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Brzozowski Algorithm is Generically

Super-Polynomial for Deterministic Automata⋆

Sven De Felice1 and Cyril Nicaud1

LIGM, Université Paris-Est & CNRS, 77454 Marne-la-Vallée Cedex 2, France
sdefelic@univ-mlv.fr, nicaud@univ-mlv.fr

Abstract. We study the number of states of the minimal automaton of
the mirror of a rational language recognized by a random deterministic
automaton with n states. We prove that, for any d > 0, the probability
that this number of states is greater than nd tends to 1 as n tends
to infinity. As a consequence, the generic and average complexities of
Brzozowski minimization algorithm are super-polynomial for the uniform
distribution on deterministic automata.

1 Introduction

Brzozowski proved [5] that determinizing a trim co-deterministic automaton
which recognizes a language L yields the minimal automaton of L. This can
be turned into a simple minimization algorithm: start with an automaton, com-
pute its reversal, determinize it and reverse the result in order to obtain a co-
deterministic automaton recognizing the same language. A last determinization
gives the minimal automaton, by Brzozowski’s property.

The determinization steps use the classical subset construction, which is well-
known to be of exponential complexity in the worst-case. The co-deterministic
automaton An of Fig. 1 is a classical example of such a combinatorial explosion:
it has n states and its minimal automaton has 2n−1 states.

1 2 3 4 n−1 n

a, b

a a, b a, b a, b a, b a, b

Fig. 1. Determinizing this co-deterministic automaton An with n states, which recog-
nizes A∗aAn−2, yields a minimal automaton with 2n−1 states.

How good is Brzozowski minimization algorithm? If the input is a non-
deterministic automaton, the combinatorial explosion can be unavoidable, as
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for An, and this algorithm can be a good solution (see [17] for an experimen-
tal comparison of Brzozowski algorithm versus determinization combined with
Hopcroft algorithm). However, if the input is a deterministic automaton, Brzo-
zowski algorithm still has exponential worst-case complexity, which is easily seen
by taking the reverse of An as input. Since there exists polynomial solutions to
minimize deterministic automata, such as Hopcroft algorithm [13] which runs in
time O(n log n), there is no use for Brzozowski algorithm in the deterministic
case, unless the combinatorial explosion happens very rarely.

Let L be the language recognized by a n-state deterministic automaton taken
uniformly at random. In this article we estimate the typical number of states of
the minimal automaton of the mirror L̃ of L. More precisely, we prove that this
quantity is generically super-polynomial, that is, for any d > 0, the probability
that there are more than nd states in the minimal automaton of L̃ tends to 1 as
n tends to infinity.

As a consequence, Brzozowski algorithm has super-polynomial generic and
average complexity when used on deterministic automata, for the uniform dis-
tribution: the combinatorial explosion is almost always met during the process.

Some related works. The interest in statistical properties of random deter-
ministic automata started with the work of Korshunov [14], who studied their
combinatorics and exhibited some of their typical behavior. In recent years, an
increased activity on the topic aimed at giving mathematical proofs for phenom-
ena observed experimentally. For instance, it was proved in [1, 8] that the average
complexity of Moore algorithm, another minimization algorithm, is significantly
better than its worst-case complexity, making this algorithm a reasonable solu-
tion in practice. The reader can find some results on the average state complexity
of operations under different settings in [16, 3]. Let us also mention the recent
article [2], in the same area, which focus on quantifying the probability that a
random deterministic automaton is minimal.

2 Preliminaries

For any n ≥ 1, let [n] denote the set {1, . . . , n}. If E is a finite set, we denote
its cardinality by |E| and its power set by 2E . A sequence of non-negative real
numbers (xn)n≥1 grows super-polynomially (or is super-polynomial) when, for
every d > 0, there exists some nd such that for every n ≥ nd, xn ≥ nd.

