
kinematic coordinates" and denotedrp,kin while the others are
named "passive dynamic coordinates" and notedrp,dyn. We
will distinguish the "unlocked" constraints (2) which relate
together the components of(η, ṙp, ṙa) from their "locked"
counterpart which are given by:

Aη +Bpṙp = 0, (3)

i.e. by imposing ṙa = 0 in (2). Physically, the unlocked
constraints (2) represent the kinematic conditions imposed

2Going further into the details, the forces exerted on the external and
internal actuated dofs can be decomposed in inertial (Coriolis and centrifugal
forces) and external ones (excluding those imposed by the constraints) as
follows: f = finert(r, ṙ, η) + fext, Qa = Qa,inert(r, ṙ, η) + Qa,ext

while Qp = Qp,inert + Qp,ext + Qp,int contains a third component
Qp,int(rp, ṙp) modelling the passive restoring and friction internal forces.
As regards the external forces, in the general case, they depend on the entire
state(g, r, η, ṙ).

by the contacts when the actuated joints are free to move
according to their imposed time evolution (which is assumed
to be compatible with the mobility of the MMS), while (3)
represents the same constraints but when the actuated joints ra
are locked in their current position. Based on this distinction,
we denote bymo (mo ≤ m) the total number of independent
locked constraints, and bym, that of unlocked constraints.

B. Statement of a locomotion problem

To derive the expected model, we address the following fun-
damental locomotion problem [15]. Considering the actuated
joint variables ofra as imposed control inputs given by their
time evolutiont 7→ ra(t), solve the forward passive (external
and internal) dynamics, i.e. compute at each step of timet
of an integration time-loop: the passive accelerations(g̈, r̈p)
from the knowledge of the current state (g, rp, ġ, ṙp) and that of
the current inputs(ra, ṙa, r̈a)(t). This first subproblem corre-
sponds to solve the forward passive dynamics controlled by the
actuated dofs. Once(g̈, r̈p) computed, a second subproblem
consists in calculating the current value of the joint torques
τa required by the motions of all the (passive and actuated)
dofs, i.e. to derive and solve the inverse internal actuated
dynamics. Note here that, more than leading to the expected
model, this problem has also a strong practical interest in
robotics and control, since the locomotion gaits of a robot
are primarily specified in terms of shape motions, while in a
second step the torques are computed to check the feasibility
of the shape motion control. Finally, when addressing this
fundamental problem, in all the subsequent developments, the
time dependency of actuated variables is explicitly indicated
(i.e. ra = ra(t)) while all the other (passive) variablesrp
and g depend on the time only implicitly, i.e. through the
dynamics that we are seeking for. At last, we will see that
the forward dynamics of actuated dofs can be easily deduced
from its inverse version.

C. Introduction to the final set of equations

Before pursuing, let us comment a little further on (1-2). In
fact this first formulation cannot be deduced from Lagrange
equations but rather from Poincaré equations [25], [26] which
extend Lagrange equations to systems whose configuration
space is defined as a non commutative Lie group (in our case
G×R

s). Compared to any formulation derived from Lagrange
equations, the advantage of the Poincaré formulation lies in
the fact that in (1-2), the dependence ofg is confined to the
vector of external forces through gravity or any force which
breaks the symmetry of the ambient space. As a result, (1-2)
is more simple than any formulation derived from Lagrange
equations where the net motions are parameterized onR

n

using Euler angles for instance. In the language of geometric
mechanics, when it does not contain anyg−dependent external
forces, the intrinsic formulation (1-2) can be interpretedas
the result of a first (preliminary) reduction (from(g, ġ) to η)
of the system dynamics. In the following, we will deal with
a second reduction process which aims at removing reaction
unknownsλ (and their associated constraints) in (1-2). At the
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TABLE I
VALUES OFH AND λstat IN (4-8).

m = mo m > mo

n+ sp = mo λstat = 0, H = 0 λstat 6= 0, H = 0

n+ sp > mo λstat = 0, H 6= 0 λstat 6= 0, H 6= 0

end of this second reduction process, we will see that the time-
evolution of a MMS which contains passive internal degrees of
freedom (including those induced by distributed compliances)
and actuated internal dofs, can be stated as follows:

η̇r = M̃−1
r F̃r, (4)

r̈p,dyn = m−1
pp,rQ̃p,r, (5)

τa = m̃aar̈a(t)− Q̃a +BT
a λstat, (6)

ġ = g(Jextṙa(t) +Heeηr +Hepṙp,dyn), (7)

ṙp = Jintṙa(t) +Dṙp,dyn. (8)

From top to bottom, we find the forward dynamics of the
net reduced velocities, the forward dynamics of the passive
dynamic dofs, the inverse dynamics of the actuated dofs,
the reconstruction equation of the net motions and the re-
construction equation of the passive internal shape motions.
Without entering too much into the details of the expressions,
we introduced the following notations. The indexr means
"reduced", while a tilde over a matrix denotes a "modified"
version of this matrix in a certain sense we will explain
later and which is such that when there are no passive
dofs, the modified matrices coincide with the original ones.
M̃r(r) and F̃r(g, r, ṙ, r̈a(t), η) represent the inertia matrix
and the vector of external and inertial generalized forces of
the reduced external dynamics (of net motions).mpp,r(r) and
Q̃p,r(g, r, ṙ, r̈a(t), η) are the inertia matrix and the vector of
internal, external and inertial generalized forces of the passive
dynamic dofs.m̃aa(r) and Q̃a(g, r, ṙ, r̈a(t), η) are the inertia
matrix and the vector of generalized external and inertial
forces applied onto the active internal dofs, whileBT

a λstat
is the vector of the generalized forces (reaction torques)
possibly exerted by the constraints when they are redundant
i.e. hyperstatic. Finally, all the reminding matrices can be
deduced from (2). In particular,Jext , Jint represent some
Jacobian matrices while the columns ofHee, Hep andD are
sub-blocks ofH , a matrix whose columns span the kernel
of the locked constraints. Equations (4-8) define the general
formulation of an arborescent MMS containing internal lo-
calized or distributed passive dofs, subject to external forces
and non-holonomic constraints. Furthermore, we will see that
depending on the relative values ofm andmo, these equations
can be specified as indicated in Table I. Before closing this
section, let us make a further remark.

Remark 1:Because (4-8) is the solution of the locomotion
problem of section II-B, the dynamics of internal actuated
dofs appear in their inverse form (6), wherera is imposed
by its time-evolution, andλstat represents contact reaction
forces which do not produce any acceleration of the passive

dofs3. Alternatively, the forward formulation of the dynamics
of the MMS controlled by the vector of torquesτa = τa(t)
can be easily deduced from equations (4-8) by replacing in
them,ra(t) by ra, while the inverse dynamics (6) have to be
replaced by:

r̈a = m̃−1
aa (τa(t) + Q̃a), (9)

whereλstat does not appear anymore in the forward case4.

III. F ORWARD DYNAMICS OF THE PASSIVE DOFS

According to the objectives of section II-B, we derive in
this section a model allowing to reconstruct the motion of
passive (internal and external) dofsrp andg from the motions
imposed to the internal actuated dofsra. To derive such a
model, the idea consists in trying to express the maximum of
passive dofs as a function of the actuated ones with the help of
the kinematic constraints. In doing so, we will make appear a
residual set of coordinates requiring a further dynamic model.
To that end, we start from the dynamics (1-2) and consider
kinematics further.

