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A new implementation of k-MLE for mixture

modeling of Wishart distributions
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2 Sony Computer Science Laboratories, Inc., Tokyo, Japan

Abstract. We describe an original implementation of k-Maximum Like-
lihood Estimator (k-MLE)[1], a fast algorithm for learning finite statisti-
cal mixtures of exponential families. Our version converges to a local
maximum of the complete likelihood while guaranteeing not to have
empty clusters. To initialize k-MLE, we propose a careful and greedy
strategy inspired by k-means++ which selects automatically cluster cen-
ters and their number. The paper gives all details for using k-MLE with
mixtures of Wishart (WMMs). Finally, we propose to use the Cauchy-
Schwartz divergence as a comparison measure between two WMMs and
give a general methodology for building a motion retrieval system.
Keywords: Mixture Modeling, Wishart, k-MLE.

1 Introduction

Mixture models are a powerful and flexible tool to model an unknown probability
density function f(x) as a weighted sum of parametric density functions fj(x; θj):

f(x) =

k
∑

j=1

wjfj(x; θj), with wj > 0 and

k
∑

j=1

wj = 1.

By far the most common case are mixtures of Gaussians for which the
Expectation-Maximization (EM) method is used for decades to estimate the pa-
rameters {(wj , θj)}j from the maximum likelihood principle. Many extensions
aimed at overcoming its slowness and lack of robustness [2]. From the seminal
work of Banerjee et al. [3], many methods have been generalized for the expo-
nential families in connection with the Bregman divergences. In particular, the
Bregman soft clustering provides a unifying and elegant framework for the EM
algorithm. In a recent work, the k-Maximum Likelihood Estimator (k-MLE) has
been proposed as a fast alternative to EM. This paper proposes several varia-
tions around the initial algorithm with a specific interest for Wishart mixtures.
The paper is organized as follows: Section 2 recalls some definitions, properties
of Wishart distribution and gives a MLE for it; Section 3 describes the proposed
algorithm and discusses how to use it for mixtures of Wishart. In Section 4, we
describe an application scenario to motion retrieval before concluding in Section
5.



2 Wishart distributions

2.1 Definition

The Wishart distribution [4] is the multidimensional version of the chi-square
distribution and it characterizes empirical covariance matrix estimators for the
multivariate gaussian distribution. Let X be a n-sample consisting in indepen-
dent realizations of a random gaussian vector with d dimensions, zero mean and
covariance matrix S. Then X = t

XX follows a central Wishart distribution with
scale matrix S and degree of freedom n (DoF), denoted by X ∼ Wd(n, S). Its
density function is:

Wd(X ;n, S) =
|X |

n−d−1
2 exp

{

− 1
2 tr(S

−1X)
}

2
nd
2 |S|

n
2 Γd

(

n
2

)
,

where for x > 0, Γd(x) = π
d(d−1)

4

∏d

j=1 Γ
(

x− j−1
2

)

is the multivariate gamma
function. Let us remark immediately that this definition implies that n > d− 1.

An exponential family is a set of probability distributions admitting the
following canonical decomposition:

pF (x; θ) = exp {〈t(x), θ〉 + k(x) − F (θ)}

with t(x) the sufficient statistic, θ the natural parameter, k the carrier measure
and F the log-normalizer [5]. Wishart distribution is an exponential family since

Wd(X ; θn, θS) = exp

{

< θn, log |X | >R + < θS ,−
1

2
X >HS +k(X)− F (θn, θS)

}

,

where (θn, θS) = (n−d−1
2 , S−1), t(X) = (log |X |,− 1

2X), 〈, 〉HS denotes the
Hilbert-Schmidt inner product and:

F (θn, θS) =

(

θn +
(d+ 1)

2

)

(d log(2)− log |θS |) + logΓd

(

θn +
(d+ 1)

2

)

. (1)

Note that this decomposition is not unique (see another one in [6]).

