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Abstract

Vesicles are locally-inextensible fluid membranes while inextensible capsules are in addition endowed with in-plane
shear elasticity mimicking the cytoskeleton of red blood cells (RBCs). Boundary integral (BI) methods based on
the Green’s function techniques are used to describe their dynamics, that falls into the category of highly nonlinear
and nonlocal dynamics. Numerical solutions raise several obstacles and challenges that strongly impact the results.
Of particular complexity is (i) the membrane inextensibility, (ii) the mesh stability and (iii) numerical precisions for
evaluation of the boundary integral equations. Despite intense research these questions are still a matter of debate.

We regularize the single layer integral by subtraction of exact identities for the terms involving the normal and the
tangential components of the force. In addition, the regularized kernel remains explicitly self-adjoint. The stability
and precision of BI calculation is enhanced by taking advantage of additional quadrature nodes located in vertices of
an auxiliary mesh, constructed by a standard refinement procedure from the main mesh. We extend the partition of
unity technique to boundary integral calculation on triangular meshes: We split the calculation of the boundary integral
between the original and the auxiliary mesh using a smooth weight function, which takes the distance between the
source and the target as the argument and falls to zero beyonda certain cut-off distance. We provide an efficient lookup
algorithm that allows us to discard most of the vertices of the auxiliary mesh lying beyond the cut-off distance from
a given point without actually calculating the distances tothem. The proposed algorithm offers the same treatment of
near-singular integration regardless if the source and thetarget points belong to the same surface or not.

Additional innovations are used to increase the stability and precision of the method: The bending forces are
calculated by differential geometry expressions using local coordinates defined in vicinity of each vertex. The ap-
proximation of the surface in vicinity of a vertex is obtained by fitting with a second-degree polynomial of local
coordinates.

We solve for the Lagrange multiplier associated with membrane incompressibility using two penalization param-
eters per suspended entity: one for deviation of the global area from prescribed value and another for the sum of
squares of local strains defined on each vertex. The proposedadvancement is to vary the penalization parameters at
each time step in such a way, that the global area of each membrane be conserved and the sum of squares of local
strains be at minimum. This optimization is achieved by solving a linear system of rank three times the number of
entities involved in the simulation. If no auxiliary mesh isused, the method reduces to steepest descent method thanks
to the explicit self-adjointness of the regularized single-layer kernel in the boundary integral equation.

Inextensible capsules, a model of RBC, are studied by storing the position in the reference configuration for each
vertex. The elastic force is then calculated by direct variation of the elastic energy. Various nonequilibrium physical
examples on vesicles and capsules will be presented and the convergence and precision tests highlighted. Overall, a
good convergence is observed with numerical error inversely proportional to the number of vertices used for surface
discretization, the highest order of convergence allowed by piece-wise linear interpolation of the surface.

Keywords: vesicles, capsules, Stokes flow, boundary integral method,singularity subtraction

1. Introduction

Simulation of deformable and locally inextensible interfaces in Stokes flow has received an increasing attention in
the last years. The upsurge of interest is motivated by understanding blood flow by taking explicitly into account blood
elements (e.g. red blood cells -RBC). RBC is traditionally modeled as an inextensible visco-elastic surface containing
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viscous Newtonian liquid and immersed in another viscous Newtonian liquid. In this paper, we focus on two classes
of systems (i) vesicles which have a fluid and inextensible membrane that resists to bending, and (ii) inextensible
capsules, which are, unlike vesicles, endowed with in-plane shear elasticity, mimicking the cytoskeleton of RBCs.

Boundary integral (BI) method represents an important toolfor simulation of dynamics of deformable particles in
Stokes flow, offering a very precise solution with reasonable computational cost. For example, spectral BI method[1]
has asymptotic convergence that is superalgebraic in the number of spherical harmonics used for surface representa-
tion. This method is based on parametrization of the coordinates of points on the surface of a membrane by series
of spherical harmonics defined on a reference sphere. For shapes that are close to a sphere, a simpler representation
of the surface by a single scalar function expanded in spherical harmonics is possible[2]: the shape is parametrized
by a radius function, which measures the distance from the center of mass of the closed shape to the surface in given
direction. While the last parametrization is only reserved to the shapes in which a ray from the center of mass of a
vesicle intersects the surface in a single point, it works well for almost spherical vesicles, showing good agreement
with analytical calculations[3].

Despite the excellent convergence properties it provides,the spectral representation of the surface is not always the
best option: the main disadvantage here is that it is impossible to vary independently the level of detail of representa-
tion of different regions on the same surface. That is, if a surface contains a small region of high curvature, either this
region will remain under-resolved if a reasonable number ofspherical harmonics is used for surface representation or
other regions of the surface will be over-resolved, which usually results in prohibitively large computation times. The
notable examples of vesicle shapes that appear in physical problems but are rather difficult to represent by spherical
harmonics include, among others, tethered shapes of vesicles sedimenting under large Bond numbers[4, 5] or dumb-
bell shapes observed in shear flow[6] and in straining flow[7], when the vesicle resembles two almost-spherical parts
connected by a long and thin tube, or slipper shapes of vesicles in Strong Poiseuille flow, as shown in the present
study (cf. Fig.1).

In this paper, we employ an alternative approach to surface parametrization, namely, we use the discretization by
a triangular mesh, which offers a much greater versatility than spectral representation, allowing to study surfaces of
arbitrary shapes or even topologies. This freedom comes at aprice: Piecewise-linear interpolation of the surface sets
a natural lower boundaryO(h2) for the precision of the calculations, whereh is the characteristic length of mesh edge.
Moreover, this theoretical limit is hard to achieve due to the singular behavior of the BI kernel in vicinity of the pole.
Additional numerical challenges rise in simulations on triangular mesh: Calculations of curvature and its derivatives
for the membrane forces can not be performed on a piece-wise flat surface and the quality of the mesh can degrade
during the deformation. These complications set additional obstacles to the inherent challenges of the problem, such
as conservation of the local and global area of the membrane or the stiffness of high wave-number modes that triggers
numerical instabilities.

Several studies of dynamics of vesicles under flow using BI method on triangular mesh already exist in literature[8,
5, 9, 10]. Of these studies only [9] calculated BI with errorO(h2), while the others are limited to the error of order
O(h).

In this paper, we provide an implementation of the BI method on triangular mesh. An important step here is that we
are able to regularize the diverging behavior of the Green kernel by the use of exact identities. Unlike for the existing
singularity removal techniques, which are restricted to the case when only normal forces are exerted by the interfaces,
our method works for arbitrary distributions of interfacial forces (i.e. with normal and tangential components). The
implemented method, having an errorO(h2), thus reaches the theoretical limit for piece-wise linear interpolation of
the surface. The proposed singularity subtraction technique contributes to computation time efficiency and higher
precision. Additionally, we revisit the calculation of theforce and the imposition of the membrane inextensibility
in order to increase the precision and the stability of the method. Note that the integration technique presented in
this paper can be used to increase the precision of other algorithms using the BI formulation, such as spectral BI
method for Stokes equations[2] or even to facilitate the solution of other physical problems, such as Poisson equation
in electrostatics.

The paper is organized as follows: Section 2 describes the physical problem and its mathematical formulation,
Section 3 describes the topology of the mesh, Section 4 describes the calculation of the curvature force, Section
5 describes the calculation of the BIs, Section 6 describes the solution for the Lagrange multiplier enforcing the
inextensibility of the membrane, Section 7 describes extension of the method to simulation of inextensible capsules
to mimic RBCs, Section 8 contains validation tests. Finally, Section 9 contains discussions and conclusion.
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Figure 1: (color on-line) Deflated vesicles. From left to right: Equilibrium shape of a very deflated vesicle, transient shape of a deflated vesicle in
Poiseuille flow, steady-state shape of the same vesicle in Poiseuille flow

2. Problem formulation

The following notations will be used throughout the text: capital Latin superscript letters (A, B, ...) are used
to index the suspended entity (vesicle or capsule), the vertices are indexed by small superscript Latin letters starting
from a (a, b, ...), small subscript Latin letters starting fromi (i, j, ...) are used to denote coordinates in 3D space, capital
Greek letter∆ is used to index triangles, and local coordinates for differential geometry will be denoted by subscript
Greek letters starting fromα. The convention of summation over repeated indices will be used (without distinction of
covariant and contravariant indices) for coordinates but not for vertex indices. For each physical field, e.g., distribution
of forces at the membranef (r), we denote its numerical approximation at vertexa with the corresponding superscript,
f a.

We focus first on vesicles. We consider the dynamics of one or more vesicles in infinite Newtonian liquid of
viscosity ηext subject to imposed flowu∞(r). A vesicle A is represented as a closed two-dimensional surfaceΣA

enclosing Newtonian liquid with viscosityηA
int.Due to microscopic nature of vesicles (or RBCs), the Reynolds number

of the problem is usually quite small and it is safe to use the Stokes equation for the hydrodynamic part of the problem

η∆u(r) − ∇p(r) + f (r) = 0, ∇ · u(r) = 0, (1)

whereu(r) is the fluid velocity in pointr, p(r) is the pressure, andf (r) is the density of the force applied on the liquid.
Equation (1) is valid at any point of the liquid, be it the suspending liquid or the one inside the vesicle. The difference
is manifested in the value of viscosityη. In this study, we consider that no external force acts in the bulk of the liquid
other that the forces at infinity creating the imposed flow. Inthis case, the density of forces is zero everywhere but at
the vesicle surfaces, which allows[11] one to use the BI equation

(ηext+ η
A
int)

2
ui(r) = ηextu

∞
i (r) +

∑

B

∫

ΣB

Gi j (r, r′) f j(r′)d2r ′+ (2)

+
∑

β

(ηext− ηB
int)

∫

ΣB

Ti jk (r, r′)u j(r′)nk(r′)d2r ′,

where the indicesA and B run over all vesicles involved in the problem,r is any point on the surfaceΣA, n(r) is
the outward normal to the surface at the pointr. It is convenient to look at the two integrals on the right handside
of (2) as at linear operators with the single-layer (Stokeslet) kernelGi j (r, r′) and the double-layer (stresslet) kernel
Ti jk (r, r′)nk(r′), respectively. The exact form of the kernelsG and T depends on the boundary conditions of the
problem. In this study, we consider only the free-space version of the problem (no boundary conditions other than
the flow imposed at infinity), for which the kernelsG(r, r′) andT(r, r′) depend only on the difference of the target
positionr and the source positionr′

Gi j (r, r′) =
1
8π

(

δi j

|r − r′|
+

(r − r′)i(r − r′) j

|r − r′|3

)

, Ti jk (r, r′) =
3
4π

(r − r′)i(r − r′) j(r − r′)k

|r − r′|5
. (3)
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The equation (2) combines Stokes equation (1) with boundaryconditions (no slip, jump of the normal component of
viscous stress is equal to the force applied by the membrane,impermeability of the membrane and the imposed flow
at infinity) and can be solved for the velocity field at the surface of each vesicle. The surface density of forcef applied
by the membrane on the adjacent liquids is calculated by variation of the bending energy[12]

E =
∑

A

∫

ΣA

[

2κA(H(r) − HA
0 )2 + ζ(r)

]

d2r, (4)

whereκA is the bending modulus of the membraneA, H is the mean curvature (with the convention that the mean
curvature of a unity sphere be equal to -1),HA

0 is a vesicle parameter usually called spontaneous curvature, andζ is
a Lagrange multiplier ensuring the incompressibility of the membrane. We will need the explicit expression for the
force[13] (for an alternative derivation see [14])

f = −κA
[

4(H − HA
0 )(H2 − K + HHA

0 ) + 2∆sH
]

n+ 2ζHn+ ∇sζ, (5)

whereK is the Gaussian curvature,∇s is the surface gradient and∆s = ∇s
·∇

s is the Laplace-Beltrami operator. Due
to the fluidity of the membrane, vesicles do not have a reference shape and the only conserved geometrical parameters
are the volumeV and the surface areaS, which can be combined into a single scale-invariant parameter

ν =
3V

4π(S/4π)3/2
, (6)

called the reduced volume.
Finally, the mathematical formulation of the local inextensibility of the membrane is written as

∇
s · u = 0. (7)

Together, equations (2), (5), and (7) represent a closed system, which can be solved for the unknown fieldsu(r)
andζ(r) for a given conformation of vesicles. The obtained velocity can be then used to update the conformation. In
the present study, we use a simple explicit Euler scheme for temporal discretization of the problem. The time step
is fixed and will be denoted asτ. Each iteration of the numerical scheme consists of five elementary steps: First, all
relevant geometrical quantities (volume, surface area andforces) are calculated for each vesicle, then BI is calculated
for obtained forces, next the surface inextensibility condition is solved and the tension Lagrange multiplier is updated,
the next step is to advect the mesh vertices using the updatedvelocity field, and, finally, the mesh stabilization iteration
is performed. Each step is described in the corresponding section of the paper.