A. Reduced kinematics of the passive dofs

Since ra is known through its time evolutiont 7→ ra(t),
the implicit linear algebraic system (2), can be rewritten
alternatively as:

A‡η‡ +Baṙa(t) = 0, (10)

with A‡ = (A,Bp) am×(n+sp) matrix, andη‡ = (ηT , ṙTp )
T ,

the (n+ sp) × 1 vector of the passive (external and internal)
velocities. By generalized inversion of (10), we deduce the
general kinematic model under the following form:

η‡ = Jṙa(t) +Hη‡r, (11)

whereJ can be detailed as (the upper script(−1) indicates a
generalized inversion):

J = −(A‡)(−1)Ba, (12)

while the second term of (11) represents the general form of
terms living in the kernel ofA‡ notedK(A‡), which is nothing
but the kernel of the locked constraints (3). Going further,the
columns ofH span a basis ofK(A‡) andη‡r stands for a vector
of reduced (passive) velocities. Now block-partitioning (11),
allows one to detail the general form of the kinematic model
as:
(

η
ṙp

)
=

(
Jext
Jint

)
ṙa(t) +

(
Hee Hep

Hpe Hpp

)(
ηr
ṙp,r

)
,

(13)

3These forces appear in redundant locomotion systems as in the case of
over-actuated snake-like robots for instance.

4This forward formulation of the dynamics is in fact related to the
formulation proposed by the geometric locomotion theory ofrigid fully-
actuated MMS. In fact, in the case where the external forces of (1) are
g−independent,g can be removed from̃Fr , Q̃p,r and Q̃a,r. Furthermore,
if the internal dofs are all actuated, one can forcera = r andτa(t) = τ(t)
in (4), (7) and (9) while (5) and (8) are simply removed. In these restricted
conditions, replacing the reduced twistηr by its conjugate momentum named
non-holonomic momentum and denotedpr , allows to rewrite the forward
dynamics (4,5,9,7,8) in the form of [1], [18].
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whereηr and ṙp,r respectively denote the (possible) reduced
external and internal velocities. This last relation will be used
in the following as a reduction process applied to the passive
dynamics inG × Sp. In this context, (13) will be seen as
a relation allowing to change the parametrization of motions
from the set of passive velocitiesη‡ = (ηT , ṙTp )

T to the set
of reduced onesη‡r = (ηTr , ṙ

T
p,r)

T (with of coursedim(η‡r) ≤
dim(η‡) = n + sp). The unreduced velocitiesη‡ belong to
the tangent space toG×Sp, while the reduced onesHη‡r live
in the constrained subspace of the tangent space toG × Sp.
As such, these velocities are said to be compatible with the
constraints, and the space of the compatible velocities defined
in each point ofG×Sp is the admissible space of velocities.

B. Remarks

Remark 2: Invoking the definition ofη = g−1ġ, along
with (13), shows that if we can computeη‡r , then we can
completely reconstruct the motion of the system using the
following reconstruction equation:

d

dt

(
g
rp

)
=

(
g(Jextṙa(t) +Hee ηr +Hep ṙp,r)
Jint ṙa(t) +Hpe ηr +Hpp ṙp,r

)
,

(14)
whose first (top) row can be numerically time-integrated with
an intrinsic geometric integrator onG [27], or alternatively
with a quaternion-based integrator, while the second row only
requires standard schemas on linear spaces. In the remainder
of this section, we will show howη‡r can be computed.

Remark 3: Using the notations introduced in section
II-A, the inversion of (11) shows that the model
of the time-evolution of the passive dofs requires
addressing two cases depending on the relative values
of mo = rank(A,Bp) = rank(A‡) andn + sp = dim(η‡)
(see Table I): 1) Ifmo = n + sp (this corresponds to
the fully- or over-constrained case), thenH = 0 and the
model of passive dofs is purely kinematic. In this case,
we have two subcases depending on the relative values of
m and n + sp: 1.1) m > n + sp (over-constrained case)
then J = −A‡(−1)Ba, where the generalized inverse can
be deduced by inversion ofmo independent rows of (10),
while the others play the role of compatibility equations
that the actuated dofs have to satisfy to preserve mobility.
1.2) m = n + sp (fully-constrained case), in this case
J = −A‡−1Ba. 2) If mo < n + sp (under-constrained case),
the constraints are not sufficient to define univocally the
passive (external and internal) velocities from the actuated
ones. This results in the existence of a non-zero kernel
(H 6= 0) of the constraints in which the passive velocities
are ruled by a dynamic model. In this case, once again
J = −A‡(−1)Ba, while the elements in the kernel ofA‡

represent the (external and/or internal) passive velocities
allowed by the constraints when they are locked in the current
values ofra.

Remark 4: In (13), ṙp,r represents a vector of reduced
internal passive velocities modelling eventual holonomic
constraints relating the internal passive dofs. More generally,

these constraints could mix the external and internal dofs
in such a manner that the "external-internal" partition is
not justified anymore. Finally,(ηTr , ṙ

T
p,r)

T could be more
generally replaced by a vector of reduced non-integrable
velocitiesνrp.

Remark 5:In any case, each passive coordinate is either
entirely determined by the active coordinates through the
kinematic model of constraints, or defined by a dynamic
model. Thus, we will gather the former type of dofs into the
vectorṙp,kin of kinematic passive velocities, while the latter is
gathered intȯrp,dyn, the vector of dynamic passive velocities.
Formally, we will have:

ṙp,dyn = Sṙp , ṙp,kin = S̄ṙp, (15)

whereS andS̄ are matrices of 0 and 1 which select the coordi-
nates of dynamic and kinematic nature among the components
of ṙp. In a complementary way, we will have:

ṙp = D̄ṙp,kin +Dṙp,dyn, (16)

where D = ST and D̄ = S̄T are matrices allowing to
distribute the dynamic and kinematic dofs on the vector of
the passive dofs. Furthermore, since by definition the internal
passive kinematic velocities are entirely specified by the
internal active velocities, the general kinematic model (13)
takes the particular form:

(
η
ṙp

)
=

(
Hee Hep Jext
0 D Jint

)


ηr
ṙp,dyn
ṙa(t)


 . (17)

whereJint takes the formJint = D̄J̄int which definesJ̄int.

C. Reduced dynamics of the passive dofs

In this subsection, we consider the case 2 of remark 3 where
the time integration of the passive dofs evolution requiresthe
need of a dynamic model (i.e.K(A‡) 6= ∅). This residual
dynamic model corresponds to the reduced passive dynamics
of the MMS controlled by the time evolutiont 7→ ra(t). It is
derived by projecting the passive dynamics from the tangent
space toG×Sp to its admissible sub-spaceK(A‡). Then, time-
integrating once these dynamics will allow to compute the
reduced velocitiesηr andṙp,r that can be used in a second step
to reconstruct the entire motion of the MMS in space through
the time-integration of the reconstruction equation (14).The
projection leading to the reduced dynamics is achieved in
two steps each one corresponding to the application of the
reduction process (13) on the real and virtual motions, i.e.in
the space of velocities and in its dual, that of forces. In this
perspective, let us reconsider the reduction equation (17). It
has for consequences on the (real) accelerations:

(
η̇
r̈p

)
=

(
Hee Hep Jext
0 D Jint

)


η̇r
r̈p,dyn
r̈a(t)




+

(
Ḣee Ḣep J̇ext
0 0 J̇int

)


ηr
ṙp, dyn
ṙa(t)


