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Introduction

The spread of a tracer in a shear flow, in a porous medium or in a spatially disordered set of streamlines, is often analyzed by averaging over microscopic scales. Classically the corresponding mesoscopic model is the advectiondiffusion equation. Diffusion is characterized by an evolution in time of the tracer distribution variance proportional to t. Nevertheless, observations have emphasized the existence of regimes where the variance rather expands as t 2γ , γ = 1/2 (see e.g. the observations in a sand column described in [START_REF] Bromly | Non-Fickian transport in homogeneous unsaturated repacked sand[END_REF]). This non-Fickian phenomenon is referred to as anomalous diffusion. In particular, if 0 < γ < 1/2 the dispersion is slower than diffusion and is thus termed subdiffusion. Subdiffusion has been observed for instance during the transport of charge carriers in amorphous semi-conductors, during the propagation of contaminants in groundwater, or in the movement of proteins in intracellular media.

The present paper is devoted to the rigorous upscaling of some particles displacement model with trapping events to the continuum scale. We focus especially on the transitions between subdiffusive and diffusive models.

A classical approach to go from the particles scale to a continuous description of the displacement consists in representing small scale motions of walkers by means of random processes. After the fundamental works of Brown [START_REF] Brown | A brief account of microscopical observations made in the months of. June, July, and August 1827, on the particles contained in the pollen of plants, and on the general existence of active molecule in organic and inorganic bodies[END_REF], Einstein [START_REF] Einstein | Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen[END_REF], Smoluchowski [START_REF] Smoluchowski | Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen[END_REF] and Perrin [START_REF] Perrin | Mouvement Brownien et réalité moléculaire[END_REF], literature on the subject is of course very abundant. Recently, a branch of the physical literature focused on non-Fickian settings. Let us give some typical references. A first statistical model yielding subdiffusion is the anti-persistent fractional Brownian motion with Hurst exponent in the range (0, 1/2) ( [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF]). Another approach to anomalous behavior consists in representing small scale motions of walkers by means of random processes whose (one-time) probability density function satisfies the Fractional Fokker Planck Equation (FFPE) or the fractal Mobile-Immobile Model (fMIM). FFPEs were derived e.g. in [START_REF] Zaslavsky | Fractional kinetic equation for Hamiltonian chaos[END_REF][START_REF] Barkai | From continuous time random walks to the fractional Fokker-Planck equation[END_REF][START_REF] Metzler | The restaurant at the end of the random walk[END_REF][START_REF] Magdziarz | Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: The case of timedependent force[END_REF][START_REF] Magdziarz | Langevin picture of subdiffusion with infinitely divisible waiting times[END_REF], using mainly continuous time random walks and Laplace transforms. In the present paper, we choose primarily the MIM approach that seems better suited for modeling mass transport in porous media ( [START_REF] Schumer | Fractal mobile/immobile solute transport[END_REF][START_REF] Benson | A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations[END_REF][START_REF] Neel | Mass transport subject to timedependent flow with uniform sorption in porous media[END_REF]). Indeed, fMIM's solutions behave as FFPE's ones at late times and as ones of the advection-dispersion equation at early times, in agreement with many heavy-tailed data. Yet we prove that our derivation lets us also recover FFPE.

Basically, MIM-like models considers the global displacement as a succession of Mobile periods (convection/diffusion) and Immobile periods (trapping events due to local -microscopic-heterogeneity, e.g. geometrical complexity or sorption sites) [START_REF] Zhang | Moment analysis for spatiotemporal fractional dispersion[END_REF], [START_REF] Benson | A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations[END_REF]. Fractal MIM involves a generalization of Fourier's law that rules the density of Brownian motion.

In the present work, we aim at giving particular emphasis to the following points:

• The waiting times distribution and its scaling. Anomalous versus classical diffusion.

A quantity of fundamental importance in passing to the continuum limit in an interrupted process is the distribution of waiting times. One of the first illustrations of this importance was given in [START_REF] Young | Arrested shear dispersion and other models of anomalous diffusion[END_REF] by selecting a distribution which induces the same type of variance than the pde's model for the tracer distribution in a central pipe with many stagnant infinite side branches. See also the references therein.

On the one hand, classical diffusion equation has been justified by as-suming deterministic residence times between jumps (Einstein's derivation) or exponential distribution of residence times (see for instance [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]). On the other hand recent developments about anomalous diffusion are mainly associated to residence times with infinite mean (Mittag-Leffler residence time distribution, e.g. [START_REF] Scher | Anomalous transit-time dispersion in amorphous solids[END_REF][START_REF] Shlesinger | Strange kinetics[END_REF]). These two types of result have led to the common idea that distributions with slowly decaying long tails produce anomalous diffusion while the classical diffusion model corresponds to distributions with short tails. In the present paper, we show that it does not always hold true. Actually, we introduce a simple model of geometrical heterogeneity leading to trapping events without characteristic time scale: the survival probability of the trapping asymptotically behaves as a power law (long tails). We then show that anomalous diffusion appears in MIM if and only if there is no scale separation between moving and trapping process. It means in particular that the mesoscale, that is the observation time, is calibrated in view of the magnitude of the sojourn times at the microscale. Furthermore we prove that the anomalous behavior in MIM is transient, without assuming that the microscopic heterogeneity asymptotically disappears as e.g. in [START_REF] Cortis | Quantitative characterization of pore-scale disorder effects on transport in homogeneous granular media[END_REF][START_REF] Berkowitz | Modeling non-Fickian transport in geological formations as a continuous time random walk[END_REF].

• Path integrals.

Let u be a given integrable function. We associate with any path of particle x(t) in the time interval (0, t) the random variable A defined as the functional:

A(t) = t 0 u(x(s)) ds.
Such path integral may represent various "observables" attached to trajectories of tracer particles: occupation time if u is a step function, advection in turbulent flow if u(x) = x, average width of an interface if u(x) = x 2 , magnetization phase in NMR if u is the magnetic field etc (see the review [START_REF] Majumdar | Brownian functionals in physics and computer science[END_REF] for various examples). Assuming Brownian particles, the Brownian functional A is widely studied. In the fundamental article [START_REF] Kac | On distributions of certain Wiener functionals[END_REF], using Feynman's path integral method, Kac derived the Schrödinger-like equation governing the distribution of Brownian functionals for any positive function u.

In the present paper, we extend the Feynman-Kac theory to some non-Brownian settings. We thus also recover the results of [START_REF] Carmi | On distributions of functionals of anomalous diffusion paths[END_REF] without handling with double Laplace transforms. We believe our method more comfortable in view of numerical simulations.

• Fractal Mobile-Immobile Model versus Fractional Fokker Planck Equation.

We construct a microscopic random walk model that, thought based on a MIM approach, let us get at the mesoscopic limit both fMIM and FFPE. The key is the choice of the duration of the micro-convective step. Furthermore we prove at the mesoscale that FFPE may be viewed as a limit of fMIM.

Let us now describe the results presented in this work.

The present paper gives an uniform derivation of the appropriate form of the Feynman-Kac equation both in subdiffusive and diffusive settings. Moreover we describe the scalings leading to the appearance and disappearance of anomalous behavior. By the way, let us first focus on the anomalous setting. We state the following result.

Theorem 1 If the observation time is such that there is no scale separation between trapping and diffusion, the hydrodynamic limiting behavior of the probability density function (pdf ) P (x, t, A) for a tagged particle to be at point x at time t with the value A for the path integral A(t) is governed by a non-Fickian equation in the form

∂ t P -D∂ 2 xx H γ Λ,Λv,u P + Λ v ∂ x vH γ Λ,Λv,u P + u∂ A P = r, ( 1 
)
where r is a source term and operator H γ Λ,Λv,u is the inverse of some nonlocal in time mapping:

H γ Λ,Λv,u = Λ v Id + ΛT A •tu(•x) I 1-γ 0,+ T A -•tu(•x) -1 . (2) 
This relation entails a substantial fractional operator, that is the fractional integral of order 1 -γ, I 1-γ 0,+ , composed with path translations T A ±•tu(•x) . Here Id denotes the identity operator. The real numbers Λ ≥ 0 and γ > 0 are constant parameters characterizing the physics of the trapping process while the real number Λ v ≥ 0 characterizes convective motions.

Furthermore, anomalous diffusion is a transient behavior. For larger times, pdf P is governed by the classical Fickian Feynman-Kac equation:

∂ t P -D∂ 2 xx P + Λ v ∂ x (vP ) + u∂ A P = r. (3) 
We recall that the fractional integral of order α > 0, I α 0,+ f , is defined by

I α 0,+ f (t) = 1 Γ(α) t 0 (t -t ) α-1 f (t )dt .
This fractional integral generalizes the Cauchy multiple integral to noninteger order [START_REF] Samko | Fractional integrals and derivatives: theory and applications[END_REF][START_REF] Rubin | Fractional integrals and potentials[END_REF]. Operator I α 0,+ is bounded in L p (0, T ), 1 ≤ p ≤ ∞ [START_REF] Samko | Fractional integrals and derivatives: theory and applications[END_REF]. The corresponding Laplace symbol is λ -α . We also recall that I α 0,+ I β 0,+ = I α+β 0,+ . Hence I α 0,+ may be viewed as a "αth root" of the time integration operator. The substantial fractional operator H γ Λ,Λv,u expresses memory effects. In short, the future state depends on the present state and on the past. Markovity fails.

We observe in Eq. ( 1) that the micro-trapping process induces two anomalous transport properties at the mesoscale, on the meso-diffusive law and on the meso-convection. First, due to the presence of a substantial fractional operator H γ Λ,Λv,u in the diffusive term, the classical Fick's law is perturbed and the model is subdiffusive. Second, the trapping process also perturbs the convective process, once again through the substantial fractional operator H γ Λ,Λv,u .

Heuristically Theorem 1 states that some scaling conditions lead to a transient anomalous transport and hence to a subdiffusive version of the Feynman-Kac equation. By the way, the present paper also describes precisely the critical scalings leading to normal or anomalous transport behavior:

Extended Theorem 1 The choices of scaling parameters leading to normal or abnormal transport (or to a freezing of the system due to asymptotically dominant trapping) are basically summarized in Fig. 1.

Finally, let us mention that choosing Λ v = 0 we recover the Feynmann-Kac equation associated with FFPE, that is the equation derived in [START_REF] Carmi | On distributions of functionals of anomalous diffusion paths[END_REF] with other tools. More precisely:

Theorem 2 Assume Λ v = 0.
If the observation time is such that there is no scale separation between trapping and diffusion, the hydrodynamic limiting behavior of the probability density function P * (x, t, A) for a tagged particle to be at point x at time t with the value A for the path integral A(t) is governed by a non-Fickian equation in the form

∂ t P * (x, t, A) -D∂ 2 xx (Λ -1 T A tu(x) D 1-γ 0,+ T A -•tu(x) )P * (x, t, A) +u(x)∂ A P * (x, t, A) = r(x, t, A), (4) 
where operator D 1-γ 0,+ is the Riemann-Liouville derivative of order 1 -γ, that is a left inverse of the fractional integral I 1-γ 0,+ . Hence FFPE appears as a special case of our derivation. Moreover, convergence of the weak solutions of (1) to those of (4) is proved.