3. Mesh topology

We use triangular mesh to track the shape of the vesicle. As the topology of the mesh is kept constant during
the simulation, it is important to choose the mesh which provides an adequate description of the surface without
computational overhead due to an excessive number of elements.

For almost spherical vesicles, the mesh is produced from an icosahedron, to which a refinement procedure[9] is
appliedNr times: each triangle is divided into 4 smaller triangles by connecting the midpoints of the edges. The
mesh is projected on the circumscribed sphere of the icosahedron after each refinement. Once the desired resolution
is achieved, the surface is compressed or stretched along some direction to produce a spheroid of a given reduced
volume (6). The resulting shape is uniformly rescaled and moved to obtain the desired volume and initial position.

A slightly different procedure is used for more deflated vesicles: the mesh is chosen as a sphero-cylinder: two
semi-spheres (one with equatorial vertices and one without) and a cylindrical inset between them. Thus, the topology
of every mesh generated by this recipe is specified by two numbers: the number of rows in the cylindrical partNp

and the number of vertices in each of the rows (number of vertices at the equator for a spherical vesicle) 5· 2Nr . The
total number of vertices isNv = 2 + 10 · 4Nr + 5 · 2Nr Np. Sample meshes are presented in Fig.2. The introduction
of sphero-cylindrical meshes allows us to treat many problems of dynamics of very deflated vesicles for which the
icosahedral mesh fails due to excessive distortion of the triangles.

For clearness of the following, two vertices will be called neighbors if they are connected by an edge. Overall, the
meshes described above have only vertices with 5 or 6 neighbors.
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Figure 2: (color on-line) Sample meshes: (a): icosahedron after 4 refinements,Nr = 4, Np = 0, Nv = 2562; (b): Sphero-cylinder,Nr = 2, Np = 4,
Nv = 242. For the sphero-cylinder, the colors distinguish the central inset and the semi-spheres.

4. Membrane force

The membrane force can be decomposed into two parts: the curvature part (the multiplier ofκA in (5)) and the
tension part (the rest). The former one is calculated directly, as explained in this Section, while the calculation of the
latter part will be presented in Section 6.

Several approaches are used to calculate curvature and differential operators on triangular mesh: trigonometrical
formulae[9, 5], direct variation of the energy[10], and quadratic interpolation[15]. It must be noted that only curvatures
were calculated by quadratic interpolation in [15] while the trigonometric formulae similar to[9, 5] were used for the
Laplace-Beltrami operator of the curvature. In addition, the method proposed in [15] relied on the precision of the
numerical approximation of the normal, so that several iterations of the surface approximation were necessary for the
normal direction to converge. We propose a rather simple butquite efficient improvement of the latter approach that
eliminates aforementioned difficulties: Namely, we use the formulae of differential geometry to find the curvatures,
the normal or the surface Laplacian. First, we introduce a local coordinate system related to each vertexa. We start
by calculation of the approximate normal to the surfaceña as the average of normals to triangles adjacent toa and
introduce two unit vectorsξa andηa orthogonal toña and to each other. The local coordinates of vertexb in the
coordinate system related to vertexa are then defined as

sb
ξ = (rb − ra) · ξa, sb

η = (rb − ra) · ηa. (8)

We use quadratic approximation for the surface in the vicinity of vertexa :

r i(sξ, sη) = ra
i + ∂ξr

a
i sξ + ∂ηr

a
i sη +

1
2

(

∂ξξr
a
i s2
ξ + ∂ηηr

a
i s2
η + 2∂ξηr

a
i sξsη

)

. (9)

The five coefficients∂ξra
i , ∂ηr

a
i , ∂ξξr

a
i , ∂ηηr

a
i , and∂ξηra

i are obtained by minimum square fitting of the approximation
discrepancy at the neighbors ofa :

χ =
∑

b∈Ua

[

rb
i − ra

i − ∂ξr
a
i sb
ξ − ∂ηr

a
i sb
η −

1
2

(

∂ξξr
a
i (sb
ξ)

2 + ∂ηηr
a
i (sb
η)

2 + 2∂ξηr
a
i sb
ξs

b
η

)

]2

, (10)

whereUa is the set of all neighbors of vertexa.
The mean and Gaussian curvatures as well as the normal are calculated according to the usual expressions of

differential geometry:

na =
∂ξ ra
× ∂ηra

|∂ξ ra × ∂ηra|
, Ha =

1
2

Tr
[

ca.(ga)−1
]

, Ka = det
[

ca.(ga)−1
]

, ga
αβ = ∂αr

a
i ∂βr

a
i , ca

αβ = na
i ∂αβr

a
i , (11)
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wheregαβ is the metric tensor,cαβ is the curvature tensor, andα, β ∈ {ξ, η}. The normalna points outwards as long as
the approximate normalña = ξa

× ηa points outwards.
Once the curvatures are calculated for every vertex, we find∂αHα and∂αβHa by a fitting procedure analogous to

(10). The Laplace-Beltrami operator is then calculated as

∆sH =
1

√

|detg|
∂α

( √

|detg|g−1
αβ∂βH

)

, (12)

which can be transformed into

∆sHa = ∂αβH
a(ga)−1

αβ −
[

(ga)−1
αβ∂αβr

a
i

] [

(ga)−1
γδ∂γH

α∂δr
a
i

]

, α, β, γ, δ ∈ {ξ, η} (13)

and then evaluated by substituting the approximations for∂αra
i , ∂αβr

a
i , ∂αH

a, and∂αβHa obtained in the fitting proce-
dure.

The error of approximation of the surface by a second-order polynomial isO(h3), which givesO(h2) error for
the normal,O(h) error for the curvatures, andO(h−1) error for the curvature Laplacian. Thus,a priori, the proposed
algorithm is not sufficiently precise to calculate the curvature force for a givensurface. However, thanks to the stiffness
of the problem, the reverse problem of reconstruction of theshape by given values of the force can be solved with good
precision by the present method. We show in Section 8 that, indeed, the force calculated by the present method for
the shapes obtainedin our simulationsconverges to the exact solution with error of orderO(h2), which is consistent
with the error order of the proposed algorithm.

5. Calculation of BIs

5.1. Exact identities

In this section we shall show how can we fully subtract singularities from the BI equation. Calculation of BI
represents the most computationally expensive part of the problem. It is also the source of severe precision limitations
due to the singular behavior of the Stokeslet kernelG. This explains why the highest care is required when designing
an efficient method for calculation of BIs. The simplest implementation of BI calculation on a triangular mesh goes
as follows. For each vertexa, all mesh triangles are divided into two groups: the ”singular triangles”, which contain
the vertexa and the remaining ”non-singular triangles”. The integration over non-singular triangles can then be
performed by a simple quadrature rule, while the integration over singular triangles is performed by exact analytical
calculation[9], or in polar coordinates[5], or by a map froma square[16, 10], assuming linear interpolation of the
forces and the shape over the triangle. It is easy to show thatthis rule has a numerical error of orderO(h) : Indeed,
for a simple 3 point quadrature rule, the error of integration over one triangle is of order of the second derivative of
the integrand times the size of the triangle to the power 4 (i.e.,O(h4)). The second derivative of the Green kernelG
is inversely proportional to the distance from the pole to the power 3 (cf. eq. (3)), which gives the following estimate
for the surface density of the numerical error of integration e :

e(ra − r) ∝ h2

|ra − r|3
, (14)

which, upon integration over surfaceΣA containing the vertexa, yields

∫

ΣA

e(ra − r)d2r ∝ h2

∞
∫

h

rdr
r3
∝ h. (15)

Here we used polar coordinates on the surfaceΣA in vicinity of the vertexa and replaced the upper boundary in the
last integral in (15), which is of order of the size of the surfaceΣ, by infinity. The lower boundary of the last integral
in (15) comes from the fact that singular triangles (forminga region with the size of orderh surrounding the vertex
a) are excluded from integration by a Gaussian quadrature rule. Despite being quite a rough estimate, eq. (15) gives
the correct order of error, as will be shown in Section 8. The error estimate (15) can not be improved by increasing

6



the order of quadrature rule: Indeed, high-order derivatives of the Green kernels diverge in vicinity of the pole even
faster than (14). As evident from (15), the main source of theerror is the integration over the so-called ”near-singular
triangles”, i.e., mesh triangles that are not singular but are still within the distance comparable toh from the pole of
the Green kernel. A quadrature rule with global error of order O(h2) was used for near-singular triangles in [9] (cf.
Section 8), although the details of the method were never published. The calculation of the quadrature weights was,
however, quite expensive from the computational point of view.

A completely different approach is used extensively in BI simulations of droplets[17]: The main trick behind this
method is to subtract from the integrand of (2) a certain function that has the same diverging behavior in vicinity of
the pole but, at the same time, can be easily integrated. Hence the name ”singularity subtraction” (SS) for this method.
More precisely, the interfacial force for a droplet with surface tension coefficientγ is given as 2γHn, so that

2γ
∫

Gi j (r, r′)H(r′)n j(r′)d2r ′ = 2γ
∫

Gi j (r, r′)
[

H(r′) − H(r)
]

n j(r′)d2r ′ + 2γH(r)
∫

Gi j (r, r′)n j(r′)d2r ′, (16)

whereH(r) can be extracted from the last integral because it is independent ofr′. If mean curvatureH varies smoothly
along the surface of a droplet,H(r′) − H(r) ∝ |r′ − r| (when |r′ − r| is small) and the integrand of the first integral
on the right hand side of (16) remains bounded forr′ , r and thus can be calculated with the error of orderO(h2) by
a simple Gaussian quadrature rule. The second integral on the right hand side of (16) evaluates to zero for a closed
surface,

∫

Σ

Gi j (r, r′)n j(r′)d2r ′ =
∫

∂′jGi j (r, r′)d3r ′ = 0, (17)

and thus does not require numerical calculation. The last integral in (17) is over the volume contained inside the
surfaceΣ and we note by∂′j the derivative with respect tor ′j . The physical meaning of (17) can be traced back to the
incompressibility of liquid in the Stokes regime. In other words, we have subtracted from the surface tension force
a fictitious normal force that does not affect the solution due to the incompressibility of Stokes flow but reduces the
net force to zero at a given pointr thus compensating the diverging behavior of the Stokeslet kernel in vicinity of this
point. Obviously, the subtracted force can (and should) be taken different when calculating the BI for different points
r. It must be noted here that the integrand of (16) is still not fully regular atr = r′ : In fact, its gradient is diverging.
Nevertheless, it can be seen by an argument similar to (15) that the error of numerical integration of (16) by a simple
quadrature rule isO(h2).