 . (18)
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In the same manner, we have on the virtual (dual) side the
following reduction relation, which means that the field of
virtual displacement used hereafter is compatible with the
constraints (2):

(
δζ
δrp

)
=

(
Hee Hep

0 D

)(
δζr

δrp, dyn

)
. (19)

Note that equation (19) defines the vector of reduced virtual
displacements (on the right), which is deduced from the virtu-
alization of (17)5. Now, let us consider the passive dynamics
in G × Sp controlled by the time evolutiont 7→ ra(t), i.e.
the two first rows of (1) withra, ṙa and r̈a considered as
exogenous variables specified by their time-evolution. We can
restate them into the form of the balance of virtual works [28],
and write that for any(δζ, δrp):

(
δζT , δrTp

)( M MT
p

Mp mpp

)(
η̇
r̈p

)
= (20)

(
δζT , δrTp

)( (f −MT
a r̈a(t)) +ATλ

(Qp −mpar̈a(t)) +BT
p λ

)
,

where according to footnote 2,Qp = Qp,inert+Qp,ext+Qp,int

and Qp,int accounts for the internal forces exerted on the
passive dofs. For instance, if thekth dof is a passive one
introduced by a localised or a distributed compliance (on a
joint or along a body respectively), the corresponding compo-
nent ofQp,int is modelled by a friction and a restoring force
given by (withU(rp) a strain energy andD(ṙp) a dissipation
function):

Qp,int,k = −∂U/∂rp,k − ∂D/∂ṙp,k, (21)

while, if thekth dof is introduced by an ideal passive joint, we
simply haveQp,int,k = 0. Taking the reduction relations (18)
and (19) into account allows rewriting the balance of virtual
works (20) in the reduced form:
(
δζTr , δr

T
p,dyn

)((
Mr MT

p,r

Mp,r mpp,r

)(
η̇r

r̈p,dyn

))
=

(
δζTr , δr

T
p,dyn

)(
fr
Qp,r

)
, (22)

which represents the projection of the passive dynamics from
the tangent space toG × Sp, onto the reduced subspace of
admissible velocities. In (22), we introduced reduced matrices
(indexed with a "r") whose detailed expressions are given
in Appendix A6. Finally, (22) being satisfied for any virtual
reduced displacement, the reduced dynamics are governed by
the following equations:

(
Mr MT

p,r

Mp,r mpp,r

)(
η̇r

r̈p,dyn

)
=

(
fr
Qp,r

)
, (23)

which once completed with the reconstruction equation (14),
allow one to restate the reduced forward dynamics of passive
dofs in the form of (4), (5), (7) and (8) with:̃Mr =

5Basically, such a virtualization consists in replacingd./dt by δ. and by
forcing δra(t) = 0, since the actuated dofs are defined by their time evolution
which is frozen along any virtual displacement [28]

6Note that due to the ideal character of contacts, the external contact forces
do not appear in these expressions, since they have a null projection in the
admissible space.

Mr − MT
p,rm

−1
pp,rMp,r, F̃r = fr − MT

p,rm
−1
pp,rQp,r, and

Q̃p,r = Qp,r −Mp,rM̃
−1
r F̃r, so defining the tilde symbol.

IV. I NVERSE (AND FORWARD) DYNAMICS OF THE ACTIVE

DOFS

Pursuing the resolution of the problem of section II-B, we
now see that the passive motions can be entirely deduced from
the time integration of (4), (5), (7) and (8). In a further step,
one can use the dynamics of the MMS before the projection,
i.e. (1) to calculate the external contact forcesλ. To that end,
let us first rewrite (1) in the "passive-active" block-partitioned
form:

(
M‡ M ‡T

a

M ‡
a maa

)(
η̇‡

r̈a(t)

)
=

(
f ‡

Qa + τa

)
+

(
A‡T

BT
a

)
λ, (24)

whereλ and τa are unknown while all the motion variables
are known. Thus, one can consider the first row of (24) as an
algebraic system rulingλ along time, i.e.:

(A‡T )λ+ ((f ‡ −M ‡T
a r̈a(t))−M‡η̇‡) = 0. (25)

The algebraic system (25) can be considered as the dual of the
kinematic one (10). By generalized inversion of this system,
we find:

λ = (A‡T )(−1)
(
M‡η̇‡ − (f ‡ −M ‡T

a r̈a(t))
)
+ λstat , (26)

with λstat ∈ K(A‡T ). This last expression corresponds to the
most general form ofλ. The first term in (26) is the vector
of reaction contact forces required by the motions, i.e. the
part of reaction forces directly deducible from the motions.
On the other hand, the second term of (26) models internal
tensions which do not produce any generalized force on the
passive (internal and external) dofs. Consequently, this term
will not generate any passive accelerations and will be named
(hyper)static reaction loading and notedλstat. Now, injecting
(26) in the second row of (24) and using (11) along with
JT = −(A‡(−1)Ba)

T gives:

τa = (maa +M ‡
aJ + JTM‡J + JTM ‡T

a )r̈a(t)

+ (M ‡
a + JTM‡)(Hη̇‡r + J̇ ṙa(t) + Ḣη‡r)

− Qa − JT f ‡ +BT
a λstat. (27)

Finally, insertingη̇r = M̃−1
r F̃r into (27) gives (6) which is the

general form of the internal torques exerted by the actuators
onto the actuated joints. At last, removingλstat in (27) allows
one to derive the forward dynamics of actuated joints (9).

A. Remarks:

Remark 6:Going further into the details of the solutions
of (25) allows to fix λstat as given in Table I. Indeed,
we will have two cases depending on the relative values
of mo = rank(A‡T ) and m. Whenmo = m, the system
is under- or fully-constrained andλstat = 0, while when
mo < m, the system is over-constrained andλstat 6= 0.
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Remark 7:When the system is over-constrained, the so-
lutions (26) and the corresponding control torques are not
univocally determined. As a result, further considerations are
required to find the solutions. For instance, in a control prob-
lem, one can considerλstat as an additional freeness that can
be exploited to address other objectives than those achieved by
the motion control lawt 7→ ra(t). In particular, depending on
the friction between the bodies and the substrate, stability can
be improved by controlling these internal tensions as in the
case of snakes in lateral undulation [29]. From the modelling
point of view, the indetermination of (26) can be removed by
invoking a further model capturing the effects of other sources
of compliance. As a result, these new compliances increasing
the dimension ofrp, they will add new columns toA‡ and
new rows toA‡T . Thus, they will increase the rank ofA‡T up
to fulfill the conditionm = mo for which the internal torques
are univocally deducible from (27), withλstat = 0.

