
HAL Id: hal-00841835
https://hal.science/hal-00841835v1

Submitted on 6 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random Generation of Deterministic Acyclic Automata
Using the Recursive Method

Sven de Felice, Cyril Nicaud

To cite this version:
Sven de Felice, Cyril Nicaud. Random Generation of Deterministic Acyclic Automata Using the
Recursive Method. 8th International Computer Science Symposium in Russia (CSR’13), 2013, Russia.
pp.88-99, �10.1007/978-3-642-38536-0_8�. �hal-00841835�

https://hal.science/hal-00841835v1
https://hal.archives-ouvertes.fr

Random Generation of Deterministic Acyclic

Automata using the Recursive Method

Sven De Felice1 and Cyril Nicaud1

LIGM, Université Paris-Est, 77454 Marne-la-Vallée Cedex 2, France
{defelic,nicaud}@univ-mlv.fr.

Abstract. In this article, we propose a uniform random generator for
accessible deterministic acyclic automata with n states, which is based
on the recursive method. The generator has a preprocessing that re-
quires O(n3) arithmetic operations, and, once it is done, can generate
acyclic automata using O(n) arithmetic operations for each sample. We
also propose a lazy version of the algorithm that takes advantage of the
typical shape of random acyclic automata to reduce experimentally the
preprocessing. Using this algorithm, we provide some statistics on acyclic
automata with up to 1000 states.

1 Introduction

The field of random generation has been very active in the last two decades,
developping general techniques based on combinatorics and probabilities to pro-
duce efficient random samplers for combinatorial structures that appear in com-
puter science. The main focus is to build an algorithm for a given combinatorial
set E, i.e. a set together with a size function, which takes an integer n as input
and produces an element of E of size n uniformly at random. The interest in
random generators comes from both practice and theory: they are commonly
used as an alternative to benchmarks, in order to test the efficiency of imple-
mentations; they are also widely used by theorists in their works on describing
the typical properties of large random objects, which is a cornerstone in average
case analysis of algorithms [7].

This article deals with the random generation of acyclic deterministic au-
tomata with n states on a fixed finite alphabet. Acyclic automata are automata
recognizing finite languages, and, as such, form an important subclass of au-
tomata. They are especially used in applications such as in linguistics where the
languages of interest are essentially finite. A better understanding of their com-
binatorics, of their typical behavior and the average cases analysis of algorithms
that handle that kind of structures is a long term goal of our work.

In random generation standards, we aim at designing algorithms that can
produce experimental statistics on objects of size at least 1000, in a reasonable
amount of time: though probabilistic and combinatorial in nature, random gen-
erator are above all algorithms and the main concern when designing them is to
optimize their complexity, in order to allow the generation of objects that are
large enough.

In the sequel, we present how deterministic acyclic automata can be gener-
ated using a technique known as the recursive method. It is based on an inductive
specification of the objects of interest and consists in two steps: a preprocessing
which is costly but need to be done only once, and the random generation itself.
This method originates in [10] and was systematized in [8] to classes of combi-
natorial structures that can be described using the symbolic method [7, Ch. I].
Acyclic automata cannot be described in such a way, and the aim of this article is
to show that the technique applies anyway, though not automatically. Our algo-
rithm has a preprocessing step using O(n3) arithmetic operations, and can then
generate deterministic acyclic automata with n states using a linear number of
arithmetic operations. We also propose an improved version that is very efficient
in practice to lower the complexity of the preprocessing. This efficiency relies on
the typical shape of a random acyclic automaton: we formulate its complexity as
a function of a parameter of its output (its width, defined in Section 4.5) which
seems to grow very slowly in practice. Though requiring a detailed probabilis-
tic analysis for this observation to be mathematically established, we were able
to compute some statistics on automata with up to 1000 states within a few
minutes using this algorithm. This is an example where information on typical
structures helps in designing better algorithms.

