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We report on the capillary-induced snapping of elastic beams. We show that a millimeter-sized
water drop gently deposited on a thin buckled polymer strip may trigger an elastocapillary snap-
through instability. We investigate experimentally and theoretically the statics and dynamics of this
phenomenon and we further demonstrate that snapping can act against gravity, or be induced by
soap bubbles on centimeter-sized thin metal strips. We argue that this phenomenon is suitable to
miniaturization and design a condensation-induced spin-off version of the experiment involving an
hydrophilic strip placed in a steam flow.

Elastic arches and spherical shells can sustain large
loads but they all eventually fail through an elastic insta-
bility, called snapping or snap-through buckling, see [1, 2]
for early references on the subject. This phenomenon is
central to the failure of arches and vaults but has also
been exploited to actuate bistable switches or valves [3]
with point force [4], electrostatic [5], piezoelectric [6], or
vibrational [7] loading. Snapping is also a useful mech-
anism in the design of responsive surfaces with applica-
tions to on-demand drug delivery, optical surface prop-
erties modification, or on-command frictional changes
[8]. Nature provides examples of practical applications of
snapping in prey capturing by carnivorous plants [9], fast
ejection of spores [10], or underwater plant suction trap
[11]. Similarly, polymersomes [12] or malaria infected
blood cells [13] also exhibit snapping events (or fast shell
eversion) that promote fast ejection of drug components
or parasites. These examples differ in their triggering
mechanisms, but they all involve a snapping instability
including fast movements and curvature reversals that
are a consequence of the sudden release of stored elastic
energy and its transfer into kinetic energy.

Here we show how capillary forces may be used to
trigger snap-through instabilities: a drop deposited on a
thin buckled elastic strip induces snapping, possibly even
against gravity, as illustrated in Fig. 1 and [14]. Our ex-
periments consist in loading buckled elastic strips with
either transverse point forces or water droplets. Initially
flat elastic strips of length L and width w are carefully
cut out of a thin polymer film made of polydimethyl-
syloxane (PDMS, Sylgard 184 Elastomer base blended
with its curing agent in proportion 10:1), spin-coated
and cured at 60◦C for two hours. The resulting thick-
ness h of the samples is quantified with an optical pro-
filometer. The Young’s modulus of our samples, mea-
sured using a Shimadzu testing machine, is found to be
E = 1.50±0.05 MPa, enabling us to evaluate their bend-
ing rigidity EI = Eh3w/12. Experiments are carried
out with two different strips whose geometrical and me-
chanical properties are reported in Table I. These PDMS

# L (mm) w (mm) h (µm) ∆/L Lec/L T (ms)
S1 5.0 1.07 68.3 0.95 6.7 34
S2 3.5 0.98 33.7 0.90 13.6 33

TABLE I. Length L, width w, thickness h, confinement pa-
rameter ∆, elastocapillary length Lec and typical bending dy-
namics time T for the two experimental setups.

strips are clamped at both ends in microscope slides
with cut edges. In point-force induced snapping, force-
displacement data are gathered with a micro-force sensor
using capacitive deflection measurement [15] (Femtotools
FT-S270) and a nano-positioner (SmarAct SLC-1730).
Capillary snapping is investigated by depositing water
drops (surface tension γ) with Hamilton syringes or sy-
ringe pump (Harvard Apparatus) with PTFE coated nee-
dles. The elasto-capillary length Lec =

√
Eh3/12γ of the

samples is reported Table I. Video acquisition is carried
out with an ultrafast Photron SA-5 camera.

In order to reveal the role of capillarity in snap-through
instability, we start with considering a ‘dry’ setup. When
confined axially, an initially straight beam buckles and
adopts an arched shape; the stronger the confinement the
higher the arch. If one now fixes the confinement and ap-
plies a downward vertical force F at the middle point of
the beam, the height Y of the arch decreases, see Fig. 2.
As this vertical force reaches a threshold F = F ? the
arch snaps to a downward configuration [1, 2, 16]. This
threshold value for snap-through is known to depend on
the position x of the applied force and reaches a local
maximum when x/∆ = 1/2 [17]. In Fig. 2, a comparison
is made between experiments and theory. Theoretical bi-
furcation curves are computed using Kirchhoff equations
[18] and experiments are carried on the strip S1 (see Ta-
ble I) in a setup where the arch height Y is reduced. As
we controlled Y instead of the force F , configurations
in the asymmetric branch are stable and snap-through
really only occurs as F reaches zero. We nevertheless
keep on refering to the point F = F ? as the snapping
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FIG. 1. Snapping against gravity. Using a PTFE coated needle, a drop is gently deposited under a downward buckled PDMS
strip (case S2 in Table I). Within a few milliseconds, capillary forces induce a snap-through elastic instability of the strip which
jumps to the upward buckled state. Note that in this setup surface tension overcomes both elastic forces and gravity. The
liquid is tap water dyed with blue ink for visualization purposes. The time interval between each snapshot is 5 ms.

