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Abstract

In this paper, we study the direct and inverse scattering theory at fixed energy for massless
charged Dirac fields evolving in the exterior region of a Kerr-Newman-de Sitter black hole. In
the first part, we establish the existence and asymptotic completeness of time-dependent wave
operators associated to our Dirac fields. This leads to the definition of the time-dependent
scattering operator that encodes the far-field behavior (with respect to a stationary observer)
in the asymptotic regions of the black hole: the event and cosmological horizons. We also
use the miraculous property (quoting Chandrasekhar) - that the Dirac equation can be
separated into radial and angular ordinary differential equations - to make the link between
the time-dependent scattering operator and its stationary counterpart. This leads to a nice
expression of the scattering matrix at fixed energy in terms of stationary solutions of the
system of separated equations. In a second part, we use this expression of the scattering
matrix to study the uniqueness property in the associated inverse scattering problem at
fixed energy. Using essentially the particular form of the angular equation (that can be
solved explicitely by Frobenius method) and the Complex Angular Momentum technique on
the radial equation, we are finally able to determine uniquely the metric of the black hole
from the knowledge of the scattering matrix at a fixed energy.
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1 Introduction

In this paper, we pursue our investigation of inverse scattering problems in black hole spacetimes
initiated in [18] and continued in [19, 20]. Roughly speaking, the question we adressed in this
serie of works was: can we determine the geometry of black hole spacetimes by observing waves
at infinity? Here infinity means infinity from the point of view of an observer located in the
exterior region of a black hole and stationary with respect to it. For instance, from this point
of view, it is well known that the event horizon (and also the cosmological horizon if any) of the
black hole is perceived as an asymptotic region of spacetime by our observer, a phenomenon due
to the intense effect of gravity near an horizon. Observing waves at the ”infinities” of a black
hole, in particular measuring how a black hole scatters incoming scalar or electromagnetic waves
(or affects the trajectories of classical particles), is one of the few ways to get informations on
the main characteristics of the black hole1. Indeed, since black holes are by essence invisible,
we can only study them by indirect means. Positive answers were given to this question in the
case of Reissner-Nordström black holes from the knowledge of the high energies of scattered
Dirac waves, or in the case of Reissner-Nordström-de-Sitter black holes from the knowledge of
scattered Dirac waves with a fixed nonzero energy. Whereas spherically symmetric black holes
were studied in the papers [18, 19, 20], we adress here the same problem but in the case of more
complicated geometrical objects: rotating black holes.

Precisely, we shall consider the family of Kerr-Newman-de-Sitter black holes (KN-dS) which
are exact solutions of the Einstein-Maxwell equations and describe electrically charged rotating
black holes with positive cosmological constant. In Boyer-Lindquist coordinates (t, r, θ, ϕ), the
exterior region of a KN-dS black hole is described by the four-dimensional manifold

M = Rt×]r−, r+[r×S
2
θ,ϕ, (1.1)

equipped with the Lorentzian metric (having signature (+,−,−,−))

g =
∆r

ρ2

[

dt− a sin2 θ

E
dϕ

]2

− ρ2

∆r
dr2 − ρ2

∆θ
dθ2 − ∆θ sin

2 θ

ρ2

[

a dt− r2 + a2

E
dϕ

]2

, (1.2)

where

ρ2 = r2 + a2 cos2 θ, E = 1 +
a2Λ

3
,

∆r = (r2 + a2)(1− Λr2

3
)− 2Mr +Q2, ∆θ = 1 +

a2Λcos2 θ

3
.

The three parameters M > 0, Q ∈ R and a ∈ R appearing above are interpreted as the
mass, the electric charge and the angular momentum per unit mass of the black hole whereas
the parameter Λ > 0 is the positive cosmological constant of the universe. The values r±
appearing in (1.1) are the two larger distinct roots of the fourth order polynomial ∆r such that

1Among the other interesting ways, the analysis of gravitational waves and/or of Hawking radiations could be
also used as the starting point for an inverse problem since these phenomena are believed to be measurable in the
near future.
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∀r ∈ (r−, r+), ∆r(r) > 0. Note that the hypersurfaces {r = r±} are singularities of the metric
since ∆r appears at the denominator in (1.2). These hypersurfaces are called event horizon for
{r = r−} and cosmological horizon for {r = r+}. We emphasize that these singularities are mere
coordinate singularities. The event and cosmological horizons correspond in fact to regular null
hypersurfaces which can be crossed one way, but would require speed greater than that of light
to be crossed the other way. Hence their names: horizons.

The Boyer-Lindquist coordinates fit well to the point of view of stationary observers, that is
the class of observers who move on worldlines of constant r and θ and with a uniform angular
velocity ω, i.e. ϕ = ωt + const. Indeed, the variable t measures the perception of time of
such observers when located far from the event and cosmological horizons. Think typically of a
telecospe on earth aimed at the black hole. Since this idea corresponds well to the kind of inverse
scattering experiment we have in mind, we shall work with this coordinates system eventhough
it makes appear singularities at the event and cosmological horizons. But let us see what exactly
happens there.