Related works. In [4], the first author and Carnino proposed a solution to the
same problem based on Markov chain techniques. This yields an elegant and
easily adaptable algorithm1, that produces an acyclic automaton with almost
uniform distribution. More precisely, the output distribution tends to the uni-
form one as the number of iterations of the algorithm tends to infinity. The major
drawback of this method is that there is no estimation of the bias induced when
halting the algorithm after a given number of iterations, making the design of
the algorithm difficult when uniformity is important2.

The recursive method is based on the combinatorial properties of the object
to be generated. In [9], Liskovets presented inclusion-exclusion results on the
number of deterministic acyclic automata and on some related quantities. We
will use his work at several stages of the design of our algorithm. Prior to this
work, Domaratzki, Kisman and Shallit proposed lower and upper bounds on the
number of acyclic automata in [5, 6].

In [2], Almeida, Moreira and Reis gave a solution to a related problem: they
gave an algorithm that generate exhaustively all minimal automata with a given
number of states. Because the number of minimal acyclic automata grows very
fast, such an exhaustive generator is limited to small number of states (there are
more than 7·1014 minimal acyclic automata with 15 states on a two-letter alpha-
bet), but it has the virtue of checking every object unlike a random generator.
Both solutions are relevant, in different manners, when testing conjectures.

1 For instance, they described a Markov chain on minimal acyclic automata only.
2 Using Markov chain terminology: the mixing time of the chain is not known and

seems to be difficult to estimate.

2

2 Definition and Notations

For any integer n ≥ 1, let [n] = {1, . . . , n} be the set of integer from 1 to n. If
n and m are two non-negative integers, we denote by Surj(n, m) the number of
surjections from [n] onto [m]. The value of Surj(n, m) can be computed recur-
sively using the formula: Surj(n, m) = m ·Surj(n−1,m−1)+m ·Surj(n−1,m),
with initial conditions Surj(n, 1) = 1 and Surj(n, m) = 0 if m > n.

Let A be a finite alphabet, a deterministic automaton (or automaton for
short) on A is a tuple (Q, δ, q0), where Q is a finite set of states, δ is the transition
function, a possibly partial mapping from Q × A to Q, and q0 ∈ Q is the initial
state. If p, q ∈ Q and a ∈ A are such that δ(p, a) = q, then (p, a, q) is the

transition from p to q labelled by a, and is denoted by p
a
−→ q. An automaton

A = (A,Q, δ) is classically seen as a labelled directed graph whose set of vertices
is Q and whose edges are the transitions of A.

An automaton is accessible (or initially connected) when for every state p

there exists a path starting at the initial state that ends at p. The transition
function is extended to Q×A∗ by morphism, setting δ(p, ε) = p for every p ∈ Q

and δ(p, ua) = δ(δ(p, u), a) when everything is defined, and undefined otherwise.
An automaton is acyclic when its graph is acyclic. A source of an automaton

A is a state with no incoming transition. An acyclic automaton always has
at least one source, and accessible acyclic automata are acyclic automata with
exactly one source.

In the sequel, the set of states of an automaton with n states will almost
always be [n]. If A is an automaton of set of states [n] and X is a set of n

positive integers, the relabelling of A using X is the automaton obtained from
A when changing the states labels by elements of X, while respecting their
relative order: if p < q in A then the new label of p is smaller than the one of q.
Notice that there is only one way to do so.

Important : We are not interested in final states except in the experimental
section of this article (Section 5). We will therefore call “automaton” a determin-
istic automaton without final states throughout the article, and denote classical
deterministic automata by “automata with final states”.