threshold. It should be noted that the fixed confinement
∆ = 0.95L is small enough for the precise way with which
the vertical loading is applied to be disregarded [16], but
large enough for extension effects to be negligible [19].
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FIG. 2. Snap-through instability with point force. An elastic
strip S1 is clamped at both ends with fixed ∆ = 0.95L and
vertical indentation at x/∆ = 1/2 is performed. The bifurca-
tion diagram (theory: blue curve, experiments: filled circles)
comprises a symmetric and an asymmetric branch connect-
ing at F = F ? (experimentally measured F ? = 55µN). Inset:
Evolution of the snapping threshold F ? as a function of the
indentation position x, evidencing two preferential positions
where the threshold is minimal: x/∆ ' 0.37 and 0.63.

We now replace the point load with a water drop.
Drops of increasing volume are deposited or hung on the
same strip (case S1 in Table I). The height of the arch
Y is recorded as a function of the total weight F of the
drop, see Fig. 3. As the volume of the drop is increased,
the height of the arch decreases until a limit is reached
where snap-through occurs. We remark that much heav-
ier drops are required to trigger the snap-through in-
stability in the hanging-drop setup as compared to the
sitting-drop setup, the ‘dry’ setup being intermediate.
We conclude that only considering the weight of the drop
is not enough, i.e. capillary forces have a strong influence
on snap-through. As known in shell indentation, the re-
sponse of elastic structures to external loads strongly de-

pends on whether the loading is performed through point
forces or distributed pressure loads [20]. In our case the
water drop applies distributed hydrostatic and Laplace
pressures as well as localized meniscus forces, see Fig. 3.
The combined action of Laplace and meniscus forces can
be seen as two opposite effective bending moments, pro-
moting the eversion of the strip [21] when the drop is
located above, and hindering it when located below.

To further inquire relative strengths of capillarity,
weight, and elastic forces we study the following setup:
an elastic strip (case S2 in Table I) is buckled downward
and a drop is hung at a given location under the strip, see
Fig. 4(c). Parameters are the total weight F of the drop
and the abscissa xM of the middle point of the wet re-
gion of the beam. Experiments show that snapping only
occurs for specific values of F and xM , see Fig. 4(b). For
small drops (i.e. small F ), capillary forces exceed self-
weight (a drop deposited under a rigid surface is stable
if small enough) but are not powerful enough to over-
come elastic forces, mainly because the lever arm of the
effective bending moments discussed earlier is not large
enough: the wet length is indeed a key factor determin-
ing the behavior of elastocapillary systems [22]. Conse-
quently the system stays in the downward configuration.
For moderate drops (with larger wet lengths) we see in
Fig. 4(b) that provided the location of the drop is care-
fully chosen snapping occurs, resulting in a final state
where the strip is bent upward: in this case capillary
forces overcome both weight and elastic forces. For large
drops capillarity still defeats elasticity but self-weight is
too large and the system stays in the downward configu-
ration.