With this simple example in mind, we proceed to the SS technique for vesicles. As readily seen from (5), the
situation is much more complicated for vesicles: Indeed, the tension force due to a non-uniform Lagrange multiplier
ζ(r) has a tangential component∇s

i ζ(r) = [δi j−ni(r)n j(r)]∂ jζ(r),which is perpendicular to the normal and thus can not
be reduced to zero by subtraction of any normal force. Therefore, the exact identity (17) is not sufficient to regularize
the first integral in (2) for vesicles or any other interfacesexerting tangential forces on the liquids. This limitationhas
troubled mankind for many years, as mentioned, e.g., in [18]. To our knowledge, this continues to be the state of the
art to the present day. We are going to solve this problem by introducing a second exact identity that allows us to
reduce to zero the tangential component of the force at a given point. The trick is to note that the tangential projection
operator can be written as a double cross-product with the normal: (I − n ⊗ n) · f = −[n × [n × f ]] and to use the
identity

∫

Σ

Gi j (r, r′)ejklnk(r′)d2r ′ = −
ei jl

4π

∫

Σ

(r j − r ′j)(rk − r ′k)nk(r′)

|r − r′|3
d2r ′. (18)

The identity (18) can be easily verified by passing to a volumeintegral, which yields the same integrands for both sides
of (18). Note that a tiny vicinity of the pole gives a vanishing contribution to the surface and to the volume integrals
thanks to the weakly singular behavior of the kernelG. As can be seen, the identity (18) is more sophisticated than
(17): The integral in the left hand side does not evaluate to zero but is expressed via another integral, which might
appear singular. However, this is not the case and the integrand of the right hand side of (18) remains bounded because
infinitesimal displacements along the surface are perpendicular to the normal: (r − r′) · n(r′) = O(|r − r′|2).

The two exact identities (17) and (18) can be used to reduce the order of singularity at the pole of the kernelG for
distribution of surface forces with arbitrary normal and tangential components by replacing the original force with a
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modified one:
∫

Σ

Gi j (r, r′) f j(r′)d2r ′ =
∫

Σ

Gi j (r, r′) f̃ j(r, r′)d2r ′ +
[n(r) × f (r)] lei jl

4π

∫

Σ

(r j − r ′j)(rk − r ′k)nk(r′)

|r − r′|3
d2r ′, (19)

where the modified forcẽf is written as

f̃ (r, r′) = f (r′) − n(r′) ( f (r) · n(r)) + [n(r′) × [n(r) × f (r)]] . (20)

It is easy to see that (i)̃f (r, r′) = O(|r − r′|) for fixed r asr′ approachesr and (ii) (r − r′) · n(r′) = O(|r − r′|2) asr′

approachesr along the surfaceΣ. Thus, all the integrands on the right hand side of (19) are bounded and continuous
as a function ofr′ for any r′ , r (provided f is continuous) and therefore can be calculated with decent precision
by a simple 3-point quadrature rule as explained below. Thiscompletes the basic idea of SS technique for arbitrary
distribution of forces. We would like to stress that the transformation (19), (20) is an exact identity that holds for an
arbitrary smooth closed surface with continuous normal andforces and does not involve any approximation in itself.
The advantage of the SS is that the right hand side of eq. (19) has a much better behavior in vicinity of the pole than
the left hand side and is thus much easier to discretize for numerical evaluation with good precision.

The question of continuity of the force and smoothness of thesurface is not as evident as it might seem to be and
deserves a separate discussion. The ideal mathematical solution of the problem should be sufficiently smooth (may be,
except for several special points under some conditions). However, the discretized numerical problem deals with only
a finite set of forces defined on the vertices of the mesh. In this case, we understand by continuity of the force or of
the normal that if a more refined mesh is taken the difference of forces or normals on neighboring vertices decreases.
In other words, the amplitude of excitations of modes with wavelength of the order of mesh cell size remains small in
the course of simulation. For vesicles, short-wavelength excitations in the shape or in the Lagrange multiplierζ create
restoring forces (5) with a strong negative feedback. It is then important for the stability of the simulation that these
restoring forces correspond to a velocity field that suppresses the initial excitation. That means that the calculationof
the first integral in (2) must be positive-definite as a linearoperator on vector fields defined on mesh vertices. It is true
that the kernelG is positive definite as an operator on non-discretized surface. Namely,

D = 〈 f , Ĝ f 〉 =
∫

Σ

d2r
∫

Σ

d2r ′ fi(r)Gi j (r, r′) f j(r′) (21)

is the viscous dissipation in flow created by the forcesf in a fluid of viscosity 1 and thus can not be negative. However,
it turns out that the discretized version of the operatorĜ is not always positive-definite. In practice, the discretized
operatorĜ remains positive-definite if calculated using SS techniquecombined with the simple Gaussian quadrature
rule on mesh vertices only if the angles of mesh triangles remain not less than∼30◦.Approximately the same limitation
is imposed by other simple integration techniques. We improve the stability of our method by calculating the BI over
singular and almost-singular triangles using a more refinedmesh, as explained below.

Before describing the refined mesh, one more question shouldbe considered. Besides being positive-definite, the
operatorĜ is also self-adjoint:

〈 f , Ĝg〉 = 〈g, Ĝ f 〉 =
∫

Σ

d2r
∫

Σ

d2r ′ fi(r)Gi j (r, r′)g j(r′). (22)

This equation follows from the fact thatGi j (r, r′) = G ji (r′, r) and expresses the reciprocal theorem for Stokes flow.
However, after the regularizing transformation (19), (20)is applied, this explicit reciprocity is lost. This suggests that
there exists a second way to perform SS that is adjoint to (19), (20). Indeed, one can easily verify that

∫

Σ

Gi j (r, r′) f j(r′)d2r ′ =
∫

Σ

[

Gi j (r, r′) f j(r′) − ni(r) fk(r)Gk j(r, r′)n j(r′) − eiplnp(r) fk(r)Gk j(r, r′)ejmlnm(r′)
]

d2r ′−

(23)

− 1
4π

∫

Σ

[

n(r) × [ f (r) × (r − r′)]
]

((r − r′) · n(r′))
|r − r′|3

d2r ′

8



and that the expressions under both integrals on the right hand side of (23) remain bounded for everyr′ , r. We
use the half-sum of the rules (19), (20) and (23), which givesan explicitly self-adjoint regularized kernel for the first
integral on the right hand side of (2). Our plan is to capitalize on this symmetry later when we solve the membrane
inextensibility constraint for the Lagrange multiplierζ.

5.2. Refined mesh
As already discussed above, using only mesh vertices for BI discretization can result in instability of the simulation

under strong deformations of mesh triangles. In addition, SS does not improve precision of integration over almost
singular triangles in situations when surface is close to self-contact or when two surfaces come very close to each
other. Our plan is to take advantage of additional quadrature points and partitions of unity[19, 20] to improve the
stability and the precision of the integration on almost singular triangles. The partition of unity technique is widely
used in spectral BI methods and consists in the following idea: a smooth weight function is used to split the singular
Green kernel into two parts: a well behaved long-range part and a short-range part that is equal to zero safe for a small
round patch on the reference sphere centered at the pole of the Green kernel. The first part is then easily integrated by
traditional quadrature rules, while the second one is integrated in polar coordinates.

Because we do not use an explicit reference configuration, some modifications to the partition of unity technique
are necessary. It turns out that these modifications will, actually, provide certain advantages over the original tech-
nique. Namely, instead of using the distance between the source and the targeton the reference sphereas the argument
of the splitting weight function, we use the distance between the source and the targetin the coordinate space. As
we will show below, this little modification leads to the sametreatment of integration on all almost-singular triangles,
regardless whether they belong to the same surface as the target point or not, and whether the distance between the
target and the source triangle is small if measured along thesurface in the first case. It must be noted here that the
case when the source and the target of the Green kernel are well separated on the reference sphere but not in the real
space is usually denied a proper treatment if the splitting weight function is based on the distance along the reference
sphere, which can lead to severe precision limitations for surfaces that are close to self-contact.

The second difference here is that instead of using a separate set of additional quadrature nodes for each target
point, as is usually done during calculation of the almost-singular contribution in spectral methods[19, 20], we use
the same refined mesh for all target points. This allows us to compute the interpolated forces and multiply them by
the quadrature weights in advance for each vertex of the refined mesh, which requires a negligible fraction of BI
computation time. It is then sufficient to select the vertices which lie within the cut-off distance from a given target
vertex and multiply the precalculated forces by the Green kernel during the integration. The selection is done by a
simple lookup algorithm that allows to discard the verticesof the refined mesh that are well separated from a given
target vertex without actually calculating the distance tothem.

The refined mesh is obtained by cutting each triangle of the original mesh into 16 equal triangles (cf. Fig. 3, left).
The coordinates and forces on the refined mesh are obtained bypiece-wise linear interpolation from the corresponding
values on the original mesh. More precisely, for a triangle with verticesa, b, andc belonging to the original mesh, the
positions and forces of the refined mesh are defined as

r(s1, s2, s3) = s1ra+s2rb+s3rc, f (s1, s2, s3) = s1 f a+s2 f b+s3 f c, s1+s2+s3 = 1, s1, s2, s3 ∈
{

0,
1
4
,
1
2
,
3
4
,1

}

, (24)

wheres1, s2, ands3 are barycentric coordinates of the vertex of the refined mesh. Interpolation (24) is consistent on
the edges and vertices of the original mesh.

We denote cut-off distanceRc, and introduce a splitting weight function

w(r) =















1− 4
(

r
Rc

)3
+ 3

(

r
Rc

)4
if r ≤ Rc

0 if r > Rc

(25)

in order to accelerate the calculations (cf. Fig.3, right).As can be seen from (25),w(r) is continuously differentiable.
We use the weight functionw(r) to split the BI into two parts:

∫

Σ

Gi j (r, r′) f j(r′)d2r ′ =
∫

Σ

[

1− w
(

|r − r′|
)]

Gi j (r, r′) f j(r′)d2r ′ +
∫

Σ

w
(

|r − r′|
)

Gi j (r, r′) f j(r′)d2r ′. (26)
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Figure 3: (color on-line) Left: A triangle of the original mesh subdivided into 16 triangles of the refined mesh. Large circles denote the vertices of
the original mesh. Small circles denote the vertices of the refined mesh. Dark double lines denote the edges of the original mesh, light single lines
denote the edges of the refined mesh, forming 16 small triangles.The colors of small vertices are chosen according to the lookup set to which they
are attributed (as explained in Subsection 5.6). In this case a < b < c (assuming the lookup set with smaller index has advantage in tie breaking).
Right: A mesh fragment with the original (thick black lines) and the refined meshes (thin gray lines) shown. A small sphere marksvertexa.White
circle marks the cut-off distance from the vertexa. Only vertices of the refined mesh which lie within the white circle contribute to the numerical
estimate of BI at vertexa. Color by the weight functionw of distance from the vertexa. The weight function decreases smoothly from 1 at vertex
a to 0 beyond the white circle.

The first integral on the right hand side of (26) is regular atr = r′ and thus is calculated on the original mesh. The
integrand of the second integral on the right hand side of (26) differs from 0 only if|r − r′| < Rc. and thus can be
calculated on the refined mesh without taking excessive tollon the computation times. Ifr ∈ Σ, the second integral of
the right hand side of (26) is regularized by singularity subtraction, as explained below.