3 Combinatorics of Acyclic Automata

3.1 Liskovet’s formula

In [9], Liskovets establishes formulas to count the number of acyclic automata.
These results relies on the inclusion-exclusion method [11], which is a classical
and elegant technique yielding formulas with alternating sums. One such result
is the following (set r = 1 in Eq. (3) of [9]): if ak(n) denote the number of
labelled acyclic automata with n states on a k-letter alphabet, then

ak(n) =

n−1
∑

t=0

(

n

t

)

(−1)n−t−1(t + 1)k(n−t)ak(t). (1)

3

Let αk(n, s) denote the number of labelled acyclic automata with n states
on a k-letter alphabet that have exactly s sources. Using almost the same proof
as Liskovets’ one can obtain the following formula:

αk(n, s) =

(

n

s

) n−s
∑

i=0

(

n − s

i

)

(−1)iak(n − s − i) · (n − s − i + 1)k(s+i). (2)

Lemma 1. The values of ak(m) for every m ∈ [n] can be computed using O(n2)
arithmetic operations and storing O(n2) integers. The values of αk(m, t) for
every m ∈ [n] and t ∈ [s], with s ≤ n, can be computed using O(sn2) arithmetic
operations and storing O(n2) integers.

Though originating from a combinatorial description, inclusion-exclusion for-
mulas are not always very useful when designing efficient random generators3,
because of the complications inherent to the exclusions of subsets, which corre-
spond to the minus signs in the formulas.

We will however use Liskovets’ formulas later in our algorithms, as a short-
cut to compute the required values more efficiently. For now, we need a more
straightforward combinatorial decomposition that is amenable to the recursive
method; this is the purpose of next section.

3.2 Decomposition using sources and secondary sources

Our decomposition consists intuitively in repeatedly pruning the automaton by
removing its sources. This is a classical idea coming from the enumeration of
acyclic directed graphs. If A is an acyclic automata, a state of A is a secondary
source if it is not a source and if all its incoming transitions come from sources.
In other words, p is a secondary source if it has no more incoming transition
when the sources of A are removed.

Let A be such an automaton with n states and s sources on a k-letter al-
phabet; when the s sources and their outgoing transitions are removed from A,
what remains is an acyclic automaton B with n− s states. We obtain a formula
by partitioning the possibilities according to the number u of sources of B, that
is, the number of secondary sources of A. Thinking backward, for any given B
with n − s states and u sources, one can reconstruct an automaton A by doing
the following:

1. Choose the set of labels Y ⊆ [n] for the s sources of A and relabel B following
[n] \ Y .

2. For every transition starting from one of the s sources, choose whether it is
undefined or not, and if it is not, where it ends amongst the n−s possibilities.
This must be done in such a way that every secondary source has at least
one incoming transition.

3 There is a noticeable exception when rejection techniques can be applied, but it does
not appear to be the case for acyclic automata.

4

There are
(

n

s

)

ways to choose the set of labels. Let βk(n, s, u) be the number
possibilities for the second item; using the number i of transitions starting from
one of the s sources and ending in one of the u secondary sources as a parameter,
we obtain that

βk(n, s, u) =

ks
∑

i=u

(

ks

i

)

· Surj(i, u) · (n − s − u + 1)ks−i, (3)

since one has to choose the i transitions, how they are mapped to their u ending
states (in a surjective way), and what are the ending states of the ks − i other
transitions starting from a source or whether they are undefined.

This yields the following formula for the number of acyclic automata with
s < n sources:

αk(n, s) =

min(ks,n−s)
∑

u=1

(

n

s

)

· βk(n, s, u) · αk(n − s, u), (4)

since there are αk(n−s, u) ways to choose B. Of course, we also have αk(n, n) = 1.
Remark that for computational purposes, Eq. (4) is not as good as Liskovet’s

formula, which can be computed in time O(n2) according to Lemma 1. The
gain is the combinatorial description that can be directly turned into a random
generator, provided all the required quantities are already computed.

p1

p2

p3

q1

q2

r1

r2

r3

r4

r5

s sources u secondary
sources

automaton B

automaton A

Fig. 1. Main decomposition on an automaton with n = 10 states on a two-letter
alphabet: To build an acyclic automaton A with s = 3 sources and u = 2 secondary
sources, one has to choose B, an acyclic automaton with 2 sources, and to set the
transitions starting from the sources of A: they can either be defined or undefined,
cannot end in a source of A, and must cover all the sources of B. The number of ways
to do so is β2(10, 3, 2) = γ(6, 2, 5).