2.1 Automata

Basic definitions. Let A be a finite alphabet, an automaton A is a tuple
(Q, δ, I, F ), where Q is its finite set of states, I ⊆ Q is its set of initial states and
F ⊆ Q is its set of final states. Its transition function is a (partial) map from
Q × A to 2Q. A transition of A is a tuple (p, a, q) ∈ Q × A × Q, which we write

p
a−→ q, such that q ∈ δ(p, a). The map δ is classically extended by morphism to

Q × A∗. We denote by L(A) the set of words recognized by A.
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A deterministic and complete automaton is an automaton such that |I| = 1
and for every p ∈ Q and a ∈ A, |δ(p, a)| = 1; for such an automaton we consider
that δ is a (total) map from Q × A∗ to Q to simplify the notations.

A state p in an automaton is accessible (resp. co-accessible) when there is
a path from an initial state to p (resp. from p to a final state). The accessible

part (resp. co-accessible part) of an automaton is the set of its accessible states
(resp. co-accessible states). A trim automaton is an automaton whose states are
all accessible and co-accessible. If A is an automaton, we denote by Trim(A)
the automaton obtained after removing states that are not accessible or not
co-accessible.

For any automaton A = (Q, δ, I, F ), we denote by Ã the reverse of A, which

is the automaton Ã = (Q, δ̃, F, I), where p
a−→ q is a transition of Ã if and only

if q
a−→ p is a transition of A. The automaton Ã recognizes the mirror1 of L(A).

An automaton is co-deterministic when its reverse is deterministic.
Recall that the minimal automaton of a rational language L is the smallest

deterministic and complete automaton2 that recognizes L. To each rational lan-
guage L corresponds a minimal automaton, which is unique up to isomorphism.

Subset construction and Brzozowski algorithm. If A = (Q, δ, I, F ) is a
non-deterministic automaton, it is classical that the subset automaton of A
defined by

B =
(

2Q, γ, {I}, {X ∈ 2Q | F ∩ X 6= ∅}
)

is a deterministic automaton that recognizes the same language, where for every
X ∈ 2Q and every a ∈ A, γ(X, a) = ∪p∈Xδ(p, a). This is of course still true if we
only take the accessible part of B, and this is not a difficulty when implementing
it, since the accessible part of B can be built on the fly, using the rule for γ in a
depth-first traversal of B starting from I. We denote by Subset(A) the accessible
part of the subset automaton of A.

In [5], Brzozowski established the following result:

Theorem 1 (Brzozowski). If A is a trim co-deterministic automaton then

Subset(A) is the minimal automaton of L(A).

This theorem readily yields an algorithm to compute the minimal automaton of
the language recognized by an automaton A, based on the subset construction:
since B = Subset(Trim(Ã)) is a deterministic automaton recognizing the mirror
of L(A), then Subset(Trim(B̃)) is the minimal automaton of L(A).

2.2 Combinatorial structures

Permutations. A permutation of size n is a bijection from [n] to [n]. A size-n
permutation σ can be represented by a directed graph of set of vertices [n], with
an edge i → j whenever σ(i) = j. As σ is a bijection, such a graph is always a
union of cycles. The order of a permutation is the smallest positive integer m

1 If u = u0 . . . un−1 is a word of length n, the mirror of u is the word ũ = un−1 . . . u0.
2 Minimal automata are not always required to be complete in the literature.
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such that σm the identity. It is equal to the least common multiple (lcm) of the
lengths of its cycles.

Mappings. A mapping of size n is a total function from [n] to [n]. As done for
permutations, a mapping f can be seen as a directed graph with an edge i → j
whenever f(i) = j. Such a graph is no longer a union of cycles, but a union of
cycles of trees (trees whose roots are linked into directed cycles), as depicted in
Fig. 2. Let f be a size-n mapping. An element x ∈ [n] is a cyclic point of f when
there exists an integer i > 0 such that f i(x) = x. The cyclic part of a mapping
f is the permutation obtained when restricting f on its set of cyclic points. The
normalized cyclic part of f is obtained by relabelling the c cyclic points of f by
elements of [c] while keeping their relative order (see Fig 2).