V. PRACTICAL IMPLEMENTATION OF THE APPROACH

A. Summary of the modelling approach

Finally, in any case, the modelling approach emerges as
clearly separated into several steps ordered in a two stages
hierarchical approach which can be carried out in a blind
manner. The first stage is of kinematic nature. It starts by
stating the model of the unlocked constraints in the form of
(2). Then, removinġra from (2) gives the locked constraints
(3). Next, applying a generalized-inversion to (3) allows de-
ducing the kinematic model (13), which in our case, takes the
particular form (17) withJ = (JT

ext, J
T
int)

T given by (12). At
this kinematic stage, the comparison of the rank of the locked
and unlocked constraints (i.e.m andmo) also allows to predict
the final form of the expected model according to Table I. In
particular, ifH = 0, the modelling approach does not require
any further calculation beyond the kinematic stage, while if
H 6= 0, the kinematic model is not sufficient and the approach
needs a second "dynamic" stage. The dynamic stage consists in
calculating the dynamics of the system free of any constraint,
i.e. (1) with λ = 0. Once computed, these unconstrained
(or "free") dynamics are projected according to the formulae
(66-68) onto the subspace of admissible velocitiesK(A‡), to
derive the (reduced) forward dynamics of the passive velocities
(23), which once completed with the reconstruction equation
(14), give the forward dynamic model of all the passive dofs.
Once the forward dynamics of passive dofs are known, it just
remains to compute the inverse torque dynamics with (27).
Lastly, one can easily re-express the passive forward dynamics
and the actuated inverse dynamics in the alternative form (4-8)
while the internal actuated dynamics can be put in the forward
form (9), so allowing to derive the forward dynamics of a
MMS with passive internal dofs.

B. Computational apects

Returning to the locomotion problem of section II.B, we
are now capable of numerically solving it through a dynamic
simulation. To that end, the forward dynamics (including the
reconstruction equation) of the passive dofs controlled bythe
motion of the actuated dofs(t 7→ (ra, ṙa, r̈a)(t)), can be

computed and time-integrated once in a global time loop. Once
all the motion state and acceleration variables are known atthe
current time, the current value of the torques supplied by the
actuated jointsτa, can be computed before increasing the time
step and to restart the algorithm. Regarding the free dynamics,
when the number of bodies increases, its calculation becomes
more and more complex. Consequently, the derivation of
this model based on the direct calculation of the Lagrangian
and the use of Lagrange-like equations as those of Poincare,
quickly becomes unfeasible by hand. In order to circumvent
this difficulty, we now propose an automatic and efficient
computation of the free dynamics based on an extension of the
recursive inverse dynamic algorithm due to Luh and Walker
[24]. This well known algorithm is based on the Newton-
Euler model of fully actuated Rigid Multibody Systems (RMS)
[30]. Exploiting the recursive character of the Newton-Euler
model, it allows to efficiently (and automatically) compute
the joint torques and the reaction forces respectively exerted
on the joint axes and the rigid basis of a RMS, when it is
submitted to joint (shape) motions(t 7→ (r, ṙ, r̈)(t)) and rigid
overall (net) motions(t 7→ (g, η, η̇)(t)) transmitted through
the mobile basis7. Going further, this algorithm is based on 2
recursions with respect to the bodies index. The first one is
a forward recursion (from the basis to the manipulator tool)
which computes the accelerations of the rigid bodies from the
knowledge of the current basis and joints accelerations(η̇, r̈)
and state(g, r, η, ṙ). The second (backward) recursion, uses
the Newton-Euler equations of the rigid bodies to compute
the interbody forces from the tool to the basis. Finally, the
projection of the interbody forces onto the joint axes gives
the current joint torquesτ while the last interbody force
computed by the backward recursion is nothing but the current
reaction forcefreac exerted onto the basis. Defined as such,
(freac, τ ) are the external forces to be supplied in order to
ensure the desired motion of the RMS. As a result, this
algorithm solves the inverse dynamics of any RMS, and
we will symbolically denote it asD−1

RMS(g, r, η, ṙ, η̇, r̈) =
(freac, τ). Since these early works, several extensions of the
Luh and Walker algorithm have been proposed [15], [23], [31].
Based on the floating frame and assumed modes approach,
the Luh algorithm has been extended in [23] to the case of
multibody systems with compliant bodies whose all the joints
are actuated. Such an extension requires to derive a generalized
Newton-Euler model of Flexible Multibody Systems (FMS)
detailed in [32] and reminded here in Appendix B. In this
extended Luh algorithm, the elastic accelerations are outputs
of the algorithm while the elastic state variables are inputs. As
a result, such a recursive algorithm is symbolically denoted
D−1

FMS(re, g, rj , ṙe, η, ṙj , η̇, r̈j) = (r̈e, freac, τ) with re the
vector of (Rayleigh-Ritz) elastic variables andrj , that of the
joint variables. Now, we are going to see how the Luh recursive
algorithm can be used to calculate the free dynamics of a
flexible MMS, i.e. (1) with λ = 0. To that end, we first
consider for the sake of pedagogy the simpler case of a RMS

7Note here that because the motion of the basis is imposed, such a system
is not properly a Mobile Multibody System (MMS) in the sense that the net
motions are not governed by a locomotion model.
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mounted on a mobile basis whose motions are imposed. With
the notations introduced above, the dynamics of such a system
are trivially given by:
(
freac
τ

)
=

(
M MT

M m

)(
η̇
r̈

)
−

(
f
Q

)
, (28)

which has the same form as (1) except that the passive dofs
are now removed, and that the external forces transmitted by
the constraints take the particular form of(λT (A,Ba))

T =
(fT

reac, 0
T )T . Now, let us remark that in any case,f andQ can

be written as the sum of two components, one depending on
the configuration only and the other on both, the configuration
and the velocities8, i.e.:

f = f (p)(g, r) + f (v)(g, r, η, ṙ),

Q = Q(p)(g, r) +Q(v)(g, r, η, ṙ).

whereQ(v)(g, r, 0, 0) = 0 and f (v)(g, r, 0, 0) = 0. Based
on this remark, all the constitutive matrices of (28) (i.e.M,
M , m, f and Q) can be computed by applyingD−1

RMS to
some sets of specific inputs. In fact, a simple examination
of (28) shows that(f (p), Q(p)) = D−1

RMS(g, r, 0, 0, 0, 0),
(f,Q) = −D−1

RMS(g, r, η, ṙ, 0, 0) while if we denoteδk a
vector with all the components equal to zero except thekth

which is equal to one, we have((MT )k−f
(p), (m)k−Q

(p)) =
D−1

RMS(g, r, 0, 0, 0, δk) and ((M)k − f (p), (M)k − Q(p)) =
D−1

RMS(g, r, 0, 0, δk, 0), where (A)k denotes thekth column
of any matrixA. Thus, makingk sweep all its possible values
allows to reconstructM,M,m, f andQ of (28). Remarkably,
extending this computational process from RMS to FMS
allows computing recursively the free dynamics of a MMS
containing compliant bodies, at least when these bodies are
terminal ones9. To show this, we first consider an equivalent
FMS identical to the original MMS but with fully actuated
joints and a reference body defined as a mobile basis submitted
to imposed motions. The dynamic model of such a FMS
is the same as that of the MMS, i.e. (1), except that the
torque (0T , τTa )T is now replaced by a full vectorτ while
λT (A,Bp, Ba)

T = (fT
reac, 0

T , 0T )T . Moreover, separating the
elastic coordinates of the bodiesre from those of the jointsrj
according to the block-partitionr = (rTe , r

T
j ), the dynamics

of such an equivalent FMS can be stated as:



M MT
e MT

j

Me mee mT
je

Mj mje mjj






η̇
r̈e
r̈j


 =




f
Qe

Qj


+




freac
0
τ


 ,

(29)
where let us repeat that except(fT

reac, 0
T , τT )T , all the ma-

trices are just an alternative block-partition of those related
to the original MMS appearing in (1). As a result, if we
can extend the previous recursive computational process from
RMS governed by (28), to FMS governed by (29), we will be
capable of recursively computing (1) withλ = 0, i.e. the free

8Typically, the velocity-dependent component contains theCoriolis, cen-
trifugal and friction forces, while the position-dependent component accounts
for the restoring elastic forces and the gravity forces.

