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Abstract

Vesicles are locally-inextensible fluid membranes whikextensible capsules are in addition endowed with in-plane
shear elasticity mimicking the cytoskeleton of red blootscéRBCs). Boundary integral (Bl) methods based on
the Green’s function techniques are used to describe tlaardics, that falls into the category of highly nonlinear
and nonlocal dynamics. Numerical solutions raise sevdrsiiagles and challenges that strongly impact the results.
Of particular complexity is (i) the membrane inextenstiil(ii) the mesh stability and (iii) numerical precisiore f
evaluation of the boundary integral equations. Despitenise research these questions are still a matter of debate.

We regularize the single layer integral by subtraction @fatxdentities for the terms involving the normal and the
tangential components of the force. In addition, the regged kernel remains explicitly self-adjoint. The statyili
and precision of Bl calculation is enhanced by taking acag@tof additional quadrature nodes located in vertices of
an auxiliary mesh, constructed by a standard refinemenegrse from the main mesh. We extend the partition of
unity technique to boundary integral calculation on trialagmeshes: We split the calculation of the boundary irtlegr
between the original and the auxiliary mesh using a smooight/éunction, which takes the distance between the
source and the target as the argument and falls to zero beyoertiain cut-& distance. We provide arfiecient lookup
algorithm that allows us to discard most of the vertices efdhxiliary mesh lying beyond the cuffalistance from
a given point without actually calculating the distancethem. The proposed algorithnffers the same treatment of
near-singular integration regardless if the source antktfget points belong to the same surface or not.

Additional innovations are used to increase the stability precision of the method: The bending forces are
calculated by dferential geometry expressions using local coordinateselkfin vicinity of each vertex. The ap-
proximation of the surface in vicinity of a vertex is obtaihby fitting with a second-degree polynomial of local
coordinates.

We solve for the Lagrange multiplier associated with meméracompressibility using two penalization param-
eters per suspended entity: one for deviation of the gloled &om prescribed value and another for the sum of
squares of local strains defined on each vertex. The propmubsghcement is to vary the penalization parameters at
each time step in such a way, that the global area of each naaealire conserved and the sum of squares of local
strains be at minimum. This optimization is achieved by is)\a linear system of rank three times the number of
entities involved in the simulation. If no auxiliary meshuised, the method reduces to steepest descent method thanks
to the explicit self-adjointness of the regularized sidglger kernel in the boundary integral equation.

Inextensible capsules, a model of RBC, are studied by gtdhi@ position in the reference configuration for each
vertex. The elastic force is then calculated by direct vemieof the elastic energy. Various nonequilibrium phykica
examples on vesicles and capsules will be presented anativergence and precision tests highlighted. Overall, a
good convergence is observed with numerical error invgrs&lportional to the number of vertices used for surface
discretization, the highest order of convergence allowegibce-wise linear interpolation of the surface.

Keywords: vesicles, capsules, Stokes flow, boundary integral mesiodularity subtraction

1. Introduction

Simulation of deformable and locally inextensible integfa in Stokes flow has received an increasing attention in
the last years. The upsurge of interest is motivated by whaleding blood flow by taking explicitly into account blood
elements (e.g. red blood cells -RBC). RBC is traditionallydeled as an inextensible visco-elastic surface contginin
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viscous Newtonian liquid and immersed in another viscousthieian liquid. In this paper, we focus on two classes
of systems (i) vesicles which have a fluid and inextensiblenbrane that resists to bending, and (ii) inextensible
capsules, which are, unlike vesicles, endowed with ingktrear elasticity, mimicking the cytoskeleton of RBCs.

Boundary integral (Bl) method represents an importantfimo$imulation of dynamics of deformable particles in
Stokes flow, fering a very precise solution with reasonable computaticost. For example, spectral Bl method[1]
has asymptotic convergence that is superalgebraic in thdauof spherical harmonics used for surface representa-
tion. This method is based on parametrization of the coatdof points on the surface of a membrane by series
of spherical harmonics defined on a reference sphere. Fpeshihat are close to a sphere, a simpler representation
of the surface by a single scalar function expanded in spllenarmonics is possible[2]: the shape is parametrized
by a radius function, which measures the distance from theecef mass of the closed shape to the surface in given
direction. While the last parametrization is only resen@the shapes in which a ray from the center of mass of a
vesicle intersects the surface in a single point, it work# fee almost spherical vesicles, showing good agreement
with analytical calculations[3].

Despite the excellent convergence properties it provitiesspectral representation of the surface is not always the
best option: the main disadvantage here is that it is imptesgd vary independently the level of detail of representa-
tion of different regions on the same surface. That is, if a surfaceiosrdamall region of high curvature, either this
region will remain under-resolved if a reasonable numbepbierical harmonics is used for surface representation or
other regions of the surface will be over-resolved, whidlialiy results in prohibitively large computation times.eTh
notable examples of vesicle shapes that appear in physiglallens but are ratherfiiicult to represent by spherical
harmonics include, among others, tethered shapes of #ssiellimenting under large Bond numbers[4, 5] or dumb-
bell shapes observed in shear flow[6] and in straining flowjifien the vesicle resembles two almost-spherical parts
connected by a long and thin tube, or slipper shapes of wssinl Strong Poiseuille flow, as shown in the present
study (cf. Fig.1).

In this paper, we employ an alternative approach to surfacenpetrization, namely, we use the discretization by
a triangular mesh, whichftiers a much greater versatility than spectral representaitowing to study surfaces of
arbitrary shapes or even topologies. This freedom comegite: Piecewise-linear interpolation of the surface sets
a natural lower boundai@(h?) for the precision of the calculations, whérés the characteristic length of mesh edge.
Moreover, this theoretical limit is hard to achieve due t® $ingular behavior of the Bl kernel in vicinity of the pole.
Additional numerical challenges rise in simulations oangular mesh: Calculations of curvature and its derivative
for the membrane forces can not be performed on a piece-wissuiface and the quality of the mesh can degrade
during the deformation. These complications set additiohatacles to the inherent challenges of the problem, such
as conservation of the local and global area of the membnathe gtithess of high wave-number modes that triggers
numerical instabilities.

Several studies of dynamics of vesicles under flow using Bhoteon triangular mesh already exist in literature[8,
5, 9, 10]. Of these studies only [9] calculated Bl with er@(h?), while the others are limited to the error of order
O(h).

In this paper, we provide an implementation of the Bl methottiangular mesh. Animportant step here is that we
are able to regularize the diverging behavior of the Greendtdy the use of exact identities. Unlike for the existing
singularity removal techniques, which are restricted todise when only normal forces are exerted by the interfaces,
our method works for arbitrary distributions of interfddiarces (i.e. with normal and tangential components). The
implemented method, having an er@¢h?), thus reaches the theoretical limit for piece-wise line&erpolation of
the surface. The proposed singularity subtraction teclnizpntributes to computation timdéfieiency and higher
precision. Additionally, we revisit the calculation of tfigrce and the imposition of the membrane inextensibility
in order to increase the precision and the stability of theéhiwe Note that the integration technique presented in
this paper can be used to increase the precision of otherithigs using the Bl formulation, such as spectral Bl
method for Stokes equations[2] or even to facilitate thetsmh of other physical problems, such as Poisson equation
in electrostatics.

The paper is organized as follows: Section 2 describes thisigdl problem and its mathematical formulation,
Section 3 describes the topology of the mesh, Section 4 idescthe calculation of the curvature force, Section
5 describes the calculation of the Bls, Section 6 describessblution for the Lagrange multiplier enforcing the
inextensibility of the membrane, Section 7 describes esitenof the method to simulation of inextensible capsules
to mimic RBCs, Section 8 contains validation tests. Fin@lgction 9 contains discussions and conclusion.
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Figure 1: (color on-line) Deflated vesicles. From left tohtigEquilibrium shape of a very deflated vesicle, transitape of a deflated vesicle in
Poiseuille flow, steady-state shape of the same vesicle seBitle flow

2. Problem formulation

The following notations will be used throughout the textpital Latin superscript lettersA( B,...) are used
to index the suspended entity (vesicle or capsule), thécesrare indexed by small superscript Latin letters stgrtin
froma(a, b, ...), small subscript Latin letters starting frdrfi, j, ...) are used to denote coordinates in 3D space, capital
Greek letterA is used to index triangles, and local coordinates féiedéntial geometry will be denoted by subscript
Greek letters starting froma. The convention of summation over repeated indices will leslgithout distinction of
covariant and contravariant indices) for coordinates btfar vertex indices. For each physical field, e.qg., disttitn
of forces at the membrarfgr), we denote its numerical approximation at verexith the corresponding superscript,
fa.

We focus first on vesicles. We consider the dynamics of one aemesicles in infinite Newtonian liquid of
viscosity 77ex; subject to imposed flova™(r). A vesicle A is represented as a closed two-dimensional surce
enclosing Newtonian liquid with viscosity,. Due to microscopic nature of vesicles (or RBCs), the Reysldnber
of the problem is usually quite small and it is safe to use tio&es equation for the hydrodynamic part of the problem

nAu(r) = vp(r)+ f(r) =0, V-u(r) =0, (1)

whereu(r) is the fluid velocity in point, p(r) is the pressure, anidr) is the density of the force applied on the liquid.
Equation (1) is valid at any point of the liquid, be it the seisging liquid or the one inside the vesicle. Th&elience

is manifested in the value of viscosity In this study, we consider that no external force acts in thik of the liquid
other that the forces at infinity creating the imposed flowthis case, the density of forces is zero everywhere but at
the vesicle surfaces, which allows[11] one to use the Bl éguoia

Ulex + n'“t)u(r) = ext (r)+Z f Gij(r, 1) ()P + @

+Z(Uext_ Ui?n)fTijk(r, r)u; (r)n(r’)o?r,
B zB

where the indice#\ and B run over all vesicles involved in the problemjs any point on the surfacg”, n(r) is
the outward normal to the surface at the painlt is convenient to look at the two integrals on the right haiae

of (2) as at linear operators with the single-layer (Staé@dternelG;;(r, r’) and the double-layer (stresslet) kernel
Tij (r, r")n(r"), respectively. The exact form of the kernésand T depends on the boundary conditions of the
problem. In this study, we consider only the free-spaceioersf the problem (no boundary conditions other than
the flow imposed at infinity), for which the kerne®r, r’) andT(r, r’) depend only on the fference of the target
positionr and the source positiari

( G, (r=ri(r—r);
Ir—r|

Ir—r3

3(r—r)(r—r)(r—r)k

Ir—r®

Gijj(r,r’) = ) Ti(r, 1) = 3)
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The equation (2) combines Stokes equation (1) with boundamngitions (no slip, jump of the normal component of
viscous stress is equal to the force applied by the membiapermeability of the membrane and the imposed flow
at infinity) and can be solved for the velocity field at the aae of each vesicle. The surface density of fdregplied

by the membrane on the adjacent liquids is calculated bytian of the bending energy[12]