1

2

75 4 8

3

6

9

10

7 43

3 21

Fig. 2. A mapping of {1, . . . , 10} seen as a directed graph on the left. Its cyclic part
is depicted on the upper right, and its normalized cyclic part on the lower right. The
normalization is obtained by relabelling the 3 vertices with elements of {1, 2, 3}, while
keeping the relative order; hence 3 7→ 1, 4 7→ 2 and 7 7→ 3.

Automata as combinatorial structures. In the sequel, A is always a fixed
alphabet with k ≥ 2 letters. Let An denote the set of all deterministic and
complete automata on A whose set of states is [n] and whose initial state is
1. Such an automaton A is characterized by the tuple (n, δ, F ). A transition

structure is an automaton without final states, and we denote by Tn the set
of n-state transition structures with the same label restrictions as for An. If
A ∈ An, an a-cycle of A is a cycle of the mapping induced by a, i.e. p 7→ δ(p, a).
If C is an a-cycle of length ℓ, the word associated to C is the word u of length
ℓ on the alphabet {0, 1} obtained as follows: if x is the smallest element of C,
ui = 1 if and only if δ(x, ai) ∈ F , for i ∈ {0, . . . , ℓ−1}. In other words, one starts
at x and follows the cycle, writing a 1 when the current state is final and a 0
otherwise. An a-cycle is primitive when its associated word u is primitive, that
is, when u cannot be written u = vm for some word v and some integer m ≥ 2.
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2.3 Probabilities on automata and genericity

A probabilistic model is a sequence (Pn)n≥1 of probability measures on the same
space. A property P is said to be generic for the probabilistic model (Pn)n≥1

when the probability that P is satisfied tends to 1 as n tends to infinity.
In our settings, we work on a set E of combinatorial objects with a notion of

size, and we will only consider probabilistic models where the support of Pn is
the finite set En of size-n objects. The uniform model (or uniform distribution

which is a slight abuse of notation since there is one distribution for each n) on
a set E = ∪n≥1En is defined for any e ∈ En by Pn({e}) = 1

|En| . The reader is

referred to [12] for more information on combinatorial probabilistic models.
For any 0 < b < 1, the Bernoulli model of parameter b (or just a Bernoulli

model for short) on deterministic automata is the model where an automaton
of size-n is obtained by first drawing an element of Tn under the uniform dis-
tribution, then choosing whether each state is final or not with probability b,
independently: the probability of an element A ∈ An with f final states is by

definition bf (1−b)n−f

|Tn| . The uniform distribution on deterministic automata is ob-

tained by choosing b = 1
2 .

3 Main results

Our main result is Theorem 2 below, which gives a super-polynomial lower bound
for the generic number of states of the minimal automaton of the mirror.

Theorem 2. Consider a Bernoulli model for automata on an alphabet with at

least two letters. For any d > 0, the minimal automaton of the mirror of L,

where L is the language recognized by a random deterministic n-state automaton,

generically has a super-polynomial number of states.

This directly yields the generic complexity of Brzozowski algorithm, and
therefore its average case complexity. It also emphasizes that, in our case, the
generic complexity analysis is more precise than the average case analysis: a neg-
ligible proportion of bad cases could also have lead to a bad average complexity.

Corollary 1 (Average complexity). For any fixed alphabet with at least two

letters, the generic and average complexity of Brzozowski algorithm is super-

polynomial for Bernoulli models on deterministic automata.

Proof. It is generically super-polynomial by Theorem 2. Hence for any d > 0,
the complexity is greater than nd+1 with probability more than 1

2 , for n large
enough. Thus, the average complexity is bounded from below by 1

2nd+1 > nd for
n large enough. ⊓⊔

Lemma 1 below is the main ingredient of the proof of Theorem 2, as it allows
to focus on a-cycles only, which contains enough information to exhibit a lower
bound. The other letters are necessary to prove that such a-cycles are accessible
in a random automaton, as we shall see in Section 4.
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Lemma 1. Let A ∈ An be a deterministic automaton that contains m primitive

a-cycles C1, . . .Cm of length at least two that are all accessible. The minimal

automaton of L(Ã) has at least lcm(|C1|, . . . , |Cm|) states.