5.3. Exact identities with reduced support

The force (20) is small only whenr′ is close enough tor, while for other values ofr′ the SS technique does not
contribute to the precision of the BI calculations. However, the simple identities (17) and (18), must be calculated
over the whole surface of the vesicle, which takes a significant portion of the time spent on BI computation. In order
to reduce the computational cost of the problem, we generalize the identities (17) and (18) to include an arbitrary
differentiable function ˜w of distance betweenr andr′ :

∫

Σ

{

w̃
(

|r − r′|
)

Gi j (r, r′)n j(r′) +
w̃′ (|r − r′|)

8π

[

δi j −
(r − r′)i(r − r′) j

|r − r′|2

]

n j(r′)
}

d2r ′ = 0, (27)

∫

Σ

w̃
(

|r − r′|
)











Gi j (r, r′)ejklnk(r′) +
ei jl

4π

(r j − r ′j)(rk − r ′k)n
′
k

|r − r′|3











d2r ′+ (28)

+

∫

Σ

w̃′ (|r − r′|)
8π

{

(r − r′)i(r − r′) j

|r − r′|2
ejklnk(r′) + ei jl

[

δ jk −
(r − r′) j(r − r′)k

|r − r′|2

]

nk

}

d2r ′ = 0,

wherew̃′ is the derivative of function ˜w with respect to its single argument. It is convenient to choosew̃ = w, so that
the integrand of the identities (27) and (28) is different from zero only for|r − r′| < Rc. This way, it is sufficient to
apply SS technique only to the second integral in the right hand side of (26), as explained below.
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5.4. Implementation for the Stokeslet kernel

For the sake of simplicity of notations, the sets of verticesof the original and the refined meshes on surfaceΣ
will be calledM(Σ) andMr (Σ), respectively. Note that the points of the original mesh are also included in the refined
mesh (M(Σ) ⊂ Mr (Σ)). The set of all triangles of the original and the refined meshes on surfaceΣ will be calledT(Σ)
andTr (Σ), respectively. The set of vertices of a triangle∆ is calledM(∆) or Mr (∆), depending whether∆ ∈ T(Σ) or
∆ ∈ Tr (Σ). Conversely, the set of all triangles of the original (or refined) mesh that are adjacent to a vertexa will be
calledT(a) (or Tr (a)). We denote the vector and the scalar area of triangle∆ asN(∆) andS(∆), respectively. Finally,
the quadrature weights at vertexa are defined as

Sr (a) =
1
3

∑

∆∈Tr (a)

S(∆), S(a) =
1
3

∑

∆∈T(a)

S(∆), Nr (a) =
1
3

∑

∆∈Tr (a)

N(∆), N(a) =
1
3

∑

∆∈T(a)

N(∆), νa =
N(a)
|N(a)|

. (29)

Note that the vectorν(a) is generally different from the approximation for the normalna defined in Section 4.
We employ the simple 3-point quadrature rules to calculate integrals:

∫

Σ

φ(r)d2r ≈ 1
3

∑

∆∈T(Σ)

S(∆)
∑

a∈M(∆)

φ(ra) =
∑

a∈M(Σ)

S(a)φ(ra), (30)

∫

Σ

φ(r)nd2r ≈ 1
3

∑

∆∈T(Σ)

N(∆)
∑

a∈M(∆)

φ(ra) =
∑

a∈M(Σ)

N(a)φ(ra), (31)

Using these notations, we write the discretized BI ifra
< Σ as

∫

Σ

Gi j (ra − r′) f j(r′)d2r ′ ≈
∑

b∈M(Σ)

(1− wab)Gab
i j f b

j S(b) +
∑

b∈Mr (Σ)

wabGab
i j f b

j Sr (b), (32)

whererab = ra − rb,Gab = G(rab), wab = w(|rab|). If ra ∈ Σ, SS is performed:
∫

Σ

Gi j (ra − r′) f j(r′)d2r ′ ≈
∑

b∈M(Σ)\{a}
(1− wab)Gab

i j f b
j S(b) +

∑

b∈Mr (Σ)\{a}
wabGab

i j f b
j Sr (b)− (33)

−µ
[

νak f a
k (G · N)a

i + (G× N)a
i j [ f a × νa] j

]

− (1− µ)
[

νai fk(G · N)a
k + ei jl ν

a
j f a

k (G× N)a
kl

]

,

where the regularizing contributions are calculated as

(G · N)a
i =

∑

b∈Mr (Σ)\{a}















wabGab
i j Nr

j (b) +
w′ab

8π















δi j −
rab

i rab
j

|rab|2















Nr
j (b)















, (34)

(G× N)a
i j =

∑

b∈Mr (Σ)\{a}















wab













ejklG
ab
ik −

ei jk

4π

rab
k rab

l

|rab|3













Nr
l (b) +

w′ab

8π













rab
i rab

k

|rab|2
ejkl − ei jk













δkl −
rab

k rab
l

|rab|2

























Nr
l (b)















. (35)

The constantµ can be chosen arbitrary (preferably within the interval [0;1]). In our calculations, we setµ = 1/2,
which makes the regularized kernel explicitly self-adjoint.

The exact value ofRc is usually chosen to be one half of the volume-equivalent radius of the vesicle. In this case,
the computational times spent for calculation of each integral in the right hand side of (26) are approximately the same
for a single almost-spherical vesicle.
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5.5. Implementation for the stresslet kernel
The stresslet kernel is regularized thanks to a well-known identity

∫

Σ

Ti jk (r, r′)nk(r′)d2r ′ =
δi j

2
(36)

if r ∈ Σ. The same weight function (25) is used to split the calculations between the original and the refined meshes.
The velocity is linearly interpolated on the refined mesh in the same way as the coordinates or the forces (eq. 24). If
ra
< Σ, we obtain

∫

Σ

Ti jk (ra − r′)u j(r′)nk(r′)d2r ′ ≈
∑

b∈M(Σ)

(1− wab)Tab
i jkub

j Nk(b) +
∑

b∈Mr (Σ)

wabTab
i jkub

j N
r
k(b), (37)

whereTab = T(rab). If ra ∈ Σ,
∫

Σ

Ti jk (ra − r′)u j(r′)nk(r′)d2r ′ ≈
ua

i

2
+

∑

b∈M(Σ)\{a}
(1− wab)Tab

i jk (ub
j − ua

j )Nk(b) +
∑

b∈Mr (Σ)\{a}
wabTab

i jk (ub
j − ua

j )N
r
k(b). (38)

5.6. Lookup algorithm for the refined mesh
As already mentioned, the splitting weight function (25) allows to reduce dramatically the computational cost of

the BI calculation on the refined mesh. Namely, if a vertexb of the refined mesh lies outside the sphere of radius
Rc with the center in vertexa of the original mesh, there is no contribution of the vertexb to the numerical estimate
of the BI at the vertexa because the weight functionw(|ra − rb|) is equal to zero (cf. Fig. 4). Nevertheless, the
verifications which vertices of the refined mesh lie within the distanceRc from a given vertexa of the original mesh
can take significant amount of time due to the vast number of vertices in the refined mesh. We introduce a simple
lookup algorithm that greatly reduces the number of verifications. The idea of the algorithm is to distribute all vertices
of the refined mesh between disjoint lookup sets indexed by the vertices of the original mesh:

Mr (Σ) =
⋃

a∈M(Σ)

L(a), L(a) ∩ L(b) = ∅, a , b. (39)

The decision, to which lookup set a given vertexb ∈ Mr (Σ) is attributed, is taken upon examination of the barycentric
coordinates of the vertexb (used in Section 5.2): The vertexb of the refined mesh is attributed to the lookup setL(a)
if the vertexa of the original mesh has the largest weight in the barycentric coordinates of the vertexb (cf. Fig. 3).
The ties are broken by the global index of the vertices of the original mesh. This definition of the lookup sets allows
us to calculate them upon mesh generation and does not require their update during the whole course of simulation.

At each time step, we precalculate so-called lookup radius for each lookup set, defined as

Lmax(a) = max
b∈L(a)

|rb − ra|. (40)

The lookup procedure goes as follows: For each couple of vertices on the original mesha andb, we calculate the
distance between themrab = |ra− rb| (actually, this distance must be calculated anyway as a partof the BI calculation
on the original mesh). The distancerab is then compared withRc + Lmax(b). If rab > Rc + Lmax(b) then for any vertex
c ∈ L(b)

|ra − rc| ≥
∣

∣

∣|ra − rb| − |rb − rc|
∣

∣

∣ ≥ rab − Lmax(b) > Rc (41)

by a consequence of the triangle inequality. We see that ifrab > Rc+Lmax(b), there is no contribution of the vertices in
L(b) to the numerical estimate of BI at the vertexa.On the contrary, ifrab < Rc+ Lmax(b), each vertex inL(b) must be
checked for distance from the vertexa individually. Likewise,rab must be compared withRc + Lmax(a) to check if the
vertices ofL(a) contribute to the numerical estimate of the BI at the vertexb. Finally, for each vertexa of the original
mesh, contribution of the vertices fromL(a) to the numerical estimate of BI at the vertexa must be calculated. With
the present definition of the lookup sets, their lookup radiiturn out to be rather small compared to the cut-off distance
(and even smaller if compared to the size of the vesicle) and are of orderO(h). That is, only a negligible fraction
of vertices of the refined mesh lying beyond the distanceRc from a given vertexa are not discarded by the lookup
algorithm.
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(b)
a b
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Figure 4: (color on-line) Schematic view of the lookup algorithm for the refined mesh (in 2D for simplicity): Verticesa andb belong to the original
mesh. Small diamonds show vertices of the refined mesh attributedto the lookup setL(b) of the vertex b. The small diamonds are shown scattered
in a random way in order to demonstrate the general concept of the lookup algorithm, which works even if the vertices of the refined mesh are not
arranged in the regular fashion shown in Fig. 3. The smaller red circle marks the largest distanceLmax(b) from the vertexb to a point of its lookup
setS(b). The larger green circle marks cut-off distance for calculations on refined mesh around the vertexa : If a vertex of the refined mesh is
outside the larger green circle, it does not contribute to the numerical estimate of the BI at the vertexa. Case I:rab > Rc + Lmax(b). The red and
green circles do not intersect: It is safe to assume that no point in the lookup set of vertexb contributes to the BI estimate at the vertexa. Case II:
rab < Rc + Lmax(b). The red and green circles intersect: Each point in the lookupset of vertexb must be checked individually for contribution to
the numerical estimate of BI at the vertexa. One diamond actually got inside the larger green circle and thus this vertex of the refined mesh gives a
non-zero contribution to the numerical estimate of the BI at thevertexa.

5.7. Volume conservation

It follows from the incompressibility of Stokes flow that
∫

ΣA

ui(r)ni(r)d2r = 0 (42)

for each vesicleA, which is equivalent to conservation of the volume inside that vesicle. It is known that the exact
solution of the BI (2) satisfies the condition (42), providedthe imposed flow has no sources inside the vesicleA.
Unfortunately, the discretization (32), (33), (37), (38) is not compatible with (42), which creates drift of vesicle
volumes. In order to resolve this problem, we project the velocity field calculated from BI equation on the subspace
of velocity fields that conserve the volume of each vesicle inlinear approximation:

P̂Vua = ua − ν(a)

∑

b∈M(ΣA)
ub
· N(b)

∑

b∈M(ΣA)
ν(b) · N(b)

, a ∈ M(ΣA), (43)

whereP̂V is the projection operator. After this projection, the change of the volume of a vesicle during one time step
τ is of orderO(τ2), which is eliminated by rescaling as described in Section 6.2.