The present paper is organized as follows. In Section 2, we construct a microscopic random walk model describing displacement of particles with trapping events. Our assumptions and especially the scaling parameters are introduced. Section 3 is devoted to the hydrodynamic limiting process. Anomalous (or not) behavior is induced by the relative importance of mobile and immobile densities. For each scaling choice, we derive the corresponding model at the mesoscale. In Section 4, we focus on the importance of scalings. We summarize when and why anomalous transport properties appear/disappear at the mesoscale and we interpret these phenomena in terms of operational and clock times. The mathematical analysis of the pde (1) is performed in Section 5. We also prove that solution of ( 4) is the limit of solution of [START_REF] Agman | Diffusive dynamics on potential energy surfaces: non equilibrium CO binding to heme proteins[END_REF]. In Section 6 we derive the equation for observable quantities corresponding to the anomalous Feynman-Kac equation [START_REF] Agman | Diffusive dynamics on potential energy surfaces: non equilibrium CO binding to heme proteins[END_REF]. Finally Annex A is devoted to the waiting times distributions with long tails. A powerlaw distribution is in particular justified using a basic geometrical model of heterogeneity.

2 A small-scale random walk model for flow with trapping processes

Definition and assumptions

The present study is based on a random walk process. 

ϕ (•) = -1 ϕ(•/ )
is the density of N * . We denote by x τ t the random process that represents the position of a tagged walker at time t.

We now introduce an assumption on the scale separation parameters and τ . The so-called diffusive scaling consists in assuming that the microscopic and macroscopic distances (respect. times) satisfy x micro = -1 x macro (respect. t micro = τ -1 t macro ) and that the former scale separation parameters are related through =

√ 2Dτ 1/2 , ( 5 
)
where D is a given nonnegative number. Letting τ → 0, the stochastic process x τ t then asymptotically approaches the Brownian Motion x t with diffusion coefficient D and drift v ( [START_REF] Ross | Introduction in probability models[END_REF]). Assuming that ϕ is a normal pdf with zero mean and standard deviation equal to does not restrict the generality of this picture.

Suppose now that stagnation periods of random durations are superimposed to the above random walk due to small-scale heterogeneities. A natural way of accounting for such "sorption" events is that walkers are trapped at the end of each displacement of tracer or fluid parcels. For instance one may imagine a stream tube which winds tortuously through an array of persistent trapping eddies, or adsorption/desorption phenomena. We further assume that the sojourn time in the traps is itself a random variable t * w . Its average may be finite or not. As explained in the Introduction, we focus here on the second case. We thus assume that t * w obeys a power-law decaying pdf. More precisely, we assume: (H 1 ) (waiting times distribution) The pdf ψ of the retention times is concentrated on R + , with survival probability Ψ of type

Ψ(t) = Λt -γ /Γ(1 -γ) + K(t), γ > 0.
Function K is integrable in R + and such that Ψ is integrable in (0, 1). The real number γ characterizes tails of the waiting time distribution: we assume

(H 1 long ) 0 < γ < 1 for long tails, (H 1 short ) 1 < γ for short tails.
Prefactor Γ(γ -1) is introduced for the sake of simplicity of computations while Λ is a constant introduced for dimensional consistency. Assumption (H 1 long ) is satisfied by pdf's whose asymptotic behavior is a power-law. We might consider maximally skewed Lévy laws with exponent γ [START_REF] Lévy | Théorie de l'addition des variables aléatoires[END_REF][START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF][START_REF] Meerschaert | Limit distributions for sums of independent random vectors, Heavy tails in theory and practice[END_REF], which are concentrated on R + precisely for 0 < γ < 1. The trivial degenerate case of constant waiting times, γ = 1, corresponds to normal diffusion (see e.g. [START_REF] Nolan | Stable Distributions -Models for Heavy Tailed Data[END_REF]).

Justification of Assumption (H 1 long ) is postponed to Annex A. We now only give two fundamental remarks about this hypothesis.

Remark 1 Considering as in (H 1 long ) waiting times distributions with no characteristic mean meets the ideas of [START_REF] Owhadi | Anomalous slow diffusion from perpetual homogenization[END_REF] where subdiffusion was recovered through the asymptotic study of a stochastic differential equation after assuming no-scale separation and thus no possibility of a classical homogenization process (bear in mind that any homogenization process may be considered as the tracking of a mean behavior).

Remark 2 A main ingredient of our fractal MIMs derivation is the choice (H 1 long ) of power-law retention times. In FFPEs derivation such a powerlaw also characterizes residence times between diffusive jumps. Let us precise that the main difference between FPE and MIM is the subordinator which replaces the deterministic time by a random clock process. The equivalent Langevin description of both models is in terms of the subordinated process y(t) = x(S(t)) where the parent process x(•) is defined as the solution of the Itô stochastic differential equation

dx(τ ) = Λ v vdτ + dB(τ ),
driven by the standard Brownian motion B. In FFPE, S is the inverse stable subordinator S(t) = inf{s ∈ R + ; W L (s) > t}, W L being a stable Levy process. In fractal MIM, S(t) = inf{s ∈ R + ; Λ v s + W L (s) > t}. Hence our assumptions should lead to the FFPE derivation if Λ v = 0. This point is rigorously confirmed in this work.

Microscopic models where the power-law characterizes diffusive jumps (Levy flights instead of Gaussian jumps) lead to limit models with a fractional space derivative ( [START_REF] Weeks | Anomalous diffusion in asymmetric random walks with a quasi-geostrophic flow example[END_REF] for instance) which seems more suitable for super-diffusive settings.

Let us now introduce a scale separation parameter τ w for the trapping process such that t trap micro = τ -1 w t trap macro . We choose to express it as a function of the time scale separation parameter τ by setting

τ w = τ 1/γ 1 , γ 1 > 0. ( 6 
)
Note that the scaling relation ( 6) is constructed as the scaling relation [START_REF] Berkowitz | Modeling non-Fickian transport in geological formations as a continuous time random walk[END_REF].

We have the classical diffusive scaling "distance=(time) 1/2 " and a trapping scaling "trapping time=(time) 1/γ 1 ". In short, we have the following assumption.

(H 1 ) (scaling of the waiting times) We introduce the rescaled variable

t w = τ 1/γ 1 t * w , γ 1 > 0.
The real number γ 1 is a parameter introduced to account for possibly different orders of magnitudes between sojourn times and observation time. This point is more detailed in Section 4 below.

The survival probability associated with t * w is

+∞ t ψ(t ) dt .
This quantity expresses the probability that the trapping time is longer than t. It follows that the rescaled pdf of t w is

ψ γ 1 (t) = τ -1/γ 1 ψ(t/τ 1/γ 1 ),
while the rescaled survival probability is

Ψ γ 1 (t) = Ψ(t/τ 1/γ 1 ) = +∞ t/τ 1/γ 1 ψ(t ) dt .
Assumptions (H 1 , H 1 ) provide a sufficient description of the walkers immobilization (immobile phase). For the time spent during displacements (mobile phase), several sceneries may be conceived, depending on the time of occurrence of the diffusive jump within a mobile period [t -τ, t]. Since we assume here stochastic independence between waiting times and jumps, they are equivalent in the diffusive limit [START_REF] Neel | Mass transport subject to timedependent flow with uniform sorption in porous media[END_REF][START_REF] Weron | Clustered continuous time random walks: diffusion and relaxation consequences[END_REF]. For the sake of simplicity, we thus assume that walkers perform a single instantaneous diffusive jump at the end of each mobile period.

The present work aims at deriving an equation governing the limit behavior of the pdf P τ (x, t, A) for a tagged particle to be at point x at time t, with the value A for the path integral t 0 u(x τ (t ))dt , as τ → 0. We assume: (H 2 ) (path integral integrand) The real function u is nonnegative and integrable, and belongs to L ∞ (R + ).

We aim deriving the equation ruling the hydrodynamic limit P (x, t, A) of P τ (x, t, A). We will show below that the existence of P is related to the behavior of the density distribution m τ (x, t, A) defined as the pdf of just ending a stagnation period at time t and position x with value A. We assume:

(H 3 ) (mobility) There exists a limit function

l m ∈ W 1,1 ((0, T ) × R 2 ) such that the sequence of density distribution (m τ ) τ >0 ⊂ D ((0, T ) × R 2 ) satisfies: lim τ →0 τ -1/2 τ m τ -l m L 1 (0,T ;X) = 0, X = L 1 (R, L 1 (R)).
We choose here to work within the framework of L 1 functions instead of using measures. This choice is essentially motivated by the use of density functions and the corresponding simplicity of notations. Indeed our aim in the present paper is to focus on the importance of scalings. Integral representations are interpretable physically and clarify the structure of the limiting processes. The interested reader will find the details of the proof in the context of measures in [START_REF] Choquet | Rigorous derivation of Feynman-Kac equations for arrested dispersion[END_REF].

Remark 3 In the present paper, the hydrodynamic limit τ → 0 consists in studying weak limit in X, and therefore testing against functions that live on the macroscopic scale. Part of the microscopic information is lost through this mechanism and lead to the irreversibility of the macro-model, even in case of reversibility of the micro-model.

Probability densities for the mobile and immobile phases at small scale

Particles performing such random walks with sorption can be thought of as belonging alternatively to two distinct "phases": at each time step walkers are said to be in the immobile or in the mobile phase according they are trapped or not. Note that this succession of "Stop and Go" is in some sense comparable to the sequence of "On and Off" of network traffic models ( [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]). We proceed to derive an explicit microscopic relation that links the particles densities in the two phases. The hydrodynamic limit will be addressed in the next Section. Let τ > 0 be given. Let P τ i (x, t, A) represent the density of trapped particles at location x and time t such that the path integral t 0 u(x τ (t ))dt has the value A. Formally, quantity P τ i (x, t, A)dxdA is the probability to find a tagged walker between x and x+dx, with the path integral between A and A + dA. Similarly, P τ m (x, t, A) represents the density of mobile walkers. In order to establish a relation between densities P τ i and P τ m , we introduce the pdf's i τ (x, t, A) of just arriving and being immobilized at point x and time t with the value A for the path integral, and m τ (x, t, A) of just being released by a sorbing site (at point x, time t with the value A). We recall that density m τ is characterized in assumption (H 3 ).

Mobile particles at position x at time t have been trapped and then released at time t-t and at a distance vt from x, for some t > 0. Moreover, particles attached (at point x and time t) to the value A of the integral t 0 u(x τ (θ))dθ correspond at time t -t (and at point x -vt ) to the value

A - t 0 u(x -vt + vθ)dθ. This implies P τ m (x, t, A) = Λvτ 0 m τ (x -vt , t -t , A - t 0 u(x -vt + vs)ds) dt = Λvτ 0 T vt ,t T A t 0 u(x+vs)ds m τ (x, t, A) dt ,
that is

P τ m = Λ v P τ,aux m , P τ,aux m (x, t, A) = τ 0 T Λvvt ,Λvt T A Λv t 0 u(x+vs)ds m τ (x, t, A) dt . (7) 
Convective displacements are represented through operator T u,w which denotes translation in space and time. We set

T u,w G(x, t) = H(t -w)G(x -u, t -w),
H being the Heaviside step function. Translations of amplitude b in the direction of A, are denoted by T A b . Note that all the translations used in the present paper trivially become

Id if Λ v = 0.
Immobile particles that are in x at time t must have jumped there previously at time t -t , for some t > 0, been trapped and stayed there up to t. During this immobile period, the increase of path integral A is u(x)t . Hence, denoting time convolutions of functions in R + by * , i.e.