Proof. By Theorem 1, the minimal automaton of the mirror of L(A) is obtained
by determinizing the reverse of the accessible part of A. Since the a-cycles are
accessible, they are still there after removing the non-accessible part. Moreover,
as they are primitive and of length at least two, they necessarily contain at least
one final state. Hence, they are also co-accessible.

Let C = ∪j∈[m]Cj and let σ be the permutation of C defined by σ(x) = y if
and only if δ(y, a) = x. This permutation is well defined, since every element of
C has a unique preimage by a that lies in C. We are interested in the natural
action of σ on the subsets of C: let F be the set of final states of A, which is also
the set of initial states of Ã, and consider the set X = C ∩ F . Let ℓ be the size
of the orbit of X under the action of < σ >. We have σℓ(X) = X. Let Cj be one
of the cycles and let Xj = Cj ∩ X. The set Cj is stable under the action of σ,
and Xj ⊆ X, thus σℓ(Xj) = Xj . Hence, the size of its orbit under the action of
< σ > divides ℓ. Moreover, since Cj is primitive, there are exactly |Cj | elements
in the orbit of Xj , and thus |Cj | divides ℓ for every j ∈ [m]. Hence, ℓ is the lcm of

the cycles’ lengths. Therefore, by looking at the intersection of δ̃(F, ai) with C,
for i ≥ 0, there are at least lcm(|C1|, . . . , |Cm|) accessible states in Subset(Ã). ⊓⊔

4 Accessibility in random transition structures

The very first part of the algorithm is to remove useless states, and in particular
states that are not accessible. The precise study of the number of accessible
states in a random transition structure has been done in [6]: if Xn is the random
variable associated with the number of accessible states, the expectation of Xn

is equivalent to vk · n, for some explicit constant vk, and the distribution is
asymptotically Gaussian. In the sequel, we only need the following weaker result
established in [6]:

Lemma 2. There exists two real numbers α and β, with 0 < α < β < 1 such

that the number of accessible states in a random transition structure of size n is

generically in the interval [αn, βn].

In order to use Lemma 1, we need to exhibit large enough primitive a-cycles in
a random deterministic automaton in the proof of Theorem 2. This can only work
if those cycles are in the accessible part of the automaton, which is established
in Proposition 1 below. The proof directly follows a more general idea given by
Andrea Sportiello in a private communication.

Proposition 1. For the uniform distribution on transition structures of size n,

all the a-cycles of lengths greater than log n are generically accessible.

Proof. Let i ∈ [n] and let A be an accessible transition structure with i states,
whose states labels are in [n] and such that 1 labels the initial state. By a
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direct counting argument [6], there are exactly nk(n−i) transition structures in
Tn whose accessible part is A. Let us bound from above the number of such
automata having a non-accessible a-cycle of size ℓ: to create such a cycle, one
need to choose the ℓ state labels not in the accessible part and how these states
are circularly linked using transitions labelled by a. Other transitions can end
at any of the n states. There are therefore no more than

(

n−i
ℓ

)

(ℓ− 1)! ·nk(n−i)−ℓ

possibilities. Hence, the probability that it happens, conditioned by having A as
accessible part, is bounded from above by

(

n − i

ℓ

)

(ℓ − 1)! n−ℓ =
n−ℓ

ℓ
(n − i)(n − i − 1) · · · (n − i − ℓ + 1) ≤ (n − i)ℓn−ℓ.

This bound only depends on the size of the accessible part. Let Xn be the random
variable associated with the number of states in the accessible part of a random
transition structure. Using the formula above, the probability of having an a-
cycle of length equal to ℓ that is not accessible and at least αn accessible states
is bounded from above by3

n
∑

i=αn

(n − i)ℓn−ℓ · P(Xn = i) ≤ (1 − α)ℓ.

