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Abstract. Heat dissipation during mechanical testing can disturb experimental characterisation of 

polymers. In this work it is demonstrated that these effects are not limited to extreme loading 

conditions such as impacts. A visco-hyperelastic, visco-plastic constitutive model is proposed that 

accounts for thermo mechanical coupling in a fully 3D thermodynamics approach. Strain-rate and 

temperature dependencies are coupled using a concept close to the well known time-temperature 

superposition principle. Constitutive and coupling parameters are identified at the same time using 

an inverse analysis protocol. An experimental data base is generated for mechanical measurements 

at different temperatures and strain rates but also for temperatures during tests measured using IR 

technology. Such a protocol allows investigation on the strain-rate sensitivity in a much more 

relevant manner than classical one and the value of the so-called Taylor-Quinney coupling 

parameter is discussed. 

Introduction 

Nowadays, polymers are more frequently used in industry to create manufactured products for 

structural applications. As a consequence, effort must be made to mechanically characterise those 

materials as accurately as possible. The non linear and dissipative visco-elastic behaviour of 

polymers imposes taking into account strong coupling between mechanical and thermal phenomena 

as well as complex and combined dependences upon strain-rate and temperature. The classical 

approach in experimental mechanics of materials does not account for such phenomena in a correct 

manner and must be revisited. 

Nevertheless, these improvements would be useless without relevant constitutive models and 

protocols for identification of parameters, and it just so happens that most of the existing 

constitutive models and protocols do not allow model coupling, despite numerous recent 

approaches.  

The present study deals with such improvements, which is combines well instrumented 

experimental measurements, new generation models and coupled identification for thermal and 

mechanical parameters. In this paper we illustrate how to combine all these elements to address 

characterisation of tensile mechanical behaviour of a polyamide 66. 

Thermo mechanical characterisation 

An experimental data base was constructed for a semi-crystalline polyamide 66 according to a 

protocol based on full-field measurements [1-4]. Samples (Fig. 1a), of rectangular process zone, 

were machined in 3 mm-thick injection moulded plates. The material was first saturated with 

humidity in order to ensure that its behaviour was stable during the entire experimental campaign. 

Tests were performed at temperature ranging from Tg-60 °C to Tg+30 °C and for constant strain-

rates ranging from 10
-4

 s
-
1 up to 1 s

-1
 (using video-controlled tests). Digital image correlation (DIC) 

on random patterns (painted) was used to analyse the strain field on the front face of the sample. In 

parallel, temperature at the surface of the process zone was measured using, either an IR pyrometer 

or an IR camera (FLIR SC5000), on the back and on the side faces of the sample (Fig. 1b). 
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 (a) (b) 

Figure 1. a) Schematics and dimensions of tensile samples; b) Examples for IR temperature fields 

on the back (left) and on the side (right) faces of the samples for a 7x10
-2

 s
-1

 tensile test performed 

at room temperature. Comparison between two strains of 0.6 and 1.25, respectively (temperatures 

are given in °C). 

 

Typical results of IR measurements are depicted in Fig. 1b and 2a for tensions performed at room 

temperature. Thermo elastic effects were found to induce a 3 °C decrease in temperature whatever 

the strain-rate was. Conversely, heating processes were found to be highly dependent upon strain-

rate. Temperature fields could be superimposed on strain fields and were highly non-uniform on 

both faces (Fig.1), the hotter zone being restricted to the zone of higher strain. A small difference 

between the temperatures measured on the back face and those measured on the side face of the 

sample was observed. This was assumed to be due to the low thermal diffusivity of the polymer. 

However, differences were so weak compared to longitudinal gradient and compared to the overall 

increase in temperature during straining that this phenomenon was neglected. 
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Figure 2. Comparison between two tensile strain-rates performed at 26 °C; a) Surface temperatures; 

b) Mechanical curves (mechanical units are arbitrary due to confidentiality). 

As a matter of fact, let’s emphasise that temperature increased by 60°C for strain-rates of 0.5 s
-1

. 

This increase in temperature had a real impact on the mechanical behaviour of the polymer and 

partly counterbalanced the sensitivity to strain-rate of the behaviour and the strain hardening 

associated to microstructure evolution (Fig. 2). Finally, temperature significantly increased even at 

low strain-rate (e.g. + 5 °C for a 0.0024 per second tension) making the accounting for 

thermomechanical coupling crucially necessary in any case. 
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Thermo-mechanical constitutive model [11] 

There are classically two routes to build up constitutive models. One consists in combining 

elementary processes (elasticity, viscosity, plasticity) via the combination of simple elements 

(springs, dash pots etc.). See in [4, 6] for example. The other route is assuming, within the 

irreversible processes thermodynamics framework, that stresses derive from energy potentials (See 

[2, 7, 8]). Despite the fact that both these two routes can be rigorously conducted, accounting for 

effects of temperature and of strain-rate generally leads to the definition of a lot of arbitrary 

parameters the values of which are difficult to extract in an unambiguous manner from simple 

experiments.  