&= ZA: f [26AH(r) = HE)? + £(n)| r, (4)
EA

wherex” is the bending modulus of the membrafgH is the mean curvature (with the convention that the mean
curvature of a unity sphere be equal to -Hi)‘; is a vesicle parameter usually called spontaneous cuejaad? is

a Lagrange multiplier ensuring the incompressibility cé thembrane. We will need the explicit expression for the
force[13] (for an alternative derivation see [14])

f = —A[4(H - H)(H? = K + HHY) + 2ASH| n + 20Hn + V%, (5)

whereK is the Gaussian curvatur€; is the surface gradient amd® = VS.V® is the Laplace-Beltrami operator. Due
to the fluidity of the membrane, vesicles do not have a refershape and the only conserved geometrical parameters
are the volumé/ and the surface are® which can be combined into a single scale-invariant paramet

3V

= 6
T 4x(S/an)32 ©)
called the reduced volume.
Finally, the mathematical formulation of the local inexd#gility of the membrane is written as
VS.u=0. (7)

Together, equations (2), (5), and (7) represent a closddmysvhich can be solved for the unknown fields)
and/(r) for a given conformation of vesicles. The obtained velpcan be then used to update the conformation. In
the present study, we use a simple explicit Euler schemeefoporal discretization of the problem. The time step
is fixed and will be denoted as Each iteration of the numerical scheme consists of five ehtang steps: First, all
relevant geometrical quantities (volume, surface ared@oes) are calculated for each vesicle, then Bl is caledlat
for obtained forces, next the surface inextensibility dbad is solved and the tension Lagrange multiplier is updat
the next step is to advect the mesh vertices using the updel@city field, and, finally, the mesh stabilization itecati
is performed. Each step is described in the correspondutipaef the paper.

3. Mesh topology

We use triangular mesh to track the shape of the vesicle. dsajology of the mesh is kept constant during
the simulation, it is important to choose the mesh which jges an adequate description of the surface without
computational overhead due to an excessive number of etemen

For almost spherical vesicles, the mesh is produced frone@ahedron, to which a refinement procedure[9] is
appliedN; times: each triangle is divided into 4 smaller triangles byrecting the midpoints of the edges. The
mesh is projected on the circumscribed sphere of the icdsahafter each refinement. Once the desired resolution
is achieved, the surface is compressed or stretched along dvection to produce a spheroid of a given reduced
volume (6). The resulting shape is uniformly rescaled andeddo obtain the desired volume and initial position.

A slightly different procedure is used for more deflated vesicles: the msedfosen as a sphero-cylinder: two
semi-spheres (one with equatorial vertices and one willamg a cylindrical inset between them. Thus, the topology
of every mesh generated by this recipe is specified by two eusntihe number of rows in the cylindrical paj
and the number of vertices in each of the rows (number ofcestat the equator for a spherical vesiclePs. The
total number of vertices isl, = 2 + 10- 4™ + 5. 2% N,. Sample meshes are presented in Fig.2. The introduction
of sphero-cylindrical meshes allows us to treat many problef dynamics of very deflated vesicles for which the
icosahedral mesh fails due to excessive distortion of thadtes.

For clearness of the following, two vertices will be callezighbors if they are connected by an edge. Overall, the
meshes described above have only vertices with 5 or 6 neighbo
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Figure 2: (color on-line) Sample meshes: (a): icosahedran dftefinementd\; = 4, Np = 0, Ny = 2562; (b): Sphero-cylindeN, = 2, Np = 4,
Ny = 242 For the sphero-cylinder, the colors distinguish the céniset and the semi-spheres.

4. Membrane force

The membrane force can be decomposed into two parts: thatawevpart (the multiplier of” in (5)) and the
tension part (the rest). The former one is calculated direas explained in this Section, while the calculation @& th
latter part will be presented in Section 6.

Several approaches are used to calculate curvature fincedtial operators on triangular mesh: trigopnometrical
formulae[9, 5], direct variation of the energy[10], and dragic interpolation[15]. It must be noted that only curvais
were calculated by quadratic interpolation in [15] while thigonometric formulae similar to[9, 5] were used for the
Laplace-Beltrami operator of the curvature. In additidrg tnethod proposed in [15] relied on the precision of the
numerical approximation of the normal, so that severahitens of the surface approximation were necessary for the
normal direction to converge. We propose a rather simplejbité dficient improvement of the latter approach that
eliminates aforementionedfficulties: Namely, we use the formulae offdrential geometry to find the curvatures,
the normal or the surface Laplacian. First, we introducecallooordinate system related to each veeeWe start
by calculation of the approximate normal to the surfé@geas the average of normals to triangles adjacerst 4nd
introduce two unit vectorg® and;® orthogonal tof? and to each other. The local coordinates of vetidgr the
coordinate system related to verteare then defined as

£=0"-r-& == (8)

We use quadratic approximation for the surface in the igiof vertexa :

1
ri(Se, S;) = 12+ 0gr2s + 9,rfs, + 5 (6§§rf‘s§ + a,,,,r?sﬁ + Zagnrf‘sgs,) . 9)
The five codficientso:r?, d,r, 012, d,,r2, andog,r? are obtained by minimum square fitting of the approximation
discrepancy at the neighborsaf

X= Z [rib -t - affiaS? - 6nriasg - 1- (6‘fff?(S?)2 + 6,,,,ri""(§)2 + 25.5%%?#)]

2
b
beU, 2

(10)

whereU, is the set of all neighbors of vertex
The mean and Gaussian curvatures as well as the normal ardatetl according to the usual expressions of
differential geometry:
0gr® x 9,1 1 _ _
né = m He = ST [P, Ko =det|P(eP) Y|, Oy = GulPOpr?, Gy = 1Fdapr?,  (12)
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whereg,; is the metric tensoc,; is the curvature tensor, amdg € {£, 7). The normaln? points outwards as long as
the approximate normd® = £2 x 72 points outwards.

Once the curvatures are calculated for every vertex, wedjkt! andd,zH? by a fitting procedure analogous to
(10). The Laplace-Beltrami operator is then calculated as

. (VIdetgi;aH) (12)

AH =

W

which can be transformed into

ASH? = 0,5 HA ()05 — [(0)350usr?| [(@550,H 05rP], . B.7,6 € 1&,m) (13)

and then evaluated by substituting the approximationg fo, d,sr?, d,H®, andd,zH? obtained in the fitting proce-
dure.

The error of approximation of the surface by a second-ordgmpmial is O(h®), which givesO(h?) error for
the normal,O(h) error for the curvatures, ar@(h™?) error for the curvature Laplacian. Thuspriori, the proposed
algorithm is not sfficiently precise to calculate the curvature force for a gserfiace. However, thanks to thefBiess
of the problem, the reverse problem of reconstruction ofttape by given values of the force can be solved with good
precision by the present method. We show in Section 8 thdgeid, the force calculated by the present method for
the shapes obtained our simulationsconverges to the exact solution with error of or@h?), which is consistent
with the error order of the proposed algorithm.

5. Calculation of Bls

5.1. Exact identities

In this section we shall show how can we fully subtract siagties from the Bl equation. Calculation of Bl
represents the most computationally expensive part ofriblglgm. It is also the source of severe precision limitagion
due to the singular behavior of the Stokeslet kefReT his explains why the highest care is required when designin
an dficient method for calculation of Bls. The simplest implenatioin of Bl calculation on a triangular mesh goes
as follows. For each vertex all mesh triangles are divided into two groups: the "singtiiangles”, which contain
the vertexa and the remaining "non-singular triangles”. The integmatbver non-singular triangles can then be
performed by a simple quadrature rule, while the integratieer singular triangles is performed by exact analytical
calculation[9], or in polar coordinates[5], or by a map frensquare[16, 10], assuming linear interpolation of the
forces and the shape over the triangle. It is easy to showHisatule has a numerical error of ord®th) : Indeed,
for a simple 3 point quadrature rule, the error of integratiwer one triangle is of order of the second derivative of
the integrand times the size of the triangle to the powere4, @(h*)). The second derivative of the Green kerGel
is inversely proportional to the distance from the pole ®lower 3 (cf. eq. (3)), which gives the following estimate
for the surface density of the numerical error of integrago

h2
e(rd—r) « Toset (14)

which, upon integration over surfaZé containing the vertes, yields

f e(r® — r)dr o h? rdr « h, (15)

h

Here we used polar coordinates on the surfgttén vicinity of the vertexa and replaced the upper boundary in the
last integral in (15), which is of order of the size of the sgdX, by infinity. The lower boundary of the last integral
in (15) comes from the fact that singular triangles (formagegion with the size of orddr surrounding the vertex

a) are excluded from integration by a Gaussian quadratues Bespite being quite a rough estimate, eq. (15) gives
the correct order of error, as will be shown in Section 8. Tiereestimate (15) can not be improved by increasing
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the order of quadrature rule: Indeed, high-order derieatiof the Green kernels diverge in vicinity of the pole even
faster than (14). As evident from (15), the main source ofiter is the integration over the so-called "near-singular
triangles”, i.e., mesh triangles that are not singular loatsdill within the distance comparable bdrom the pole of
the Green kernel. A quadrature rule with global error of 0/@h?) was used for near-singular triangles in [9] (cf.
Section 8), although the details of the method were nevelighdn. The calculation of the quadrature weights was,
however, quite expensive from the computational point evwi

A completely diferent approach is used extensively in Bl simulations of létsfiLl 7]: The main trick behind this
method is to subtract from the integrand of (2) a certain fioncthat has the same diverging behavior in vicinity of
the pole but, at the same time, can be easily integrated.dHbeamame "singularity subtraction” (SS) for this method.
More precisely, the interfacial force for a droplet with fage tension cdéicienty is given as 2Hn, so that

2nyij(r, rYH(r)n;(r)d%r’ =2nyij(r, ') [H(r") = H(n)] nj(r’)dzr'+2yH(r)fGi,~(r,r’)nj(r')dzr’, (16)

whereH(r) can be extracted from the last integral because it is inutdga ofr’. If mean curvaturéd varies smoothly
along the surface of a dropleti(r’) — H(r) « |r’ — r| (when]|r’ — r| is small) and the integrand of the first integral
on the right hand side of (16) remains boundedrfot r and thus can be calculated with the error of or@én?) by

a simple Gaussian quadrature rule. The second integraleoright hand side of (16) evaluates to zero for a closed
surface,

fGij(r, r)ni(r)dr’ = ff’]Gij(f,f’)ds =0, (17)
z

and thus does not require numerical calculation. The ldsgial in (17) is over the volume contained inside the
surfaceX and we note by, the derivative with respect . The physical meaning of (17) can be traced back to the
incompressibility of quuidJ in the Stokes regime. In otheonds, we have subtracted from the surface tension force
a fictitious normal force that does ndtect the solution due to the incompressibility of Stokes flaw feduces the
net force to zero at a given pointhus compensating the diverging behavior of the Stokesletek in vicinity of this
point. Obviously, the subtracted force can (and shouldpkert diferent when calculating the Bl forfiierent points

r. It must be noted here that the integrand of (16) is still ntiyftegular atr = r’ : In fact, its gradient is diverging.
Nevertheless, it can be seen by an argument similar to (&5}Hle error of numerical integration of (16) by a simple
quadrature rule i©(h?).