To understand the different regions of the (xM , F )
phase diagram we numerically compute equilibrium and
stability of the drop-strip system in the following way.
We consider a 2D setting where a liquid drop of given
volume is hung under an elastic strip of length L, thick-
ness h, and bending rigidity Eh3/12. The strip is
clamped at both ends which are separated by a fixed
distance ∆. We use the arc-length s along the strip to
parametrize its position rs(s) = (xs(s), ys(s)). The unit
tangent, ts(s) = drs/ds, makes an angle θs(s) with the
horizontal: ts = (cos θs, sin θs). The drop lies between
positions s = sA and s = sB on the strip, and the shape
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FIG. 3. Influence of capillarity on the bifurcation diagram of
Fig. 2. Drops of increasing volume are hung below (orange
triangles) or deposited above (purple squares) the elastic strip
S1, buckled upwards with ∆ = 0.95L. As the non-dimensional
drop weight FL2/EI increases, the deflection Y/L of the strip
midpoint decreases, up to a point where snapping occurs (in-
dicated by the dashed lines on the diagram). For comparison
we plot the data of Fig. 2, filled circles, performed on the
same S1 strip. For both square and triangle sets, the vol-
ume increase between each measure is 0.5 µ`, corresponding
to a non-dimensional force increase of 2.73. The left (orange)
panel shows hanging configurations with, from bottom to top,
V = F/ρg=0.5 µ`, 3 µ`, 5.5 µ`, 9 µ`, with ρ = 1000 kg/m3.
The right (purple) panel shows sitting configurations with,
from bottom to top, V =0.5 µ`, 1 µ`, 1.5 µ`, 2 µ`. Note that
the present dead loading (squares and triangles) makes the
asymmetric branch unstable, as opposed to the rigid loading
setup of Fig. 2.

of the liquid-air interface, parametrized with its own arc-
length σ, is ri(σ) = (xi(σ), yi(σ)) and has total contour
length `, see Fig. 4(c). The bending energy of the strip
and gravity potential energy of the water are:

Ebend +Ehydro =
Eh3

24

∫ L

0

[θ′s(s)]
2

ds+ρg

∫∫
A
y dA (1)

where A =
∫ `
0
yi(σ)x′i(σ) dσ −

∫ sB
sA

ys(s)x
′
s(s) ds is the

area between the strip and the liquid-air interface. The
energy per unit area of solid-liquid (respectively solid-air,
and liquid-air) interface is noted γ`s (resp. γsv and γ).
The total interface energy is then:

Esurf = (sB − sA)γ`s + [L− (sB − sA)] γsv + γ ` (2)

We minimize the total potential energy U = Ebend +
Ehydro + Esurf [23] under the constraints of inextensibil-
ity r′s(s) = ts, constant area A, and matching conditions

rs(sA) = ri(0) and rs(sB) = ri(`). This constrained min-
imization problem is solved by considering the following
Lagrangian functional:

L [rs(s), θs(s), sA, sB , ri(σ), θi(σ), `] = U − µ ·ψ (3)

where the vector ψ comprises all the constraints and µ
is the vector of associated Lagrange multipliers, see [24].
Classical minimization and continuation techniques are
used to track equilibrium states along branches in bifur-
cation diagrams. Note that in this 2D model the effective
surface of the drop is not minimal because of its cylindri-
cal shape. To counterbalance this effect we have used a
reduced surface tension γmodel = 0.67γ, analogous to the
surface correction coefficient introduced in [25]. In the
computations, sliding of the drop is prevented by con-
straining the mean position sM = (sA + sB)/2 and the
mean contact angle (αA+αB)/2 = 110◦. Stability of the
system is assessed by computing the linearized dynam-
ics about the equilibrium solution. Results are shown in
Fig. 4(d) where the theoretical (xM , F ) phase diagram
is plotted. The continuous curve, later referred to as the
instability curve, corresponds to loss of the stability of an
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FIG. 4. Phase diagram for elastocapillary snapping: A drop
is hung under a strip and the conditions for snapping to occur
are investigated. (a) Possible final states of the system. (b)
Experimental phase diagram plotted in the (xM , F ) plane.
Triangles (respectively ?) correspond to experiments where
the drop is deposited on an initially downward (resp. upward)
buckled strip. (c) Model notations. (d) Theoretical phase di-
agram showing bistable A and monostable B and C regions.
Note that here FL2/EI corresponds to 12ρAg/Eh3. (e) Evo-
lution of the theoretical phase diagram as the surface tension
used in the model γmodel takes the values 0.38 γ, 0.67 γ, and
0.96 γ (from left to right).
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equilibrium configuration. The dashed curve corresponds
to the smooth transition from downward buckled states
(yM < 0) to upward buckled states (yM > 0). These
two curves divide the (xM , F ) plane in three regions. In
region A, which lies below the instability curve, down-
ward and upward buckled configurations are both found
to be stable. As the crossing of the instability curve is
associated with the loss of stability of one of the config-
urations, in the two regions above the instability curve
there is only one stable configuration: upward for region
B, below the dashed curve, and downward for region C,
above the dashed curve. We remark that the shape of
the instability curve and hence the topology of the phase
diagram is altered by changes in the value of γmodel, as
shown in Fig. 4(e). These numerical results shed light on
experimental findings: in the bistable region A, a drop de-
posited under a downward buckled strip leads to a down-
ward final state unless the perturbation created during
the deposition is too large and the system jumps to an
upward final state, whereas in the monostable region B
the final state is always an upward configuration. As
a cross-check we have experimentally hung drops under
upward buckled strips and found that in regions A and
B the system stays in the upward configuration, thereby
confirming the bi-stability of region A, see markers ? in
Fig. 4(b).