2.2 Maximum Likelihood Estimator (MLE)

The framework of exponential families gives a direct solution for finding the max-
imum likelihood estimator from a set of i.i.d observations X1, . . . , XN . Indeed,
the MLE θ̂ satisfies:

∇F (θ̂) =
1

N

N
∑

i=1

t(Xi), (2)

and the main difficulty is to determine the functional reciprocal (∇F )−1 of ∇F

(which is also ∇F ∗ for F ∗ the convex conjugate of F ). In the case of the Wishart
distribution, the following system must be solved:







d log(2)− log |θS |+ Ψd

(

θn + (d+1)
2

)

= ηn,

−
(

θn + (d+1)
2

)

θ−1
S = ηS .

(3)



with ηn and ηS the expectation parameters and Ψd the derivative of the logΓd.
Unfortunately, no closed-form solution is known. Instead, as pointed out in [7], it
is possible to adopt an iterative scheme that alternatively yields maximum like-
lihood estimate when the other parameter is fixed. This is equivalent to consider
two sub-families of Wishart distribution which are also exponential families. For
the sake of simplicity, natural parameterizations and sufficient statistics of the
decomposition in the general case are kept.

Case n fixed (n = 2θn + d + 1):

Fn(θS) =
nd

2
log(2)−

n

2
log |θS |+ logΓd

(n

2

)

, kn(X) =
n− d− 1

2
log |X |.

Using classical results for matrix derivatives, Eq. 2 can be easily solved :

−
n

2
θ̂−1
S =

1

N

N
∑

i=1

−
1

2
Xi =⇒ θ̂S = Nn

(

N
∑

i=1

Xi

)−1

. (4)

Case S fixed (S = θ
−1

S
):

FS(θn) =

(

θn +
d+ 1

2

)

log |2S|+logΓd

(

θn +
d+ 1

2

)

, kS(X) = −
1

2
tr(S−1X).

Again, Eq. 2 can be numerically solved:

θ̂n = Ψ−1
d

(

1

N

N
∑

i=1

log |Xi| − log |2S|

)

−
d+ 1

2
, θ̂n > −1. (5)

with Ψ−1
d the functional reciprocal of Ψd. This latter can be computed with any

optimization method on bounded domain (e.g. Brent’s method). Algorithm 1
summarizes the estimate for parameters of the Wishart distribution.

Algorithm 1: An estimator for the parameters of a Wishart distribution

Input: A sample X1, X2, . . . , XN of Sd
++

Output: Final values of θ̂n and θ̂S
1 Initialize θ̂n with θ̂n = − 1

2
;

2 repeat

3 Update θ̂S using Eq. 4 with n = 2θ̂n + d+ 1;

4 Update θ̂n using Eq. 5 with S the inverse matrix of θ̂S;

5 until convergence of the likelihood ;

Note that even if convergence and consistency are observed in practice, the
obtained final estimates remain to be proven to be the solution of the Eq. 3 or
not.



3 k-MLE for mixtures of Wishart distributions

In [1], the k-MLE algorithm is described with the Lloyd’s method : Assign all
observations to their closest cluster, update clusters’ parameters and so on un-
til convergence on parameters first and then on the complete likelihood. This
method can produce empty clusters (especially when the number of clusters
and the data dimension are large). It is therefore preferable to adopt a different
strategy because these conditions are exactly those for mixtures of Wishart.

3.1 k-MLE with Hartigan’s method

In this part, we give an implementation of k-MLE with Hartigan’s heuristic [8]:
Pick an observation and optimally reassign it to another cluster (see below). This
procedure is repeated until no improving transfer can be found. Interestingly,
Telgarsky and Vattani [9] have noticed that this heuristic is superior to the
one of Lloyd in mentioned above cases. Alg. 2 summarizes the full algorithm
including the initialization which will be discussed later.

The convergence of this algorithm is fairly easy to prove since each transfer
(line 13) strictly decreases the loss function:

kmeansF∗,logw({t(Xi)}i : {(ηj , wj)}j) =
1

N

N
∑

i=1

k

min
j=1

(BF∗(t(Xi) : ηj)− logwj) ,

with BF∗ the Bregman divergence for Bregman generator F ∗:

BF∗(p : q) := F ∗(p)− F ∗(q)− 〈p− q,∇F ∗(q)〉,

and η1, . . . , ηk the moment parameterization of the clusters centers. It can
proved that a minimizer of kmeansF∗,logw is also a maximizer of the average
complete log likelihood.