F * G(t) = t 0 F (t -t )G(t ) dt ,
we have

P τ i (x, t, A) = t 0 Ψ γ 1 (t )i τ (x, t -t , A -t u(x)) dt = T A u(x)t t 0 Ψ γ 1 (t )i τ (x, t -t , A + (t -t )u(x)) dt = T A u(x)t [Ψ γ 1 * T A -u(x)•t i τ (x, • t , • A )](x, t, A) (8) 
where • y designs a variable (y = t, x or A) involved in convolutions or translations. Equations ( 7) and ( 8) were gained upon addressing separately what happens to a tagged walker in the mobile and immobile phases. We now link these steps. Particles just arriving at x at time t > Λ v τ (where they will be immobilized) may have been trapped and released or have been injected into the system by the source, in each case at time t -Λ v τ . During this latter mobile period, that began at point x -y -Λ v vτ , path integral A was increased of

Λvτ 0 u(x -y -Λ v vτ + vθ)dθ = T Λvvτ,Λvτ Λvτ 0 u(x -y + vs)ds.
Indeed, the diffusive jump was assumed to be instantaneous and to occur at the end of the current period. Hence, quantity i τ (x, t, A) reads, for t > Λ v τ ,

i τ (x, t, A) = R m τ x -y -Λ v vτ, t -Λ v τ, A - Λvτ 0 u(x -y -Λ v vτ + vs)ds ϕ (y)dy = ϕ (• x ) T Λvvτ,Λvτ T A Λv τ 0 u(•x+vs)ds m τ (x, t, A). (9) 
We denote by the space convolution, that is

f g(x) = R f (x -x )g(x ) dx .
Quantity i τ is thus fully described by the knowledge of m τ . According to Eq. ( 7), the weighted density τ -1 P τ,aux m (x, t, A) is the average of the quantity T Λvvt ,Λvt T A Λv t 0 u(x+vs)ds m τ (x, t, A) over an interval of amplitude τ . Thus it approximates T Λvvτ,Λvτ T A Λv τ 0 u(x+vs)ds m τ (x, t, A) when τ → 0, at least for smooth functions of time. This latter assumption is actually not necessary to ensure that replacing T Λvvτ,Λvτ T A Λv τ 0 u(x+vs)ds m τ (x, t, A) by τ -1 P τ,aux m (x, t, A) results into a small error for P τ i . This argument will be checked in the next subsection. We thus define the error ε τ corresponding to this approximation:

ε τ (x, t, A) = T Λvvτ,Λvτ T A Λv τ 0 u(x+vs)ds m τ (x, t, A) - P τ,aux m (x, t, A) τ = 1 0 T Λvvτ,Λvτ T A Λv τ 0 u(x+vs)ds -T Λvvθτ,Λvθτ T A Λv θτ 0 u(x+vs)ds m τ (x, t, A) dθ. ( 10 
)
From relations ( 8) and ( 9) that read

P τ i (x, t, A) = T A u(x)t [Ψ γ 1 * T A -u(x)•t (ϕ T Λvvτ,Λvτ T A Λv τ 0 u(•x+vs)ds )m τ ](x, t, A), (11) 
and from the decomposition (10)

T Λvvτ,Λvτ T A Λv τ 0 u(x+vs)ds m τ = τ -1 P τ,aux m +
ε τ , we infer:

P τ i (x, t, A) = R τ P τ,aux m (x, t, A) + E τ (x, t, A), (12) 
where

R τ g(x, t, A) = τ -1 T A u(x)t Ψ γ 1 * T A -u(x)•t [ϕ g](x, t, A), (13) 
E τ (x, t, A) = T A u(x)t Ψ γ 1 * T A -u(x)•t [ϕ ε τ ](x, t, A) = R τ [τ ε τ ](x, t, A). ( 14 
)
In the next Section, we prove that the operator R τ may asymptotically lead to the introduction of a substantial derivative operator, quite similar to the one already introduced (with a different formulation) by [START_REF] Friedrich | Anomalous diffusion of inertial, weakly damped particles[END_REF] and [START_REF] Carmi | On distributions of functionals of anomalous diffusion paths[END_REF]. We also check that E τ tends to zero as τ → 0. To this aim, we provide in the next subsection some auxiliary convergence results.

Some convergence results

We begin with an auxiliary result.

Lemma 1 Let g ∈ L 1 (0, T ; X). We define application A[g] : (0, T ) → L 1 (0, T ; X) by A[g](t ) = T Λvvt ,Λvt T A Λv t 0 u(•x+vs)ds [g], t ∈ (0, T ).

Then we have

lim τ 1 →0 A[g](τ 1 ) -τ -1 1 τ 1 0 A[g](t ) dt L 1 (0,T ;X) = 0. If furthermore g ∈ W 1,1 ((0, T ) × R 2 ), lim τ 1 →0 τ -1/2 1 A[g](τ 1 ) -τ -1 1 τ 1 0 A[g](t ) dt L 1 (0,T ;X) = 0.
Proof. By continuity of translation operator, with in particular lim

(x 1 ,t 1 ,A 1 )→0 g(• x -x 1 , • t -t 1 , • A -A 1 ) -g(• x , • t , • A ) L 1 (0,T ;X) = 0,
and continuity of the integration operator, we check straightforward that application A[g] is continuous in (0, T ). Its average is thus known to approximate it in (0, T ). More precisely, if

• L 1 = • L 1 (0,T ;X) , A[g](τ 1 ) -τ -1 1 τ 1 0 A[g](t ) dt L 1 = 1 0 A[g](τ 1 ) -A[g](θτ 1 ) dθ L 1 ≤ max θ∈(0,1) A[g](τ 1 ) -A[g](θτ 1 ) L 1 = A[g](τ 1 ) -A[g](θ o τ 1 ) L 1
for some θ o : R → (0, 1). Since A[g] : (0, T ) → L 1 (0, T ; X) is continuous, it follows that the right-hand side of the latter expression tends to zero as τ 1 → 0. If furthermore g ∈ W 1,1 ((0, T )×R 2 ), we use a Taylor's type formula to assert that lim

τ 1 →0 τ -1/2 1 A[g](τ 1 ) -A[g](θ o τ 1 ) L 1 (0,T ;X) = 0.
This ends the proof of the lemma. We now study the limit behavior of the correction ε τ defined in [START_REF] Choquet | Rigorous derivation of Feynman-Kac equations for arrested dispersion[END_REF]. We prove the following result.

Lemma 2

The following result holds true:

τ 1/2 ε τ → 0 in L 1 (0, T ; X).

Proof.

Using application A defined in Lemma 1, we note that

ε τ = A[m τ ](τ ) -τ -1 τ 0 A[m τ ](t )
dt . Inserting the L 1 -limit l m of τ m τ in the latter expression, we have

τ ε τ = A[τ m τ ](τ ) -A[l m ](τ ) + A[l m ](τ ) -τ -1 τ 0 A[l m ](t ) dt +τ -1 τ 0 A[l m ] -A[τ m τ ] (t ) dt .
It remains to prove that the three terms in the right-hand side of the latter relation tend to zero in L 1 (0, T ; X) faster than τ 1/2 . Using the continuity of the translation operator in L 1 , we compute:

τ -1/2 A[τ m τ ](τ ) -A[l m ](τ ) L 1 (0,T ;X) = τ -1/2 T Λvvτ,Λvτ T A Λv τ 0 u(•x+vs)ds [τ m τ -l m ] L 1 (0,T ;X) ≤ τ -1/2 τ m τ -l m L 1 (0,T ;X) → 0 as τ → 0.
Since function l m belongs to W 1,1 ((0, T ) × R 2 ) and does not depend on τ (see (H3)), we assert with Lemma 1 that

τ -1/2 A[l m ](τ ) -τ -1 τ 0 A[l m ](t ) dt L 1 (0,T ;X) → 0 as τ → 0.
Finally, we compute:

τ -1/2 τ -1 τ 0 A[l m ] -A[τ m τ ] (t ) dt L 1 (0,T ;X) = τ -1/2 τ -1 τ 0 T Λvvt ,Λvt T A Λv t 0 u(•x+vs)ds [l m -τ m τ ] dt L 1 (0,T ;X) ≤ τ -3/2 τ 0 l m -τ m τ L 1 (0,T ;X) dt = τ -1/2 l m -τ m τ L 1 (0,T ;X) → 0 as τ → 0.
Lemma 2 is proved. Now we claim and prove the following result.

Proposition 1 There exists some function P m belonging to W 1,1 ((0, T ) × R 2 ) such that the following convergence holds true as τ → 0:

τ -1/2 P τ,aux m -P aux m → 0 in L 1 (0, T ; X).
Proof. Due to [START_REF] Choquet | Rigorous derivation of Feynman-Kac equations for arrested dispersion[END_REF],

P τ,aux m = T Λvvτ,Λvτ T A τ Λv 0 u(•x+vs)ds [τ m τ ] -τ ε τ . ( 15 
)
The result of the present proposition thus follows from Assumption (H3) and Lemma 2.

Remark 4 In view of (15) and of the previous results, Assumption (H3) on τ m τ (and not on m τ ) is the minimal one to get a non-trivial limit behavior for P τ m , that is

P m = 0 if Λ v = 0.
3 Hydrodynamic limit: governing equations versus scaling

The keypoint in deriving the macroscopic equations governing the hydrodynamic limit of the small scale processes described above is the limit of Eq. [START_REF] Coon | Some properties of the double Laplace transformation[END_REF]. It is the purpose of the next two subsections. In the third one, we collect our results and give the appropriate form of the Feynman-Kac equation for each scaling choice (thus recovering results of Fig. 1).

Relation between mobile and immobile densities if γ < 1

We now show that the mapping R τ defined by Eq. ( 13) converges to a combination of translations in the A-direction with a fractional integral with regard to time.