5

3.3 Another description for βk(n, s, u)

Recall that βk(n, s, u) counts the number of ways to define the transitions start-
ing from s sources such that each of the u secondary sources has at least one
incoming transition.

For T , U and R three finite sets such that U and R are disjoint, consider the
family G(T ,U ,R) of partial functions from T to U ∪ R such that every q ∈ U
has at least one preimage. Let γ(t, u, r) be the cardinality of G(T ,U ,R) when
|T | = t, |U| = u and |R| = r.

Observe that we have the identity βk(n, s, u) = γ(ks, u, n − s − u) by taking
the set of transitions from the sources for T , the set of secondary sources for U
and the set of states that are neither sources nor secondary sources for R.

The inductive description of G(T ,U ,R) is the following. Let x be any element
of T . The functions in G(T ,U ,R) fall in two categories: those such that x is the
unique preimage of an element of U and the others. A function of the first
category restricted to T \ {x} is exactly an element of G(T \ {x},U \ {q},R):
there are u·γ(t−1, u−1, r) such possibilities. Otherwise, the restriction to T \{x}
is exactly an element of G(T \ {x},U ,R) and there are (u + r + 1)γ(t − 1, u, r)
possibilities, the number of different ways to choose the image of x, including
the case when it is undefined. We therefore obtained that:

γ(t, u, r) = u · γ(t − 1, u − 1, r) + (r + u + 1) · γ(t − 1, u, r). (5)

Moreover this formula has a combinatorial meaning, since it is a discussion on
the different possibilities for the image of a given element of T . The boundary
conditions are:

{

γ(t, 0, r) = (r + 1)t (all the mq’s have already been chosen),

γ(t, u, r) = 0, for t < u (not enough elements in T to cover U).

3.4 Remark on labelled combinatorial structures

The combinatorial study of labelled structures, i.e. when the n vertices are la-
belled with the elements of [n], is often easier than the one of unlabelled struc-
tures, since symmetries that can appear in the unlabelled case usually make the
counting more complicated.

The situation is different for structures that are rigid, that is, structures
with no symmetry4, since the number of labelled structures is exactly n! times
the number of unlabelled ones. Fortunately, this is the case for deterministic
automata when they are accessible, as explained in [9]. In particular, the num-
ber of unlabelled accessible acyclic automata is simply 1

n!αk(n, 1): they can be
randomly generated as labelled structures and still being uniform as unlabelled
automata.

4 Formally, the group of structure automorphisms is trivial.

6

4 Random generator

4.1 The recursive method

As stated in the introduction, acyclic automata cannot not be directly described
using the symbolic method [7, Ch. I]. Therefore, we cannot use the automatic
translation into a random generator proposed in [8]. The purpose of this section
is to adapt the method to our specific formulas of Section 3 in order to get
such a generator. Remark informally that our formulas are always of the form
λn =

∑

i λn,i, where parameter i has a combinatorial meaning. Assume that λn

and all the λn,i have already been computed, it is then easy to generate the value

of parameter i for a uniform object of size n, since Pn(parameter = i) =
λn,i

λn
. The

idea is to choose i with correct probability, reducing the problem to the random
generation of smaller objects. Some additional constructions can be required to
finally build the result, depending on the combinatorial construction that lead
to the formula for λn.

4.2 Application to acyclic automata

The method described above can directly be applied to generate uniformly at
random accessible acyclic automata. The first unoptimized version of the algo-
rithm for an acyclic automata with s sources is the following:

1. Compute all the values of ak(m), αk(m, s), βk(m, s, u) and also
(

ks

i

)

, Surj(i, u)
for every m ∈ [n], every s ∈ [m], every u ∈ [m − s] and every i ∈ [m].