9Fortunately, this case plays an important role in compliantlocomotion
bio-inspired from animals which exploit the advantages of flexible terminal
organs such as fish tails, insect wings and others. In the general case (of any
compliant bodies) other (non-recursive) algorithms should be developed.

dynamics of any MMS. The point of what follows is to provide
such an extension. To that end, we first reformulate the model
(29) in order to conform it to the input-output mapD−1

FMS . In
particular, the elastic accelerations are some outputs ofD−1

FMS

whose expression is given by the second row of (29):

r̈e = m−1
ee (Qe −Meη̇ −mT

jer̈j). (30)

Then, re-injecting (30) into the first and third row of (29),
allows to express the two other outputs ofD−1

FMS as:
(
freac
τ

)
=

(
M̃ M̃T

j

M̃j m̃jj

)(
η̇
r̈j

)
−

(
f̃

Q̃j

)
, (31)

where we introduced the following set of matrices:

M̃ = M−MT
e m

−1
ee Me , (32)

M̃j =Mj −mjem
−1
ee Me , (33)

m̃jj = mjj −mjem
−1
ee m

T
je, (34)

f̃ = f −MT
e m

−1
ee Qe , (35)

Q̃j = Qj −mjem
−1
ee Qe. (36)

Now, a simple examination of (30) and (31) shows
that the matrices (32-36) along withm−1

ee Qe, −m−1
ee Me

and −m−1
ee m

T
je appearing in (30) can be recursively

computed by applying D−1
FMS to specific inputs as

follows (the superscripts(p) and (v) denote position
and velocity-dependent matrices as in the rigid case):
D−1

FMS(re, g, rj , 0, 0, 0, 0, 0, 0) = (−f̃ (p),m−1
ee Q

(p)
e ,−Q̃

(p)
j ),

D−1
FMS(re, g, rj , ṙe, η, ṙj , 0, 0, 0) = (−f̃ ,m−1

ee Qe,−Q̃j)

and D−1
FMS(re, g, rj , 0, 0, 0, 0, δk, 0) = ((M̃)k −

f̃ (p),−(m−1
ee Me)k + m−1

ee Q
(p)
e , (M̃j)k − Q̃

(p)
j );

D−1
FMS(re, g, rj , 0, 0, 0, 0, 0, δk) = ((M̃T

j )k − f̃ (p),

−(m−1
ee m

T
je)k + m−1

ee Q
(p)
e , (m̃jj)k − Q̃

(p)
j ). Finally, once

(32-36) and(m−1
ee Qe,−m

−1
ee Me,−m

−1
ee m

T
je) known, we can

infer the expressions of all the matrices of (29) by assuming
the compliant bodies (if any) to be terminal bodies of the
tree-like structure. In fact, in this case the computation of mee

is straightforward since one simply hasmee = diagk∈Ntb
(mk)

with Ntb the set of terminal bodies indexes ordered according
to re, andmk the elastic mass matrices of the generalized
Newton-Euler model (69) (see Appendix B). Then, oncemee

is known, simple algebra allows to computeQe, Me andmT
je

of (30), from which we easily deduceM, f , Mj , mjj and
Qj from (32-36). Finally, we so construct all the matrices
appearing in (29), exceptfreac and τ which once replaced
by 0 and (0T , τTa )T in (29) gives the original equations (1)
whenλ = 0, i.e. the free dynamics of the original MMS. At
last, returning to the numerical simulation, such calculations
can be achieved numerically at each step of a global time
loop or symbolically (and once for all) in order to generate
with a commercial symbolic software, customized algorithms
which can be executed numerically in a second step [33].

VI. A PPLICATION TO WHEELED MULTIBODY SYSTEMS

We now consider two examples of wheeled systems chosen
for their illustrative value. The first example belongs to the
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Fig. 2. Frames and parametrization of a mobile pendulum

class of systems containing passive internal joints. It is a
mobile pendulum with one internal passive dof coupled to a
wheeled cart supported by two redundant wheels. The second
case belongs to the class of systems whose passive internal
dofs are purely kinematic. This is the 3D bicycle, a very
familiar system but whose dynamics are rarely exhibited in
their full generality.

A. The mobile pendulum

This is a planar cart supported by two wheels constrained
to roll without slipping along a one-dimensional rail (see Fig.
2). On the cart, a single pendulum of lengthl and massm, is
pinned through a single dof angular joint. All the joints and
contacts are assumed to be ideal (no friction, no elasticity). All
the mass of the pendulum is concentrated at its tip. The two
identical wheels have a massmw and an inertia momentum
(about their center)Jw. This system has four bodies: the two
wheelsB1 andB2, the cart considered as the reference bodyB0

and the pendulumB3. In this trivial case where the constraints
are holonomic, the space of configurationsR × S is directly
compatible with the constraints. Thus the reduction process
is quite artificial. Nevertheless, for the sake of illustration we
are going to apply the general framework developed in section
III to this system when both wheels are active. This example
allows to illustrate the previous general context in the over-
constrained case where the control torques are not unique.
The group of net displacements is identified here to the one
dimensional translationsx ∈ R, wherex denotes the position
of the cart along the rail. As regards the shape space, we split it
into S = Sp×Sa with coordinatesrp = r3 andra = (r1, r2)

T .
The constraints are imposed by the rolling without slipping
conditions of the two wheels along the rail, i.e.:
(

1 0
1 0

)(
ẋ
ṙ3

)
−

(
R 0
0 R

)(
ṙ1
ṙ2

)
=

(
0
0

)
, (37)

which definesA‡ and Ba of (10,68) and shows thatm =
n+sp = 2 andmo = 1. As a result, we are in the case where
n + sp > mo andm > mo, and from Table I, we know that
H 6= 0 andλstat 6= 0. Now, a generalized inversion of (37)
gives:

(
ẋ
ṙ3

)
=

(
R 0
0 0

)(
ṙ1
ṙ2

)
+

(
0
1

)
ṙ3, (38)

which definesJ = −A‡(−1)Ba, with K(A‡) spanned byH =
(0, 1)T . Furthermore, identifying (38) with the general case
(17) allows to define the two nonzero matricesJext = (R, 0)
andD = 1. Then, we have to compute the free dynamics of
this system in the spaceR × Sp × Sa, and find (withγ =
9.81Nm2 the gravity acceleration, andM the total mass of
the system (cart, pendulum and two wheels)):



M mlc3 0 0
mlc3 ml2 0 0
0 0 Jw 0
0 0 0 Jw







ẍ
r̈3
r̈1
r̈2


 =




mls3ṙ 2
3

−mls3γ
τ1
τ2


 ,

(39)
which is the particular form of (1) (withλ = 0) for the mobile
pendulum. Now applying the general reduction process (66)
and (67), with the only nonzero matrices:M = M , Mp =
mlc3, mpp = ml2, finert = mls3ṙ 2

3 , Qp,ext = −mls3γ and
maa = Jw12, gives:

ml2r̈3 = −mlγs3−mlRc3r̈1(t), (40)

that has to be completed with the reconstruction equation:

ẋ = Rṙ1. (41)

Then, in order to compute the internal torque dynamics (27),
we also need:

A‡T =

(
1 1
0 0

)
, (42)

whose kernel is defined by:

K(A‡T ) =

{(
+1
−1

)
T /T ∈ R

}
, (43)

that gives after straightforward computations:
(
τ1
τ2

)
=

(
Jw +MR2 0

0 Jw

)(
r̈1
r̈2

)
(44)

+

(
mRl(c3r̈3 − s3ṙ 2

3 )
0

)
+

(
R 0
0 R

)(
+1
−1

)
T ,

which is true for anyT . Finally, the expression of the wheels’
control torque (27) appears as the sum of a component sup-
plying the external force required by the motion, and another
which models eventual antagonist internal torques producing
no motion. Note that due to our choice of generalized inver-
sion, takingT = 0 makes the front wheel the leading one. On
the contrary, takingT = −(MR2r̈1 +mRl(c3r̈3− s3ṙ 2

3 ))/R
shifts the external force on the rear wheel, while taking
T = −(MR2r̈1 + mRl(c3r̈3 − s3ṙ 2

3 ))/2R distributes the
forces equally between the two wheels. Note that this last
case could be directly obtained by taking the pseudo-inverse
as a particular generalized inverse.