To avoid such inconvenience, an alternative approach, developed by Billon et al. [9] in a 

complete thermodynamic framework, was chosen. Indeed, Billon postulated that microstructure 

changes are the source of inelasticity in a behaviour that is initially modelled as a hyperelastic 

network.  Those changes are introduced as changes in well chosen internal variables. Inelasticity, 

per se, is due to the elastic relaxation necessary to balance energy to compensate for variables 

changes. This model uses Edward-Vilgis’ network theory [10] in which stresses derived from an 

energy potential, w, that can be written either as a function of the three main extensions or as a 

function of the three invariants (Eq. 1) of the extensions tensor: 
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where k is the Boltzman’s constant and T the absolute temperature, respectively. Additionally, w 

depends on four variables: Nc the density of fixed network nodes, Ns the density of sliding nodes or 

entanglements, α a parameter ultimately related to chain extensibility and η a parameter ultimately 

representative for level of freedom of entanglements. The stress is given in Eq.(2) and the model is 

written in the framework of Irreversible Processes Thermodynamics (IPT) and in the frame of large 

strain approximations: 
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p’ is an arbitrary pressure resulting from the fact that the material is assumed to be incompressible. 

More precisely, inelasticity results from a change in η-value the kinetics of which is controlled by 

the amount of elastic energy stored in the network.  

Parameters depend on temperature and strain-rate. To reduce the number of parameters, and 

according to our experimental observations, it was possible to combine those two dependences in a 

unique dependence upon equivalent strain-rate at a reference temperature, Tref, as classically defined 

at low strains for polymers using the usual WLF’s approach [9, 11]. To summarise parameters 

depends on the fictitious strain-rate: 

DDaa
refref TTeqTT :

3
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where D is the total strain-rate tensor. aT/Tref
 is the so-called shift factor: 
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C1 and C2 parameters are material characteristics that depend on Tref (25 °C in our case accounting 

for Tg of the material).  

Complementary to that, thermomechanical coupling was introduced in energy equation (Eq. (5)) 

in a classical manner accounting for dissipation potential, φint, related to inelastic strain: 

inte

.

p D:
T
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∂
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This latter is due to disentanglement, which is related to an increase in η-value according to the 

model (Eq. (6): 
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where Dv is the inelastic strain-rate tensor. A
Dv

 and A
η
 are the thermodynamics forces associated to 

the inelastic deformation process and the entanglements mobility process, respectively. This 

approach is consistent with Clausius-Duheim inequality and results in a frame that is totally 

compatible with the Generalized Standard Materials (GSM) approach. 

Nevertheless, according to that approach, the inelasticity results from the consumption of some 

elastic energy to promote changes in the parameter η. In the case of an athermal process there is no 

heat dissipation. On the contrary, it can be assumed that a part of the dissipated energy could be 

transformed into heat. Let’s define this energy as a portion of the inelastic energy (as classically 

done for metals application) using Taylor-Quinney coefficient β (7). In this thermo mechanical 

model, the coefficient is introduced to the intrinsic dissipation in a general manner making no any 

assumptions concerning its value: 
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where β(A
Dv

:Dv) is the energy transformed into heat. Two extreme values for β exist: 

 

• β close to 1 (but not 1): inelasticity is mainly converted into heat; 

• β=0 there is no heat dissipation, inelastic energy is stored in changes in microstructure only. 

In consequence, the energy equation can be rewritten as Eq. (9): 

v

D

ep D:AD:
T
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∂
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+∆λ=ρ �    (9) 

Summary 

The above equations were included in a finite difference code (using a θ-method) to calculate 

temperature and stress through the central section of the sample. As a first step, strain was assumed 

to be homogeneous through this section. According to Fig. 1 the temperature was, in parallel, 

assumed to be uniform trough the width of sample.  Consequently, a through thickness 1D-model 

was enough to simulate the experiments. To take into account the boundary conditions, a convection 

term with ambient air on the surface was considered.   
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To conclud with, this numerical model was associated to an inverse analysis, based on the 

simplex algorithm available in MATLAB® software. The identification was based on the 

minimisation of a two objectives cost function that accounted for average axial stress in the section 

and for surface temperature at this section. This latter was written in a mean-square approach. 

In consequence, parameters to be identified were: mechanical parameters (Ns, Ns, α), parameters 

controlling η, parameter β and their dependence upon ε�~  (Eq. (3)) and, finally, h, the convection 

coefficient. The thermal conductivity, the heat capacity and the density of the material were taken 

from the literature and were assumed to be constant. 

Using such an approach, it is possible to reproduce (Fig. 3 and 4) both the mechanical and 

thermal properties of the polymer over the wide range of experimental sets using only 12 

parameters.  
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Figure 3. Comparison between experiments and model for a 0.001 s
-1

 tensile test; a) Normalised 

stress  vs. strain curve; b) temperature vs. strain. 
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Figure.4. Mechanical curves calculated on the entire range of equivalent strain-rate at the reference 

temperature (from 10
-9

 to 10
4
 s

-1
). Reference stress (σmax is the same for all conditions). Blue lines 

are experiments, red dots are calculations. 
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Those latter parameters include: dependence upon strain rate and temperature, thermomechanical 

coupling and convection on the surface of the sample, which is noticeable. 

Faster methods are now being developed to improve computation time.  
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Glossary 

w Elastic energy potential 

k Boltzman’s constant 

T Absolute temperature 

D Total strain-rate tensor 

De Elastic strain-rate tensor 

Dv Inelastic strain-rate tensor 

Fe Elastic extension tensor 

Ce Cauchy-Green stress tensor 

σ Stress tensor 
e

1I , e

2I , e

3I  Invariant of elastic extension tensor 

vD
A  Thermodynamic force associated to inelasticity 

ηA  Thermodynamic force associated to η 

β Taylor-Quinney coefficient 

Cp Heat capacity 

λ Heat conductivity 

ρ Density 
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