2. Use Eq. (4) with s sources to generate the value of u with correct probability.
3. Recursively generate an acyclic automaton B of size n − s having u sources

(the term αk(n − s, u)).
4. Choose the set of source labels X, and relabel B following [n] \ X.
5. Use Eq. (3) to generate the value i of the number of transitions starting from

a source and ending in a secondary source.
6. Generate the transitions starting from sources with correct probability, by

generating a uniform surjection from [t] to [u], choosing the transitions end-
ing in secondary sources and the ending state of the other ones (or whether
they are undefined).

This straightforward way to turns the formulas of Section 3 into a random gen-
erator is constitutive of the recursive method. We shall improve the algorithm
above in next sections, but we can already make some important remarks.

First, notice that accessible acyclic automata can be generated using s = 1,
as they are exactly the automata with one source.

Second, remark that the first step is the main limitation of this method. It
requires quite some time and space to compute and store all the needed results.
Using Eq. (4) and Eq. (3) to perform the computations require O(n4) arithmetic
operations. However, it is important to notice that this preprocessing must be
done only once.

Finally, as will be explained in Section 4.4, the random generation of an
acyclic automaton with n states is done in time O(n). Therefore, once the pre-
processing is done, one can quickly generate a lot of acyclic automata.

7

4.3 Using γ instead of β

In Section 3.3 is explained that βk(n, s, u) = γ(ks, u, r), where both quantities
describe how to link the sources to the secondary sources, in two different ways.
The formula for γ(ks, u, r) is more advantageous in terms of time complexity,
since one can compute all the O(n3) needed values for γ using O(n3) arithmetic
operations with Eq. (5). Using γ instead of βk, we also do not need to compute
the values of Surj(i, u) anymore, since the combinatorial decomposition that
leads to Eq. (5) can be directly turned into an algorithm: in order to generate
a random element f of G(T ,U ,R), start from any x ∈ T then pick a random
number d in [γ(t, u, r)]. If d ≤ u·γ(t−1, u−1, r), choose uniformly an element q of
U and set that x is the unique preimage of q by f ; it remains to recursively draw
the restriction of f to T \{x} in G(T \{x},U \{q},R). If d > u ·γ(t−1, u−1, r),
choose uniformly the image of x by f in U ∪ R ∪ {⊥}, where f(x) = ⊥ means
that f(x) is undefined, and recursively draw the restriction of f to T \ {x}
in G(T \ {x},U ,R). The complexity of generating an element of G(T ,U ,R) is
therefore linear in |T |, using adapted data structures.

4.4 Algorithms and complexity

Our main algorithms are given in Fig. 2, page 9. As explain before, one must
first compute the values for αk, γ and the binomial coefficients that are needed
in the process. In particular, γ having three parameters that can all three be
proportional to n, there are Θ(n3) numbers to store. Thanks to Eq. (5), each
new value of γ is computed in a constant number of arithmetic operations, giving
the following result.

Theorem 1 (Preprocessing). The preprocessing step of the algorithm, where
all the possibly needed values of αk, γ and

(

n

s

)

are computed can be done using
O(n3) arithmetic operations and the memory to store O(n3) numbers.

Once the preprocessing is done, the random generation can be performed
efficiently, as stated in the following theorem.

Theorem 2 (Generation). After the preprocessing, the random generation of
an acyclic automaton with n state can be done in a linear number of arithmetic
operations and random generations of integers.

Notice that, as it is usually the case when using the recursive method, the
numbers involved in the computations are huge. This is why our theorems are
stated in terms of number of arithmetic operations: one cannot consider that such
operations can be done in constant time in real implementations. Alternative
algorithms for the recursive method that use floating point arithmetic have been
studied, but this is beyond the scope of this article.