With this simple example in mind, we proceed to the SS teckmipr vesicles. As readily seen from (5), the
situation is much more complicated for vesicles: Indeed témsion force due to a non-uniform Lagrange multiplier
£(r) has a tangential component/(r) = [6i; —ni(r)n;(r)]9;¢(r), which is perpendicular to the normal and thus can not
be reduced to zero by subtraction of any normal force. Thesethe exact identity (17) is not#icient to regularize
the first integral in (2) for vesicles or any other interfaegerting tangential forces on the liquids. This limitatioas
troubled mankind for many years, as mentioned, e.g., in [I8Jour knowledge, this continues to be the state of the
art to the present day. We are going to solve this problem tigdocing a second exact identity that allows us to
reduce to zero the tangential component of the force at agiwent. The trick is to note that the tangential projection
operator can be written as a double cross-product with thenalo | — n® n)- f = —[n x [n x f]] and to use the
identity

_ﬂf(rj —fj)(fk—r&)nk(f’)dzr,‘

i, Na. Nd2r’ =
[ eireundrier - -5 e 18)
z

The identity (18) can be easily verified by passing to a volintegral, which yields the same integrands for both sides
of (18). Note that a tiny vicinity of the pole gives a vanighicontribution to the surface and to the volume integrals
thanks to the weakly singular behavior of the ker@elAs can be seen, the identity (18) is more sophisticated than
(17): The integral in the left hand side does not evaluatesto but is expressed via another integral, which might
appear singular. However, this is not the case and the amegaf the right hand side of (18) remains bounded because
infinitesimal displacements along the surface are perpatatito the normal:r(— r’) - n(r’) = O(r — r'[?).
The two exact identities (17) and (18) can be used to reducertter of singularity at the pole of the keriizfor

distribution of surface forces with arbitrary normal andgantial components by replacing the original force with a

7



modified one:

d’r’,  (19)

[n(r) x f(N]i&;j f(ri =)= rni(r’)
47 Ir=r]3

[eierner = [ -

z z

where the modified forcé is written as

f(r.r) = £(r') = n(r") ((r) - n(r)) + [n(r") x [n(r) x F(r)]]. (20)

It is easy to see that (if(r, ") = O(r — r’|) for fixed r asr’ approaches and (ii) (r — r’) - n(r’) = O(r — r'|?) asr’
approaches along the surfac&. Thus, all the integrands on the right hand side of (19) arentbed and continuous
as a function ofr’ for anyr’ # r (providedf is continuous) and therefore can be calculated with deaeigion

by a simple 3-point quadrature rule as explained below. ¢biapletes the basic idea of SS technique for arbitrary
distribution of forces. We would like to stress that the sfanmation (19), (20) is an exact identity that holds for an
arbitrary smooth closed surface with continuous normalfantes and does not involve any approximation in itself.
The advantage of the SS is that the right hand side of eq. @®9amuch better behavior in vicinity of the pole than
the left hand side and is thus much easier to discretize forenigal evaluation with good precision.

The question of continuity of the force and smoothness obthéace is not as evident as it might seem to be and
deserves a separate discussion. The ideal mathematigtibaalf the problem should be Siciently smooth (may be,
except for several special points under some conditionsjveiter, the discretized numerical problem deals with only
a finite set of forces defined on the vertices of the mesh. tdase, we understand by continuity of the force or of
the normal that if a more refined mesh is taken thEedence of forces or normals on neighboring vertices deeseas
In other words, the amplitude of excitations of modes witlveélangth of the order of mesh cell size remains small in
the course of simulation. For vesicles, short-wavelengditations in the shape or in the Lagrange multipli@reate
restoring forces (5) with a strong negative feedback. Ihéntimportant for the stability of the simulation that these
restoring forces correspond to a velocity field that supg@eshe initial excitation. That means that the calculadion
the first integral in (2) must be positive-definite as a lingaerator on vector fields defined on mesh vertices. Itis true
that the kerneG is positive definite as an operator on non-discretized sarfllamely,

D:(f,éf>=fdzrfdzr’fi(r)Gij(r, r)f(r’) (21)
x X

is the viscous dissipation in flow created by the for€@s a fluid of viscosity 1 and thus can not be negative. However,
it turns out that the discretized version of the oper&ids not always positive-definite. In practice, the discrediz
operatoiG remains positive-definite if calculated using SS technicpmbined with the simple Gaussian quadrature
rule on mesh vertices only if the angles of mesh trianglesmemot less thar 30°. Approximately the same limitation
is imposed by other simple integration techniques. We impthe stability of our method by calculating the Bl over
singular and almost-singular triangles using a more refinesh, as explained below.

Before describing the refined mesh, one more question stheutdnsidered. Besides being positive-definite, the
operatoiG is also self-adjoint:

(1,69 = (0.Gf) = f o f ot £(r)Gy (r, gy (r). (22)
> M)

This equation follows from the fact th&;;(r, r’) = G;i(r’, r) and expresses the reciprocal theorem for Stokes flow.
However, after the regularizing transformation (19), (B®pplied, this explicit reciprocity is lost. This suggetiat
there exists a second way to perform SS that is adjoint tq (20). Indeed, one can easily verify that

fGij(r, ) f(r)d’r’ = f[Gij(f, ) (r") = mi(r) (NG (r, r')n; (r') — epinp(r) fil() Gy (r, r')ejmlnm(f’)] d’r'—
z z
(23)

if[n(r)x[f(r)x(r—r’)]]((f—f’)-n(r’))dzr,

4n Ir—r3
z
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and that the expressions under both integrals on the righd bale of (23) remain bounded for every+ r. We

use the half-sum of the rules (19), (20) and (23), which gareexplicitly self-adjoint regularized kernel for the first
integral on the right hand side of (2). Our plan is to capi@lbn this symmetry later when we solve the membrane
inextensibility constraint for the Lagrange multiplier

5.2. Refined mesh

As already discussed above, using only mesh vertices foisBtetization can result in instability of the simulation
under strong deformations of mesh triangles. In additidhdSes not improve precision of integration over almost
singular triangles in situations when surface is close thcgmtact or when two surfaces come very close to each
other. Our plan is to take advantage of additional quadegbaints and partitions of unity[19, 20] to improve the
stability and the precision of the integration on almosgslar triangles. The partition of unity technique is widely
used in spectral Bl methods and consists in the followingigesmooth weight function is used to split the singular
Green kernel into two parts: a well behaved long-range patashort-range part that is equal to zero safe for a small
round patch on the reference sphere centered at the pole Girden kernel. The first part is then easily integrated by
traditional quadrature rules, while the second one is nategl in polar coordinates.

Because we do not use an explicit reference configurationesoodifications to the partition of unity technique
are necessary. It turns out that these modifications withally, provide certain advantages over the original tech-
nigue. Namely, instead of using the distance between theseind the targemn the reference spheas the argument
of the splitting weight function, we use the distance betwie source and the targetthe coordinate spaceAs
we will show below, this little modification leads to the satreatment of integration on all almost-singular triangles
regardless whether they belong to the same surface as ¢fe¢ panint or not, and whether the distance between the
target and the source triangle is small if measured alonguiface in the first case. It must be noted here that the
case when the source and the target of the Green kernel dreepatated on the reference sphere but not in the real
space is usually denied a proper treatment if the splittinigltdunction is based on the distance along the reference
sphere, which can lead to severe precision limitationsddiases that are close to self-contact.

The second dierence here is that instead of using a separate set of additjoadrature nodes for each target
point, as is usually done during calculation of the almasgrslar contribution in spectral methods[19, 20], we use
the same refined mesh for all target points. This allows ustoptite the interpolated forces and multiply them by
the quadrature weights in advance for each vertex of theegfinesh, which requires a negligible fraction of Bl
computation time. It is then $licient to select the vertices which lie within the cuf-distance from a given target
vertex and multiply the precalculated forces by the Greegnddeduring the integration. The selection is done by a
simple lookup algorithm that allows to discard the vertioéshe refined mesh that are well separated from a given
target vertex without actually calculating the distancéhtem.

The refined mesh is obtained by cutting each triangle of thgral mesh into 16 equal triangles (cf. Fig. 3, left).
The coordinates and forces on the refined mesh are obtaingddsrwise linear interpolation from the corresponding
values on the original mesh. More precisely, for a triangt@ werticesa, b, andc belonging to the original mesh, the
positions and forces of the refined mesh are defined as

113
r(S1, S2, S3) = SirP+SrP+sgr% f(s1, S, %) = S1f+5fP+5fC s+9+53=1, 8,5, S € {0, 7 Z’l}’ (24)

wheres,, s, ands; are barycentric coordinates of the vertex of the refined migarpolation (24) is consistent on
the edges and vertices of the original mesh.
We denote cut distanceR., and introduce a splitting weight function

W) - 1-4(£Y +3(L)" ifrer (25)
0 ifr >R

in order to accelerate the calculations (cf. Fig.3, righg.can be seen from (25)(r) is continuously dierentiable.
We use the weight functiow(r) to split the Bl into two parts:

fGij(f,r')fj(f’)dz ' :f[l_W(”—r/|)]Gij(rvr,)fj(rl)d2r’+fW(|r—r/|)Gij(r» Mf)dr. (26)
z z z
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Figure 3: (color on-line) Left: A triangle of the original ntesubdivided into 16 triangles of the refined mesh. Largeeirdenote the vertices of
the original mesh. Small circles denote the vertices of thaedfiesh. Dark double lines denote the edges of the origindd,rigist single lines
denote the edges of the refined mesh, forming 16 small triangtescolors of small vertices are chosen according to the jpsktito which they
are attributed (as explained in Subsection 5.6). In this aas b < c (assuming the lookup set with smaller index has advantage Ioréiaking).
Right: A mesh fragment with the original (thick black lines)yhe refined meshes (thin gray lines) shown. A small sphere markexa. White
circle marks the cut4b distance from the verteat Only vertices of the refined mesh which lie within the whitectgrcontribute to the numerical
estimate of Bl at verter. Color by the weight functionv of distance from the vertex The weight function decreases smoothly from 1 at vertex

ato 0 beyond the white circle.

The first integral on the right hand side of (26) is regular at r’ and thus is calculated on the original mesh. The
integrand of the second integral on the right hand side of @®ers from 0 only ifir — r’| < R.. and thus can be
calculated on the refined mesh without taking excessivetothe computation times. tfe X, the second integral of
the right hand side of (26) is regularized by singularitytsattion, as explained below.