Surprisingly, Hartigan’s original strategy doesn’t prevent here from getting
empty clusters. Indeed, for a singleton cluster Ci = {Xi} we have the following
property :

ηi = t(Xi), BF∗(t(Xi) : ηi)− logwi = 0 + logN.

The condition to have an improving transfer to cluster Cj becomes

logN > BF∗(t(Xi) : ηj)− log |Cj |+ logN ⇐⇒ BF∗(t(Xi) : ηj) < log |Cj|.

There is no particular reason for this condition to be always false, especially for
large datasets. Thus, in order to prevent a cluster from vanishing, it is mandatory
to reject every outgoing transfer for a singleton cluster (cf. line 11).



Algorithm 2: k-MLE with Hartigan’s heuristic

Input: An i.i.d sample X1, . . . , XN , an exponential family characterized by F

the log-normalizer and t(X) the sufficient statistics, λ > 0
Output:
– An exponential family mixture model

m(x) =
k∑

j=1

wjpF (x; θj) where ∀j ∈ {1, 2, ..., k}, θj = ∇F
−1(ηj)

– A strict partition z of sample X1, X2, . . . , XN

1 k, {ηj}j=1,...,k = DP-k-MLE++({t(Xi)}i, F , λ); ; // Initialization

2 for i = 1, ..., N do zi = argminj (BF∗(t(Xi) : ηj) + log k); // first assignment

3 ;

4 for j = 1, ..., k do wj =
|Cj |

N
where |Cj | is the cardinality of cluster Cj ;

5 ;
6 repeat

7 need update w = False;
8 repeat

9 done transfer = False;
10 Random permute X1, ..., XN ;
11 foreach Xi such that |Czi | > 1 do

12 z∗i = argminj(BF∗(t(Xi) : ηj)− logwj);

13 if
BF∗ (t(Xi):ηz∗

i
)−logwz∗

i

BF∗ (t(Xi):ηzi)−logwzi
< 1 then

14 done transfer = True; need update w = True;
15 Update ηzi and ηz∗

i
:

ηzi =
|Czi |ηzi − t(Xi)

|Czi | − 1
, ηz∗

i
=

|Cz∗
i
|ηz∗

i
+ t(Xi)

|Cz∗
i
|+ 1

16 zi = z∗i ; Decrement |Czi |; Increment |Cz∗
i
|;

17 until done transfer is False;

18 if need update w then for j = 1, ..., k do wj =
|Cj|

N
;

19 ;
20 ;

21 until need update w is False;



3.2 Remarks for mixtures of Wishart distributions

The k-MLE algorithm is very generic and several details must be clarified
when considering mixtures of Wishart. All computations are formulated with
the dual Bregman divergence BF∗(t(Xi) : ηj) which is a priori unknown in
the general case since we can’t give an expression of F ∗ in section 2. We only
have a closed form or a numerical approximation for F ∗

n and F ∗

S . A possible
solution is to get back to the classic formulation of the complete likelihood
and replace the minimization of BF∗(t(Xi) : ηj) − logwj by the maximization
of log pF (Xi; θj) + logwj . Unfortunately, the computational cost increases

significantly because the MLE θ̂j∗ (line 15) and F (θ̂j∗) have to be updated after
each transfer.

As remarked in [1], each component of the mixture may have its own gen-
erator F ∗

j . It is of particular interest when the number of observations in Xi is
known. In this case, several specific strategies might be explored for both the
initialization and optimization (e.g. mixing BF∗ and BF∗

nj
).

3.3 Initialization with DP-k-MLE++

In practice, in many applications, the number of clusters is unknown and has to
be estimated (e.g. penalized likelihood, cross-validation). In this paper, we adopt
a greedy approach inspired by the algorithms DP-means [10] and k-MLE++ [1].
It consists in adding a cluster every time there exists an observation Xi which
contributes much in proportion to the kmeansF∗ loss function

kmeansF∗({t(Xi)}i : {ηj}j) =
1

N

N
∑

i=1

k

min
j=1

BF∗(t(Xi) : ηj) (6)

When such points exist, a new center s is chosen with a probability depending
on its contribution. This procedure is summarized in Algorithm 3.