8

RandomNumberOfSecondarySources(n,s)

if n = s then1

return 02

d←Random([αk(n, s)])3

u← 04

while d > 0 do5

u← u + 16

d← d−
`

n

s

´

· γ(ks, u, n− s− u) · αk(n− s, u)7

return u8

RandomlySetTransitionsFromSources(T ,U,R,δ)

// Transitions are added to δ during the process

if T = ∅ then1

return2

(p, a)←Remove the first element of T3

if Random([γ(|T |, |U|, |R|)]) ≤ u · γ(|T | − 1, |U| − 1, |R|)4

then

q ←Remove the first element of U5

δ(p, a)← q6

else7

q ← Random(U ∪R ∪ {⊥})8

if q 6= ⊥ then9

δ(p, a) = q10

RandomlySetTransitionsFromSources(T ,U,R,δ)11

RandomAcyclicAutomaton(n,s,δ)

if n = s then1

δ =empty function2

return3

u← RandomNumberOfSecondarySources(n,s)4

B ←RandomAcyclicAutomaton(n− s,u,δ)5

T ← ∅6

for p ∈ {n− s + 1, . . . , n} and a ∈ A do7

Add (p, a) in T8

U ← {n− s− u + 1 . . . , n− s}9

R← [n− s− u]10

RandomlySetTransitionsFromSources(T ,U,R,δ)11

Fig. 2. On the left a random acyclic automaton with 30 states on a two-letter alphabet.
On the right our main algorithms. Notice that states are labelled in a specific way during
the process: this does not change the uniformity of the unlabelled result, since we follow
the correct counting numbers for the sources, secondary sources and transitions between
them. One can apply a random permutation to the state labels at the end if needed.

9

Fig. 3. The shape of a random acyclic automata with 200 states on a two-letter alpha-
bet. The initial state is on the left, and we have represented the number of sources seen
at each step when repeatedly pruning the automaton. The width of this automaton is
6, and its shape is typical of what is observed under the uniform distribution.

4.5 A lazy strategy

A common strategy for that kind of algorithms is the lazy strategy, which consists
in computing the values for αk and γ only when needed. They are still stored,
but the computations are done on the fly. This strategy proves to be very efficient
in practice in our case, because of the specific shape of a uniform random acyclic
automata (as depicted in Fig. 3).

If A is an acyclic automaton, let sources(A) be its number of sources and let
pruned(A) be the acyclic automaton obtained when removing the sources and
their outgoing transitions. We define the width width(A) of an acyclic automaton
A by

{

width(A) = 0 if A has no state,

width(A) = max {sources(A),width(pruned(A))} otherwise.

The width of an acyclic automaton A is therefore the maximum size of a layer
of sources obtained when repeatedly pruning A.

We aim at using the width of the output automaton as a parameter for
the complexity of our algorithm. The main motivation for this is the typical
flat shape of a random acyclic automaton (Fig. 3). Assume that the algorithm
produces an automaton A of width w. Then the various values taken by u in
the algorithms are always smaller than or equal to w, and those taken by |T |
smaller than or equal to k ·w. Therefore, the lazy strategy only computes values
for γ(t, u, r) for t ≤ k · w, u ≤ w and r ≤ n, which requires O(n · w2) time and
space. However, the idea would not work without a shortcut to compute the
values of αk(n, s), which is needed in the algorithms; indeed, the variable u in
Eq. (4) takes values that are bigger than w, especially considering the inductive
nature of this equation. Fortunately, we can use the inclusion-exclusion formula
of Eq. (2) instead, which can be computed using O(n2 ·w) arithmetic operations
according to Lemma 1. This gives the following result.

Theorem 3 (Lazy Strategy). Using the lazy strategy in the random genera-
tor, the generation algorithm (including the computation of the required values)
needs O(n2 · w) arithmetic operations, where w is the width of the generated
acyclic automaton.

Theorem 3 is not enough to prove the generic efficiency of the lazy strategy:
one would also needs to show that, with high probably, a random uniform acyclic

10

100 200 300 400 500 600 700 800 900 1000

10%

20%

30%

40%

50%

k = 2

k = 3

number of states

ra
ti

o
o
f
m

in
im

a
l
a
u
to

m
a
ta

Fig. 4. The ratio of minimal automata for
alphabet of size 2 and 3. Each curve has
been obtained by generating 1000 acyclic
automata for 101 different sizes, from 10
to 1000. Note that one can significantly
increase the ratio by forcing states with
no outgoing transition to be final (hoping
that there is only one such state, which is
often the case experimentally).

automaton with n states has a small width with respect to n. Experimentation
indicates that it should be true, and trying to prove this is ongoing work. How-
ever, there is no reason to avoid this strategy, which is at least as good as the
classical one even when the generated acyclic automaton has a large width.