6. Membrane inextensibility

6.1. Local and global inextensibility

One of the most difficult challenges in simulation of dynamics of vesicles and inextensible capsules lies in the
fact that inextensibility of the membrane must be enforced locally, which usually requires to resolve a linear system
whose size is proportional to the combined number of vertices of all vesicles. In addition, dynamics of a vesicle is
very sensitive to its total volumeV and surface areaS. Because these parameters are physical properties of a vesicle,
we develop a numerical procedure that allows us to conserve these 2 parameters with great precision, as explained in
this section.
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Two different strategies are possible when solving for the Lagrangemultiplier ζ : either a direct resolution of the
linear system (7)[5] or iterative approach when the tensionis slightly adjusted at each time step to ensure the surface
incompressibility during variations of the shape of the vesicle. GMRES method is traditionally employed to solve for
the Lagrange multiplier in spectral BI methods[1, 2]. Alternative approach is to use penalization technique[9]. The
advantage of the latter approach is that the penalization isimposed not only on the local strains but also on deviations
of the global surface area (or equivalently the reduced volume) from the prescribed value, which prevented numerical
artifacts due to sensitivity of the vesicle dynamics to the reduced volume. The drawback of the last method is that a
rather large penalization constant has to be used in order toensure local incompressibility of the membrane with good
precision, which sets a rather stiff limitation for the choice of numerically stable time steps.The proposed method
consists in selecting the optimal values for the local and global strain penalization parameters at each time step. That
is, the penalization parameters are chosen to minimize the local strains and to keep the global area of each vesicle at
the prescribed value. By doing so, despite the fact that the penalization parameters can attain rather high values, no
additional limitations are imposed on the time step. The inner volumes of vesicles are kept constant due to projection
(43) and rescaling at each time step.

The volume and the surface area of a vesicleA are calculated as (using notations of subsection 5.4):

VA ≈ 1
3

∑

a∈M(ΣA)

ra
· N(a), SA ≈

∑

a∈M(ΣA)

S(a). (44)

We define the strain fieldρa and the tension fieldζa for each vertexa. The strain fieldρa is used to measure the
local stretching of the membrane in vicinity of vertexa, while the tension fieldζa is used as a Lagrange multiplier.
Our goal is to minimize the strains|ρa| by finding optimal values of the tensionζa.

The tension forceφa(ζb) for arbitrary scalar fieldζb is obtained by energy variation:

φa
i (ζb) = − 1

S(a)
δEtens(ζb)
δra

i

, Etens(ζ
b) =

∑

a

ζaS(a). (45)

Because the BI technique described in Section 5 requires interpolation of the force on the refined mesh, we calculate
the tension force explicitly: consider a triangle∆ defined by 3 verticesra, rb, andrc, then

δS(∆)
δra

i

=
1
2

(rb − rc) ×
[

(ra − rb) × (ra − rc)
]

∣

∣

∣(ra − rb) × (ra − rc)
∣

∣

∣

= ± (rb − rc) × N(∆)
2 |N(∆)|

. (46)

The sign is ’+’ if the cyclea→ b→ c→ a is counterclockwise viewed from outside the vesicle.
In order to simplify the notations, we denote the full force (tension part and the curvature part) for a given tension

field ζb as f a(ζb).We denote the curvature force asf a(0) (the full force when the tensions are equal to zero). We thus
can write f a(ζb) = f a(0)+φa(ζb). After calculation of the BI, we obtain the full velocity fieldua(ζb) = ua(0)+ va(ζb),
where

ua
i (0) = P̂V

[

2ηext

ηint + ηext
u∞i (ra) +

2
ηint + ηext

Ĝa
i ( f c(0))+

2(ηext− ηint)
ηint + ηext

T̂a
i (uc(tn−1))

]

, (47)

va
i (ζb) =

2
ηint + ηext

P̂VĜa
i (φc(ζb)). (48)

Here we denote bŷPVĜa
i ( f c) andP̂VT̂a

i (uc) the BIs calculated using the recipes of Section 5 for the force field f c and
velocity fielduc, respectively. Finally, we denote byuc(tn−1) the full velocity field at previous time step.

We denote asρa(vb) the local strain rate of arbitrary velocity fieldvb measured at vertexa. This value is defined as
the variation ofS(a) if all vertices are displaced using the velocity fieldvb :

ρa(vb) =
∑

b

δS(a)

δrb
i

vb
i . (49)

As noted in [10], the linear operators (45) and (49) can be considered adjoint. We can see from (44) that

dSA

dt
=

∑

a∈M(ΣA)

ρa(ub), (50)
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which means that zero local strain ensures conservation of global area of the vesicle. This conservation is exact only
for infinitesimal time steps: For finite time stepτ, there is a small drift of global area. This drift has two origins:
non-linear effects and changes of the surface area and volume of the vesicleduring mesh advection. The former
contribution is of orderO(τ2) and thus can be reduced by taking sufficiently small time stepτ, while the latter is of
orderO(τ)O(h2) and thus can be reduced by taking sufficient number of discretization points. We compensate the drift
of surface area by adding a small isotropic correction to surface tension. Namely, we take the following compensation
of the area drift for each vesicleA at time steptn :

δSA(tn) =
SA − SA(tn)

τ
− SA(tn) − SA(tn−1) − τδSA(tn−1)

τ
, (51)

whereSA is the imposed area for vesicleA, SA(tn) is the surface area of vesicleA at time steptn, SA(tn−1) is the surface
of the same vesicle at the previous time step, andδSA(tn−1) is the compensation of drift for the vesicleA at the time
steptn−1. The first part of the right hand side of (51) extends the surface area of the vesicle fromSA(tn−1) to SA, while
the second one is equal to the difference between the expected and the actual areas of the vesicle A at the time steptn
and represents the non-linear effects and changes of the area during mesh advection. Because the latter part does not
change significantly between subsequent time steps, the compensation (51) results in a very precise conservation of
the global area of each vesicle. In practice, the correctionto the tensions due to the drift compensation turned out to
be negligible.

Thus, at each time step, we impose the dilatation of the totalarea byδSA for of each vesicleA, which gives the
following condition on the local strains for verticesa ∈ M(ΣA) :

∑

a∈M(ΣA)

ρa(ub(ζc)) = δSA. (52)

Because condition (52) is incompatible with zero local strain (as follows from (50)), we impose the following system
on local strains:

∀A : ∀a ∈ M(ΣA) : ρa(ub(ζc)) =
S(a)

SA(tn)
δSA, (53)

which gives a system of equations (53) linear in unknownsζc. Direct resolution of this system being impractical, we
use the iterative approach: We take tension fieldζb(tn−1) from the time steptn−1, and perform an optimization iteration
to obtain the tension fieldζb(tn) at the time steptn. Two trial directions per vesicle are used for the change of the
tension: For each vesicleA, we take (i) the tension field equal to residual strain at previous time step for vertices of
vesicleA and equal to zero for vertices of other vesicles (denoted asρa(tn−1)|A) and (ii) the tension field equal to 1 on
vertices ofA and equal to zero for vertices of other vesicles (denoted as 1|A). In other words, we chose the following
ansatz for the tensionζa(tn) :

ζa(tn) = ζa(tn−1) + αA + βAρa(tn−1), a ∈ M(ΣA). (54)

The values ofαA andβA are chosen to satisfy two conditions: (i) the fixed global area constraint (52) and (ii) the
minimal sum of squares of local strains. This gives the following problem of constrained minimization:

χ =
∑

A

∑

a∈ΣA

[

ρa(ub(ζc(tn))) − S(a)
SA(tn)

δSA

]2

−
∑

A

γA































∑

a∈ΣA

ρa(ub(ζc(tn)))

















− δSA















=

=
∑

A

∑

a∈ΣA















ρ̃a(ub(ζc(tn−1))) +
∑

B

αBρ
a(vb(1c|B)) +

∑

B

βBρ
a(vb(ρc(tn−1)|B))















2

− (55)

−
∑

A

γA

















∑

a∈ΣA

ρ̃a(ub(ζc(tn−1))) +
∑

B

αBρ
a(vb(1c|B)) +

∑

B

βBρ
a(vb(ρc(tn−1)|B))

















,

whereγA is the Lagrange multiplier enforcing the constraint (52) during minimization (55) and the corrected strain is
defined as

ρ̃a(ub(ζc(tn−1))) = ρa(ub(ζc(tn−1))) − S(a)
SA(tn)

δSA, a ∈ M(Σ)a. (56)
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The minimization of (55) is performed by solving a linear system for the unknownsαC, βC, andγA : Two sets of
equations

∀B :
∑

A

∑

a∈M(ΣA)















ρ̃a(ub(ζc(tn−1))) +
∑

C

αCρ
a(vb(1c|C)) +

∑

C

βCρ
a(vb(ρc(tn−1)|C)) − γA















ρa(vb(1c|B)) = 0, (57)

∀B :
∑

A

∑

a∈M(ΣA)















ρ̃a(ub(ζc(tn−1))) +
∑

C

αCρ
a(vb(1c|C)) +

∑

C

βCρ
a(vb(ρc(tn−1)|C)) − γA















ρa(vb(ρc(tn−1)|)) = 0 (58)

are supplemented with the inextensibility conditions for each vesicle (52).
In order to calculate the coefficients of the system (52), (57), and (58), the following force and velocity fields are

calculated at each time step: the full forcef a(ζb(tn−1)) and velocityua(ζb(tn−1)) fields are calculated for the tension
field at the previous time stepζb(tn−1), tension forcesφa(ρb(tn−1)|A) andφa(1|A), and velocity fields associated to them
va(ρb(tn−1)|A) andva(1|A), are calculated using local strains at previous time stepρb(tn−1)|A and uniform tension 1|A for
each vesicleA. Because the trial tension fieldsρb(tn−1)|A and 1|A are equal to zero but on the vesicleA, the calculation
of velocity fields associated to the trial tensions increases the computational complexity of one iteration no more than
by a factor of 3. In fact, the regularizing integrals for the SS as well as the inverse distance for each pair of points
can be calculated only once per iteration, which further reduces the computational cost. If the number of vesicles is
not large, it is convenient to store the velocity fields and local strains corresponding to each trial direction. This way,
the velocity field and the local strains for the tension field (54) can be obtained without BI recalculation thanks to the
linearity. Otherwise, two passes of force calculation and integration are required: one to adjust the tension and one to
calculate the velocity for the adjusted tension.

Note that if no refined mesh is used for BI calculation and the projection operator (43) is omitted, the system
(53) is characterized by a symmetric matrix thanks to the explicitly symmetric singularity subtraction discussed in
the Section 5 and the explicitly adjoint definitions of the tension force (45) and the local strain (49). In this case,
the proposed method reduces to steepest descent method withadditional constraints of prescribed global areas of the
vesicles. If the refined mesh is used for BI calculations, thesymmetry of the matrix characterizing the system (53)
is only approximate. In practice, this does not pose a problem and the penalization technique presented above works
well unless the BI operator ceases to be positive-definite.

6.2. Time advancement and mesh advection

We use a modification of mesh advection technique[17] in order to stabilize the shape of triangles: A fictitious
tangential displacement is added to the velocity field calculated from the BI (2) in order to prevent excessive distortion
of mesh triangles. Additionally, the vesicle is rescaled ateach time step to keep the prescribed volume.

7. Inextensible capsules

Several previous numerical studies for capsules [18, 21, 22, 23, 20, 24, 25, 15] have dealt with more or less
extensible capsules. Real capsules, made of polymers, are indeed extensible [26]. However, having in mind that a
capsule model is to be built in order to mimic RBCs, the question of observing a strict inextensibility becomes natural.
Our wish is thus to extend our model of vesicles to the case where the membrane is inextensible and is endowed with
in-plane shear elasticity.

7.1. Elastic energy of capsules

We feel that it is necessary to give a brief introduction to the elasticity of 2D surfaces before actually describing the
numerical algorithm for capsule simulation. The invariants of 2D relative displacement gradient[27] are traditionally
used to characterize large deformations of 2D surfaces. We find it more convenient to use the metric tensor on the
surface to characterize its deformation, as discussed, e.g., in[18]. While both approaches are equivalent and lead to
the same analytical expressions for elastic forces, metrictensors are easier to calculate on triangular meshes.