To highlight the dominant singular term in the time convolution of kernel τ -1 Ψ γ , for any g ∈ L 1 (0, T ; X) we decompose R τ g in

R τ g = I τ 1 g + I τ 2 g, (16) 
where

I τ 1 g(x, t, A) = Λτ γ/γ 1 -1 Γ(1 -γ) t 0 (t ) -γ (ϕ g)(x, t -t , A -t u(x))dt , (17) 
I τ 2 g(x, t, A) = τ 1/γ 1 -1 t 0 τ -1/γ 1 K( t τ 1/γ 1 )(ϕ g)(x, t -t , A -t u(x))dt , (18) 
thanks to hypothesis (H 1 , H 1 ) that read:

τ -1 Ψ γ 1 (t) = Λ t -γ Γ(1 -γ) τ γ/γ 1 -1 + τ -1 K(t/τ 1/γ 1 ).
Let us begin with some results about the limit behavior of operators

I τ i , i = 1, 2.
The time convolution of kernel Λt -γ /Γ(1 -γ) is precisely the fractional integral ΛI 1-γ 0,+ . Then I τ 1 satisfies

I τ 1 g(x, t, A) = τ γ/γ 1 -1 T A tu(x) Λ • -γ t Γ(1 -γ) * T A -u(x)•t [ϕ (• x ) g(• x )] (x, t, A) = τ γ/γ 1 -1 T A tu(x) ΛI γ-1 0,+ T A -u(x)•t [ϕ g](x, t, A) (19) 
for any g ∈ L 1 (0, T ; X). Convolution of kernel ϕ tends to the identity operator Id as → 0. Thus, for any g ∈ L 1 (0, T ; X), we have the strong convergence result

τ 1-γ/γ 1 I τ 1 g, h D ×D → ΛT A tu(x) I 1-γ 0,+ T A -u(x)•t g, h in L 1 x (R)
as τ → 0, for any ad hoc test function h defined in R 2 . Moreover, if (g ) is a sequence of L 1 (0, T ; X) which is weakly convergent in L 1 (0, T ; X) to some limit g, we recall that for any test function h,

(0,T )×R R (ϕ g )h dxdtdA = (0,T )×R R g ( ϕ h) dxdtdA → (0,T )×R R gh dxdtdA
as → 0, where ϕ = ϕ • (-Id) = ϕ because of symmetry. We infer from the two latter relations the following lemma.

Lemma 3 For any sequence (g τ ) of L 1 (0, T ; X) which is weakly convergent in L 1 (0, T ; X) to some limit g, we have

τ 1-γ/γ 1 I τ 1 g τ (x, t, A) ΛT A tu(x) I 1-γ 0,+ T A -u(x)•t g(x, t, A) weakly in L 1 (0, T ; X).
Remark 5 On the right-hand side of the latter convergence result, for any fixed x ∈ R, we recognize a mapping whose double Laplace transform w.r.t. t and A has symbol (λ + pu(x)) γ-1 when the range of A is restricted to R + (see Appendix B). Since [START_REF] Friedrich | Anomalous diffusion of inertial, weakly damped particles[END_REF] and [START_REF] Carmi | On distributions of functionals of anomalous diffusion paths[END_REF] named "substantial fractional derivative" the mapping of symbol (λ + pu(x)) α , we propose to consider that T A tu(x) I 1-γ 0,+ T A -u(x)•t is a substantial fractional integral of order 1 -γ.

We now consider the operator I τ 2 defined as

I τ 2 g(x, t, A) = τ 1 γ 1 -1 T A tu(x) τ -1 γ 1 K( • t τ 1/γ 1 ) * [T A -u(x)•t [ϕ g]](x, t, A),
where τ

-1 γ 1 K( t τ 1/γ 1 )
is the kernel of an approximation in time for Id. Hence the limit behavior of I τ 2 g depends on the value of (1/γ 1 -1). More precisely, we have the following result.

Lemma 4 For any sequence (g τ ) of functions in L 1 (0, T ; X) weakly convergent to g in L 1 (0, T ; X), we have

τ 1-1 γ 1 I τ 2 g τ g weakly in L 1 (0, T ; X).
Using the two previous lemmas with Proposition 1, we compute the limit behavior of R τ P τ m . The limit behavior of the correction

E τ = I τ 1 [τ ε τ ] + I τ 2 [τ ε τ ]
is obtained using Lemmas 2, 3, and 4. We have proved the following result.

Proposition 2 (γ < 1) (i) If γ 1 = γ, the transport in the limit τ → 0 evolves to a non-Fickian one. More precisely, the mapping R τ of L 1 (0, T ; X) with X = L 1 (R, L 1 (R)) tends to the substantial fractional integral operator ΛT A

•tu(•x) I 1-γ 0,+ T A -u(•x)•t when τ → 0. Densities of immobile and mobile walkers are related through

P i (x, t, A) = ΛT A tu(x) I 1-γ 0,+ [T A -u(x)•t P aux m ](x, t, A), (20) 
while the total density of walkers P = P m + P i = Λ v P aux m + P i satisfies

P aux m = H γ Λ,Λv,u P, (21) 
H γ Λ,Λv,u = (Λ v Id + ΛT A •tu(•x) I 1-γ 0,+ T A -•tu(•x) ) -1 . (22) 
(ii) If γ 1 < γ, that is if the observation time scale is larger than the largest heterogeneity scale, the transport becomes normal and there is no influence of the trapping processes in the limit τ → 0:

Λ v P aux m = P. (23) 
(iii) If γ < γ 1 , tracer is asymptotically immobile. All these convergence results hold true in L 1 (0, T ; X) with a convergence rate of order τ 1/2 .

We note that the rate of convergence τ 1/2 in Assumption (H 3 ) is useless to prove items (i)-(iii). This rate assumption is only necessary in Subsection 3.3 for the study of the physical fluxes. Proof. Proof of points (i) and (ii) based on Lemmas 3 and 4 is straightforward. We thus only detail point (iii). First we have

τ 1-γ/γ 1 P τ i = (τ 1-γ/γ 1 I τ 1 P τ,aux m ) + τ (1-γ)/γ 1 (τ 1-1/γ 1 I τ 2 P τ,aux m ) +(τ 1-γ/γ 1 I τ 1 τ ε τ ) + τ (1-γ)/γ 1 (τ 1-1/γ 1 I τ 2 τ ε τ ).
We infer from Lemmas 2, 3 and 4 that the right-hand side of the latter relation tends to P aux m as τ → 0. Using [START_REF] Clément | Quasilinear evolutionary equations and continuous interpolation spaces[END_REF], we write the left-hand side in the form

τ 1-γ/γ 1 P τ i = τ 1-γ/γ 1 R τ τ T Λvvτ,Λvτ T A Λv τ 0 u(•x+vs)ds m τ = τ 1-γ/γ 1 I τ 1 A[τ m τ ](τ ) + τ (1-γ)/γ 1 τ 1-1/γ 1 I τ 2 A[τ m τ ](τ )
that tends to l m in L 1 (0, T ; X). Finally, we have

P τ,aux m → P aux m = l m in L 1 (0, T ; X), τ 1-γ/γ 1 P τ i → l m in L 1 (0, T ; X),
the second convergence result with 1 -γ/γ 1 > 0 meaning that immobile particles become asymptotically dominant.

Remark 6 Relation (20) for the density of immobile walkers is derived here from the microscopic scale. In [START_REF] Young | Arrested shear dispersion and other models of anomalous diffusion[END_REF] Young derived a similar relation, with γ = 1/2, by working directly at the mesoscopic scale on a particular flow geometry. He considered a pipe containing a mobile tracer of concentration c m with many stagnant side branches where the tracer is immobilized and of concentration c i . He computed c i solution of a purely diffusive equation in the one-dimensional infinite branches with the continuous boundary condition c i = c m at the pipe/branches transitions. Thanks to the explicit integral representation of such a solution, he obtained c i ∼ I 1/2 0,+ c m (see (2.7) in [START_REF] Young | Arrested shear dispersion and other models of anomalous diffusion[END_REF]). Remark 7 Notice that we also have proved that if γ 1 < γ, transport becomes normal, without the usual technical assumption of a truncated in time pdf ψ (see for instance [START_REF] Cortis | Quantitative characterization of pore-scale disorder effects on transport in homogeneous granular media[END_REF][START_REF] Berkowitz | Modeling non-Fickian transport in geological formations as a continuous time random walk[END_REF]). This point deserves being detailed and explained, which is done in Section 4.

Relation between mobile and immobile densities if γ > 1

In the present subsection we assume for instance that ψ is such that ψ(t) ∼ +∞ t -γ-1 , γ > 1, with a finite mean. The survival probability Ψ is thus integrable in R + and we can define the mean pause by

R γ = ∞ 0 Ψ(t) dt.
Note that R γ → 0 as γ → ∞. We turn back to relation [START_REF] Coon | Some properties of the double Laplace transformation[END_REF], that is

P τ i = R τ [P τ,aux m ] + R τ [τ ε τ ] with R τ [g](x, t, A) = τ -1+1/γ 1 T A u(x)t τ -1/γ 1 Ψ(• t /τ 1/γ 1 ) * T A -u(x)•t [ϕ g](x, t, A
). Time convolution of kernel τ -1/γ 1 Ψ(•/τ 1/γ 1 ) tends to R γ Id as τ → 0. The following result follows.

Proposition 3 (γ > 1) (i) If γ 1 = 1, limit densities are related through the following relations involving the retardation factor R γ :

P i = R γ P aux m , P = (Λ v + R γ )P m . (24) 
(ii) If γ 1 < 1, transport is normal and we recover once again [START_REF] Havlin | Diffusion in disordered media[END_REF].

(iii) If γ 1 > 1, the tracer is asymptotically immobile. All these convergence results hold true in L 1 (0, T ; X) with a convergence rate of order τ 1/2 .

3.3 Study of the fluxes: a p.d.e. for the evolution of P

In the present subsection, we do not assume that we can substitute directly the tracer concentration to the probability density and that the tracer concentration is smooth enough to be Taylor expendable, as in [START_REF] Boano | A continuous time random walk approach to the stream transport of solutes[END_REF]. We do not either choose to restrict ourself to the asymptotic study of the moments. We prefer applying mass conservation principle and getting an expression of the flux of walkers in the space {(x, A) ∈ R 2 }. This physical argument leads to the generator of the process under interest.

For this purpose, we derive a variant of Fick's law for the hydrodynamic limit of our random walk model. Basically, we have to count the walkers that cross a point of given coordinate x, or a given level A of the path integral, during any time interval [t, t + dt]. Crossings may occur strictly inside the current mobile period or at the very end. The first alternative involves convective motions due to the average velocity field v, and the second alternative corresponds to diffusive jumps. The probability current is a vector with two coordinates (x and A). The first one represents the averaged balance of walkers crossing point x: it is equal to the probability for a tagged walker to cross x to the right minus the probability to cross x to the left. The second one is equal to the probability for the path integral carried by a tagged walker to become larger than A minus the probability to become smaller than A.