B. The bicycle

The bicycle is modelled by a MMS with four connected
rigid bodies as drawn on Fig. 3, where its frame defines the
reference bodyB0 of the MMS. The bicycle moves on a
planar ground without sliding nor slipping, however, it can
tilt. Since we aim at modelling a 3D locomotion system, the
configuration space isSE(3) × S with the shape space here
defined byS1 × S1 × S1 which stands for the dofs of the
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Fig. 3. Frames and parametrization of a bicycle

handlebars and the two wheels parameterized by the angles
r1, r2 andr3 respectively. The rear wheel is directly actuated
by the two pedals which exert a torqueτ3 on it. The handlebars
are also actuated byτ1 while the front wheel is passive but
constrained by the motions of the other dofs. As a result, we
split S into S = Sp × Sa with Sp and Sa coordinatized
by rp = r2 and ra = (r1, r3) respectively. As regards the
geometric definition of the bicycle, the frames of the bodies
and the design parameters are indicated on Fig. 3. We assume
that the wheels are identical and modelled by two planar discs
of massmw and of inertia momentumIw andJw, depending
on whether the corresponding axis, which passes through their
mass centersO2 andO3, is coplanar or perpendicular to the
wheel, respectively. On the other hand, the bicycle frame isa
3D rigid body defined by its massm0, the vector of its first
momenta in the reference frame(mX0,mY0,mZ0)

T and the
matrix of its second momenta:




XX0 XY0 XZ0

Y X0 Y Y0 Y Z0

ZX0 ZY0 ZZ0


 , (45)

which is nothing more than the angular inertia matrix ofB0 in
its reference frame. Finally, we neglect the inertia of the bike’s
fork and handlebars around the steering axis, with respect to
that introduced by the front wheel.

1) Kinematic constraints:We assume that contacts between
the wheels and the ground are perfect (no friction, no defor-
mation). As a result, the constraints reflect the fact that inany
direction normal to their plane, each wheel cannot penetrate
nor separate from the ground at the contact point, while in
a direction parallel to their plane, the wheels roll without
slipping. Then, it remains to invoke the parametrization ofthe
velocities imposed by our definition of the configuration space
(as fiber bundle), to obtain the six constraints in the form of
(2) with:

A =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 −l3 0 0
0 −c1 −cαs1 −l2cαs1 0 0

−sαs1 −cαs1 c1 l2c1 0 l2sαc1
0 0 0 0 0 1




,

(46)

Bp =




0
0
0
h
0
0




, Ba =




0 0
0 −h
0 0

hsαcαs1 0
0 0
0 0



. (47)

A simple analysis of these constraints shows thatmo =
rank(A,Bp) = 6 = m. Then, sincen + sp = 6 + 1 = 7,
we are in the case where:n + sp > mo, m = mo. Hence,
from Table I, we haveH 6= 0 andλstat = 0.

2) Kinematic model:Now, it is possible to use a gener-
alized inversion ofA‡ = (A,Bp) to derive the kinematic
model (13). However, we will derive the model in a more
straightforward way as follows. First, let us remark that from
the first and last row of the constraints (46-47) we find:

V0X = 0 , Ω0Z = 0. (48)

Then, injecting (48) in the third and fifth row of (46-47) gives:

V0Z =

(
l3cα tan 1

l2 + l3

)
V0Y , Ω0X =

(
cα tan 1

l2 + l3

)
V0Y , (49)

while Ω0Y is undetermined, and as such, defines the kernel
of A‡. Now, let us remark that all the other net velocities are
defined byV0Y and thatV0Y is defined fromṙ3 using the
second row of (46-47) through the relation:

V0Y = hṙ3. (50)

Finally, all the components of the net velocities are fixed byṙ3
except the tilt velocityΩ0Y which requires a dynamic model to
be determined. This fact is confirmed by the following relation:




V0X
V0Y
V0Z
Ω0X

Ω0Y

Ω0Z




=




0
h
ψl3
ψ
0
0



ṙ3 +




0
0
0
0
1
0




Ω0Y . (51)

with:
ψ(r1) =

hcα tan 1

l2 + l3
. (52)

On the other hand, if we inject the constraints (48), (49) and
(51) in the fourth row of (46-47), we find:

ṙ2 =
(
c1 + c2αs1 tan 1

)
ṙ3 − sαcαs1ṙ1, (53)

This last constraint (53) allows one to deduce the motion of the
front free wheel from that of the rear wheel and the handlebars,
both being actuated. Finally, gathering (51) and (53) withra =
(r1, r3)

T and rp = rp,kin = r2, gives the model (17), with
D = 0 andHep = 0 (since all the passive dofs are kinematic)
and the following expressions:

JT
int = J̄T

int =

(
−sαcαs1

c1 + c2αs1 tan 1

)
,

Jext =




0 0
0 h
0 ψl3
0 ψ
0 0
0 0




, Hee =




0
0
0
0
1
0



. (54)
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In the next subsection, the kinematic model (54) is used to
reduce the bicycle dynamics.

3) Reduced passive dynamics:As suggested before, we
first derive the free dynamics of the bicycle by applying the
previous recursive algorithm in its rigid version, which gives
the model in the form of (1) withλ = 0. In the case of
the bicycle, the expressions of the matrices appearing in this
model are given in Appendix C. In a second step, one applies
the reduction process (66-68), to obtain the reduced dynamics
equation (23) which here becomes:

MrΩ̇0Y = fr, (55)

with:
Mr = HT

eeMHee, (56)

fr = HT
ee(f −MJ̇extṙa −MT

p J̇intṙa). (57)

Hereby let us remind thatf = fext + finert, Qp = Qp,ext +
Qp,inert andQa = Qa,ext +Qa,inert, while if the rear wheel
has no frictionQp,int = 0. Finally, the reduced dynamics have
to be completed with the kinematic model of net motions:

ġ = g

(
HeeΩ0Y + Jext

(
ṙ1
ṙ3

))
, (58)

which once gathered with (53) forms the two reconstruction
equations (7-8) for the bicycle. In all these expressions, the
matrices appearing in the free dynamics are given in Appendix
C, while Hee, Jint and Jext are detailed in (54). Finally,
introducing the same data into the general expression of the
control torques (27) withλstat = 0, gives the two control
torquesτa = (τ1, τ3)

T .