Unlike for vesicles, reference configuration is indispensable to characterize the elastic properties of capsules. For
convenience, we choose the reference configuration to be thestate corresponding to the minimum of elastic energy.
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Thus, for every pointr on the capsule surface, we have the reference pointx(r). Alternatively, we can consider
dependence of the actual pointr on the reference coordinatex. Now the major assumption in the classical theory of
elasticity is that the elastic energy of a material depends only on the first derivatives ofr(x) with respect tox. This
assumption is justified if the characteristic wave vectors of the deformation are much smaller than the characteristic
inverse distance of the microscopic structure of the material. In order to establish the general form of the dependence
of the elastic energy on the partial derivatives∂r i/∂x j for an isotropic 2D material, we consider a parametrizationof
the reference configurationx(s1, s2) by local coordinatess1 and s2 in the vicinity of a pointx0 = x(s1

0, s
2
0), which

induces a parametrization of the deformed capsuler(s1, s2) = r(x(s1, s2)) in vicinity of the point r0 = r(x0). This
parametrization induces two metric tensors: one on the deformed capsule

gαβ(r0) =
∂r i

∂sα
∂r i

∂sβ

∣

∣

∣

∣

∣

s1=s1
0,s

2=s2
0

, α, β ∈ {s1, s2} (59)

and one on the reference configuration

g0
αβ(x0) =

∂xi

∂sα
∂xi

∂sβ

∣

∣

∣

∣

∣

s1=s1
0,s

2=s2
0

, α, β ∈ {s1, s2}. (60)

The principal extensionsǫ1(x0) andǫ2(x0) in the reference pointx0 can be calculated by diagonalizing simultaneously
the two matricesgαβ(r0) andg0

αβ
(x0) :

det
[

gαβ(r0) − ǫ1,2(x0)2g0
αβ(x0)

]

= 0, α, β ∈ {1,2}. (61)

The surface density of the elastic energy of the capsule is anarbitrary symmetric function ofǫ1 andǫ2 :

Eel =

∫

Eel[ǫ1(x), ǫ2(x)]d2x. (62)

Note that the ratio between the actual and the reference areais given by

d2r
d2x
= ǫ1ǫ2, (63)

which allows us to rewrite the energy (62) as an integral overthe actual shape with a slightly different energy density
(for inextensible capsules, there is no difference between integration over the reference configuration and over the
actual surface). As specified from the beginning, we choose the reference configuration as the equilibrium state of
the elastic energy. That is, the minimum of (62) correspondsto ǫ1 = ǫ2 = 1 everywhere on the capsule. Thus small
deformations are characterized by the values ofǫ1 andǫ2 close to 1. It is reasonable to make an assumption that the
elastic energy be analytical in small deformations and makean expansion in Taylor’s series:

Eel(ǫ1, ǫ2) = Eel,0 +

∞
∑

i=2

i
∑

k=0

Ek,i−k(ǫ1 − 1)k(ǫ2 − 1)i−k, (64)

where the terms linear inǫ1 − 1 andǫ2 − 1 are zero to ensure the equilibrium atǫ1 = ǫ2 = 1. The symmetry of the
elastic energy of a capsule with respect to a permutation ofǫ1 andǫ2 implies that

Ei, j = E j,i . (65)

The simplest elasticity model would result from truncatingthe expansion (64) ati = 2 (a neo-Hookean model
of 2D material). Various more sophisticated models exist inthe literature with different combinations of high-order
terms taken into account. Our idea is to keep the elasticity model as simple as possible. Unlike standard models used
for capsules where (weakly) extensible membranes are treated [28], we shall start directly with inextensible capsules,
and this will further reduce the number of possible terms in (64). First let us exploit the symmetry (65), which readily
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tells us that the energy (64) can be rewritten as an expansionin powers of two elementary symmetric polynomials of
ǫ1 − 1 andǫ2 − 1, which are1

ǫ1 + ǫ2 − 2 (66)

and
(ǫ1 − 1)(ǫ2 − 1) = 1− ǫ1 − ǫ2 + ǫ1ǫ2. (67)

Local inextensibility of a capsule imposes additional relation ǫ1ǫ2 = 1 on the principal stretches, as suggested by
(63). The polynomials (66) and (67) are linearly dependent in this case, which means that the energy cost of local
in-plane deformation of the capsule membrane can be represented as a function of only one variable, measuring the
local shearing distortion. If the polynomial (66) were taken to be this variable, then the elastic energy (62,64) of the
capsule in its reference configuration would not have been explicitly at equilibrium without the local inextensibility
constraint (that is enforced only via a Lagrange multiplier), which would have resulted in position dependent Lagrange
multiplier ζ at equilibrium. To avoid this inconvenience, we use anothermeasure of local shearing distortion,

ε2 = ǫ21 + ǫ
2
2 − 2ǫ1ǫ2 = (ǫ1 − ǫ2)2, (68)

which is equivalent to (66) for inextensible capsules. Indeed,

ǫ1 + ǫ2 − 2 =
√

(ǫ1 − ǫ2)2 + 4ǫ1ǫ2 − 2 =
√

4+ ε2 − 2 =
ε2

4
− ε

4

64
± ... (69)

Rewriting the energy density (64) as a function ofε2 yields the following expression for the elastic energy of an
inextensible capsule

Eel =

∫















Ẽel(ε
2(x)) + 2κ

(

H(x) − H0

)2
d2r
d2x
+ ζ(x)

(

d2r
d2x
− 1

)















d2x. (70)

The sum of last two terms is the Helfrich energy (4), which allows to calculate their associated force by the methods
described in Sections 4 and 6. The first term is absent for vesicles and is evaluated by direct variation of energy, as
explained below. We will need the explicit expression ofε2 for calculation of the elastic force:

ε2 =
g11g0

22 + g22g0
11 − 2g12g0

12

detg0
αβ

− 2

√

detgαβ
detg0

αβ

. (71)

The exact dependenceEel(ε2) can be chosen either in the simplest form

Eel(ε
2) =

µs

2
ε2 (72)

or in a more sophisticated way, for example, using a finite extensibility non-linear elasticity model (FENEM) in order
to prevent mesh collapse under strong flows (see section 8.8).

7.2. Calculation of elastic force on triangular mesh

Numerical simulation of inextensible capsules is not much different form that of vesicles. The reference config-
uration is parametrized by storing the reference coordinates for each mesh vertex. The deformation parameterε2 is
calculated for each triangle of the mesh as if it was stretched uniformly: Consider a triangle with verticesra, rb, and
rc, having the reference coordinatesxa, xb, andxc, respectively. The metric tensors are calculated as

g11 = (rb − ra) · (rb − ra), g12 = g21 = (rb − ra) · (rc − ra), g22 = (rc − ra) · (rc − ra), (73)

g0
11 = (xb − xa) · (xb − xa), g0

12 = g0
21 = (xb − xa) · (xc − xa), g0

22 = (xc − xa) · (xc − xa). (74)

1This is nothing but to say that the energy is a function of invariants which are the trace (ǫ1 + ǫ2) and the determinant (ǫ1ǫ2).
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It must be noted that the value ofε2 does not change upon any permutation ofa, b, or c if calculated from (71) and
(73 – 74). The elastic force is calculated by variation of (70) with respect tora

f a
el,i = −

1
S(a)

∑

b

∂Eel((ε2)b)
∂ra

i

Sre f (b) = − 1
S(a)

∑

b

dEel

dε2

∣

∣

∣

∣

∣

ε2=(ε2)b

∂(ε2)b

∂ra
i

Sre f (b), (75)

whereSre f (b) is the quadrature weight of the vertexb calculated for the reference configuration (in fact, it should be
equal toS(b) for an inextensible surface, howeverSre f (b) is independent ofra and thus acts as a constant during the
variation). The variation ofε2 with respect tora

i is calculated from (71) using the following expressions:

∂g11

∂ra
i

= 2ra
i − 2rb

i ,
∂g12

∂ra
i

=
∂g21

∂ra
i

= 2ra
i − rb − rc ∂g22

∂ra
i

= 2ra
i − 2rc

i . (76)

The curvature and tension parts of the force, as well as the integration technique for capsules are the same as for
the vesicles. Minor changes are required for the calculation of the lagrange multiplierζa from the local inextensibility
condition: The system of equations (53) must be replaced by

∀A : ∀a ∈ M(ΣA) : ρa(ub(ζc)) =
Sre f (a) − S(a)

2τ
, (77)

which is resolved as described in Section 6. The time advancement is executed in the straightforward way

ra(tn) = ra(tn−1) + τva(tn−1). (78)

8. Validation

8.1. Non-dimensionalization

We provide several examples concerning both vesicles and capsules. In our validation tests, we consider a single
vesicle or capsule of volumeV, surface areaS, that encloses liquid of viscosityηint and is submersed in liquid of
viscosityηext. Two dimensionless numbers can be formed using these parameters: The reduced volume (6) and the
viscosity contrast

λ =
ηint

ηext
. (79)

Both vesicles and capsules are endowed with bending modulusκ, while two additional parameters will be used to
describe the shear elasticity of capsules, as is explained below.

Two kinds of imposed flow are considered: the unbounded linear shear flow, characterized by the shear rate ˙γ :

v∞x (r) = γ̇ry, v∞y (r) = v∞z (r) = 0 (80)

and the unbounded axial Poiseuille flow, which is characterized by the flow curvature ˙α :

v∞x (r) = α̇(r2
y + r2

z), v∞y (r) = v∞z (r) = 0 (81)

and coincides with the flow profile in a cylindrical channel upto constant, which does not affect the solution thanks to
the Galilean invariance of the problem. The flow strength is reflected by a dimensionless capillary numberCa, which
we define as

Ca =
γ̇ηR3

v

κ
, Rv =

(

3V
4π

)1/3

(82)

for shear flow and

Ca =
α̇ηR4

v

κ
, Rv =

(

3V
4π

)1/3

(83)

for a Poiseuille flow. HereRv is the volume-equivalent radius of the vesicle. In order to facilitate comparison with
other works, we present our results in explicitly dimensionless form.
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Figure 5: (color on-line) Difference between BI calculated numerically and the analyticalresult (85). Sphere of radius one, sample force field (84).
Right: Numerical error of BI calculation as a function of number of refinementsNr , comparison of different integration techniques: SS technique
with refined mesh, as described in the present study (Rc = 0.5, red circles), analytical integration for singular triangles and point-wise quadrature
for all others (green triangles down), and the integration method used in [9] (violet triangles up). The solid line is the guide for the eyes that
demonstrates that error scales asO(h2) with refinement for the SS technique and the method [9]. The dashed line is the guide for the eyes that
demonstrates that error scales asO(h) if no special treatment of almost-singular triangles is performed. Right: Effect of the refined mesh and of the
value of the cut-off distanceRc on the precision of BI calculation.