Let us now translate the former intuitions into a mathematical formulation. Particles that cross x toward the right during the period are mobile and have spent a time t ∈ (0, Λ v τ ) in the mobile phase, resulting into a convective displacement of length vt . Assume first that v is nonnegative. On the one hand, crossings through point x occur due to convection before the end of the current mobile period with probability

F τ c = Λvτ 0 T vt ,t T A t 0 u(•x+vs)ds m τ vdtdt = Λ v v dt P τ,aux m . (25) 
On the other hand, at the end of a mobile period for t = Λ v τ , a diffusive random jump may allow the walker to cross x and this occurs with the probability:

∞ 0 T Λvvτ,Λvτ T A Λv τ 0 u(x-y+vs)ds m τ (x -y, t, A) Φ y √ 2Dτ dydt.
Indeed, we recall that we assume = √ 2Dτ . Function Φ defined by

Φ(z) = ∞ z ϕ(s) ds
represents the probability for N * to take a value larger than z (see the notations in the beginning of Subsection 2.1). Accounting for crossings to the right yields the following global contribution of diffusive randoms jumps to the probability current:

F τ D (x, t, A) = ∞ 0 T Λvvτ,Λvτ m τ (x -y, t, A - Λvτ 0 u(x -y + vt )dt ) -m τ (x + y, t, A - Λvτ 0 u(x + y + vt )dt Φ y √ 2Dτ dy.
Thanks to [START_REF] Einstein | Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen[END_REF], the latter expression is rewritten using P τ m and ε τ :

F τ D = ∞ 0 P τ,aux m (x -y, t, A) -P τ,aux m (x + y, t, A) τ Φ y √ 2Dτ dy + ∞ 0 τ ε τ (x -y, t, A) -τ ε τ (x + y, t, A) τ Φ y √ 2Dτ dy = 2D ∞ 0 P τ,aux m (x - √ 2Dτ Y, t, A) -P τ,aux m (x + √ 2Dτ Y, t, A) √ 2Dτ Y Y Φ(Y ) dY + ∞ 0 τ ε τ (x - √ 2Dτ Y, t, A) -τ ε τ (x + √ 2Dτ Y, t, A) √ 2Dτ Y Y Φ(Y ) dY. (26) 
The right-hand side of (26) tends to D∂ x P aux m in the hydrodynamic limit. In particular, we have ensured through Assumption (H 3 ) that the rate of convergence of P τ,aux m to P aux 25) and ( 26), we get straightforward the x-component of the flux F of walkers. It is given by the following advective Fick's law applied to P aux m : F x = -D∂ x P aux m + Λ v vP aux m . Since u is nonnegative, immobile particles whose third coordinate becomes larger than A during [t, t+dt] fill the cylinder of basis u(x)dt. Corresponding mobile particles fill the cylinder of basis dt 0 u(x -vs)ds. Nevertheless, this latter integral asymptotically behaves as u(x)dt as dt → 0. Finally, the Acomponent of the flux is thus analogous to a convective term for all particles:

F A = uP.
Finally, we use mass conservation principle with fluxes F x and F A to derive the Feynman-Kac type equation governing the system in the hydrodynamic limit. We obtain

∂ t P + ∂ x -D∂ x P aux m + Λ v vP aux m + ∂ A (uP ) = r, (27) 
function r being the source term. Combining the latter equation with the results of Propositions 2 and 3, we state the following result.

Theorem 3

(i) Assume γ = γ 1 < 1.
Transport is anomalous (subdiffusive). Feynman-Kac equation corresponding to the limit fractal MIM is (1), that is:

∂ t P -D∂ 2 xx H γ Λ,Λv,u P + Λ v ∂ x vH γ Λ,Λv,u P + u∂ A P = r.
(ii) Assume γ 1 < γ and γ 1 < 1. The trapping process asymptotically has no influence. We observe normal diffusion and we recover the classical Feynman-Kac equation:

Λ v ∂ t P -D∂ 2 xx P + Λ v v∂ x P + Λ v u∂ A P = Λ v r.
(iii) Assume γ 1 = 1 < γ. We observe normal diffusion with a retardation factor R γ (R γ → 0 as γ → ∞). Corresponding Feynman-Kac equation reads:

(1 + R γ )∂ t P -D∂ 2 xx P + Λ v v∂ x P + (1 + R γ )∂ A (uP ) = (1 + R γ )r.
Note that the difference with item (ii) comes from the intensity of heterogeneity leading to trapping process via parameter γ.

(iv) The other scalings choices lead to an asymptotically immobile tracer.

We emphasize in particular that a divergent distribution of waiting times does not imply automatically a non-Fickian behavior in the hydrodynamic limit (see all the results for γ < 1). Anomalous behavior lies on a precise relation between the scale separation parameters.

Remark 8 (Fractal MIM versus FFPE) As already noted in Remark 2, the usual microscopic context leading to FFPE corresponds to setting Λ v = 0 in the definition of our random walk. This is consistent with the asymptotic behaviors stated above. Indeed, all our convergence results are proven for any Λ v ≥ 0. In the particular case Λ v = 0, all the translation operators reduce to identity and point (i) of Theorem 3 reduces to:

∂ t P -D∂ 2 xx (ΛT A •tu(•x) I 1-γ 0,+ T A -•tu(•x) ) -1 P + u∂ A P = r,
that is

∂ t P (x, t, A) -D∂ 2 xx (Λ -1 T A tu(x) D 1-γ 0,+ T A -•tu(x) )P (x, t, A) +u(x)∂ A P (x, t, A) = r(x, t, A).
Operator D 1-γ 0,+ is the Riemann-Liouville derivative of order 1 -γ, that is a left inverse of the fractional integral I 1-γ 0,+ . This latter equation is Eq. ( 11) of [START_REF] Carmi | On distributions of functionals of anomalous diffusion paths[END_REF]. Hence FFPE appears as a special case of our derivation. Furthermore, we prove in the next subsection that letting Λ v → 0 in (1) let us recover in some sense the FFPE formulation (4).

Scaling arguments, occurence of anomalous versus normal transport

The present section is devoted to a physical interpretation of the scaling parameters involved in the present work. We aim to consider the most complete case where convection, diffusion and trapping occur. For the sake of clarity, we thus set Λ v = 1. An obvious scaling in our microscopic setting is linked with the time step τ . By assuming τ → 0, we suppose that the observation time (or "clock time") is much larger than other temporal scales present in the system. We also assume that v is a mesoscopic velocity and that the characteristic local Péclet number Pe of the random walk model, defined as the rate between characteristic diffusive time T D = 2 /D to the characteristic convective time

T c = τ , satisfies Pe = T D T c = 2 τ D = O(1).
In the next subsections we precise the importance of the other scale parameters, that is of γ, γ 1 and Λ introduced in Assumptions (H 1 , H 1 ) on waiting times. We restrict this analysis to the non-classical context with stable law of exponent γ < 1 as in assumption (H long 1 ).

Parameters γ and γ 1 , observation time and heterogeneity scale

Assume a power law decrease as t -γ-1 for the pdf ψ of n independent random variables W 1 , ..., W n distributed as t * w and representing successive stagnation times for a tagged particle. Stable laws (here of exponent γ) play a central role within this context and cannot be regarded as being a simple particular case. Indeed they are attractors. Moreover, focusing on stable laws allows us to give sense to parameters γ and γ 1 through essentially observation time and heterogeneity scale (itself described by γ).

To this aim, let us compare the "clock time" with the "operational time". The operational time is a process S(t) defined as the time spent by the walker in the mobile phase before clock time t. It is easier and more natural to compute the statistics of its inverse process T (s), expressing the observable clock time with regard to operational time. We can think of T (•) as an unscaled, order one quantity. A tagged walker performing the above random walk ends the step of rank n (i.e. after n units of microscopic time) at macroscopic time

t t = T (nτ ) = nτ + τ 1/γ 1 (W 1 + ... + W n ). ( 28 
)
The stable Levy process W t with the stability index γ being self-similar, we have

W j d = j 1/γ W 1 .
The latter random variable is thus distributed as

T (nτ ) = nτ + τ 1/γ 1 n 1/γ W 1 ( 29 
)
if W i is a stable variable of exponent γ [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]. Here γ represents the heterogeneity of the stagnation process. Term nτ is the time spent moving until observation time t. Only t can be measured whereas time nτ ranges between t itself and 0, according to the value of γ 1 /γ. Of course, since clock time t = T (nτ ) is of order one, n → ∞ as τ → 0. The rate of convergence of n to infinity is crucial.

Let us be more precise. Let T be the macroscopic reference time. For sake of clarity, we begin with the classical diffusive random walk without trapping effects, that is when t = T (nτ ) = nτ . In this case, it is well-known that the central limit theorem applies when choosing

n = n D = T τ
where [•] denotes the integer part, leading to a diffusive limit as τ → 0. This latter choice for n is the classical diffusive scaling. Note that we use a renormalization by τ -1 and not by n, therefore the limit depends on T (but of course not on τ ). In the present paper, we consider the latter diffusive process coupled with a trapping process. We thus may choose either a diffusive scaling n D or a trapping scaling n trap . As emphasized by ( 29 (

) 30 
More intuitively, on the (microscopic) scale of walkers, γ 1 helps us comparing the time spent in the immobile phase with the time spent moving for each individual step of the random walk. For any given sampling of the W i s, the fraction of observation time t = T (nτ ) = nτ + (nτ ) 1/γ τ 1/γ 1 -1/γ W 1 spent in the immobile phase becomes negligible when τ → 0 if we assume γ 1 < γ, because nτ < T (nτ ) = t and τ 1/γ 1 -1/γ → 0. In this case, the influence of the heterogeneity disappears at the limit (see Theorem 3 (ii)). Assuming oppositely γ 1 > γ implies that the "mobile time" has to tend to zero in the hydrodynamic limit in order to keep quantity (nτ ) 1/γ τ 1/γ 1 -1/γ finite. Hence stagnation dominates in this case, and there is no transport at all on the macroscopic scale (see Theorem 3 (iv)).

In short we calibrate the operational time with regard to the heterogeneity degree of the stagnation process given by γ thanks to parameter γ 1 .

Return to a Fickian behavior

In the present subsection, we show that the anomalous behavior is a temporary phenomenon. More precisely we check that the long time behavior is always Fickian, even if we use parameters ψ, γ and γ 1 leading to anomalous diffusion as in the former section. Our aim is not to study the asymptotic behavior of the anomalous pde model (1) (as in [START_REF] Majda | Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena[END_REF]). We rather are going to study our random walk model for larger observation times.

Our arguments are based once again on the comparison of clock time and operational time processes and on an appropriate large time scaling. We recall that the time scale separation parameters τ and τ w of the present problem have been defined in section 2 by t micro = τ -1 t macro and t trap micro = (τ w (τ )) -1 t trap macro , function τ w being defined by τ w (τ ) = τ 1/γ 1 . We now assume γ = γ 1 .

Indeed we have proved in the former sections that assuming γ = γ 1 and the diffusive scaling n = [T /τ ] leads to an anomalous behavior at times of order T = O(1), T corresponding to the clock time defined in (29) by

T (nτ ) = nτ + n 1/γ τ w W 1 = nτ + (nτ ) 1/γ W 1 .
Now, imagine that we track the behavior of this random walk process with trapping after T , more precisely until time T 1 T . In view of going back to time scales of order 1, we rescale the time variable by setting

T 1 = T R T.
We thus have to rescale the time scale separation parameters. We first set

τ 1 = τ /T R
(intuitively this means that we use shorter time steps to mimic a long time study even if the final time T is of order 1). This corresponds to the scaling t micro = τ -1 t 1,macro = τ -1 T R t macro . Function τ w characterizing the trapping time scale separation is scaled similarly by 1/T R . We get

τ 1,w = τ w (τ 1 ) T R = τ T R 1/γ 1 T R .
Corresponding rescaled clock time reads

T = n τ T R + n τ T R 1/γ 1 T R W 1 . (31) 
Classical diffusive scaling consists in assuming n = [T T R /τ ].