VII. A PPLICATION TO SOFT ROBOTICS

The third example illustrates a locomotion system mixing
non-holonomic constraints and soft robotics. This system
is obtained by reconsidering the snake-board of [1] where
the rigid actuated rotor accumulating the kinetic momentum
(which is cyclically transferred to the external dynamics
through the constraints), is now replaced by two soft ap-
pendages symmetrically positioned with respect to the motor
shaft (Fig. 4). This system could be used to explore the
potential benefits of cyclically storing and restoring the kinetic
energy in the compliant rotor.

A. The soft snake-board

For the sake of simplicity, the wheels are not declared in
the multibody structure but only taken into account through
their kinematic model while their mass is added to that of the
platform. With this choice, the snake-board is a MMS with five
bodies. The platformB0, the two axlesB1 andB2 and finally
the flexible rotor that we model by two symmetric flexible
bodiesB3 andB4. These two bodies are rigidly cantilevered
on a vertical shaft actuated by a motor attached to the platform
in the origins of the beam framesO3 = O4. The configuration
space isSE(2) × S with S = Sp × Sa and the coordinates
r = (rTp , r

T
a )

T . As in [1] we impose that the angles of the
two axles with the platforms are opposite, so that the vector
of active coordinates can be reduced tora = (r1, r3)

T , with

r1 and r2 = −r1 the angles of the two axles, andr3 that of
the rotor, all measured with respect to the platform (Fig. 4).
The remaining coordinates are defined byrp = rp,dyn = re
with re the vector of elastic (modal) coordinates of the flexible
bodies. To fix the ideas,B3 andB4 will be modelled as two
identical Euler-Bernoulli planar beams undergoing flexural
deformations described in the basis of the cantilever modes
of the two beams [20]. We will take one mode per beam so
that re = (re3, re4) where the first coordinate is that of the
first mode ofB3 and the second, that ofB4, i.e.:

d3(X3) = φ1(X3) re3 , d4(X4) = φ1(X4) re4, (59)

with d3
−→
j 3 andd4

−→
j 4 the two fields of transverse deformation

along the two beam axis(O3, X3) and (O4, X4) respectively
(Fig. 4) andφ1 the first flexural mode of the beam. With all
these definitions, stating that the wheels roll on a planar ground
without slipping nor sliding allowing to write the constraints
under the general form (2) withm = mo = 2 andn + sp =
3 + 2 = 5. Thus from Table I, we haveH 6= 0 andλstat =
0. Then, simple handling of these constraints allows one to
derive the kinematic model of the elastic snake-board under
the general form (17) which becomes in this case:



V0X
V0Y
Ω0Z

ṙe3
ṙe4




=




−2lcos2(r1) 0 0 0 0
0 0 0 0 0

sin(2r1) 0 0 0 0
0 1 0 0 0
0 0 1 0 0







ηr
ṙe3
ṙe4
ṙ1(t)
ṙ3(t)




,

(60)
Now, in order to compute the external unconstrained dynamics
of the system which in this case take the form of (29) with
freac = 0 and λ = 0, one can use the recursive algorithm
proposed in section V.B. Remarkably, since there are no more
than two bodies (includingB0) per branches, the outputs of
D−1

FMS (i.e. (freac, r̈e, τ )) can be computed explicitly by hand
as follows (we use the notations of the generalized Newton-
Euler model reminded in Appendix B):

freac = M̃ η̇ + M̃T
j r̈j − f̃ , (61)

with:

M̃ = M0 + (62)
2∑

k=1

AdTgk,0
MkAdgk,0

+

4∑

k=3

AdTgk,0
M̃+

k Adgk,0
,

and:

MT
j r̈j − f̃ = F0 + (63)

2∑

k=1

AdTgk,0
(−Mkζk + Fk) +

4∑

k=3

AdTgk,0
(−M̃+

k ζk + F̃+
k ),

with M̃+
k = Mk−M

T
k m

−1
k Mk andF̃+

k = Fk−M
T
k m

−1
k Qk.

In the same manner, the elastic accelerations can be detailed
as (fork = 3, 4):

r̈ek = m−1
k (−Mk(Adgk,0

η̇ + ζk) +Qk), (64)

while, the internal torques are given by:

τk = AT
k [(Mk −MT

k m
−1
k Mk)(Adgk,0

η̇ + ζk)

−Fk +MT
k m

−1
k Qk]. (65)



IEEE TRANSACTIONS ON ROBOTICS, VOL. ??, NO. ?, MONTH 2013 12

l

−→
ie

−→
je

−→
i1−→

j1

−→
i2

−→
j2

−→
i3−→

j3

−→
i4

−→
j4

B0

B1

B2

B3

B4

r1

r2

r3

r4

Fig. 4. Frames and parametrization of an elastic snake-board

Then, according to the algorithm of section V.B, forcingr̈j =
0 in (63) givesf̃ , while forcing (ṙj , η) = (0, 0) and taking
specific joint accelerations, allows to construct̃MT

j column
by column. In the same manner, imposing specific inputs in
the expression of torques (65) and elastic accelerations (64)
allows one to computẽmjj and Q̃j, along with m−1

ee Qe,
−m−1

ee Me and−m−1
ee m

T
je. Finally, sincemee = mf112 with

mf1 the modal mass of the first flexural mode of one of the
two identical appendages and12 the 2 × 2 identity matrix,
we can recover all the matrices of (29). Then projecting
these dynamics onto the admissible space using the reduction
formula (66-68) withHee = (−2lcos2(r1), 0, sin(2r1))

T ,
Hep = 03×2, Jext = 03×2, Jint = 02×2 andD = 12, finally
gives after a few rearrangements, the dynamics in the form of
(4-8). At last, using (27) with the same matrices andλstat = 0,
gives the three expected control torques.

VIII. C ONCLUSION

This article contributes to propose a general formulation
for the locomotion dynamics of any mobile multibody system
containing passive internal degrees of freedom and subjectto
kinematic constraints and/or external forces. The final setof
equations includes the forward dynamics of the passive (exter-
nal and internal) degrees of freedom (or "passive dynamics")
along with the (inverse and forward) dynamics of the actuated
joints. The implementation of the approach is systematic and
structured in two stages: a kinematic and a dynamic stage.
The kinematic stage starts with the computation of the set
of kinematic constraints, from which a kinematic model is
derived through a general inversion procedure. In the most
general case, this kinematic model mixes two contributions.
The first one is a pure kinematic contribution for which the
corresponding passive (internal and external) velocitiesare
entirely deducible from the actuated internal ones. The second
contribution is governed by a dynamic model deduced from the
projection of the unconstrained dynamics of the MMS onto the
kernel of the constraints while the actuated joints are locked.
The final formulation can cope with a wide range of systems
including MMS with passive (free or compliant) joints ruledby
dynamics (as in the case of compliant walkers and pendular
climbers) or free joints ruled by kinematics (as in the case
of non-holonomic wheeled MMS). Finally, it can also model
MMS which contain bodies with distributed compliances, as
this is the case of bio-inspired robots exploiting the virtues of

soft propulsive appendages. More than giving the final form of
the equations, the approach also gives access to a classification
of the systems depending on the relative values of some
intrinsic numbers as the dimensions of the passive dofs and
the rank of the locked and unlocked independent constraints.
Finally, the article also proposes a simple algorithm to compute
the unconstrained dynamics of these MMS (that have to be
projected after). This algorithm is in itself new, and based
on an extension of the Luh’s recursive algorithm from rigid
to flexible multibody systems. At the end, the approach is
applied to several systems chosen for their illustrative interest.
In future, this general set of equations will be used to study
more advanced cases of bio-inspired soft locomotion such as
that inspired by the hovering flight of moths or the swimming
of fish with undulating tail. Finally, we also intend to program
this algorithm using Mathematica to generate automatically
customized (optimized) symbolic models.