8.2. Singularity subtraction tests

We start the validation of the problem by simple tests of the SS technique. We take for the test surface a sphere of
radius one, for which the BIs can be calculated analytically. We choose the sample distribution of forces as

fx(r) = ryrz, fy(r) = rzrx, fz(r) = rxry. (84)

As can be seen from (84), the sample force has both a normal anda tangential components. In addition, the sample
force (84) is not a linear function of coordinates, which will allow us to see the error due to force interpolation on the
refined mesh. In Fig.5, we present the difference between BI calculated using the technique presentedin Section 5
and the analytical result

∫

Gi j (R − r) f j(r)d2r = 4 fi(R)/35 (85)

as a function of number of mesh vertices. It is evident from the slope of the curves in Fig.5 (left), that the numerical
error in calculation of BI decreases asymptotically asO(4−Nr ) = O(h2) for the SS technique and the method [9], while
the error decreases asymptotically only asO(2−Nr ) = O(h) for the simple technique of combined analytical integration
over singular triangles and numerical integration using 3 point quadrature over non-singular triangles. Figure 5 (right)
shows that increasing the cut-off distance improves the precision of calculation for a small number of mesh vertices
(Nr ≤ 2). By contrast, moderate values of the cut-off distance (Rc = 0.5) give the best precision for larger numbers
of mesh vertices (Nr ≥ 3). This suggests that the piece-wise linear interpolation, which is used here to calculate the
quantities on the refined mesh, generates a noticeable contribution to the numerical error. Overall, we see that the
SS method becomes advantageous forNr ≥ 2. It must be noted here that a factor of 2 is not a negligible increase in
precision over the method [9] due to the low-order nature of the convergence. Namely, for second order methods,
increasing the precision by a factor of four requires increasing the refinementNr by a unity, which gives fourfold
increase in the number of mesh vertices and consequent increase by a factor of sixteen in BI computation time, which
could make the simulation practically impossible. A sampledistribution of numerical error forRc = 0.5, Nr = 3,
Np = 0 is shown in Fig. 6 (left).

8.3. Hydrodynamic interactions between almost-touching surfaces

Another challenge for the numerical calculation of BIs is the situation when two interfaces are close to contact.
This situation arises when hydrodynamic interactions of several interfaces are studied or one interface is close to
self-contact. In any case, precision of BI calculation plays an important role in prevention of interpenetration of the
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Figure 6: (color on-line) Left: Sample distribution of numerical error (Rc = 0.5, Nr = 3, Np = 0). Right: Numerical error of BI calculation when
target lies outside of the surface on which the forces are distributed. The effect of use of refined mesh. The sample force field (84) is distributed
over a unity sphere. The numerical error is calculated on a sphere of radius|R|. The maximum of error for a given value of|R| is plotted as a
function of |R| − 1 for two meshes (Nr = 3, Np = 0 andNr = 4, Np = 0). Solid lines are results of numerical integration with theuse of refined
mesh (Rc = 0.5), the dashed lines are the results of numerical integrationwithout the use of refined mesh (Rc = 0). For the reference, edge lengths
lie between 0.12 and 0.18 forNr = 3 and between 0.04 and 0.10 for Nr = 4. Edges of the refined mesh are 4 times shorter.

interfaces. Here we show that the introduction of the refinedmesh greatly improves the precision of BI calculation
when two surfaces are almost touching. The same distribution of forces (84) on a unity sphere is considered. For each
mesh pointra on the unity sphere, we calculate the numerical estimate of the BI in the point|R|ra and compare the
result with the exact analytical expression

∫

Gx j(R − r) f j(r)d2r = RyRz
105R2

x(|R|2 − 1)+ 15− 7|R|2

70|R|5
,

∫

Gy j(R − r) f j(r)d2r = RzRx

105R2
y(|R|2 − 1)+ 15− 7|R|2

70|R|5
, (86)

∫

Gz j(R − r) f j(r)d2r = RxRy
105R2

z(|R|2 − 1)+ 15− 7|R|2

70|R|5
,

for |R| ≥ 1. Scanning through all mesh verticesa, we find the maximum discrepancy and plot it as a function of|R| −1.
The results are presented in Fig. 6 (right) for two different mesh refinements with and without the auxiliary refined
mesh for BI calculation. The general trend is that if|R| ≫ 1, the numerical error is relatively low regardless if the
refined mesh is used or not for the BI calculation. However, when |R| − 1 is less than the characteristic size of the
mesh cell, a strong increase of numerical error is observed if BI is calculated without the use of refined mesh. For
the calculation with refined mesh, the numerical error remains relatively low as long as|R| − 1 is not less than the
characteristic size of a cell of the refined mesh. Overall, a clear advantage of the use of the refined mesh for calculation
of BI is seen. It must be noted here that when two surfaces are separated by a distance greater than the cut-off distance
for calculations on the refined mesh, the excess time cost of the use of the refined mesh for BI calculation is negligible
thanks to the lookup algorithm.

8.4. Membrane shape, curvature, tension, and force

In order to check the convergence of the force calculation, we consider a steady state of a vesicle without viscosity
contrast (λ = 1) in shear flow. We calculate the forcef , mean curvatureH, and the Laplace-Beltrami operator of
the curvature∆sH. The results are plotted for the cross-section by the shear planez = 0 as a function of the polar
angleϕ, whereϕ is the orientation angle in the shear plane (Fig. 7). The results obtained by high-order analytical
expansions[29] are included as a reference. In order to achieve good convergence of analytical expansions, an almost
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spherical vesicle (ν = 0.97) and a strong flow (Ca = 10) are used. As can be seen in Fig. 7, a good convergence is
achieved for the membrane force and the steady-state shape.The tension and the curvature converge to the analytical
result as well. Surprisingly, even the curvature Laplacianconverges to the analytical value everywhere but at the
12 exceptional vertices having only five neighbors. It must be noted here that the algorithm for the curvature force
calculation presented in Section 4 works equally well for vertices with any number of neighbors higher than 4, and
that the exceptional behavior in vicinity of the five-neighbor points comes from the tension force. That is, a continuous
distribution of Lagrange multiplierζ creates a strong jump of the normal component of the tension force at the five-
neighbor vertices, which is compensated by an opposite jumpin the curvature part of the force, in such a way that the
distribution of the full force is continuous and converges to the theoretical value. Under strong flows, the Lagrange
multiplier ζ is large and therefore creates a large jump of the tension force at the exceptional vertices, which, in
turn, leads to large jumps in curvature force and, consequently, curvature Laplacian. The only way to remove this
behavior is to design a method for tension force calculationthat is less sensitive to the number of neighbors of a given
vertex. Because the diverging results for tension force andthe curvature Laplacian occur only at a small number of
exceptional vertices and do not affect the vesicle dynamics, we leave this question for future studies.

8.5. Deflated vesicles

In order to verify the ability of the proposed method to treatvery deflated vesicles we calculate the bending energy
Ecurv = 2κ

∫

H2dS and compare the measured values with the results reported in[1]. As can be seen in Fig. 8, The
convergence is rather good for all reduced volumes. Nevertheless, some discrepancy is observed for very deflated
vesicles, especially in a strong flow. In order to achieve good resolution of the surface, sphero-cylindrical meshes
were used here.

8.6. Test for time-dependent dynamics

As a test for time-dependent dynamics, we consider a vesiclewith reduced volumeν = 0.95 and viscosity contrast
λ ranging from 9 to 20 in shear flow. As known from analytical studies[3], the inplane dynamics of such a vesicle
relaxes to a periodic vacillating-breathing (VB) or tumbling (TB) motion, depending onλ and the capillary number
Ca. Two values ofCa will be considered for which independent measurements are available[2]: a rather weak flow
Ca = 0.19, and a moderate flowCa = 5.7. An additional analytical result is available[30] in the limit of infinitely weak
flows, which we put as a reference forCa = 0.19.

The following observations can be made by inspecting Fig.9:First of all, the results of [30] and of [2] agree very
well, second, the results of the present code lie within 7% from the results of [2] forNr = 3 and within 2% forNr = 4.
A decrease of numerical error by a factor of about 5 is observed whenNr is increased from 2 to 3 or from 3 to 4, thus
giving a slightly higher improvement of precision than suggested by the theoretical estimation of error of orderO(h2).

8.7. Shape and migration of deflated vesicles in unbounded Poiseuille flow

As the ultimate test for the BI calculation technique, we consider lateral migration of a vesicle in Poiseuille flow.
Indeed, while the local shape of a small patch of a membrane ismostly defined by membrane forces, lateral migration
velocity of a vesicle in Poiseuille flow is a very subtle effect entirely defined by the BI. Comparison between numerical
and analytical study of lateral migration for almost spherical vesicles in Poiseuille flow can be found in [29]. Here we
present some benchmarks for a more deflated vesicle, with reduced volumeν = 0.85, under a strong flowCa = 100.
We consider only the case without viscosity contrast (λ = 1). We fix the lateral distance of the center of mass of the
vesicle to the valuey0/Rv = 0.5 and study the subsequent vesicle dynamics. The vesicle assumes a rather peculiar
slipper shape (Fig. 11, left). The section of this shape by the z = 0 plane as well as they component of the average
velocity of the membraneVmy are then measured as a function of the number of verticesNv.

The sections of the vesicle by thez = 0 plane are presented in Fig. 10 (left). A notable feature of this shape is a
small ”tail”, where the mean curvature reaches very high absolute value (H ∼ −10/Rv for Ca = 100). The ”tail” is
presented in detail in Fig. 10 (right).

The non-dimensionalized migration velocityVmy/(α̇R2
v) is shown in Fig.11. We performed simulations for several

refinement numbersNr and several numbers of inset rowsNp. As can be seen in Fig. 11, sphero-cylindrical meshes
are advantageous in this case, giving a better estimate for the migration velocity than the simulation withNp = 0 while
using a lower number of mesh vertices.
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Figure 7: (color on-line) Various geometrical properties calculated for a steady state of a vesicle in simple shear flow. Numerical simulations with
various degrees of refinement compared with high-order analytical expansions.ν = 0.97, Ca = 10, λ = 1, Np = 0. First row: Cross-section of
the vesicle by the shear planerz = 0, imposed shear flow shown by horizontal arrows, polar angleϕ in the shear plane is marked (left); Lagrange
multiplier ζ in the cross-section by the shear planez = 0, as a function of the polar angleϕ (right). Second row: Mean curvatureH (left) and its
surface Laplacian∆sH (right) in the shear plane section as a function of the polar angleϕ. Last row: membrane forcefx (left) and fy (right) in
the shear-plane section as a function of the polar angleϕ. For the curvature Laplacian, the exceptional values at vertices with only 5 neighbors are
excluded.
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8.8. Inextensible capsules

Two simple tests are provided for simulations of inextensible capsules: stretching by optical tweezers and dynam-
ics under simple shear flow. Because the quantitatively correct modelization of RBCs is an open question, we employ
a rather simple model, which, however, allows us to reproduce many important features of RBC dynamics. In our
model, the elastic properties of RBC membrane are characterized by two numbers: the shear modulus for small de-
formationsµs and the maximum deformation parameterε2m. The elastic energy of a capsule is written in the following
”FENEM-like” form:

Eel(ε
2) =

µsε
2
m

2
1

1− ε2/ε2m
. (87)

At small deformation the energy is quadratic inε (neo-Hookean) and becomes very stiff whenε2 approachesε2m.
The following parameters are taken in all simulations: the volume-equivalent radiusRv = 2.7µm, (corresponding to
volumeV ∼ 82µm3, which is slightly lower than the median value reported in theliterature[31]), the reduced volume
ν = 0.65, (one of the most commonly used values[31]),µs = 1.9µN/m, which is slightly lower than the median
value reported in the literature (e.g. in [32]), the maximumof allowed shear distortion is chosen asε2m = 2.2, and,
finally, the bending modulus is chosen asκ = 8.1 · 10−19J, which is about 2.5 times higher than the value reported in
experimental studies (e.g. in [33]). These values were chosen based on a simple trial and error fitting of the results of
a stretching experiment on RBC[32] (Fig. 12, as explained below). The reference configuration is chosen to be the
oblate equilibrium shape of a vesicle of given reduced volume (0.65 in this case). With this definition, the reference
configuration remains at equilibrium when the full energy ofthe capsule is considered.