Choosing T R = O(1) we recover of course at the limit the non-Fickian model [START_REF] Agman | Diffusive dynamics on potential energy surfaces: non equilibrium CO binding to heme proteins[END_REF]. In view of tracking the behavior of this random walk model until T 1

T we let T R → ∞. In (31) the trapping part (nτ /T R ) 1/γ T -1 R W 1 of the clock time becomes obviously negligible as T R → ∞. We thus observe a return to the Fickian behavior, i.e. a classical advection-diffusion equation. Following the lines of Section 3 gives a rigorous derivation of this result.

4.3 Parameter Λ, intensity of the trapping process. Weak coupling limit.

In the present subsection we focus on the rule of parameter Λ. We illustrate that this parameter does not influence the nature of the transport but the intensity of the anomalous behavior.

After the mobile period of rank n, the walker is immobilized during time τ 1/γ 1 W n where the random variable W n belongs to the attraction domain of a maximally skewed Levy law of exponent γ. More precisely, the pdf of W n is defined in Assumption (H long 1 ) which involves a parameter Λ ≥ 0. To highlight the rule of Λ, we choose two "toy" models for the trapping process.

1. Reactive barriers. Particles are retained by adsorption phenomena.

If we increase sufficiently the observation time, the reactions become instantaneous and the trapping process is no more detectable.

2. Presence of residence branches. Assume trapping is due to presence of side branches as in the example developed in Annex A. Once again, if we increase sufficiently the observation time and keep the same order of time displacement in the branches, trapping becomes negligible.

The mechanism described in the two latter examples consists basically in assuming Λ = Λ(τ ), Λ(τ ) → 0 as τ → 0, and studying the weak coupling limit of the process (2.2) as τ → 0. We then recover a classical advectiondiffusion model. Such weak coupling limit is comparable to what is done for Hamiltonian systems with a random Hamiltonian to preserve Markovity (see for instance [START_REF] Papanicolaou | A limit theorem for stochastic acceleration[END_REF][START_REF] Erdos | Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field[END_REF]).

Note finally that we may also include in Λ a trapping probability by replacing Λ by some space function of type Λh(x) (see [START_REF] Neel | Mass transport subject to timedependent flow with uniform sorption in porous media[END_REF]).

Mathematical analysis of equation (1). Convergence of the fractal MIM formulation to the FFPE formulation

The present section is devoted to the mathematical analysis of the fractional pde (1), that is

∂ t P -D∂ 2 xx H γ Λ,Λv,u P + Λ v ∂ x vH γ Λ,Λv,u P + u∂ A P = r, (32) 
H γ Λ,Λv,u = Λ v Id + ΛT A •tu(•x) I 1-γ 0,+ T A -•tu(•x) -1 , γ < 1. (33) 
We recall that this is the Feynman-Kac equation associated to the MIM derivation (see Theorem 3). Nevertheless, this equation is strongly connected with the one associated with the FPE approach:

∂ t P * (x, t, A) -D∂ 2 xx (Λ -1 T A tu(x) D 1-γ 0,+ T A -•tu(x) )P * (x, t, A) +u(x)∂ A P * (x, t, A) = r(x, t, A). (34) 
We have already mentioned in Remark 8 that the FFPE above corresponds to the limiting process of our random walk if Λ v = 0. Here we also prove that solutions of ( 32)-( 33) converge to a solution of (34) as Λ v → 0.

Let (0, T ), T > 0, be the time interval of interest. Our first aim is the study of ( 32)- [START_REF] Mandelbrot | The fractal geometry of nature[END_REF] for t ∈ (0, T ), x ∈ (0, ∞), A ∈ (0, ∞). For the mathematical analysis, we complete the equations with the following initial and boundary conditions:

P |t=0 = P 0 , P |x=0 = 0, P |A=0 = 0, (35) 
with the compatibility conditions P 0 |x=0 = 0 and P 0 |A=0 = 0. We focus on the parabolic in space setting by assuming a positive diffusion coefficient D > 0. We state the following result of existence.

Theorem 4 Assume P 0 ∈ H 2 (R 2 + ). Assume r ∈ L 2 ((0, T ) × R 2 +
). There exists a unique weak solution P to the problem (32)-( 33), [START_REF] Meerschaert | Limit distributions for sums of independent random vectors, Heavy tails in theory and practice[END_REF]. Specifically, we have

P ∈ L ∞ (0, T ; L 2 (R 2 + )), ∂ x P ∈ L 2 ((0, T ) × R 2 + ).
We set

g γ (t) = t -γ Γ(1 -γ) , t > 0.
Since γ < 1, g γ ∈ L 1 (0, T ). We recall that I 1-γ 0,+ is defined by

I 1-γ 0,+ [g] = g γ * g.
For the proof of Theorem 4, we recall the following results (see [START_REF] Londen | Global well-posedness and stability of a partial integro-differential equation with applications to viscoelasticity[END_REF][START_REF] Gripenberg | Volterra integrals and functional equations[END_REF]).

Lemma 5 Let X be a Hilbert space (with scalar product denoted by

•, • ). Let v ∈ C([0, T ]; X ) such that ∂ t v ∈ W (γ-1
)/2,2 (0, T ; X ). The following relations hold true:

(i) T 0 (g γ * ∂ t v)(t), v(t) dt ≥ 1 2 T 0 g γ (t) v(T -t) 2 X + v(t) 2 X dt - T 0 g γ (t) v(0), v(t) dt ; (ii) T 0 ∂ t (g γ * ∂ t v)(t), v(t) dt ≥ 1 2 T 0 g γ (t) v(T -t) 2 X + v(t) 2 X dt.
There exists c > 0 and ḡ ∈ L 1 (R + ), ḡ(t) = t -1+(1-γ)/2 e -t , such that

(iii) T 0 (g γ * v)(t), v(t) dt ≥ T 0 ḡ * v 2 X dt ; 29 (iv) T 0 ∂ t (g γ * v)(t), ∂ t v(t) dt ≥ T 0 (g γ * ∂ t v)(t), ∂ t v(t) dt + T 0 g γ (t)v(0), ∂ t v(t) dt ≥ T 0 ḡ * ∂ t v 2 X dt + T 0 g γ (t)v(0), ∂ t v(t) dt ; (v) T 0 (g γ * ∂ t v)(t), ∂ t v(t) dt = 1 2 T 0 t 0 v(t -s) -v(t) 2 X g γ (s) dsdt - T 0 g γ (s) v(s) -v(0) 2 X + v(T -s) -v(T ) 2 X ds +g γ (T ) v(T ) -v(0) 2 X .
Proof of Theorem 4. Inspired by the derivation of the model, we define P aux m by P aux m = H γ Λ,Λv,u P. Instead of studying directly ( 32)-( 33), we consider the following equivalent equation:

Λ v ∂ t P aux m + Λ∂ t T A u(x)t I 1-γ 0,+ T A -u(x)•t P aux m + Λ v v∂ x P aux m -D∂ 2 xx P aux m +Λ v u∂ A P aux m + Λu∂ A T A u(x)t I 1-γ 0,+ T A -u(x)•t P aux m = r. (36) 
This equation seems more cumbersome than the original one but it is actually more adapted to the exploitation of known mathematical results. We note that, at least formally,

∂ t T A u(x)t g(t, A) = ∂ t g(t, A -tu(x)) -u(x)∂ A g(t, A -tu(x)) = T A u(x)t ∂ t g(t, A) -u(x)T A u(x)t ∂ A g(t, A).
Equation ( 36) thus reduces to

Λ v ∂ t P aux m + Λ∂ t I 1-γ 0,+ T A -u(x)•t P aux m (t, x, A -tu(x)) +Λ v v∂ x P aux m -D∂ 2 xx P aux m = r. (37) 
It is completed with the following boundary and initial conditions issued from [START_REF] Meerschaert | Limit distributions for sums of independent random vectors, Heavy tails in theory and practice[END_REF]:

P aux m |t=0 = P 0 m = Λ -1 v P 0 , P aux m |x=0 = 0, P aux m |A=0 = 0. ( 38 
)
We recognize in [START_REF] Mommer | Modeling subdiffusion using reaction diffusion systems[END_REF] the structure of an integro-differential Volterra equation. For basic facts on this type of equations, we refer to the monograph [START_REF] Gripenberg | Volterra integrals and functional equations[END_REF]. Mathematical difficulty is here inferred by the singularity of the kernel g γ . Using the time derivative of order γ, ∂ γ t • = d dt (g γ * •), equation ( 37) also reads

Λ v ∂ t P aux m (t, x, A) + Λ∂ γ t T A -u(x)•t (P aux m -P 0 m ) (t, x, A -tu(x)) +Λ v v∂ x P aux m (t, x, A) -D∂ 2 xx P aux m (t, x, A) = r(t, x, A) -Λ∂ γ t P 0 m . (39) 
During the last decade, mathematical literature about evolutionary pdes involving fractional derivatives ∂ γ t has considerably developed. We mention in particular [START_REF] Clément | Quasilinear evolutionary equations and continuous interpolation spaces[END_REF] which develops global existence results of BUC solutions (even in quasilinear settings) through maximal regularity arguments for parabolic equations in the form

∂ γ t u + Au = f (u) + h(t), u |t=0 = u 0 .
We also mention references [START_REF] Eidelman | Cauchy problem for fractional diffusion equations[END_REF][START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion wave equations and applications to some inverse problems[END_REF]. Occurrence of the (linear) translation operator T A -u(x)•t in (37) may be viewed as a slight perturbation of the general picture of [START_REF] Clément | Quasilinear evolutionary equations and continuous interpolation spaces[END_REF]. Derivation of a priori estimates for the solutions of ( 37)-( 38) is thus sufficient to ensure the existence of weak solutions. Nevertheless, we have to introduce a parabolic (in A) perturbation of (37) by:

Λ v ∂ t P ε m + Λ∂ t I 1-γ 0,+ T A -uε(x)•t P ε m (t, x, A -tu ε (x)) +Λ v v∂ x P ε m -D∂ 2 xx P ε m -ε(u ε (x)) 2 ∂ 2 AA P ε m = r, (40) 
where ε > 0 and u ε is a derivable function such that u ε ∈ L ∞ (R + ) and u ε (x) → u(x) a.e. in R + as ε → 0. The latter equation also reads

Λ v ∂ t P ε m (t, x, A) + Λ∂ γ t T A -uε(x)•t (P ε m -P 0 m ) (t, x, A -tu ε (x)) +Λ v v∂ x P ε m (t, x, A) -D∂ 2 xx P ε m (t, x, A) -ε(u ε (x)) 2 ∂ 2 AA P ε m = r(t, x, A) -Λ∂ γ t P 0 m . (41) 
For the first set of estimates, we note that T A -uε(x)•t P ε m (t, x, A-tu ε (x)) = P ε m (t, x, A). Thus, multiplying [START_REF] Owhadi | Anomalous slow diffusion from perpetual homogenization[END_REF] by P ε m and integrating by parts in (0, T ) × R 2 + , we get for any T o ≤ T :