APPENDIX A
EXPRESSIONS OF THE REDUCED MATRICES OF(23)

The reduced inertia matrix can be detailed as:(
Mr MT

p,r

Mp,r mpp,r

)
= (66)

(
HT

ee 0
HT

ep DT

)(
M MT

p

Mp mpp

)(
Hee Hep

0 D

)
,

while the reduced forces are given by:
(

fr
Qp,r

)
=

(
HT

ee 0
HT

ep DT

)(
F
Q

)
, (67)

with: (
F
Q

)
= −

(
M MT

p

Mp mpp

)

(
Ḣeeηr + Ḣepṙp,dyn + J̇extṙa(t) + Jextr̈a(t)

J̇intṙa(t) + Jintr̈a(t)

)
+

+

(
f −MT

a r̈a(t)
Qp −mpar̈a(t)

)
. (68)

APPENDIX B
GENERALIZED NEWTON-EULER MODEL OF FMS

Here, we remind the Generalized Newton-Euler model of a
MMS containing compliant bodies. Following usual Newton-
Euler conventions on tree-like structures labeling [34], the
indices of bodies increase from the reference bodyB0 to the
terminal organs as instantiated in Fig. 1, while the indicesi and
l are reserved to denote the antecedent and the successor of the
current indexk, respectively. According to [32], in the case
where the assumed modes used to describe the deformation
of each of the bodies are cantilevered, such a model can be
stated as follows:

• Generalized Newton-Euler model of the bodies:(
Mk MT

k

Mk mk

)(
η̇k
r̈ek

)
= (69)

(
Fk

Qk

)
+




Fk −
∑

l/k=a(l)

Ad T
gl,kFl

−
∑

l/k=a(l)

ΦT
kRgk,l

Fl


 .
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• Kinematic model of the transformations:

gk = gi gei gri. (70)

• Kinematic model of the velocities:

ηk = Adgk,i
ηi +Rgk,i

Φi ṙei +Ak ṙk. (71)

• Kinematic model of the accelerations:

η̇k = Adgk,i
η̇i +Rgk,i

Φi r̈ei + ζk. (72)

As any Newton-Euler model, this model is structured in two
sets of equations. The first (69) corresponds to the dynamic
balance of isolated bodies10, the second (70-72) models the
kinematic constraints imposed by the joints11. In (69-72),rk
is the kth joint coordinate,rek is the vector of the modal
coordinates of thekth body,gk is the transformation mapping
a unique frame fixed to space onto thekth body (floating)
frame, ηk = g−1

k ġk is the corresponding(6 × 1) velocity
vector (in the mobile frame),Fk is the inter-body(6×1) force
vector exerted byBi onto Bk, Adgk,i

(respect.Rgk,i
) is the

matrix changing a velocity from theith floating frame (respect.
basis) to its successor. The transformationgek represents the
(elastic) transformation introduced by the deformation ofBk in
its connection point with its successor, whileΦk ṙek = ġekg

−1
ek

is the corresponding(6 × 1) (elastic) velocity vector. The
transformationgrk represents the transformation that would
map theith floating frame onto its successor, if the MMS
was rigid (this is the rigid geometric model of the MMS).
Finally, the corresponding velocity isAk ṙk = g−1

rk ġrk which
accounts for the joint velocity whileζk contains the corre-
sponding accelerations(r̈k) as well as all the residual velocity
dependent accelerations resulting from the time-differentiation
of (71). The reader interested in the detailed expression of
these quantities is referred to [32]. Finally, sinceB0 is the
reference body which defines the external motions, one has:
(g0, η0, η̇0) = (g, η, η̇).

APPENDIX C
FREE DYNAMICS OF THE BICYCLE

The matrices appearing in the bicycle’s free dynamics can
be obtained using the recursive algorithm proposed in section
V. They take the form of (1), withλ = 0 and:

M =

(
m1 mŝ T

mŝ I

)
. (73)

Whose computation, requires the expressions:

m = 2mw +mo ,

mŝ T =


0 mZ0 mw(l3 − l2)−mY0
−mZ0 0 mX0

mw(l2 − l3) +mY0 −mX0 0


 ,

10In (69), one finds from left to right the Generalized Newton-Euler inertia
matrix, the vector of body-reference and modal accelerations, the vector of
generalized inertia, restoring, and external forces (except the inter-body ones),
and finally the vector of inter-body generalized forces.

11Equation (70) (for which (71) and (72) are differential consequences) just
models how one can shift from one floating frame to its successor along the
structure.

I =




Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz


 ,

where:

Ixx = XX0 +mw(l
2
2 + l23) + Iw +XX

Ixy = Iyx = XY +XY0

Ixz = Izx = XZ +XZ0

Iyy = Y Y0 + Iw + Y Y

Iyz = Izy = Y Z + Y Z0

Izz = ZZ + Jw + ZZ0 +mw(l
2
2 + l23) ,

(74)

with:

XX = sα2(Iwc1
2 + Jws

2
1) + Iwcα

2

XY = Y X = sαcα(Iwc1
2 + Jws1

2 − Iw)

XZ = ZX = (Iw − Jw)sαs1c1

Y Y = cα2(Iwc1
2 + Jws1

2) + Iwsα
2

Y Z = ZY = (Iw − Jw)cαs1c1

ZZ = Iws
2
1 + Jwc

2
1 ,

(75)

while:

MT
p =




0
0
0

−sαs1Jw
−cαs1Jw
Jwc1




, MT
a =




0 0
0 0
0 0

cαIw 0
−sαIw 0

0 Jw




,

(
mpp mpa

map maa

)
=




Jw 0 0
0 Iw 0
0 0 Jw


 . (76)

In the following expressions we also use the "linear-angular"
block-partition:

(
MT

p MT
a

)
=

(
Mlin

Mang

)
. (77)

As far as the right hand side of (1) is concerned, we have:

finert =

(
finert,lin
finert,ang

)
, (78)

with:

finert,lin = Ω0 ×mV0 +Ω0 × (Ω0 ×ms)

finert,ang = ms× (Ω0 × V0) + Ω0 × (IΩ0 +Mang ṙ)

+
∂I

∂r1
Ω0ṙ1 − Jw




sαc1
cαc1
s1


 ṙ1ṙ2, (79)

whereas:

Qa,inert =
1

2

(
ΩT

0
∂I
∂r1

Ω0

0

)
+ (80)

+

(
−Jw(sαc1Ω0X + cαc1Ω0Y + s1Ω0Z)ṙ1

0

)
,

Qp,inert = Jw ṙ1(sαc1Ω0X + cαc1Ω0Y + s1Ω0Z), (81)

while Qp,int can model the friction introduced by the rear
wheel’s joint. Finally, since the external forces are induced
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by the gravity only, they can directly be deduced from the
previous context, by replacinġV0 by the acceleration field of
the earth expressed in the reference frame of the bicycle, i.e.:
RTΥ, with Υ ≃ (0, 0, γ)T . This gives:

fext =

(
m1 mŝ T

mŝ I

)(
RTΥ
0

)
=

(
mRTΥ

ms×RTΥ

)
,

(
Qp,ext

Qa,ext

)
=

(
Mp

Ma

)(
RTΥ
0

)
=

(
0
0

)
. (82)
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