We next show that snapping may be induced remotely.
The lower side of a PDMS strip is treated with an hy-
drophilic coating. The strip is then buckled downward
and placed in a steam flow. Water droplets nucleate on
the hydrophilic side of the strip, coalesce and eventually
induce snapping, see Fig. 5. This phenomenon could be
used to build moisture sensors that would snap once am-
bient humidity has reached a given threshold.

FIG. 5. Condensation-induced snapping. The experiment
approximately lasts three minutes.

We finally investigate time-scales involved in the dy-
namics of the snapping instability. The shape of the
beam as it leaves the unstable equilibrium is recorded
with a high-speed camera. The vertical position ys(s =
L/2, t) of the midpoint of the beam is extracted from the
image sequence. From the fit ys(L/2, t) = y0 + y1eµt we
obtain the growth rate µ. From this growth rate µ we de-
fine a snapping time τsnap = 1/µ and plot τsnap as a func-
tion of the length L of the beam. For ‘dry’ snapping and
in the case of controlled vertical displacement the insta-
bility occurs as the force reaches zero. At this point the
beam has an unstable equilibrium shape corresponding
to the second buckling mode of the planar Elastica. We

1M METAL RULER
METAL FOIL

DRY
SNAPPING

THEORY
ELASTOCAPILLARY

SNAPPING

30CM METAL RULER
BINDING COVER
PDMS 460µM
PLASTIC BINDER
S2 DISPLACEMENT
S2 DEAD LOAD
FOIL / SOAP BUBBLE
S1 / SOAP BUBLE
S2 / WATER DROP

FIG. 6. Snapping dynamics. Typical time τsnap for snap-
ping in different setups. The dashed line is the theoretical
prediction for ‘dry’ snapping τsnap = (L2/24)

√
λ/EI.

numerically compute the growth rate to be µ = 24.26/T
for ∆ = 0.95L where T = L2

√
λ/EI is the typical time

of bending dynamics (see table I) and λ is the mass per
length of the beam. As the growth rate weakly depends
on the confinement ∆ (e.g. µ = 24.42/T for ∆ = 0.9L,
see also [19]) we use an approximate theoretical pre-
diction τsnap = T/24 for ‘dry’ snapping. Experiments
performed with various materials and confinements, e.g.
‘dry’ setups involving L = 0.7 m metal beams, show that,
apart from a deviation at small lengths attributed to vis-
cous effects in the strip, theory agrees nicely with experi-
ments, see Fig. 6. Additional experiments with capillary
S1 and S2 setups, but also setups with soap bubbles ac-
tuating L = 0.25 m metal foil strips [26], show that the
snapping time appears to be the same for ‘dry’ and ‘wet’
snapping.

In summary we have shown that the snap-through of a
beam can be triggered by capillary forces. More precisely
a drop deposited under a downward buckled beam can in-
duce a snap-through instability that drives the system to
an upward configuration. As in adhesive film separation
[27] or in the pull-out of a soft object from a liquid bath
[28], the elastic energy stored in the system before the
instability is suddenly released in the form of kinetic en-
ergy and is mainly ‘lost’. We nevertheless showed in our
setup that part of the energy could be used to lift the
liquid drop. We have also shown that the elastocapillary
dynamics is mainly driven by elastic forces and that fluid
forces and fluid inertia only play a minor role: capillarity
is driving the system toward instability but elasticity is
ruling the subsequent dynamics. The typical scaling of
surface forces makes elastocapillary snapping a good can-
didate to miniaturization and its use as a micro-actuator
might be envisaged. In any case the present study is
an example of a constructive use of capillarity at small
scales.
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