5.3. Exact identities with reduced support

The force (20) is small only whert is close enough to, while for other values of’ the SS technique does not
contribute to the precision of the BI calculations. Howevtbe simple identities (17) and (18), must be calculated
over the whole surface of the vesicle, which takes a sigmifipartion of the time spent on Bl computation. In order
to reduce the computational cost of the problem, we gener#fie identities (17) and (18) to include an arbitrary

differentiable functionwof distance betweenandr’ :

[{aar-reeoney s TE s, - CEDEE D e —o @)
z

N Ir—r2

i (1 ==,
fv”v(|r—r’|) {Gij(r, r’)ejk|nk(r’)+j—i : |r]—r'|3 K k}dzr’+ (28)
z

(r=r)(r—rk 2
5]k—w Nk d =0,

eink(r’) + &
81 TIZE ik Nk(r’) + &

+fW(|r—r'|){(r—r')i(r—r')j

wherew is the derivative of functiomvWith respect to its single argument. It is convenient to cee®= w, so that
the integrand of the identities (27) and (28) iffelient from zero only fofr — 1’| < R.. This way, it is stficient to
apply SS technique only to the second integral in the rightlrede of (26), as explained below.
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5.4. Implementation for the Stokeslet kernel

For the sake of simplicity of notations, the sets of vertiot¢he original and the refined meshes on surface
will be calledM(Z) andM'(Z), respectively. Note that the points of the original mesh &e mcluded in the refined
mesh M(Z) c M"(X)). The set of all triangles of the original and the refined Inesson surfacZ will be calledT (%)
andT'(Z), respectively. The set of vertices of a trianglés calledM(A) or M"(A), depending whethek € T(Z) or
A € T'(X). Conversely, the set of all triangles of the original (or refihmesh that are adjacent to a verdexill be
calledT(a) (or T"(a)). We denote the vector and the scalar area of triangleN(A) andS(A), respectively. Finally,
the quadrature weights at vertaare defined as

_N@
~IN@)I

Sr(a):% Z S(A), S(a):% Z S(A), N’(a):% Z N(A), N(a):% Z N(A), (29)

A€T'(a) A€T (a) A€T"(a) A€T(a)

Note that the vector(a) is generally diferent from the approximation for the norm@ defined in Section 4.
We employ the simple 3-point quadrature rules to calculatigrals:

f ¢(r)d2r~ 2 00S@) Y e = ) S@e(rd), (30)

AeT ()] acM(A) acM(Z)
1
20 o = ay _ a
[oomer=3 3 N Y a9= Y @), (31)
Y A€T(Z) acM(A) acsM(2)
Using these notations, we write the discretized BFif X as

f G (P =) ~ > (L-wOGPIPSb) + > wPGPIPS (b), (32)

v beM(z) beM' ()

wherer® = r2 — b, G2 = G(r#), w2 = w(|r2?)). If r2 € X, SS is performed:
f Gij(r® - r)f;(r)yd?’ ~ Z (1 WG fPS(b) + Z Wabe}bebSr(b)— (33)
z beM(Z)\(a] beM' (Z)\(a]

—u[RFAG - N)F + (G x N)3[F %] = (L - p) [P (G - N)k+a,.vafa(GxN>k.]

where the regularizing contributions are calculated as

V\/ab rabrab
(G-N)2= Z [wabeabN (b) + —— [6., Irab|2JN()} (34)

beM"(2)\{a}

b b ij ab ab V\/ab ab ab abrab

a al r

(Gx N)ij = z ; we [eJk|G|k T An |rab|3 )Nl (b) + — ar [ |rabj2 ikl — Gijk (5“ |rabj2 )} N| (0) ¢ - (35)
beM"(Z)\{a}

The constant: can be chosen arbitrary (preferably within the intervall]p; In our calculations, we set = 1/2,
which makes the regularized kernel explicitly self-adjoin

The exact value dR; is usually chosen to be one half of the volume-equivalentsadf the vesicle. In this case,
the computational times spent for calculation of each iratidg the right hand side of (26) are approximately the same
for a single almost-spherical vesicle.
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5.5. Implementation for the stresslet kernel
The stresslet kernel is regularized thanks to a well-knalemtity

f T ) = % (36)
)

if r € X. The same weight function (25) is used to split the calcufstibetween the original and the refined meshes.
The velocity is linearly interpolated on the refined meshim $ame way as the coordinates or the forces (eq. 24). If
r2 ¢ X, we obtain

f Tij(r2 = r/)u; (r)ne(r')d?r” ~ Z (1 - W) TZRUPNK (b) + Z WETZPUONG (b), (37)

5 beM(=) beMT (%)

whereT2® = T(r®). If r2 e %,
Tik(r2 = r)u; (r)n(r)d?r’ ~ % + Z (1 - W) T3WP — uF)N,(b) + Z WATA (WP — BN (b). (38)
ijk i k ~ 2 ijk \4j j/ Nk ijk\Hj I s

o beM(2)\(a} beMT(Z)\{a}

5.6. Lookup algorithm for the refined mesh

As already mentioned, the splitting weight function (23pwak to reduce dramatically the computational cost of
the Bl calculation on the refined mesh. Namely, if a veltexf the refined mesh lies outside the sphere of radius
R. with the center in vertea of the original mesh, there is no contribution of the vetbew the numerical estimate
of the BI at the vertexa because the weight functiom(|r® — r?)) is equal to zero (cf. Fig. 4). Nevertheless, the
verifications which vertices of the refined mesh lie withie tlistanceR. from a given vertexa of the original mesh
can take significant amount of time due to the vast number iices in the refined mesh. We introduce a simple
lookup algorithm that greatly reduces the number of vetifices. The idea of the algorithm is to distribute all vertice
of the refined mesh between disjoint lookup sets indexed éyeitices of the original mesh:

M (Z) = U L@), L@ NL(b) =2, a=b. (39)

acsM(Z)

The decision, to which lookup set a given vertex M'(X) is attributed, is taken upon examination of the barycentri

coordinates of the vertdx(used in Section 5.2): The vert&of the refined mesh is attributed to the lookup Is)

if the vertexa of the original mesh has the largest weight in the barycewcwobrdinates of the vertdx(cf. Fig. 3).

The ties are broken by the global index of the vertices of tigirmal mesh. This definition of the lookup sets allows

us to calculate them upon mesh generation and does noteehair update during the whole course of simulation.
At each time step, we precalculate so-called lookup radiusdich lookup set, defined as

Lmax(@) = gg%lrb -rd. (40)

The lookup procedure goes as follows: For each couple ofcesron the original mesa andb, we calculate the
distance between therf® = |r2 — rP| (actually, this distance must be calculated anyway as aop#re Bl calculation
on the original mesh). The distanc® is then compared WitR. + Lmax(b). If r® > R + Lmax(b) then for any vertex
ceL(b)

P& = 1% > [Ir2 = P = P = 1 > r®® = Lina(b) > Re (41)

by a consequence of the triangle inequality. We see thalt if R, + Lynaxb), there is no contribution of the vertices in
L(b) to the numerical estimate of Bl at the ver&@On the contrary, if® < R. + Lnaxb), each vertex irL.(b) must be
checked for distance from the vertaindividually. Likewise,r2® must be compared witR; + Lmax(@) to check if the
vertices ofL(a) contribute to the numerical estimate of the Bl at the vebigxinally, for each vertex of the original
mesh, contribution of the vertices frobfa) to the numerical estimate of Bl at the vert@xust be calculated. With
the present definition of the lookup sets, their lookup radin out to be rather small compared to the cfitdistance
(and even smaller if compared to the size of the vesicle) aadBorderO(h). That is, only a negligible fraction
of vertices of the refined mesh lying beyond the distaR¢érom a given vertexa are not discarded by the lookup
algorithm.
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case | case ||

R, L(b) R, L(b)
ab 1 ab
; " b. r m
. I‘max(b) v I‘max(b)

Figure 4: (color on-line) Schematic view of the lookup al¢fam for the refined mesh (in 2D for simplicity): Verticasandb belong to the original
mesh. Small diamonds show vertices of the refined mesh attribuitéé lookup sek(b) of the vertex b. The small diamonds are shown scattered
in a random way in order to demonstrate the general concepedbokup algorithm, which works even if the vertices of thiégned mesh are not
arranged in the regular fashion shown in Fig. 3. The smaltecirele marks the largest distantgax(b) from the vertexo to a point of its lookup
setS(b). The larger green circle marks cufalistance for calculations on refined mesh around the vertek a vertex of the refined mesh is
outside the larger green circle, it does not contribute éortmerical estimate of the Bl at the ver@xCase 1112 > R; + Lmax(b). The red and
green circles do not intersect: It is safe to assume that ma pothe lookup set of vertels contributes to the Bl estimate at the vertexCase II:

ra < R. + Lmax(b). The red and green circles intersect: Each point in the loclatpf vertexo must be checked individually for contribution to
the numerical estimate of Bl at the ver@One diamond actually got inside the larger green circle ansl this vertex of the refined mesh gives a
non-zero contribution to the numerical estimate of the Bl av/éréexa.

5.7. Volume conservation
It follows from the incompressibility of Stokes flow that

f u(nni(nd’r =0 (42)

YA

for each vesicléd, which is equivalent to conservation of the volume insidd thesicle. It is known that the exact
solution of the BI (2) satisfies the condition (42), providdé imposed flow has no sources inside the vesicle
Unfortunately, the discretization (32), (33), (37), (38)riot compatible with (42), which creates drift of vesicle
volumes. In order to resolve this problem, we project thecigy field calculated from Bl equation on the subspace
of velocity fields that conserve the volume of each vesicligar approximation:

5 Ul N(b)
5 a8 _ A beM(ZA) A
Pyu? = u v(a)—Z V) N ae M(Zh), (43)
beM(zA)

wherePy, is the projection operator. After this projection, the opamf the volume of a vesicle during one time step
7 is of orderO(?), which is eliminated by rescaling as described in Section 6.2

6. Membrane inextensibility

6.1. Local and global inextensibility

One of the most diicult challenges in simulation of dynamics of vesicles arekiansible capsules lies in the
fact that inextensibility of the membrane must be enforaaally, which usually requires to resolve a linear system
whose size is proportional to the combined number of vestafeall vesicles. In addition, dynamics of a vesicle is
very sensitive to its total volum¥é and surface are8. Because these parameters are physical properties of deyesic
we develop a numerical procedure that allows us to consheset2 parameters with great precision, as explained in
this section.
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Two different strategies are possible when solving for the Lagramggplier ¢ : either a direct resolution of the
linear system (7)[5] or iterative approach when the teng@atlightly adjusted at each time step to ensure the surface
incompressibility during variations of the shape of theicles GMRES method is traditionally employed to solve for
the Lagrange multiplier in spectral Bl methods[1, 2]. Aftative approach is to use penalization technique[9]. The
advantage of the latter approach is that the penalizatimngesed not only on the local strains but also on deviations
of the global surface area (or equivalently the reducedmelurom the prescribed value, which prevented numerical
artifacts due to sensitivity of the vesicle dynamics to tb@uced volume. The drawback of the last method is that a
rather large penalization constant has to be used in oragrsiore local incompressibility of the membrane with good
precision, which sets a ratherfBtimitation for the choice of numerically stable time sted$e proposed method
consists in selecting the optimal values for the local athall strain penalization parameters at each time step. That
is, the penalization parameters are chosen to minimizeotted trains and to keep the global area of each vesicle at
the prescribed value. By doing so, despite the fact that émalization parameters can attain rather high values, no
additional limitations are imposed on the time step. Theinmlumes of vesicles are kept constant due to projection
(43) and rescaling at each time step.