The answer is that, from the point of view of stationary observers, the event and cosmological
horizons are unreachable regions. More precisely, recall that KN-dS black holes possess two
families of incoming and outgoing shearfree null geodesics - called principal null geodesics - that
foliate entirely the spacetime. They are generated by the vector fields

V ± =
r2 + a2

∆r

(

∂t +
aE

r2 + a2
∂ϕ

)

± ∂r, (1.3)

They should be thought of as the trajectories of light-rays aimed at - or coming from - the event
and cosmological horizons. A crucial point is that the event and cosmological horizons are never
reached in a finite time t by the principal null geodesics. This means that these horizons are
asymptotic regions of space from the point of view of the stationary observers defined above.

To better understand this point, we work with a new radial variable x defined by

dx

dr
=
r2 + a2

∆r
,

in such a way that, in the t−x plane, the incoming and outgoing principal null geodesics become
simply straightlines x = ±t + c. In particular, in the new coordinates system (t, x, θ, ϕ), the
event and cosmological horizons are then pushed away to {x = −∞} and {x = +∞} respectively.
This encodes the ”asymptoticness” property mentioned above. Summarizing, a KN-dS black
hole will be from now on described by the 4-dimensional manifold

B = Rt × Rx × S
2
θ,ϕ, (1.4)

equipped with the metric

g =
∆r

ρ2

[

dt− a sin2 θ

E
dϕ
]2

− ρ2∆r

(r2 + a2)2
dx2 − ρ2

∆θ
dθ2 − ∆θ sin

2 θ

ρ2

[

a dt− r2 + a2

E
dϕ
]2
. (1.5)

As waves for our inverse scattering problem, we shall consider massless and electrically
charged Dirac fields evolving in the exterior region of a KN-dS black hole described by (1.4)
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and (1.5). Using the stationarity and global hyperbolicity of the spacetime, we shall see (after
several simplifications) that such Dirac fields obey a PDE of evolution, generically denoted here
by

i∂tψ = Hψ, (1.6)

on the cylinder Σ = Rx×S
2
θ,ϕ corresponding to the level spacelike hypersurface {t = 0}. Here H

stands for the resulting time-independent Dirac Hamiltonian, a first order matrix-valued PDE on
Σ. Due to our choice of studying Dirac fields, a nice Hilbert space framework is at our disposal
and the Hamiltonian H that generates the evolution can be viewed as a selfadjoint operator on
a fixed Hilbert space. We stress the fact that this wouldn’t be true for scalar or electromagnetic
fields, i.e. for fields having integral spin, because of the well known superradiance phenomenon
(see [5, 24, 32]). In that case, there would be no positive conserved quantity along the evolution
and the Hamiltonian couldn’t be viewed as a selfadjoint operator on a fixed Hilbert space. The
right framework seems to be the one given by Krein spaces (see [24, 30, 31, 32] for more details on
that point). This is the main reason that explains our choice to study Dirac fields for which no
superradiance phenomenon occurs. But let us now describe more thoroughly the corresponding
Hamiltonian H. It will be shown to take the form

H = J−1H0, H0 = Γ1Dx + a(x)HS2 + c(x,Dϕ), (1.7)

where Γ1 = diag(1,−1), Dx = −i∂x, HS2 denotes a certain angular Dirac operator on the
2-sphere S

2 and the matrix-valued potential J−1 is given by

J−1 =
1

1 + α(x, θ)2
(

I2 − α(x, θ)Γ3
)

,

where Γ3 is a Dirac matrix that anti-commutes with Γ1. At last, the potentials a(x), c(x,Dϕ), α(x, θ)
are given in term of the metric (1.2) by

a(x) =

√
∆r

r2 + a2
, c(x,Dϕ) =

aE

r2 + a2
Dϕ +

qQr

r2 + a2
, α(x, θ) =

√
∆r√
∆θ

a sin θ

r2 + a2
.

Here q denotes the electric charge of the Dirac field.
On one hand, the Hamiltonian H0 is selfadjoint on the Hilbert space2

H = L2(R× S
2, dxdθdϕ; C2),

used to represent our Dirac spinors and equipped with the usual scalar product. On the other
hand, a residue of superradiance phenomenon entails that the Hamiltonian H is selfadjoint on
the slightly modified Hilbert space

G = L2(R× S
2, dxdθdϕ; C2),

2Note that we work in an unweighted L
2 space in order to make the Dirac operator as independent as possible

of the geometry.

6



equipped with the scalar product 〈., .〉G = (., J.)H where

J = I2 + α(x, θ)Γ3.