Hence the probability of having a non-accessible a-cycle of length at least ℓ and

at least αn accessible states is bounded from above by
∑(1−α)n

j=ℓ (1 − α)j which
tends to 0 as ℓ tends to infinity, as the remainder of a converging series. This
concludes the proof, using ℓ = log n, since by Lemma 2, the accessible part of a
transition structure generically has more than αn states. ⊓⊔

5 Proof of Theorem 2

Our proof of Theorem 2 relies on Lemma 1 and on a famous theorem of Erdős
and Turán: let On be the random variable associated with the order of a random
permutation of size n. Erdős and Turán theorem states that the mean value
of log On is equivalent to 1

2 log2 n, and that when normalized4, it converges in
distribution to the normal law. In the sequel, we shall only need an intermediate
result they use to establish their proof, which is the following [10, Eq. (14.3)]:

Proposition 2 (Erdős and Turán). For the uniform distribution, the order

of a random permutation of size n is generically greater than exp(1
3 log2 n).

The idea is to use Proposition 2 to quantify the lcm of the primitive accessible
a-cycles in a random automaton, under the Bernoulli model. This requires some
care, since not all a-cycles are necessarily accessible or primitive.

3 For readability we have not use integer parts in the bounds, here and in the sequel;
this does not change the results.

4 Centered around its means and divided by its standard deviation.
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5.1 Accessible a-cycles

We first focus on the shape of random automata and therefore work on transi-
tion structures. By Proposition 1, all a-cycles of length greater than log n are
generically accessible, and we need to exhibit enough such cycles.

The action of letter a in a uniform element of Tn is a uniform size-n ran-
dom mapping. These objects have been studied intensively, and their typical
properties are well-known [11]. We shall need the two following results in the
sequel.

Lemma 3. For any ǫ > 0, the number of cyclic points of a size-n random

mapping is generically greater than n
1

2
−ǫ.

Proof. Let α be a real number such that 1
2 − ǫ < α < 1

2 . Let f be a mapping
of size n, and consider the sequence 1, f(1), f2(1) = f(f(1)), . . . At some point,
f i(1) is for the first time equal to a f j(1) for j < i, and we have a cycle of length
i−j +1. This reduces the problem to the Birthday Paradox: we repeatedly draw
a random number from [n] (the image of the new iteration of f) until a number
is seen twice. Let Xn be the random variable associated with the number of
distinct numbers in the sequence, we classically have:

P(Xn ≥ m) =

(

1 − 1

n

)(

1 − 2

n

)

. . .

(

1 − m − 1

n

)

.

Moreover, for x ∈ (0, 1
2 ), 1 − x ≥ exp(−2x), and therefore, for m ≤ 1

2n we have

P(Xn ≥ m) ≥ exp

(

− 2

n

m−1
∑

i=1

i

)

= exp

(

−m(m − 1)

n

)

.

Hence P(Xn < nα) = O(n2α−1), and since α < 1
2 , there are generically more

than nα distinct iterations. Moreover, by symmetry, if f i(1) = f j(1) is the

first collision, j is a uniform element of {0, . . . , i− 1}. Since n
1

2
−ǫ is significantly

smaller than nα, the collision is generically not on one of the n
1

2
−ǫ last iterations,

and the cycle is of length greater than n
1

2
−ǫ. This concludes the proof, since the

number of cyclic points is at least the length of this cycle. ⊓⊔

Lemma 4. Let i ∈ [n] and let σ and τ be two permutations of [i]. The probability

that the normalized cyclic permutation of a uniform size-n random mapping is

σ is equal to the probability it is τ .

Proof. (sketch) This is a folklore result. From its graph representation, one can
see that a mapping is uniquely determined by its set T = {T1, . . . , Tm} of trees
and the permutation of their roots. Conditioned to have T as set of trees, the
normalized cyclic permutation of a random mapping is therefore a uniform per-
mutation. The result follows directly, by the law of total probabilities. ⊓⊔

Hence generically, the number of a-cyclic states is greater than, say, n
1

3 , and
conditioned by its size, the normalized cyclic permutation of a random mapping
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follows the uniform distribution. We can therefore use the statistical properties of
random uniform permutations, which are very well-known as well. In particular,
we shall need the following generic upper bound for the number of cycles.