Λ v 2 To 0 d dt P ε m 2 L 2 (R 2 + ) dt + Λ 2 To 0 g γ (t) P ε m (T o -t) 2 L 2 (R 2 + ) + P ε m 2 L 2 (R 2 + ) dt +D To 0 ∂ x P ε m 2 L 2 (R 2 + ) dt + ε To 0 u ε ∂ A P ε m 2 L 2 (R 2 + ) dt + Λ v 2 To 0 R 2 + v∂ x ((P ε m ) 2 ) dtdxdA + Λ v 2 To 0 R 2 + u ε ∂ A ((P ε m ) 2 ) dtdxdA ≤ (0,To)×R 2 + rP ε m dtdxdA.
We compute

Λ v 2 (0,To)×R 2 + v∂ x ((P ε m ) 2 ) dtdxdA = - Λ v v 2 (0,To)×R + |P ε m|x=0 | 2 dtdA = 0, and 
Λ v 2 (0,To)×R 2 + u ε ∂ A ((P ε m ) 2 ) dtdxdA = - Λ v 2 (0,To)×R + u ε |P ε m|A=0 | 2 dtdA = 0.
The three later relations give

Λ v 2 P ε m (T o , •, •) 2 L 2 (R 2 + ) + Λ 2 To 0 g γ (t) P ε m (T o -t) 2 L 2 (R 2 + ) + P ε m (t) 2 L 2 (R 2 + ) dt +D To 0 ∂ x P ε m 2 L 2 (R 2 + ) dt + ε To 0 u ε ∂ A P ε m 2 L 2 (R 2 + ) dt ≤ C r L 2 , Λ v P 0 m L 2 = C,
where C is a generic constant, not depending on ε neither on Λ v . We infer from the latter relation the following estimates:

     √ Λ v P ε m L ∞ (0,T ;L 2 (R 2 + )) ≤ C, ∂ x P ε m L 2 (0,T ;L 2 (R 2 + )) ≤ C, g 1/2 γ P ε m L 2 (0,T ;L 2 (R 2 + )) ≤ C. (42) 
Note that these estimates remain true if ε = 0.

For the second set of estimates, we aim using the following point (see Lemma 5):

T 0 ∂ t (g γ * v), ∂ t v dt ≥ T 0 ḡ * ∂ t v L 2 (R 2 + ) dt + T 0 g γ v |t=0 , ∂ t v dt, which implies T 0 ∂ t (g γ * v)(t, x, A -tu(x)), ∂ t v(t, x, A -tu(x)) dt ≥ T 0 ḡ * ∂ t v(t, x, A -tu(x)) L 2 (R 2 + ) dt + T 0 g γ (t)v(0, x, A), ∂ t v(t, x, A -tu(x)) dt.
We are going to apply this relation for v

(t, x, A) = T A -uε(x)•t P ε m (t, x, A) = P ε m (t, x, A+u ε (x)t). Its time derivative satisfies ∂ t v(t, x, A) = ∂ t P ε m (t, x, A+ u ε (x)t)+u ε (x)∂ A P ε m (t, x, A+u ε (x)t) and ∂ t v(t, x, A-u ε (x)t) = ∂ t P ε m (t, x, A)+ u ε (x)∂ A P ε m (t,
x, A). We thus multiply equation ( 41) by

∂ t P ε m (t, x, A) -∂ t (P 0 m (x, A -u ε (x)t)) +u ε (x)∂ A P ε m (t, x, A) -u ε (x)∂ A (P 0 m (x, A -u ε (x)t)).
We get, for any

T o ≤ T , Λ v (0,To)×R 2 + |∂ t P ε m | 2 + 2u ε ∂ t P ε m ∂ A P ε m + |u ε ∂ A P ε m | 2 - (0,To)×R 2 + ∂ t P ε m + u ε ∂ A P ε m ∂ t (P 0 m (x, A -u ε (x)t)) + u ε ∂ A P 0 m + (0,To)×R 2 + |ḡ * ∂ t P ε m + u ε ∂ A P ε m -∂ t (P 0 m (x, A -u ε (x)t)) -u ε ∂ A P 0 m | 2 +D (0,To)×R 2 + ∂ x P ε m ∂ 2 tx P ε m + D (0,To)×R 2 + u ε ∂ x P ε m ∂ 2 Ax P ε m +D (0,To)×R 2 + u ε ∂ x P ε m ∂ A P ε m -D (0,To)×R 2 + ∂ x P ε m ∂ 2 tx (P 0 m (x, A -u ε (x)t)) + u ε ∂ 2 xA P 0 m + u ε ∂ A P 0 m +ε (0,To)×R 2 + (u ε ) 2 ∂ A P ε m ∂ 2 tA P ε m + ε (0,To)×R 2 + u ε (u ε ) 2 ∂ A P ε m ∂ 2 AA P ε m -ε (0,To)×R 2 + (u ε ) 2 ∂ A P ε m ∂ A ∂ t (P 0 m (x, A -u ε (x)t)) + u ε ∂ A P 0 m +Λ v (0,To)×R 2 + v∂ x P ε m ∂ t P ε m + u∂ A P ε m -∂ t (P 0 m (x, A -u ε (x)t)) -u ε ∂ A P 0 m ≤ (0,To)×R 2 + (r -Λ∂ γ t P 0 m ) ∂ t P ε m + u∂ A P ε m -∂ t (P 0 m (x, A -u ε (x)t)) -u ε ∂ A P 0 m . (43) 
The first term reads Λ v (0,To)×R 2

+ ∂ t P ε m + u ε ∂ A P ε m | 2 . We also write D (0,To)×R 2 + ∂ x P ε m ∂ 2 tx P ε m = D 2 To 0 d dt R 2 + |∂ x P ε m | 2 = D 2 R 2 + |∂ x P ε m (T o , •, •)| 2 - D 2 R 2 + |∂ x P 0 m | 2 ; D (0,To)×R 2 + ∂ x P ε m ∂ 2 Ax P ε m = D 2 ∞ 0 d dA (0,To)×R + | √ u ε ∂ x P ε m | 2 = 0 ; ε (0,To)×R 2 + (u ε ) 2 ∂ A P ε m ∂ 2 tA P ε m = ε 2 To 0 d dt R 2 + |u ε ∂ A P ε m | 2 = ε 2 R 2 + |u ε ∂ A P ε m (T o , •, •)| 2 - ε 2 R 2 + |u ε ∂ A P 0 m | 2 ; ε (0,To)×R 2 + u ε (u ε ) 2 ∂ A P ε m ∂ 2 AA P ε m = ε 2 ∞ 0 d dA (0,To)×R + | √ u ε u ε ∂ A P ε m | 2 = 0.
We estimate the other terms in ( 43) using ( 42) and the Cauchy-Schwarz and Young inequalities. We conclude with the Gronwall lemma that the following set of estimates hold true:

     √ Λ v (∂ t P ε m + u ε ∂ A P ε m L 2 (0,T ;L 2 (R 2 + )) ≤ C ε , ∂ x P ε m L ∞ (0,T ;L 2 (R 2 + )) ≤ C ε , ε 1/2 ∂ A P ε m L ∞ (R + ;L 2 ((0,T )×R + )) ≤ C ε , (44) 
where C ε is a generic constant depending on ε. We conclude that there exists a unique (thanks to the linearity) weak solution P ε m of ( 40), [START_REF] Neel | Mass transport subject to timedependent flow with uniform sorption in porous media[END_REF]. Its regularity is described by the functional spaces appearing in [START_REF] Pikovsky | Escape exponent for transient chaos scattering in nonhyperbolic Hamiltonian systems[END_REF] and [START_REF] Ross | Introduction in probability models[END_REF].

Then, bearing in mind that [START_REF] Pikovsky | Escape exponent for transient chaos scattering in nonhyperbolic Hamiltonian systems[END_REF] does not depend on ε and letting ε → 0, we prove that the whole sequence (P ε m ) weakly converges in the space L ∞ (0, T ; L 2 (R 2 + )) ∩ L 2 (0, T ; H 1 (R + ; L 2 (R + ))) to the unique solution P aux m of the linear problem (37)- [START_REF] Neel | Mass transport subject to timedependent flow with uniform sorption in porous media[END_REF]. Using the equivalence between (37)-( 38) and ( 32)-( 33), [START_REF] Meerschaert | Limit distributions for sums of independent random vectors, Heavy tails in theory and practice[END_REF], we get the result announced in the theorem.

We note that the solution P of ( 32)-( 33), [START_REF] Meerschaert | Limit distributions for sums of independent random vectors, Heavy tails in theory and practice[END_REF], which is characterized by

P = Λ v P aux m + ΛT A u(•x)•t I 1-γ 0,+ T A -u(•x)•t P aux m with P aux m satisfying estimates (42), is such that      √ Λ v P L ∞ (0,T ;L 2 (R 2 + )) ≤ C, ∂ x P L 2 (0,T ;L 2 (R 2 + )) ≤ C, g 1/2 γ P L 2 (0,T ;L 2 (R 2 + )) ≤ C.
In particular, the third estimate with the fact that we work on a finite time interval implies that

P L 2 (0,T ;L 2 (R 2 + )) = g -1/2 γ g 1/2 γ P L 2 (0,T ;L 2 (R 2 + )) ≤ CT γ/2 ≤ C.
Then, if we associate to any Λ v > 0 the solution P Λv of ( 32)-( 33), [START_REF] Meerschaert | Limit distributions for sums of independent random vectors, Heavy tails in theory and practice[END_REF], we construct a sequence (P Λv ) bounded in L 2 ((0, T ) × R 2 + ) (with moreover (∂ x P Λv ) bounded in L 2 ((0, T ) × R 2 + )). There exists a subsequence, still denoted (P Λv ) for convenience, and a function P * ∈ L 2 ((0, T ) × R 2 + ) such that

P Λv P * weakly in L 2 ((0, T ) × R 2 + ), ∂ x P Λv ∂ x P * weakly in L 2 ((0, T ) × R 2 + ).
One may use the auxiliary sequence (P aux,Λv m ) to check easily that P * is the unique solution of the linear FFPE problem (34)- [START_REF] Meerschaert | Limit distributions for sums of independent random vectors, Heavy tails in theory and practice[END_REF]. Thus the whole sequence (P Λv ) converges to P * . We have proven the following result.

Theorem 5 For any Λ v > 0, let P Λv be the solution of the fMIM problem (32)-( 33), [START_REF] Meerschaert | Limit distributions for sums of independent random vectors, Heavy tails in theory and practice[END_REF]. As Λ v → 0, the sequence (P Λv ) weakly converges in

L 2 ((0, T ) × R 2 + ) ∩ L 2 (0, T ; H 1 x (R + ; L 2 A (R + ))
) to the solution P * of the FFPE problem (34)- [START_REF] Meerschaert | Limit distributions for sums of independent random vectors, Heavy tails in theory and practice[END_REF].

Observable behavior

In fluid mechanics, many experiments consist in measuring the mean value of path integrals functionals for small scale motions of particles. For instance, Nuclear Magnetic Resonance (NMR) velocimetry measures magnetization signals of the form < e i t 0 g(t )x(t )dt >, where x(t) represents the projection of water molecules trajectories along the magnetic field gradient direction. Other examples are occupation times that play an important role in many domains of physics, and the age of water in geophysics. The corresponding path integrals have the form A = t 0 u(x(t ))dt , which also represents the displacement of a tagged fluid particle due to an average flow field u(•) -→ e y coupled to diffusive motion in the transverse direction.