The volume and the surface area of a vesfchre calculated as (using notations of subsection 5.4):

VAz% Z rd.N(@), S*~ Z S(a). (44)

acM(ZA) acM(zh)

We define the strain field® and the tension field® for each vertexa. The strain fieldo? is used to measure the
local stretching of the membrane in vicinity of vertexwhile the tension field?® is used as a Lagrange multiplier.
Our goal is to minimize the straing?| by finding optimal values of the tensid#.

The tension forc@?(¢?) for arbitrary scalar field® is obtained by energy variation:

1 5Eendl”)

B =g o Gend") = 1 S@. (45)

Because the Bl technique described in Section 5 requiregoolation of the force on the refined mesh, we calculate
the tension force explicitly: consider a triangladefined by 3 verticeg?, r®, andr¢, then

dS(A) }(rb -9 x [(ra —rP) x (rd - rC)] B +(rb - 19 x N(A) (46)
orf 2 [(ra = r2) x (ra = r9)| TET 2N

The signis +' if the cyclea — b — ¢ — ais counterclockwise viewed from outside the vesicle.

In order to simplify the notations, we denote the full fortenion part and the curvature part) for a given tension
field £° as f3(¢P). We denote the curvature force 840) (the full force when the tensions are equal to zero). We th
can writef2(¢?) = 23(0) + ¢(¢). After calculation of the Bl, we obtain the full velocity field(:?) = u3(0) + v3(¢),
where

W(0) = By | 2112 5 — 2 GR(1(0)) + 2 ) e, )| @7)
Nint + Next Nint + Next Nint + Next
2 A A
V() = ———PyGR($°(L"). (48)
Nint + Next

Here we denote bipyG3(f°) andPy T3(u®) the Bls calculated using the recipes of Section 5 for theedield f © and
velocity fieldu®, respectively. Finally, we denote l(t,_1) the full velocity field at previous time step.

We denote ap?(\P) the local strain rate of arbitrary velocity fiell measured at vertex This value is defined as
the variation ofS(a) if all vertices are displaced using the velocity fisfd:

oS(a
P =Y, D (49)
b i
As noted in [10], the linear operators (45) and (49) can beidemed adjoint. We can see from (44) that
dsA
I ! (50)
acM(ZA)

14



which means that zero local strain ensures conservatiolobfbarea of the vesicle. This conservation is exact only
for infinitesimal time steps: For finite time stepthere is a small drift of global area. This drift has two onigi
non-linear &ects and changes of the surface area and volume of the vesidieggy mesh advection. The former
contribution is of ordeO(r?) and thus can be reduced by takindtsiently small time step, while the latter is of
orderO(7)O(h?) and thus can be reduced by takingfsient number of discretization points. We compensate tifie dr
of surface area by adding a small isotropic correction téasertension. Namely, we take the following compensation
of the area drift for each vesickkat time stef;, :

SA - SA(tn) _ SA('[n) - SA(tn—l) - TéSA(tn—l)
T t

T

6SA(ty) = (51)
whereSA is the imposed area for vesiole SA(t,,) is the surface area of vesioleat time stefi,, S”(t,-1) is the surface
of the same vesicle at the previous time step, @1{t,_1) is the compensation of drift for the vesioleat the time
stept,_1. The first part of the right hand side of (51) extends the serfaea of the vesicle froi®(t,_1) to SA, while
the second one is equal to théfdrence between the expected and the actual areas of thkeVeaicthe time step,
and represents the non-linedfeets and changes of the area during mesh advection. Bedauksdter part does not
change significantly between subsequent time steps, thparwsation (51) results in a very precise conservation of
the global area of each vesicle. In practice, the corred¢tiadhe tensions due to the drift compensation turned out to
be negligible.

Thus, at each time step, we impose the dilatation of the &t bysS* for of each vesicled, which gives the
following condition on the local strains for verticass M(Z?) :

D, P = 65h (52)

acM(ZA)

Because condition (52) is incompatible with zero localisttas follows from (50)), we impose the following system
on local strains:
S(a)

SA(tn)
which gives a system of equations (53) linear in unknogn®irect resolution of this system being impractical, we
use the iterative approach: We take tension f(t}_,) from the time step,_1, and perform an optimization iteration
to obtain the tension field®(t,) at the time stef,. Two trial directions per vesicle are used for the change ef th
tension: For each vesicle, we take (i) the tension field equal to residual strain at nevitime step for vertices of
vesicleA and equal to zero for vertices of other vesicles (denoted(@s 1)|a) and (ii) the tension field equal to 1 on
vertices ofA and equal to zero for vertices of other vesicles (denotedaaslth other words, we chose the following
ansatz for the tensiaff(t,) :

VA: Yae MY : p2UuP(¢9) =

S (53)

£3(tn) = {(tn-1) + @ + B (th-1), @€ MEEH). (54)

The values ob* andg” are chosen to satisfy two conditions: (i) the fixed globahagenstraint (52) and (ii) the
minimal sum of squares of local strains. This gives the filhg problem of constrained minimization:

x= Zz[a(ub(g(tn»)—;%g)ﬁ] Zy’*{

> pa(ub(f(tn)))} - 6SA} =

aezA A aezA
2
= Z D PPt + Zaspa(\'b(lcls)) + ZﬁBPa(Vb(PC(tn—l)le))] - (55)
aexA

_Zy

wherey” is the Lagrange multiplier enforcing the constraint (52)iig minimization (55) and the corrected strain is
defined as
S(@)

SA(ta)

D P ) + Z g’ (V(1°s)) + Zﬁspa(vbw(tn om»}

aczA

AU (th-1))) = PP(UP(L(tn-1))) — 6Sh, ae M(D)2. (56)
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The minimization of (55) is performed by solving a linear tgys for the unknowns, ¢, andy* : Two sets of
equations

VB Y ) [ﬁa(ub@%tn_l») + 3 acp (PAe)) + ) Bep (P (tn1)lc)) - ¥4 0P (P(1%) = 0, (57)
C C

A aeM(ZA)

PP (ta-1))) =0 (58)

VB:Z Z

A aeM(ZA)

P a))) + D ach (P + Y Ber* (P t-o)le)) ¥
C C

are supplemented with the inextensibility conditions facle vesicle (52).

In order to calculate the céiicients of the system (52), (57), and (58), the following &éand velocity fields are
calculated at each time step: the full fort&¢P(t,_1)) and velocityu?(¢°(t,_1)) fields are calculated for the tension
field at the previous time stef(t,_1), tension force®?(p°(t,_1)|a) and¢?(1/,), and velocity fields associated to them
V3(0P(tn-1)la) @andv3(1],), are calculated using local strains at previous time g8p_1)|a and uniform tension|4 for
each vesiclé\. Because the trial tension fielg&(t,_1)|a and 14 are equal to zero but on the vesiéethe calculation
of velocity fields associated to the trial tensions incredke computational complexity of one iteration no more than
by a factor of 3. In fact, the regularizing integrals for th® & well as the inverse distance for each pair of points
can be calculated only once per iteration, which furtheuced the computational cost. If the number of vesicles is
not large, it is convenient to store the velocity fields armhltrains corresponding to each trial direction. This,way
the velocity field and the local strains for the tension fiéd)(can be obtained without Bl recalculation thanks to the
linearity. Otherwise, two passes of force calculation artdgration are required: one to adjust the tension and one to
calculate the velocity for the adjusted tension.

Note that if no refined mesh is used for Bl calculation and ttagegtion operator (43) is omitted, the system
(53) is characterized by a symmetric matrix thanks to thdiedy symmetric singularity subtraction discussed in
the Section 5 and the explicitly adjoint definitions of thadien force (45) and the local strain (49). In this case,
the proposed method reduces to steepest descent methoadditional constraints of prescribed global areas of the
vesicles. If the refined mesh is used for Bl calculations,syrametry of the matrix characterizing the system (53)
is only approximate. In practice, this does not pose a prolalad the penalization technique presented above works
well unless the Bl operator ceases to be positive-definite.

6.2. Time advancement and mesh advection

We use a modification of mesh advection technique[17] in oralstabilize the shape of triangles: A fictitious
tangential displacement is added to the velocity field dated from the Bl (2) in order to prevent excessive distartio
of mesh triangles. Additionally, the vesicle is rescaledaath time step to keep the prescribed volume.

7. Inextensible capsules

Several previous numerical studies for capsules [18, 2123220, 24, 25, 15] have dealt with more or less
extensible capsules. Real capsules, made of polymersndeed extensible [26]. However, having in mind that a
capsule model is to be built in order to mimic RBCs, the quasbif observing a strict inextensibility becomes natural.
Our wish is thus to extend our model of vesicles to the caseeauiie membrane is inextensible and is endowed with
in-plane shear elasticity.

7.1. Elastic energy of capsules

We feel that it is necessary to give a brief introduction ®efhasticity of 2D surfaces before actually describing the
numerical algorithm for capsule simulation. The invargaot 2D relative displacement gradient[27] are tradititynal
used to characterize large deformations of 2D surfaces. Mieitfimore convenient to use the metric tensor on the
surface to characterize its deformation, as discussed,ie[$§8]. While both approaches are equivalent and lead to
the same analytical expressions for elastic forces, mtnsors are easier to calculate on triangular meshes.