The higher the threshold λ, the lower the number of generated clusters. In
particular, the value 1

N
should be considered as a reasonable minimum setting

for λ. For λ ≥ 1, the algorithm will simply return one cluster. Since pi = 0 for
already selected centers, this method guarantees all centers to be distinct.

4 Application to motion retrieval

In a previous work [7], we described one motion captured movement Xi (ni × d

matrix) by the cross-product matrix Xi = t
XiXi and derived an EM-based

clustering algorithm which takes into account known values ni
3. To enrich the

description of a movement, it is possible to define a mixture mi per movement

3 Matrix Xi are assumed to be column centered



Algorithm 3: DP-k-MLE++

Input: A sample {y1 = t(X1), . . . , yN = t(XN )}, F a Bregman generator, λ > 0
Output: k the number of clusters, {η1, . . . , ηk}, a subset of {y1, . . . , yN}

1 Choose first seed η1 = yj for j uniformly random in {1, 2, . . . , N};
2 k = 1 ;
3 repeat

4 foreach yi do

5 compute pi =
mink

j=1 BF∗ (yi:ηj)
∑

N
i′=1

mink
j=1 BF∗ (yi′ :ηj)

6 where F ∗ is the convex conjugate of F ;

7 if ∃pi > λ then

8 Choose next seed ηk+1 among y1, y2, . . . , yN with probability pi;
9 k = k +1;

10 until all pi ≤ λ;

Xi. For example, we can extract subsets of successive observations of different
sizes and use their cross-product matrices as inputs for k-MLE. Somehow, this
approach reproduces the principle of bag-of-word paradigm successfully applied
many domains. Mixture mi can be viewed as a sparse representation of local
dynamics of Xi through their second-order moments. The problem of comparing
two movements amounts to compute a dissimilarity measure between two
mixtures m and m′.

When both mixtures have a single component, an immediate solution is to
consider the Kullback-Liebler divergence KL(m : m′) for two members of the
same exponential family which is also the Bregman divergence on the swapped
natural parameters BF (θ

′ : θ). It is important to mention that this formula does
not hold when considering different generators Fn and Fn′ . For general mixtures
of the same exponential family, KL divergence does not admit a closed form
unlike the Cauchy-Schwartz divergence

CS(m : m′) = − log

∫

m(x)m′(x)dx
∫

m(x)2dx
∫

m′(x)2dx
.

Skipping some details in [11], the integral of the product of mixtures can be
written as

∫

m(x)m′(x)dx =
k
∑

j=1

k′

∑

j′=1

wjw
′

j′ exp
{

F (θj + θ′j′ )− (F (θj) + F (θ′j′ ))
}

.

Note that this expression is well defined because the natural parameter space of
the Wishart distribution is a convex cone which implies that F (θj+θ′j′ ) is finite.
The expression in curly brackets can be computed from Eq. 1 without much
simplification to get CS(m : m′) and compare two movements. Details of the
implementation and results for the real dataset in [7] will be in a forthcoming
technical report.



5 Concluding remarks and future work

We recalled the definition and some properties of the Wishart distributions, espe-
cially its canonical decomposition as a member of an exponential family. Setting
in turn, one of the two parameters, we got two other exponential (sub)families
that allow to define an estimator for parameters of the Wishart distribution.
Even if the experimental convergence is observed in practice, a theoretical proof
and its link to the MLE remains to be done. We proposed a new implementation
of the k-MLE algorithm that follows the Hartigan’s method. In order to pre-
serve the initial number of clusters, a trivial condition must be added. We also
proposed an initialization method that shares the good properties of k-MLE++
and automatically sets the number of clusters. The case of Wishart mixture
models were discussed. Finally, we described an application to the comparison
of motion-captured movements. This is a first step towards the medium-term
building of a motion retrieval system.
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