In the critical case of anomalous diffusion corresponding to equation (1), we aim to characterize the behavior of the "observable" quantity O u corresponding to a path integral of integrand u:

O u = e -t 0 u(x(t ))dt .
Expressing this quantity with regard to the density P , we recognize a A-Laplace transform evaluated in p = 1:

O u (x, t) = R +
e -A P (x, t, A) dA = P A (x, t, p = 1) := P (x, t).

Proposition 4 Quantity P is governed by the following p.d.e. a.e. in R × (0, T ):

∂ t P -D∂ 2 xx -Λ v v∂ x (Λ v Id + ΛJ 1-γ ) -1 P +u P = uP |A=0 + r, ( 45 
)
where the memory operator J 1-γ is defined by

J 1-γ P (x, t) = (• t ) -γ Γ(1 -γ) e -u(x)•t * P (x, • t ) (x, t),
and P |A=0 is a boundary condition for equation [START_REF] Agman | Diffusive dynamics on potential energy surfaces: non equilibrium CO binding to heme proteins[END_REF].

Remark 9 Note that J 1-γ is a short memory operator provided u(x) > 0 a.e. x ∈ R.

Proof. Applying the A-Laplace transform computed in p = 1 to equation (1), we get

∂ t P (x, t) = D∂ 2 xx -Λ v v∂ x (Λ v Id + ΛJ 1-γ
) -1 P (x, t) -u(x) P (x, t) + u(x)P (x, t, A = 0) + r A (x, t, p = 1), [START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion wave equations and applications to some inverse problems[END_REF] where operator (Λ

v Id + J 1-γ ) -1 is the A-Laplace transform computed in p = 1 of H γ Λ,Λv,u = (Λ v Id+ΛT A •tu(•x) I 1-γ 0,+ T A -•tu(•x) ) -1 .
As already mentioned in Remark 5, the double Laplace symbol with respect to t and A (with Laplace variables λ and p) of operator

T A •tu(•x) I 1-γ 0,+ T A -u(•x)•t is (λ + pu(x)) γ-1
for any fixed x. Choosing p = 1, we conclude that the t-Laplace symbol of J 1-γ is (λ + u(x)) γ-1 . We recognize a translation of the t-Laplace transform of a power-law operator. Applying the inverse t-Laplace transform, we conclude that J 1-γ P (x, t) = (• t ) -γ Γ(1 -γ) e -u(x)•t * P (x, • t ) (x, t).

A Some remarks about the power-law distribution of waiting times

Assumption (H long 1 ) giving a power-law distribution of waiting times could appear rather empirical. Yet our aim in the present annex is to emphasize that (H long 1 ) has a physical or chemical nature, parameter γ reflecting the heterogeneity of the medium. For a first explicit example, let us show that assumption (H long 1 ) which is the basis of the anomalous behavior observed in (1) may be justified by combining at the micro-scale a very classical behavior (namely here isotropic diffusion) with a simple geometrical heterogeneity.

Assume that semi-infinite d r -dimensional recirculation branches cross the main propagation direction e x of the random walkers described in Section 2. Stagnation periods of the random walk thus occur when a particle enters a recirculation branch. This trapping occurs until the particle goes back (for the first time) to the main propagation axis {y = 0}. We assume d r < 2. Let Q(y, t) be the probability that a random walker is at y at time t after starting at the origin of a transverse branch, that is y = 0. Let also F (y, t) be the corresponding first passage probability. These two quantities are connected through Q(y, t) = δ y δ t + t 0 F (y, t )Q(0, t -t ) dt .

Indeed, before returning to y at time t, the walker has already reached y for the first time at t ≤ t. Using a time Laplace transform we get at the entrance y = 0 of the branch:

F (0, p) = 1 - 1 Q(0, p) .
Assuming that the displacement is ruled by isotropic diffusion (characterized by a diffusion coefficient D r > 0), it is well-known (e.g. [START_REF] Havlin | Diffusion in disordered media[END_REF]) that Q(0, t) = (4ΠD r t) -dr/2 , t > 0.

Thus F (0, p) = 1 -C(D r )p 1-dr/2 , C(D r ) ∈ R. Since by definition the survival probability Ψ satisfies Ψ (t) = -F (0, t) and Ψ(0) = 1, it follows that F (0, p) = -p Ψ(p) + 1, thus Ψ(p) = C(D r )p -dr/2 and finally Ψ(t) ∼ ∞ t dr/2-1 .

We thus recover a power-law behavior satisfying assumption (H long 1 ) provided 0 < d r < 2.

Note that we would obtain the same type of survival probability in case of sorption with diffusion-limited reactions since the form of Q is similar in this case (see [START_REF] Havlin | Diffusion in disordered media[END_REF][START_REF] Shojiguchi | Dynamical foundation and limitations of statistical reaction theory[END_REF] and [START_REF] Agman | Diffusive dynamics on potential energy surfaces: non equilibrium CO binding to heme proteins[END_REF] in a context of protein dynamics).

Note also that assuming d r = 1 as in Fig. 2 corresponds exactly to the setting considered by Young in [START_REF] Young | Arrested shear dispersion and other models of anomalous diffusion[END_REF] (see remark 6 above), yet with a different approach. Moreover, as in [START_REF] Young | Arrested shear dispersion and other models of anomalous diffusion[END_REF], we would get a similar result by considering recirculation pockets of finite length L provided that L 2 /D r O(1).

Let us conclude with more abstract examples. Mandelbrot shows in [START_REF] Mandelbrot | The fractal geometry of nature[END_REF] how power γ in (H long 1 ) is related to sets of fractal dimension and cites many empirical examples. A direct link with the fractal dimension is also stated in [START_REF] Gheorghiu | Heterogeneity explains features of anomalous thermodynamics and statistics[END_REF] for a problem of Knudsen diffusion. We refer to [START_REF] Hunt | Percolation theory for flow in porous media[END_REF] for implication of fractal structures on conductivity. This viewpoint is widely used in percolation theory. The domain might also be peppered with sites at which tracer molecules stick until dislodged, for instance by particularly large thermal fluctuations. The waiting times then depend on the probability distribution density of the energy barrier. Such phenomenon characterizes many physical systems. Assuming that the jumping mechanism among the local minima is described within the framework of Kramer's reaction rate theory yields to power-law models (see [START_REF] Hanggi | Reaction-rate theory, 50 years after Kramers[END_REF]). Power-law tails also characterize weakly chaotic systems, see for instance [START_REF] Pomeau | Intermittent transition to turbulence in dissipative dynamical systems[END_REF][START_REF] Pikovsky | Escape exponent for transient chaos scattering in nonhyperbolic Hamiltonian systems[END_REF][START_REF] Altmann | Poincaré recurrences and transient chaos in systems with leaks[END_REF]. We finally cite [START_REF] Mommer | Modeling subdiffusion using reaction diffusion systems[END_REF] which shows how the sum of ergodic processes may approach a power-law distribution on any given time interval.

B A property of the double Laplace transform of causal functions B.1 Definition and statement

For the convenience of the reader, we recall the definition of the double Laplace transform, following the lines of [START_REF] Coon | Some properties of the double Laplace transformation[END_REF]. Laplace transform is indeed a very common tool in "physical" literature devoted to the present subject.

Let G be a function, supported by the first quadrant R 2 + and Lebesgue measurable in every finite rectangle {0 ≤ t 1 ≤ T 1 } × {0 ≤ t 2 ≤ T 2 }. The double Laplace transform G(λ, p) of G depends on λ and p, that are the Laplace variables conjugate of the physical variables t 1 and t 2 . We set

L[G](λ, p) = G(λ, p) = ∞ 0 ∞ 0 G(t 1 , t 2 )e -λt 1 -pt 2 dt 1 dt 2 ,
if the limit of T 1 0 T 2 0 G(t 1 , t 2 )e -λt 1 -pt 2 dt 1 dt 2 exists as T 1 , T 2 → ∞ simultaneously but independently.

Proposition 5 Let T 2 a denote the translation of amplitude a with respect to t 2 . Let h be a causal function of t 1 , with Laplace transform h(λ). Let * 1 denote convolutions with respect to t 1 . The double Laplace transform

L[T 2 U •t 1 (h * 1 (T 2 -U •t 1 G)] of T 2 U •t 1 (h * 1 (T 2 -U •t 1 G)) is G(λ, p) h(λ + pU ).
Proof. We note that in the convolution (h * 1 (T 
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Figure 1 :

 1 Figure 1: Governing models versus scaling choices. The scaling separation parameters are introduced in Section 2.2. Parameter γ 1 scales trapping times with regard to observation times. Parameter γ characterizes the waiting times distribution of the trapping model and thus the heterogeneity degree leading to trapping (assumption γ < 1 corresponds to long tails, assumption γ > 1 corresponds to short tails).

m

  and ε τ to 0 is faster than O(τ 1/2 ). Thus, for instance, P τ,aux m , letting τ → 0 in contributions (

  ), n D and n trap are respectively such that n D τ = O(1) and n 1/γ trap τ 1/γ 1 = O(1). Since T = O(1), the previous choices induce of course some conditions on the scale separation parameters, and especially on the trapping scale parameter γ 1 with regard to the trapping intensity parameter γ. More precisely, we have purely diffusive scaling : n = n D = T τ and γ 1 < γ ; purely trapping scaling : n = n trap = T γ τ γ/γ 1 and γ 1 > γ ; no scale separation between trapping and diffusion : n = n D = n trap and γ 1 = γ.

Fig. 2

 2 gives an illustration of the case d r = 1. Case 1 < d r < 2 corresponds to fractal structures (d r = 2d f /d w where d w is the diffusion coefficient on the fractal and d f is the fractal dimension of the crossing object).

Figure 2 :

 2 Figure 2: A simple geometry of side branches.

  2 -U •t G(• t , • A )))(t 1 , t 2 ) = )e -pU t G(t 1 -t , p) dt dt 1 ,where we recognize the convolution of G(•, p) with h(•)e -pU • computed at point t 1 . This latter function has Laplace transform h(λ + pU ). Hence the Proposition.

				t 1
			L[T 2 U •t 1	(h * 1 (T 2 -U •t 1	G)](λ, p)
	=	e -λt 1	h(t )
	t 1 >0	0<t <t 1
	Hence, we have	
			L[T 2 U •t 1	(h * 1 (T 2 -U •t 1	G)](λ, p)
		=	e -λt 1	h(t
		t 1 >0	0<t <t 1

0 h(t )G(t 1 -t , A + U (t 1 -t ) dt = t 1 0 h(t )G(t 1 -t , t 2 -U t )dt

only the t such that t 1 < U t contribute to the integral. Hence,

t 2 >U t G(t 2 -U t , t 1 -t )e -pt 2 dt 2 dt dt 1 ,

where

t 2 >U t G(t 2 -U t , t 1 -t )e -pt 2 dt 2 = e -pU t a>0

G(t 1 -t , a)e -pa da = e -pU t G(t 1 -t , p).
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