Unlike for vesicles, reference configuration is indispdasao characterize the elastic properties of capsules. For
convenience, we choose the reference configuration to b&tdke corresponding to the minimum of elastic energy.
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Thus, for every point on the capsule surface, we have the reference pdimt Alternatively, we can consider
dependence of the actual ponon the reference coordinake Now the major assumption in the classical theory of
elasticity is that the elastic energy of a material depemtdg on the first derivatives of(x) with respect tox. This
assumption is justified if the characteristic wave vectdrthe deformation are much smaller than the characteristic
inverse distance of the microscopic structure of the maltdn order to establish the general form of the dependence
of the elastic energy on the partial derivativies/0x; for an isotropic 2D material, we consider a parametrizatibn
the reference configuratiox(st, s?) by local coordinates, ands, in the vicinity of a pointx® = x(%, sg), which
induces a parametrization of the deformed caps(8t s%) = r(x(st, §9)) in vicinity of the pointr® = r(x%). This
parametrization induces two metric tensors: one on theraefd capsule

orj oOrj

O — —_—
91) = G5 o ls-gyeq” PSS )
and one on the reference configuration
0X% 0%
0 (,0y _ oA
ga[[i(x ) - asa a§ 51:%52:% 5 (Y,ﬂ € {Sla 52} (60)

The principal extensions (x%) andex(x°) in the reference point® can be calculated by diagonalizing simultaneously
the two matriceg,s(r%) andgd,(x°) :

det]gus(r%) — e12(°)°g%, (%] = 0, @.B € {1,2). (61)

The surface density of the elastic energy of the capsule gslitrary symmetric function of; ande; :

@=f@mm@me (62)

Note that the ratio between the actual and the referencésagigen by

&
dZx

which allows us to rewrite the energy (62) as an integral tiveractual shape with a slightlyftBrent energy density
(for inextensible capsules, there is ndfeience between integration over the reference configaratia over the
actual surface). As specified from the beginning, we choleeedference configuration as the equilibrium state of
the elastic energy. That is, the minimum of (62) correspdods = €, = 1 everywhere on the capsule. Thus small
deformations are characterized by the valueg @inde, close to 11t is reasonable to make an assumption that the
elastic energy be analytical in small deformations and naakexpansion in Taylor's series:

= a6, (63)

Eei(er, €2) = Eelo + Z Z Exi—k(es — 1)M(e2 — 1) 7%, (64)

i=2 k=0

where the terms linear iy, — 1 ande; — 1 are zero to ensure the equilibriumeat= e, = 1. The symmetry of the
elastic energy of a capsule with respect to a permutatien afide, implies that

Ei,j = Ej’i. (65)

The simplest elasticity model would result from truncatthg expansion (64) at= 2 (a neo-Hookean model
of 2D material). Various more sophisticated models exighliterature with dferent combinations of high-order
terms taken into account. Our idea is to keep the elasticitgghas simple as possible. Unlike standard models used
for capsules where (weakly) extensible membranes areett¢28], we shall start directly with inextensible capsules
and this will further reduce the number of possible term$#) ( First let us exploit the symmetry (65), which readily

17



tells us that the energy (64) can be rewritten as an expaisipowers of two elementary symmetric polynomials of
€1 — 1 ande, — 1, which aré
a+e—2 (66)

and
(El - 1)(62 - 1) =1l-a-e+ee. (67)

Local inextensibility of a capsule imposes additional tielae;e, = 1 on the principal stretches, as suggested by
(63). The polynomials (66) and (67) are linearly dependerihis case, which means that the energy cost of local
in-plane deformation of the capsule membrane can be regszbas a function of only one variable, measuring the
local shearing distortion. If the polynomial (66) were take be this variable, then the elastic energy (62,64) of the
capsule in its reference configuration would not have beglicitty at equilibrium without the local inextensibility
constraint (that is enforced only via a Lagrange multipjiethich would have resulted in position dependent Lagrange
multiplier ¢ at equilibrium. To avoid this inconvenience, we use anotheasure of local shearing distortion,

&= ef + e% - 2616 = (€ - &), (68)

which is equivalent to (66) for inextensible capsules. bdje

4

2
at+te-2=+(@e-eP+4ae—-2=VN4+2-2= %—%i... (69)

Rewriting the energy density (64) as a functiongdfyields the following expression for the elastic energy of an

inextensible capsule
2
r

2
Ee = f [Ee.(gz(x)) + ZK(H(X) - Ho) ng + (%) (37; - 1)} d?x. (70)

The sum of last two terms is the Helfrich energy (4), whiclowl to calculate their associated force by the methods
described in Sections 4 and 6. The first term is absent fochkessand is evaluated by direct variation of energy, as
explained below. We will need the explicit expressiordfor calculation of the elastic force:

2 91109, + 02207, — 201209, ) detg.g 71
“ = detg? - "\ detg®,” (1)
a3 off

The exact dependenég (%) can be chosen either in the simplest form

Eo(s) = 56 (72)

or in a more sophisticated way, for example, using a finiteresibility non-linear elasticity model (FENEM) in order
to prevent mesh collapse under strong flows (see section 8.8)

7.2. Calculation of elastic force on triangular mesh

Numerical simulation of inextensible capsules is not muidtecent form that of vesicles. The reference config-
uration is parametrized by storing the reference coordmir each mesh vertex. The deformation parameteés
calculated for each triangle of the mesh as if it was stretatformly: Consider a triangle with verticed, r°, and
r¢, having the reference coordinatel x°, andx¢, respectively. The metric tensors are calculated as

0= ("= (" =13, gi2=0o1= ("= 1% (r=r), goo=(r°-r?-(r°-r?, (73)

091 = 0 =% (X° =%, =91 = (X = x) - (x° = X%, g9, = (x° = x*) - (x* = X7, (74)

1This is nothing but to say that the energy is a function of iirts which are the tracei(+ 2) and the determinant{e).
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It must be noted that the value of does not change upon any permutatioradlf, or c if calculated from (71) and
(73 —74). The elastic force is calculated by variation of) (#h respect ta?@

a _ 1 aEeI((gz)b) ref i _ 1 dEg
G=s@l am o O 5glar

3(82)b
82:(82)11 arla

S™'(b), (75)

whereS™f(b) is the quadrature weight of the vertbxalculated for the reference configuration (in fact, it dtidae
equal toS(b) for an inextensible surface, howev@®'(b) is independent of? and thus acts as a constant during the
variation). The variation of? with respect ta? is calculated from (71) using the following expressions:

¢ 092 _oa_gr¢, (76)

0012 0021 b
= =2r2—r°—r _8rf‘ , i

agll b
=2r2 - 2r = =
oo ar? :

ara 7

The curvature and tension parts of the force, as well as tegriation technique for capsules are the same as for
the vesicles. Minor changes are required for the calculatfdhe lagrange multiplieg? from the local inextensibility
condition: The system of equations (53) must be replaced by

ref _
VA: Vae M(Z?) : p3(uP(9)) = w (77)
which is resolved as described in Section 6. The time advaaneis executed in the straightforward way
r(tn) = r(ta-1) + ™V (ta-1). (78)

8. Validation

8.1. Non-dimensionalization
We provide several examples concerning both vesicles gmglitss. In our validation tests, we consider a single
vesicle or capsule of volum¥ surface are&, that encloses liquid of viscosity,; and is submersed in liquid of
viscosityex. Two dimensionless numbers can be formed using these paendthe reduced volume (6) and the
viscosity contrast
Mint
1= (79)
Next
Both vesicles and capsules are endowed with bending moduiukile two additional parameters will be used to
describe the shear elasticity of capsules, as is explaiakedvb
Two kinds of imposed flow are considered: the unboundedHiskeear flow, characterized by the shear sate

Ve (1) =1y, W) =v'(r)=0 (80)
and the unbounded axial Poiseuille flow, which is charanterby the flow curvature :
V() = a(rg +12), (N =\(r) =0 (81)

and coincides with the flow profile in a cylindrical channeltagonstant, which does noftact the solution thanks to
the Galilean invariance of the problem. The flow strengtleflected by a dimensionless capillary num@grwhich
we define as

. 3V 1/3
C. = ynKRi’ R, = (47) (82)
for shear flow and 1/3
@ 3V
Ca= —st R = (E) (83)

for a Poiseuille flow. Herd, is the volume-equivalent radius of the vesicle. In orderattilitate comparison with
other works, we present our results in explicitly dimenkisa form.
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Figure 5: (color on-line) Otference between Bl calculated numerically and the analytisailt (85). Sphere of radius one, sample force field (84).
Right: Numerical error of Bl calculation as a function of numbérefinements\,, comparison of dferent integration techniques: SS technique
with refined mesh, as described in the present stidy=(0.5, red circles), analytical integration for singular triaegland point-wise quadrature
for all others (green triangles down), and the integratiothee used in [9] (violet triangles up). The solid line is theide for the eyes that
demonstrates that error scales@(®?) with refinement for the SS technique and the method [9]. Thaethtine is the guide for the eyes that
demonstrates that error scales{h) if no special treatment of almost-singular triangles is perfed. Right: Hect of the refined mesh and of the
value of the cut-ff distanceR; on the precision of Bl calculation.

8.2. Singularity subtraction tests

We start the validation of the problem by simple tests of tBae&hnique. We take for the test surface a sphere of
radius one, for which the Bls can be calculated analytic&llg choose the sample distribution of forces as

fu(r) =1y, fy(r) =0y, f(r) = rury. (84)

As can be seen from (84), the sample force has both a normal tartyential components. In addition, the sample
force (84) is not a linear function of coordinates, whichlallow us to see the error due to force interpolation on the
refined mesh. In Fig.5, we present théelience between Bl calculated using the technique preseantgection 5
and the analytical result

fGij(R - I’)fj(l’)dzl’ = 4fi(R)/35 (85)

as a function of number of mesh vertices. It is evident fromstope of the curves in Fig.5 (left), that the numerical
error in calculation of Bl decreases asymptoticallyo§8~"\) = O(h?) for the SS technique and the method [9], while
the error decreases asymptotically only>§& ) = O(h) for the simple technique of combined analytical integnati
over singular triangles and numerical integration usingiBiquadrature over non-singular triangles. Figure Shig
shows that increasing the cuffalistance improves the precision of calculation for a smathher of mesh vertices
(N; < 2). By contrast, moderate values of the cttdistance R. = 0.5) give the best precision for larger numbers
of mesh verticesN; > 3). This suggests that the piece-wise linear interpolatidrich is used here to calculate the
quantities on the refined mesh, generates a noticeablahadian to the numerical error. Overall, we see that the
SS method becomes advantageousNoe 2. It must be noted here that a factor of 2 is not a negligibledase in
precision over the method [9] due to the low-order naturehefdonvergence. Namely, for second order methods,
increasing the precision by a factor of four requires insigg the refinemeni, by a unity, which gives fourfold
increase in the number of mesh vertices and consequenageby a factor of sixteen in Bl computation time, which
could make the simulation practically impossible. A samglikribution of numerical error foR; = 0.5, N; = 3,

Np = 0 is shown in Fig. 6 (left).