Lemma 5. For the uniform distribution, a size-n random permutation generi-

cally has less than 2 log n cycles.

Proof. The expectation and standard deviation of the number of cycles in a
random permutation are well-known (see for instance [12, Example IX.9 p. 644])
and are respectively equivalent to log n and

√
log n. It implies by Chebyshev’s

inequality that a random permutation has generically less than 2 log n cycles. ⊓⊔
The following proposition summarizes the results collected so far.

Proposition 3. Generically in a random size-n transition structure, there are

more than n
1

3 a-cyclic states, organized in less than 2 log n a-cycles, and all

a-cycles of length greater than log n are accessible.

Proof. Let ℓ be an integer such that n
1

3 < ℓ ≤ n. Let Cn be the random variable
associated with the number of a-cyclic points in a random size-n transition
structure. Let also Nℓ be the random variable associated with the number of
cycles in a random permutation of size ℓ. By Lemma 5, there exists a non-
increasing sequence (ǫn)n≥1 that tends to 0 such that

P(Nℓ < 2 log ℓ) ≥ 1 − ǫℓ.

Let Gn ⊆ Tn denote the set of transition structures with more than n
1

3 a-cyclic
states that are organized in less than 2 log n a-cycles. If Tn represents an element
of Tn taken uniformly at random, we have

P(Tn ∈ Gn) =

n
∑

ℓ=n1/3

P(Tn ∈ Gn | Cn = ℓ) · P(Cn = ℓ).

By Lemma 4, P(Tn ∈ Gn | Cn = ℓ) = P(Nℓ < 2 log n) ≥ P(Nℓ < 2 log ℓ),
since under the condition Cn = ℓ, the a-cyclic part of Tn is a uniform random
permutation of length ℓ. Hence

P(Tn ∈ Gn) ≥ (1 − ǫn1/3)

n
∑

ℓ=n1/3

P(Cn = ℓ) = (1 − ǫn1/3) · P(Cn ≥ n1/3).

Hence, by Lemma 3, a random transition structure is generically in Gn. This
concludes the proof, since by Proposition 1, all a-cycles of length greater than
log n are generically accessible. ⊓⊔

5.2 Lcm of truncated random permutations

Since we cannot guarantee that small cycles are accessible in a typical transition
structure, we need to adapt Proposition 2 to obtain the needed lower bound for
the lcm of the lengths of accessible a-cycle. In a size-n permutation, a large cycle

(resp. small cycle) denote a cycle of length greater than (resp. at most) 3 log n.

9



Lemma 6. The lcm of the lengths of the large cycles in a uniform random

permutation of size n is generically greater than exp(1
4 log2 n).

Proof. By Lemma 5 there are generically less than 2 log n cycles in a random per-
mutation. The number of points in small cycles is therefore generically bounded
from above by 6(log n)2. For a given permutation, we split the lengths of its
cycles into two sets L and S, whether they are greater than 3 log n or not. The
order of the permutation is the lcm of the lengths of its cycles, and is therefore
bounded from above by lcm(L) · lcm(S). Hence

lcm(L) ≥ lcm(L ∪ S)

lcm(S)
.

By Landau’s theorem [15], the maximal order of a permutation of length ℓ is
equivalent to exp(

√
ℓ log ℓ) and therefore bounded from above by 2 exp(

√
ℓ log ℓ)

for large enough ℓ. Hence, the less than 6(log n)2 points in small cycles form
a permutation whose order, which is equal to lcm(S), is bounded from above

by 2 exp(
√

6 log2 n log(6 log2 n)). Using this bound and Proposition 2 yields the
result: for n large enough, we have a generic lower bound of

exp(1
3 log2 n)

2 exp(
√

6 log2 n log(6 log2 n))
=

1

2
exp

(

1

3
log2 n −

√
6 log n log(6 log2 n)

)

≥ exp

(

1

4
log2 n

)

.

