Suplementary information on 'Elastocapillary Snapping'

[^0](Dated: July 5, 2013)

FIG. 1. Phase diagram as in Fig. 4(b) of main text, but with three additional vertical lines corresponding to $x_{M}=0.36 \Delta$, $x_{M}=0.42 \Delta$, and $x_{M}=0.48 \Delta$.

BIFURCATION DIAGRAMS ASSOCIATED TO FIG. 4

We here show some bifurcation diagrams in relation to the phase diagram presented in Fig. 4 of the main text. As in other problems where capillarity, weight, and elasticity are present the following quantities are found to be relevant:

$$
\begin{aligned}
L_{e g} & =\sqrt{E I /(\lambda g)} \\
L_{e c} & =\sqrt{E I /(\gamma w)} \\
L_{c} & =\sqrt{\gamma /(\rho g)}
\end{aligned}
$$

Using parameters from Table 1, we find $L_{e g}=0.683 L, L_{e c}=0.0736 L$, and $L_{c}=0.774 L$. Nevertheless in the numerical computations we made used of an effective value $\gamma_{\text {model }}=0.67 \gamma$, thereby changing $L_{e c}$ and L_{c} to $L_{e c}=$ $0.09 L$ and $L_{c}=0.634 L$. In Fig. 2 the bifurcation diagram for $x_{M}=0.36 \Delta$ is drawn with points corresponding to C_{1} and C_{2} configurations. Configuration C_{1} (respectively C_{2}) has $Y_{M}>0$ (resp. $Y_{M}<0$) and hence is called an upward (resp. downward) buckled configuration. Along the bifurcation curve, at $F L^{2} /(E I) \simeq 100, Y_{M}$ changes sign and this corresponds to the crossing of $x_{M}=0.36 \Delta$ with the dotted curve in Fig. 1. In Fig. 3 we have plotted the three fold points $I_{1,2,3}$, that are also shown in Fig. 1. These points are instability points and correspond to the loss of stability of an equilibrium as one leaves the bistable region A in Fig. 1. In Fig. 4 we have plotted the two points C_{3} and C_{4}, corresponding to stables configuration having the same value of $F L^{2} /(E I)$. These points lie in the bistable region A that extends up to $F L^{2} /(E I) \simeq 220$. For larger F values only the downward buckled configuration remains (in upper region C, out of the range of Fig. 1).

FIG. 2. Bifurcation diagram for $x_{M}=0.36 \Delta$ showing C_{1} and C_{2} configurations. Plain (respectively dotted) curves correspond to stable (resp. unstable) equilibria.

FIG. 3. Bifurcation diagram for $x_{M}=0.42 \Delta$. Plain (respectively dotted) curves correspond to stable (resp. unstable) equilibria. Also shown are the three fold points $I_{1,2,3}$ where stability changes.

SNAPPING DYNAMICS

The shape of the beam as it leaves the unstable equilibrium is recorded with a high-speed camera and the vertical position $y_{\mathrm{s}}(s=L / 2, t)$ of the midpoint of the beam is extracted from the image sequence. From the fit

$$
\begin{equation*}
y_{\mathrm{s}}(L / 2, t)=y_{0}+y_{1} \mathrm{e}^{\mu t} \tag{1}
\end{equation*}
$$

we obtain the growth rate μ. In Fig. 5 we plot $y_{\mathrm{s}}(s=L / 2, t)$ together with three snapshots showing the instantaneous shape of the beam during the snapping event.

FIG. 4. Bifurcation diagram for $x_{M}=0.48 \Delta$ showing C_{3} and C_{4} configurations that share the same F value. Plain (respectively dotted) curves correspond to stable (resp. unstable) equilibria.

FIG. 5. Position on the beam mid-point $y_{s}(L / 2, t)$ as function of the physical time t during a snapping event. Continuous curve corresponds to measured data, while dashed curve is Eq. 1 with fitted $\mu \simeq 23.1$.

[^0]: Aurélie Fargette ${ }^{1,2,3}$, Sébastien Neukirch ${ }^{2,3}$, and Arnaud Antkowiak ${ }^{2,3}$
 ${ }^{1}$ Département de Physique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France.
 ${ }^{2}$ CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France.
 ${ }^{3}$ UPMC Université Paris 06, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