8.9. Stretching the RBCs by optical tweezers

The first test is inspired by an experiment[32], in which two small beads were attached at two opposite points of
the rim of a RBC. One of the beads was then pulled in order to stretch the RBC. The axial (along the stretching force)
and the transverse (perpendicular to the stretching force)diameters of the disc-like shape of the RBC were measured
as a function of the stretching force. We reproduce the experiment by applying two concentrated forces in opposite
regions of the rim of the RBC. In order to avoid numerical artifacts due to discontinuities of the applied force, the
forces are taken to decrease smoothly from the maximum valuein the epicenter vertexa to zero beyond the action
radiusRa :

fext(r) =















f 0
ext

[ |r−ra|2
R2

a
− 1

]2
if |r − ra| ≤ Ra

0 if |r − ra| > Ra

, (88)

where fext(r) is the amplitude of the applied force in a given pointr and f 0
ext is a parameter which allows to vary

the applied force. Once the shape reaches saturation, the total force pulling on the RBC from each side is calculated
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Figure 12: (color on-line) RBC stretched by optical tweezers. Left: Shape of a stretched RBC. Right: Cell diameters as a function of the stretching
force.

Figure 13: (color on-line) Dynamics of RBCs in simple shear flow. Color by Lagrange multiplierζ. Snapshot A: tumbling. Snapshot B: tank-
treading (with some breathing and oscillations of orientation). Changes in the Lagrange multiplierζ due to membrane tank-treading are clearly
seen.

and plotted against the resulting diameters (Fig. 12, right). In our simulations,Ra = 0.7Rv was chosen. A sample
distribution of applied forces on the surface of RBC is shownin Fig. 12, left.

As can be seen (Fig. 12, right) the sensitivity of the resultsto the vertex number is hardly noticeable. In addition,
a good agreement with experiment is observed. In general, the agreement can be improved even further by choosing
more carefully the values of physical parameters, the constitutive equation (87), and the distribution of the applied
forces. This task, however, goes beyond the purpose of the present study.

8.10. Dynamics of RBCs in shear flow

Next, we consider dynamics of a RBC in shear flow. Unlike vesicles, RBCs are known to exhibit different behavior
in shear flow depending on the shear rate even if the viscosities of internal and external liquids are equal (λ = 1). We
use our model to reproduce this behavior. Figure 14 shows time dependence of the angle, which the longest direction
from center of the capsule makes with the flow velocity. For high shear rate, the capsule in our simulations aligns
with certain fixed direction showing small oscillations of elongation and orientation as the membrane tank-treads
(tank-treading motion). For small shear rate, the longest direction from the center makes complete turns (tumbling
motions). Snapshots of different motions are presented in Fig. 13.

9. Discussion and conclusion

We have presented a numerical algorithm for simulation of vesicles and inextensible capsules under flow. While
being relatively simple and fast, the algorithm allows numerical treatment of many important problems in dynamics of
vesicles and red bloods cells, including simulation of verydeflated vesicles and capsules under flow. During various
stages of development, the algorithm was employed with success to solve several physical problems[34, 30, 6, 29].
When available, analytical solutions have shown very good agreement with the results of numerical simulations.

The proposed algorithm is characterized by several important advances whose applicability is by no means lim-
ited to simulations of vesicles and inextensible capsules.Most notably, singularity subtraction for tangential forces
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Figure 14: (color on-line) Dynamics of RBCs in simple shear flow. Transition form tumbling to tank-treading by increasing the shear rate. Angle
between the longest projection of capsule shape on the shearplane and the flow velocity. Left: weak flow (Ca = 0.1). Right: stronger flow (Ca = 1).
Small jumps in the orientation angle appear when the vertex whose projection on thexyplane was the furthest from the center at some time step is
not the furthest from the center at the next time step.

has not been used before (to the best of our knowledge). Nevertheless, we have shown that this technique can be
used efficiently to calculate BIs with low numerical error. The use ofrefined mesh greatly increases the stability
of the algorithm and the precision of calculation when distance between two surfaces becomes comparable to the
characteristic length scale of spatial resolution. The useof cut-off distance allows one to save computation time and
the continuously differentiable weight function allows smooth splitting of calculations between the original and the
refined meshes. Note that unlike for several previous implementations of the BI method[20, 2], where the splitting
weight was a function of the distance on the reference spherebetween the source and the target points, here we use
the distance in the actual 3D space as the argument of the splitting weight function. This allows effectively the same
treatment of the close-to-singularity situations, regardless if the source and the target belong to the same surface or
not, including the cases when the surface is close to self-contact.

It must be noted, however, that singularity subtraction does not fully regularize the single-layer kernel, but only
decreases the order of singularity by one. In other words, the application of singularity-subtracting transformation
gives ”a free” multiplier of orderO(h) (provided, of course, that all non-singular calculationsare performed with
sufficient precision) to the numerical error (recall thath is the characteristic spatial resolution of the mesh). Thatis, by
applying singularity subtraction, we have decreased the error of simple quadrature rule fromO(h) to O(h2). Likewise,
we can speculate that applying the singularity-subtracting transformation in spectral method [20] could reduce the
error fromO(h3) to O(h4) while keeping the same number of quadrature nodes. However, we conjecture that using SS
together with several refined meshes with different cut-off distances and a cascade lookup algorithm would be a more
efficient way to implement a spectral method for boundary integral calculation with numerical error of orderO(h4).

The singularity subtraction techniques developed here canbe used with success in solving other types of Boundary
integral equations, such as the 2D version of boundary integral equation for Stokes flow (as explained in Appendix
A) or Poisson equation in electrostatics (as explained in Appendix B).

Several additional improvements contribute to the increased precision of the algorithm: instead of needing several
iterations of quadratic fitting of the surface in order to finda good approximation for the normal and curvatures, the
use of differential geometry allows one to find all the relevant quantities after just one iteration. The use of optimized
penalization method to solve for the tension is somewhat more expensive with respect to the usual penalization tech-
nique (and clearly less expensive than the explicit resolution of the linear system), but ensures much better local and
global inextensibility of the membrane and eliminates the constraint on the time-step related to the stiffness of the
tension force. With correct implementation, calculation of BI for three force fields takes less than triple time of BI
calculation for a single force field because the regularizing identities and the inverse distance between the source and
the target points can be calculated only once. The residual local strain can be further decreased by performing more
than one optimization iteration at each time step, however,decreasing the time step seems to be a better option.

While the proposed algorithm works well for a wide variety of situations, there exist problems to which it can
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not be applied. The major limitation comes from the fixed topology of the mesh: Under strong deformations of
the vesicle, the mesh triangles inevitably become distorted to the point when one of the angles becomes extremely
acute. The penalization method loses its stability in this case, which results in excitation of high-wave-number modes
in tension and subsequent failure of the simulation (this usually happens when the smallest angle of mesh triangles
becomes about 5− 10◦). The explicit time-advancement scheme is stable only if the time step is small enough. The
relaxation times of the bending force are proportional toh−3, which results in severe limitations on the time step,
especially if a large amount of discretization points is used and neighbor vertices come close to each other because of
mesh distortion. Finally, while the results of the simulation are usually precise enough for most physical applications,
a prohibitively large number of discretization points is required to obtain a reliable result in some cases. Higher order
of spatial and temporal resolution could improve the precision of the algorithm. Solving these problems represents a
promising task for future research.

We would like to thank P.-Y. Gires, M. Ĺeonetti, S. Mendez, E.S.G. Shaqfeh, M. Thiébaud, and S. Veerapaneni for
helpful discussions. We gratefully acknowledge financial support from CNES (Centre National d’Etudes Spatiales)
and ESA (European Space Agency).

Appendix A. Singularity subtraction for 2D Stokes flow

Dynamics of a 2D suspension in Stokes limit is governed[11] by a BI similar to (2),

(ηext+ η
A
int)

2
ui(r) = ηextu

∞
i (r) +

∑

B

∮

ΣB

Gi j (r, r′) f j(r′)ds(r′)+ (A.1)

+
∑

B

(ηext− ηB
int)

∮

ΣB

Ti jk (r, r′)u j(r′)nk(r′)ds(r′).

Here, and throughout this Section we assume that the coordinate indicesi, j, andk can take only two values,x and
y. We denote byds(r) the arc length along the contourΣ resulting from a section of an infinite cylindrical vesicle
by a plane perpendicular toz. The difference with the 3D case is manifested only in the expression of the Green
kernels[11]:

Gi j (r, r′) =
1
4π

(

− δi j ln|r − r′| +
(r − r′)i(r − r′) j

|r − r′|2

)

, Ti jk (r, r′) =
1
π

(r − r′)i(r − r′) j(r − r′)k

|r − r′|4
. (A.2)

The kernels (A.2) are obtained by taking the principal valueof the integral of (3) over z from−∞ to ∞, assuming
translational invariance of the problem along thez direction. As can be seen from (A.2), the kernelG has a special
point for r′ = r, where it diverges. It is thus advantageous for the precisionof numerical calculation of the BI to
perform the SS.

In general, it is possible to obtain the regularizing identities by the same integration overzof (17) and (18). There
is, however, a simpler way to perform the SS in 2D case. Namely, we consider the following integral identities:

n(r) ·
∮

G(r, r′) · n(r′)ds(r′) = 0, (A.3)

t(r) ·
∮

Σ

G(r, r′) · t(r′)ds(r′) +
n(r)
2π

∮

Σ

(r − r′)[(r − r′) · n(r′)]
|r − r′|2

ds(r′) = 0, (A.4)

wheret is the tangent vector to the contourΣ. The SS transformation for the single-layer kernel then goesas follows:
∮

Σ

G(r, r′) · f (r′)ds(r′) =
∮

Σ

[G(r, r′) · f (r′) − f n(r)n(r) ·G(r, r′) · n(r′) − f t(r)t(r) ·G(r, r′) · t(r′)]ds(r′)− (A.5)

−
f t(r)
2π

∮

Σ

[(r − r′) · n(r)][( r − r′) · n(r′)]
|r − r′|2

ds(r′),
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where f n = ( f · n)n and f t = ( f · t)t are, respectively, the normal and the tangential parts of the force f . It can be
easily checked that the integrands of both integrals on the right hand side of (A.5) go to zero asr′ approachesr along
the contourΣ.

Appendix B. Singularity subtraction for Poisson equation in 3D

A similar technique of singularity subtraction can be applied to other physical problems: Consider a problem
finding the distribution of surface chargesσ(x) in a conducting body placed into an external potentialϕ∞(r). This
problem would require solving a boundary integral equation

φ∞(r) − 1
4π

∫

Σ

σ(r′)d2r ′

|r − r′|
= C (B.1)

for every pointr on the surfaceΣ of the conducting body. HereC is a constant acting as a Lagrange multiplier
associated to the charge neutrality condition

∫

Σ

σ(r′)d2r ′ = 0. (B.2)

The boundary integral in (B.1) has an integrand that diverges for r′ = r but can be regularized by the following
transformation:

∫

Σ

σ(r′)d2r ′

|r − r′|
=

∫

Σ

σ(r′) − σ(r)[n(r) · n(r′)]d2r ′

|r − r′|
−

∫

Σ

σ(r)[n(r) · (r − r′)][ n(r′) · (r − r′)]d2r ′

|r − r′|3
, (B.3)

where we have used the fact (cf. (17)) that

σ(r)n(r)
∫ {

n(r′)
|r − r′|

+
(r − r′)[n(r′) · (r − r′)]

|r − r′|3

}

d2r ′ = 0. (B.4)

It is easy to check that the integrands of both integrals on the right hand side of (B.3) remain continuous and bounded
asr′ approachesr along the surfaceΣ, which allows one to use a simple quadrature rule to calculatethe integral (B.3)
with precision of orderO(h2).
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