5.3 Primitivity

One last effort is required, as we need to take final states into account and
prove the generic primitivity of large cycles in a uniform random permutation
under the Bernoulli model. Recall that an a-cycle of final and non-final states
is encoded by a word with 1’s and 0’s (see Section 2.2). The following lemma
establishes the needed result.

Lemma 7. Generically, the a-cycles of length greater than log n in a random

automaton with n states are all primitive.

Proof. We first follow [7] for words on {0, 1} under the Bernoulli model of pa-
rameter b ∈ (0, 1): if a word u of length n is not primitive, there exist an integer
d ≥ 2 and a word v of length n/d such that u = vd. For such a fixed v with z

zeros, the probability that u = vd is (1− b)dzbn−dz. Since there are exactly
(

n/d
z

)

such v, the probability that u is the d-power of a word, for any fixed d ≥ 2 that
divides n, is

n/d
∑

z=0

(

n/d

z

)

(1 − b)dzbn−dz = (bd + (1 − b)d)
n
d .

Hence the probability that u is not primitive is bounded from above by the sum of
(bd +(1−b)d)

n
d for 2 ≤ d ≤ n, which is smaller than αλn, for λ =

√

b2 + (1 − b)2
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and for some constant α > 0. Then, each a-cycle of length greater than log n
is non-primitive with probability bounded from above by α log n · λlog n. By
Proposition 3, the probability ǫn that there are more than 2 log n a-cycles tends
to 0. Hence, the probability of having a non-primitive a-cycle of length greater
than log n is bounded from above by 2α(log n)2λlog n + ǫn, which tends to 0. ⊓⊔

5.4 Conclusion of the proof

We now have all the ingredients to establish the proof of Theorem 2. By Propo-
sition 3, the a-cycles of a random automaton A generically form a random per-
mutation of size greater that n

1

3 . Therefore, the large a-cycles are generically of
length greater than 3 log n

1

3 = log n. Since a-cycles of size greater than log n are
generically accessible and primitive by Proposition 1 and Lemma 7, the lcm of
the large cycles’ lengths is a lower bound for the number of states of the minimal
automaton of L(Ã), by Lemma 1.

By lemma 4, conditioned by its size, the a-cyclic permutation is a uniform
permutation. Using the law of total probability and Lemma 6 we therefore ob-
tain that there are generically more than exp(1

4 log2 n
1

3 ) states in the minimal

automaton of L(Ã), concluding the proof.

6 Conclusion and perspectives

In this article we have found generic super-polynomial lower bounds for the
mirror operator and for the complexity of Brzozowski algorithm. These results
hold for deterministic automata under Bernoulli models, where the shape of the
automaton is chosen uniformly at random, and where each state is final with a
fixed probability b ∈ (0, 1).

These probabilistic models are interesting since they contain the uniform
distribution on deterministic automata. It is however natural to consider other
distribution on automata, and we propose two directions.

The first idea is to change the distribution on final states, in order to have
less final states in a typical automaton. Remark that our results and our proofs
still hold if b := bn depends on n, provided there exists 0 < α < 1

2 such that
both bn and 1 − bn are in Ω( 1

nα ). This only require to revisit Lemma 7, and to

use the n
1

2
−ǫ of Lemma 3 instead of the n

1

3 as we did in this paper. However
our proof technique does not work for smaller probabilities such as bn = 1

n2/3

because with high probability, the a-cycles have no final states. Trying to handle
such distributions with a small number of final states is ongoing work. Note that
the other works on random automata [1, 8, 2] also face the same limitation.

The other natural idea is to consider the uniform distribution on accessible
deterministic automata and not on deterministic automata. The combinatorics
of accessible deterministic automata is more involved [14, 4], but it is sometimes
possible to deduce generic properties for the distribution on accessible determin-
istic automata from the distribution on accessible automata [6]. In our case, this
would require to prove that the error terms are all in o( 1√

n
).
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