8.3. Hydrodynamic interactions between almost-touchurfpses

Another challenge for the numerical calculation of Bls ig #ituation when two interfaces are close to contact.
This situation arises when hydrodynamic interactions oEs# interfaces are studied or one interface is close to
self-contact. In any case, precision of Bl calculation play important role in prevention of interpenetration of the
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Figure 6: (color on-line) Left: Sample distribution of nunei error R = 0.5, N; = 3, Np = 0). Right: Numerical error of Bl calculation when
target lies outside of the surface on which the forces areilolised. The &ect of use of refined mesh. The sample force field (84) is dig&thu
over a unity sphere. The numerical error is calculated on arspbf radiugR. The maximum of error for a given value (R is plotted as a
function of |R| — 1 for two meshesN; = 3, Np = 0 andN; = 4, N, = 0). Solid lines are results of numerical integration with tise of refined
mesh R. = 0.5), the dashed lines are the results of numerical integratithout the use of refined mesR{= 0). For the reference, edge lengths
lie between 0.12 and 0.18 fd\;, = 3 and between.04 and 010 for N, = 4. Edges of the refined mesh are 4 times shorter.

interfaces. Here we show that the introduction of the refimegh greatly improves the precision of Bl calculation
when two surfaces are almost touching. The same distribofiforces (84) on a unity sphere is considered. For each
mesh pointr? on the unity sphere, we calculate the numerical estimatbeoBt in the poin{R|r® and compare the
result with the exact analytical expression

105R2(IR2 — 1) + 15— 7|R
70R5 ’

[ GuR-n10r =RR,

105R2(IR? - 1) + 15— 7|R?

f Gyj(R— 1) fj(Nd?r = RR, oS , (86)
105R2(IR? - 1) + 15— 7|RP?
f Gi(R- Nf(Nd?r = RR, o ,

for |R > 1. Scanning through all mesh verticasve find the maximum discrepancy and plot it as a functiofRpf 1.

The results are presented in Fig. 6 (right) for twéetient mesh refinements with and without the auxiliary refined
mesh for Bl calculation. The general trend is thafRf > 1, the numerical error is relatively low regardless if the
refined mesh is used or not for the Bl calculation. HoweveemR| — 1 is less than the characteristic size of the
mesh cell, a strong increase of numerical error is obsefvBtlis calculated without the use of refined mesh. For
the calculation with refined mesh, the numerical error resaélatively low as long af)l — 1 is not less than the
characteristic size of a cell of the refined mesh. Overalearadvantage of the use of the refined mesh for calculation
of Bl is seen. It must be noted here that when two surfacesparated by a distance greater than the dludistance

for calculations on the refined mesh, the excess time cokeafgde of the refined mesh for Bl calculation is negligible
thanks to the lookup algorithm.

8.4. Membrane shape, curvature, tension, and force

In order to check the convergence of the force calculatianc@nsider a steady state of a vesicle without viscosity
contrast £ = 1) in shear flow. We calculate the forde mean curvaturéd, and the Laplace-Beltrami operator of
the curvatureASH. The results are plotted for the cross-section by the sheawepl= 0 as a function of the polar
angley, whereg is the orientation angle in the shear plane (Fig. 7). Theltesbtained by high-order analytical
expansions[29] are included as a reference. In order t@eelgood convergence of analytical expansions, an almost
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spherical vesicle = 0.97) and a strong flowd, = 10) are used. As can be seen in Fig. 7, a good convergence is
achieved for the membrane force and the steady-state shapeension and the curvature converge to the analytical
result as well. Surprisingly, even the curvature Laplaaanverges to the analytical value everywhere but at the
12 exceptional vertices having only five neighbors. It mwesnbted here that the algorithm for the curvature force
calculation presented in Section 4 works equally well fatiges with any number of neighbors higher than 4, and
that the exceptional behavior in vicinity of the five-neighpoints comes from the tension force. That is, a continuous
distribution of Lagrange multiplief creates a strong jump of the normal component of the tensime fat the five-
neighbor vertices, which is compensated by an opposite jartie curvature part of the force, in such a way that the
distribution of the full force is continuous and convergedhte theoretical value. Under strong flows, the Lagrange
multiplier £ is large and therefore creates a large jump of the tensiare fat the exceptional vertices, which, in
turn, leads to large jumps in curvature force and, consdtyl@urvature Laplacian. The only way to remove this
behavior is to design a method for tension force calculdtianis less sensitive to the number of neighbors of a given
vertex. Because the diverging results for tension forcethadturvature Laplacian occur only at a small number of
exceptional vertices and do ndfect the vesicle dynamics, we leave this question for futtueiss.

8.5. Deflated vesicles

In order to verify the ability of the proposed method to treerty deflated vesicles we calculate the bending energy
Seurv = 2KfH2dS and compare the measured values with the results repor{éll iAs can be seen in Fig. 8, The
convergence is rather good for all reduced volumes. Negkatl, some discrepancy is observed for very deflated
vesicles, especially in a strong flow. In order to achievedgasolution of the surface, sphero-cylindrical meshes
were used here.

8.6. Test for time-dependent dynamics

As a test for time-dependent dynamics, we consider a vesithereduced volume = 0.95 and viscosity contrast
A ranging from 9 to 20 in shear flow. As known from analyticalds&s[3], the inplane dynamics of such a vesicle
relaxes to a periodic vacillating-breathing (VB) or tunmigli(TB) motion, depending oa and the capillary number
C,. Two values ofC, will be considered for which independent measurements\aiaale[2]: a rather weak flow
C, = 0.19, and a moderate flo@, = 5.7. An additional analytical result is available[30] in the Iiraf infinitely weak
flows, which we put as a reference 65 = 0.19.

The following observations can be made by inspecting Figigt of all, the results of [30] and of [2] agree very
well, second, the results of the present code lie within Tfthe results of [2] foN, = 3 and within 2% folN, = 4.
A decrease of numerical error by a factor of about 5 is obskmeenN; is increased from 2 to 3 or from 3 to 4, thus
giving a slightly higher improvement of precision than segigd by the theoretical estimation of error of or@¢n?).

8.7. Shape and migration of deflated vesicles in unboundese &ide flow

As the ultimate test for the Bl calculation technique, wesidar lateral migration of a vesicle in Poiseuille flow.
Indeed, while the local shape of a small patch of a membramesly defined by membrane forces, lateral migration
velocity of a vesicle in Poiseuille flow is a very subtléeet entirely defined by the Bl. Comparison between numerical
and analytical study of lateral migration for almost spbalrivesicles in Poiseuille flow can be found in [29]. Here we
present some benchmarks for a more deflated vesicle, witlttegldvolumes = 0.85, under a strong floZ, = 100.

We consider only the case without viscosity contrast(1). We fix the lateral distance of the center of mass of the
vesicle to the valugy/R, = 0.5 and study the subsequent vesicle dynamics. The vesialenassa rather peculiar
slipper shape (Fig. 11, left). The section of this shape kyth 0 plane as well as thecomponent of the average
velocity of the membran¥,,y are then measured as a function of the number of verhges

The sections of the vesicle by tke= 0 plane are presented in Fig. 10 (left). A notable featurénisfshape is a
small "tail”, where the mean curvature reaches very higtolits value H ~ —10/R, for C; = 100). The "tail” is
presented in detail in Fig. 10 (right).

The non-dimensionalized migration velocéy/(@R2) is shown in Fig.11. We performed simulations for several
refinement numbersl, and several numbers of inset roNg. As can be seen in Fig. 11, sphero-cylindrical meshes
are advantageous in this case, giving a better estimatedanigration velocity than the simulation wit, = 0 while
using a lower number of mesh vertices.
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Figure 7: (color on-line) Various geometrical propertiekkated for a steady state of a vesicle in simple shear flow. Nigalesimulations with
various degrees of refinement compared with high-order d@nalyxpansionsy = 0.97, Ca = 10, 4 = 1, Np = 0. First row: Cross-section of
the vesicle by the shear plang= 0, imposed shear flow shown by horizontal arrows, polar apgdtethe shear plane is marked (left); Lagrange
multiplier £ in the cross-section by the shear plane 0, as a function of the polar angle(right). Second row: Mean curvatuk¢ (left) and its
surface Laplacial\®H (right) in the shear plane section as a function of the patateap. Last row: membrane forcé (left) and fy (right) in
the shear-plane section as a function of the polar apgt®r the curvature Laplacian, the exceptional values atoesrwith only 5 neighbors are
excluded.
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Figure 9: (color on-line) Dimensionless YBB period as a function of viscosity contrast for fdrent numbers of mesh vertices. Reduced volume
v = 0.95. Capillary numbeC, = 0.19 (left) andC, = 5.7 (right). The numbers of mesh vertices akg:= 2, Np = 0, Ny = 162 (purple circles),

Nr = 3, Np = 0, Ny = 642 (green squares), ail = 4, N, = 0, Ny = 2562 (red diamonds). The results of spectral code [2] (blshekh curve)
and of high-order analytical expansions[30] (orange ditterve forC; = 0.19) are provided as a reference.
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Figure 10: (color on-line) Cross-section of a vesicle ind@aille flow by a symmetry plane. = 0.85, C; = 100 1 = 1, yp = 0.5R,. Left: The
whole cross-section. Dashed box marks the tail region. Rife tail region shown in detail.
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Figure 11: (color on-line) Vesicle fixed at distange = 0.5R, from the symmetry axis of a Poiseuille flow. = 0.85 C; = 100, 1 = 1. Left:
steady-state shape, color by Lagrange multiglidRight: Steady-state value of dimensionless migration vaj()l;iqy/(dR\z,).

8.8. Inextensible capsules

Two simple tests are provided for simulations of inextelesitapsules: stretching by optical tweezers and dynam-
ics under simple shear flow. Because the quantitativelyecomodelization of RBCs is an open question, we employ
a rather simple model, which, however, allows us to repredaany important features of RBC dynamics. In our
model, the elastic properties of RBC membrane are chaiaeteby two numbers: the shear modulus for small de-
formationsus and the maximum deformation parametgr The elastic energy of a capsule is written in the following
"FENEM-like” form:

Hoem 1
2 1-g2/e3

At small deformation the energy is quadraticdr(neo-Hookean) and becomes venyffstihen s? approachesg?,.
The following parameters are taken in all simulations: thRime-equivalent radiuB, = 2.7um, (corresponding to
volumeV ~ 82um?, which is slightly lower than the median value reported inlttezature[31]), the reduced volume

v = 0.65, (one of the most commonly used values[31}, = 1.9uN/m, which is slightly lower than the median
value reported in the literature (e.g. in [32]), the maximahallowed shear distortion is chosensfs = 2.2, and,
finally, the bending modulus is chosensas 8.1 - 1071%J which is about 2.5 times higher than the value reported in
experimental studies (e.g. in [33]). These values wereabased on a simple trial and error fitting of the results of
a stretching experiment on RBC[32] (Fig. 12, as explainddvipe The reference configuration is chosen to be the
oblate equilibrium shape of a vesicle of given reduced va@t65 in this case). With this definition, the reference
configuration remains at equilibrium when the full energytef capsule is considered.