5 Experiments

We have implemented our random generator in the interpreted language Python,
which is clearly not the best choice for computational speed. However, we could
easily generate accessible automata of size 1000 in a reasonable amount of time
(a few minutes to generate 100 automata on a personal computer).

In our experiments, we considered that each state is final with probability
1
2 . In our first test, we computed experimentally the probability that a random
acyclic automaton with final states is minimal. Notice that minimality is easier
to check for acyclic automata than for general automata (see [2] for the details).
The results for alphabets of size 2 and 3 are depicted in Fig. 4.

We also computed the number of words in the finite language recognized by
a random acyclic automaton with final states. Since it grows very fast, we switch
to logarithms by calculating logarithm of the geometric mean of the number of
recognized words. It seems to indicate that random acyclic automata are a very
compact way to describe huge random sets of words (see Fig. 5).

100 200 300 400 500 600 700 800 900 1000

5

10

15

20

25

30

number of states

lo
ga

ri
th

m
of

th
e

n
u
m

b
er

of
re

co
gn

iz
ed

w
or

d
s

Fig. 5. The natural logarithm of the num-
ber of recognized words for an alphabet
of size 2. The curve has been obtained by
generating 1000 acyclic automata for 101
different sizes, from 10 to 1000. It is dif-
ficult to guess the function behind that
kind of experimental curves, but subex-
ponential growth like x 7→ e

√

x is a possi-
bility.

11

6 Conclusion and perspectives

Using some optimizations on an inductive decomposition of acyclic automata,
we proposed a random generator that is efficient enough to make experimental
statistics on automata of size up to 1000 or a bit more. We relied on the alter-
native description of βk by γ to lower the initial complexity, and used inclusion-
exclusion formulas to make the lazy strategy possible.

One of our motivation for studying acyclic automata comes from the theory
of automaton groups. Consider a letter-by-letter deterministic transducer, and
the different functions from A∗ to A∗ it realizes when taking all the possibilities
for the initial state. Assume that some conditions ensure that this functions
are permutations of A∗ and consider the group they generate. That kind of
groups are especially rich and have been studied by both mathematicians and
computer scientists (see [1] for more details). In particular, Antonenko [3] gave
some conditions on the shape of the transducer that ensure the generated group
is finite, and this conditions involve acyclic automata. The quantitative study of
Antonenko automata therefore requires more knowledge on deterministic acyclic
automata, and could be a first step toward understanding the combinatorics
behind that kind of groups.

Acknowledgements: we would like to thanks Arnaud Carayol for the very
fruitful discussions we had during the preparation of this article.

References

1. A. Akhavi, I. Klimann, S. Lombardy, J. Mairesse, and M. Picantin. On the finite-
ness problem for automaton (semi)groups. IJAC, 22(6), 2012.

2. M. Almeida, N. Moreira, and R. Reis. Exact generation of minimal acyclic deter-
ministic finite automata. Int. J. Found. Comput. Sci., 19(4):751–765, 2008.

3. A. S. Antonenko. On transition function of mealy automata with finite growth.
Matematychni Studii, 29(1), 2008.

4. V. Carnino and S. De Felice. Sampling different kinds of acyclic automata using
Markov chains. TCS, 450:31–42, 2012.

5. M. Domaratzki. Improved bounds on the number of automata accepting finite
languages. In DLT’02, LNCS 2450, pages 209–219, 2002.

6. M. Domaratzki, D. Kisman, and J. Shallit. On the number of distinct languages
accepted by finite automata with n states. Journal of Automata, Languages and

Combinatorics, 7(4):469–486, 2002.
7. P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge Univ. Pr., 2009.
8. P. Flajolet, P. Zimmermann, and B. V. Cutsem. A calculus for the random gener-

ation of labelled combinatorial structures. TCS, 132(2):1–35, 1994.
9. V. A. Liskovets. Exact enumeration of acyclic deterministic automata. Discrete

Applied Mathematics, 154(3):537–551, 2006.
10. A. Nijenhuis and H. Wilf. Combinatorial algorithms. Computer science and applied

mathematics. Academic Press, 1975.
11. R. P. Stanley. Enumerative Combinatorics, volume 1. Cambridge Univ. Pr., 2000.

12

Appendix

Proof of Eq. 2

Let S=Y (n) be the set of size-n automata whose set of sources is exactly Y and
let Let S⊇Y (n) be the set of size-n automata whose set of sources contains Y .
We have

|S⊇Y (n)| =
∑

Z⊇Y

|S=Z(n)|,

so that, by inclusion-exclusion principle [11],

|S=Y (n)| =
∑

Z⊇Y

(−1)|Z|−|Y ||S⊇Z(n)|.

Let Y ⊆ [n] be a set of s states; if Z ⊇ Y then Z is obtained from Y by adding
i elements of [n] \ Y . This yields, summing on the possible values for i:

|S=Y (n)| =

n−s
∑

i=0

(

n − s

i

)

(−1)i · ak(n − s − i) · (n − s − i + 1)k(s+i),

since the number of acyclic automata whose set of sources contains a given set
of size j is ak(n− j) · (n− j + 1)kj , as proven by Liskovets [9, proof of Eq. (3)].
Summing on the

(

n

s

)

possible Y ’s gives the result. �

Proof of Lemma 1

Using Pascal’s triangle, one can compute and store the needed binomial values
in O(n2) space and time. Let u(n, t) = (t + 1)k(n−t). We have

u(n + 1, t) = (t + 1)ku(n, t),

hence, since k is fixed, the needed values for (t+1)k(n−t) can also been computed
and store in O(n2) space and time. Assuming inductively that all ak(m) have
been calculated for 1 ≤ m < n, one can compute the value of ak(n) in linear
time, using the preprocessing above. Therefore, the computation of every ak(m)
can be done in time O(n2).

Similarily, let v(n, j) = (n − j + 1)kj . We have the relation:

v(n + 1, j + 1) = (n − j + 1)kv(n, j),

from which one can compute and stored every needed value of (n−s−i+1)k(s+i)

in O(n2) space and time. Once all this preprocessing are done, every αk(m, t)
can be computed in O(n) arithmetic operations, and there are sn such values to
calculate and store. �

13

Proof of Theorem 2

Let T (n) be the number of operations needed to generate an acyclic automa-
ton with n states. Line 4 of RandomAcyclicAutomaton(n,s,δ) is done in time
proportional to the result u, and u ≤ ks since all the secondary sources must
have an incoming transition from a source. The computation of B, line 5, is
done in time T (n − s). Lines 7-8 are done in time O(s). The complexity of
RandomlySetTransitionsFromSources(T ,U,R,δ) is proportional to the car-
dinality of T , which is ks. Putting all together, since k is fixed, we obtain that:

T (n) = T (n − s) + O(s),

concluding the proof. �

Experimental study of the width

In Section 4.5 we said that experimentally the width of a random accessible
acyclic automaton is usually small. This can be seen on the following figure,
were we computed the maximum width reached in 1000 draws, for size 100 to
1000, on a two-letter alphabet. The fact that the curves seems to grow sublinearly
motivates the use of the lazy strategy.

100 200 300 400 500 600 700 800 900 1000

5

10

15

20

25

30

number of states

m
ax

im
al

w
id

th
in

10
00

d
ra

w
s

Of course, the typical width of an acyclic automaton is much smaller than
the maximum out of 1000 attempts.

14