Eei(s?) = (87)

8.9. Stretching the RBCs by optical tweezers

The first test is inspired by an experiment[32], in which twoeed beads were attached at two opposite points of
the rim of a RBC. One of the beads was then pulled in order ¢édcttithe RBC. The axial (along the stretching force)
and the transverse (perpendicular to the stretching falie@)eters of the disc-like shape of the RBC were measured
as a function of the stretching force. We reproduce the éxygert by applying two concentrated forces in opposite
regions of the rim of the RBC. In order to avoid numericalfagis due to discontinuities of the applied force, the
forces are taken to decrease smoothly from the maximum valtree epicenter vertea to zero beyond the action

radiusR; :
0 [lr=r?? 2
oy = | el -1 - <R 88)
0 if [r—r3 >R,

where fex(r) is the amplitude of the applied force in a given poinand f2, is a parameter which allows to vary
the applied force. Once the shape reaches saturation,tdiédice pulling on the RBC from each side is calculated
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Figure 12: (color on-line) RBC stretched by optical tweszéeft: Shape of a stretched RBC. Right: Cell diameters asgtifan of the stretching
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Figure 13: (color on-line) Dynamics of RBCs in simple shear fl@®wolor by Lagrange multipliet. Snapshot A: tumbling. Snapshot B: tank-
treading (with some breathing and oscillations of orientgti Changes in the Lagrange multipligdue to membrane tank-treading are clearly
seen.

and plotted against the resulting diameters (Fig. 12, yight our simulationsR, = 0.7R, was chosen. A sample
distribution of applied forces on the surface of RBC is shawfig. 12, left.

As can be seen (Fig. 12, right) the sensitivity of the redolthe vertex number is hardly noticeable. In addition,
a good agreement with experiment is observed. In genembdhreement can be improved even further by choosing
more carefully the values of physical parameters, the datige equation (87), and the distribution of the applied
forces. This task, however, goes beyond the purpose of gezpt study.

8.10. Dynamics of RBCs in shear flow

Next, we consider dynamics of a RBC in shear flow. Unlike MesidRBCs are known to exhibitftierent behavior
in shear flow depending on the shear rate even if the visesgifiinternal and external liquids are equaH1). We
use our model to reproduce this behavior. Figure 14 showsdiependence of the angle, which the longest direction
from center of the capsule makes with the flow velocity. Fghhshear rate, the capsule in our simulations aligns
with certain fixed direction showing small oscillations dbmgation and orientation as the membrane tank-treads
(tank-treading motion). For small shear rate, the longesttion from the center makes complete turns (tumbling
motions). Snapshots offtirent motions are presented in Fig. 13.

9. Discussion and conclusion

We have presented a numerical algorithm for simulation sfoles and inextensible capsules under flow. While
being relatively simple and fast, the algorithm allows nuoad treatment of many important problems in dynamics of
vesicles and red bloods cells, including simulation of véeflated vesicles and capsules under flow. During various
stages of development, the algorithm was employed withesscto solve several physical problems[34, 30, 6, 29].
When available, analytical solutions have shown very goodeagent with the results of numerical simulations.

The proposed algorithm is characterized by several impbetdvances whose applicability is by no means lim-
ited to simulations of vesicles and inextensible capsulsst notably, singularity subtraction for tangential fesc
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Figure 14: (color on-line) Dynamics of RBCs in simple shear fldwansition form tumbling to tank-treading by increasing #hear rate. Angle
between the longest projection of capsule shape on the gleeerand the flow velocity. Left: weak flolZ§ = 0.1). Right: stronger flow@; = 1).
Small jumps in the orientation angle appear when the vertex epagection on thexy plane was the furthest from the center at some time step is
not the furthest from the center at the next time step.

has not been used before (to the best of our knowledge). Meless, we have shown that this technique can be
used diciently to calculate Bls with low numerical error. The userefined mesh greatly increases the stability
of the algorithm and the precision of calculation when diseabetween two surfaces becomes comparable to the
characteristic length scale of spatial resolution. Theafsmut-of distance allows one to save computation time and
the continuously dferentiable weight function allows smooth splitting of adétions between the original and the
refined meshes. Note that unlike for several previous impteations of the Bl method[20, 2], where the splitting
weight was a function of the distance on the reference sptetmeen the source and the target points, here we use
the distance in the actual 3D space as the argument of thergpliveight function. This allowsfeectively the same
treatment of the close-to-singularity situations, retgssl if the source and the target belong to the same surface or
not, including the cases when the surface is close to selact

It must be noted, however, that singularity subtractionsduet fully regularize the single-layer kernel, but only
decreases the order of singularity by one. In other wordsatplication of singularity-subtracting transformation
gives "a free” multiplier of ordeiO(h) (provided, of course, that all non-singular calculati@ms performed with
suficient precision) to the numerical error (recall thas the characteristic spatial resolution of the mesh). Tty
applying singularity subtraction, we have decreased thw ef simple quadrature rule fro@(h) to O(h?). Likewise,
we can speculate that applying the singularity-subtrgdiiansformation in spectral method [20] could reduce the
error fromO(h®) to O(h*) while keeping the same number of quadrature nodes. Hoywsearonjecture that using SS
together with several refined meshes witlatient cut-& distances and a cascade lookup algorithm would be a more
efficient way to implement a spectral method for boundary irstiegaiculation with numerical error of ord&(h?).

The singularity subtraction techniques developed heréearsed with success in solving other types of Boundary
integral equations, such as the 2D version of boundary liategjuation for Stokes flow (as explained in Appendix
A) or Poisson equation in electrostatics (as explained ipefglix B).

Several additional improvements contribute to the inerdgsecision of the algorithm: instead of needing several
iterations of quadratic fitting of the surface in order to fangood approximation for the normal and curvatures, the
use of diferential geometry allows one to find all the relevant queastiafter just one iteration. The use of optimized
penalization method to solve for the tension is somewhatrerpensive with respect to the usual penalization tech-
nigue (and clearly less expensive than the explicit reemiutf the linear system), but ensures much better local and
global inextensibility of the membrane and eliminates thastraint on the time-step related to thefegss of the
tension force. With correct implementation, calculatidrBofor three force fields takes less than triple time of Bl
calculation for a single force field because the regulagizitentities and the inverse distance between the source and
the target points can be calculated only once. The residaal btrain can be further decreased by performing more
than one optimization iteration at each time step, howelgsreasing the time step seems to be a better option.

While the proposed algorithm works well for a wide variety @fiations, there exist problems to which it can
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not be applied. The major limitation comes from the fixed togg of the mesh: Under strong deformations of
the vesicle, the mesh triangles inevitably become digdaxiethe point when one of the angles becomes extremely
acute. The penalization method loses its stability in thseg which results in excitation of high-wave-number modes
in tension and subsequent failure of the simulation (thisallg happens when the smallest angle of mesh triangles
becomes about 5 10°). The explicit time-advancement scheme is stable onlydftiime step is small enough. The
relaxation times of the bending force are proportionaht®, which results in severe limitations on the time step,
especially if a large amount of discretization points iscuged neighbor vertices come close to each other because of
mesh distortion. Finally, while the results of the simwatare usually precise enough for most physical application
a prohibitively large number of discretization points iguéed to obtain a reliable result in some cases. Higherrorde
of spatial and temporal resolution could improve the pienisf the algorithm. Solving these problems represents a
promising task for future research.

We would like to thank P.-Y. Gires, M.&onetti, S. Mendez, E.S.G. Shaqfeh, M.8baud, and S. Veerapaneni for
helpful discussions. We gratefully acknowledge financigdmort from CNES (Centre National d’Etudes Spatiales)
and ESA (European Space Agency).

Appendix A. Singularity subtraction for 2D Stokes flow

Dynamics of a 2D suspension in Stokes limit is governed[}14 BI similar to (2),

A
—(”exfz i) (1) = met™(r) + D 95 Gij(r. ') f(r")ds(r') + (A1)
B B

1o~ 1) ) Ty ()<
B S8

Here, and throughout this Section we assume that the catedindiced, j, andk can take only two valuess and

y. We denote bydqr) the arc length along the contobirresulting from a section of an infinite cylindrical vesicle
by a plane perpendicular ta The diference with the 3D case is manifested only in the expresditheoGreen
kernels[11]:

(r=ri(r=r);

Ir—r2

L(r=r)i(r=r)(r—rk
n Ir—r/4

Gi(r1) = 4| - autnir -1+ } T - (A2)
TT

The kernels (A.2) are obtained by taking the principal valfi¢he integral of (3) over z fromoo to 00, assuming
translational invariance of the problem along thdirection. As can be seen from (A.2), the ker@ehas a special
point for r’ = r, where it diverges. It is thus advantageous for the precisfamumerical calculation of the Bl to
perform the SS.

In general, it is possible to obtain the regularizing idéesi by the same integration oveof (17) and (18). There
is, however, a simpler way to perform the SS in 2D case. Namadyconsider the following integral identities:

n(r) - 9§G(r, r')-n(r)dgqr’) =0, (A.3)
) 95 G(r. 1) - t()ds(r) + X2 9§ e )[|(rr__rt|2). " gy = o, (Ad)
z z

wheret is the tangent vector to the contdLirThe SS transformation for the single-layer kernel then gad®llows:

SEG(r, r')- f(r')dqr’) = SE[G(r, r'y- f(r") = f(r)n(r) - G(r, r’) - n(r’) = f(N)t(r) - G(r,r’) - t(r)]dgr)- (A.5)
z X

_Fn) I =) - nIICr — ') - n(r)]

2 Ir =12
z

dgr’),
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wheref, = (f -n)nand f, = (f - t)t are, respectively, the normal and the tangential partseofditef. It can be
easily checked that the integrands of both integrals onigjint hand side of (A.5) go to zero asapproaches along
the contouiz.

Appendix B. Singularity subtraction for Poisson equation n 3D

A similar technique of singularity subtraction can be apglio other physical problems: Consider a problem
finding the distribution of surface charge$x) in a conducting body placed into an external potengfa(r). This
problem would require solving a boundary integral equation

¢=(r) - ifm =C (B.1)

4 [r—r|
2

for every pointr on the surface of the conducting body. Her€ is a constant acting as a Lagrange multiplier
associated to the charge neutrality condition

f o(r)d?’ = 0. (B.2)
z

The boundary integral in (B.1) has an integrand that divefger’ = r but can be regularized by the following
transformation:

AR [ AN O OO DI €O g g

Ir—r| Ir—r| Ir—r ’

where we have used the fact (cf. (17)) that

o-(r)n(r)f{lrn(_rlr),| 4 (= OIn(r) - (r = r/)]}dzr’ -0, (B.4)

Ir—r3

It is easy to check that the integrands of both integrals enitiht hand side of (B.3) remain continuous and bounded
asr’ approaches along the surfacg&, which allows one to use a simple quadrature rule to calcthetintegral (B.3)
with precision of orde©(h?).
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