We shall show that supθ |α(x, θ)| is exponentially decreasing at both horizons {x = ±∞}.
Hence the full Dirac Hamiltonian H can be viewed as a ”small” non spherically symmetric
perturbation of order 1 of the Hamiltonian H0 which in turn is composed of

• a differential operator Γ1Dx +
aE

r2+a2
Dϕ that - roughly speaking - corresponds asymptoti-

cally to transport along the outgoing and incoming principal null geodesics,

• an angular matrix-valued differential operator HS2 weighted by a scalar potential a(x) that
is exponentially decreasing at both horizons {x = ±∞},

• a scalar perturbation qQr
r2+a2

caused by the interaction between the electric charge of the
black hole and that of the Dirac fields.

We emphasize here once again that the full Hamiltonian H is a perturbation of order 1 of the
Hamiltonian H0 which, at first sight, breaks the obvious symmetries of H0 (see below for more
details on this point). We list now a few other generic properties of the Dirac Hamiltonian H
that are important to understand the nature of our inverse problem.

The Dirac Hamiltonian H shares many properties with a canonical Dirac Hamiltonian on
the cylinder Σ = Rx × S

2
θ,ϕ equipped with a Riemanniann metric having two asymptotically

hyperbolic ends {x = ±∞}. More precisely, the Hamiltonians H and H0 above can be regarded
as perturbations of order 1 of a canonical Dirac Hamiltonian on Σ equipped with the spherically
symmetric simple metric

h = dx2 +
1

a(x)2
(

dθ2 + sin2 θdϕ2
)

,

and a(x) exponentially decreasing at both horizons {x = ±∞}. We refer to [17] for a thorough
description of this simpler model and the corresponding (local) inverse scattering results.

Nevertheless, our manifold is - in some sense - simpler than a general Riemanniann manifold
with two asymptotically hyperbolic ends since it possesses symmetries. It is obvious from (1.2)
that the spacetime M is invariant by time translation, meaning that the vector field ∂t is
Killing and thus generates a continuous group of isometry, and also has cylindrical symmetry,
meaning that the vector field ∂ϕ is Killing. The first symmetry was used to express the Dirac
equation as an evolution equation generated by a time-independent Hamiltonian H. The second
symmetry allows us to decompose the Dirac equation onto a Hilbert basis of angular modes
{eikϕ, k ∈ 1

2 + Z} simplifying thus the problem.
Although there is no other symmetry (in the sense of the existence of globally defined Killing

vector fields on M), KN-dS black holes have hidden symmetries that can be used to considerably
simplify the problem. In particular, they are responsible for the separability of the Dirac equation
(1.6) into coupled systems of ODEs, a property crucially used in this paper. We mention that
these hidden symmetries come from the existence of a Killing tensor [4], itself coming from
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the existence of a conformal Killing-Yano tensor [27]. For the separability of Dirac equation in
spacetimes admitting such structures, we refer to [40].

A scattering theory for scalar waves on general asymptotically hyperbolic Riemanniann man-
ifolds is now well studied and well known. We refer for instance to [35, 38, 49] for an extensive
introduction to the direct and inverse scattering results in this class of manifolds. Such results
have been extended to scalar waves on Kerr-de-Sitter black holes recently by Georgescu, Gérard
and Häfner in [32] despite the superradiance phenomenon described above. In this paper, we
first establish a direct scattering theory for massless electrically charged Dirac fields evolving in
the exterior region of a KN-dS black hole. We follow the papers [15, 34] where similar results
were obtained in Kerr or Kerr-Newman black holes (that is Λ = 0 in our model).

To understand the scattering properties of the Dirac fields, it is important to have in mind
that there are two similar but distinct asymptotic regions: the event and cosmologial horizons.
At late times (and from the point of view of stationary observers), the Dirac fields scatter
towards these asymptotic regions. Indeed, the pure point spectrum of H will be shown to be
empty, meaning that the energy of Dirac fields cannot remain trapped in compact sets between
the two horizons. Moreover and as usual in scattering theory, the Dirac fields seem to obey
simpler PDEs in the asymptotic regions (always from the point of view of stationary observers).
Precisely, when x→ ±∞, we formally see that

H → H± = Γ1Dx +
aE

r2± + a2
Dϕ +

qQr±
r2± + a2

.

The simpler Hamiltonians H± generate the asymptotic dynamics at the event and cosmological
horizons respectively. In order to separate the two asymptotic regions, we use the projectors
onto the positive and negative spectrum of Γ1

P± = 1R±(Γ1).

The operators P± are in fact the asymptotic velocity operators associated to the unperturbed
Dirac Hamiltonian Γ1Dx. That these operators are useful to separate the event and cosmological
horizons was already used in [34, 14, 15]. Then we define the future (+) and past (-) asymptotic
Hamiltonians

H+ = H+P+ +H−P−, H− = H+P− +H−P+,

which are clearly selfadjoint on H. We are then able to prove the following Theorem

Theorem 1.1. The global wave operators

W±(H,H±, I2) = s− lim
t→±∞

eitHe−itH±

,

exist as operators from H to G and are asymptotically complete, i.e. they are isometries from
H to G and their inverse wave operators given by

(W±(H,H±, I2)
∗ =W±(H±,H, J) = s− lim

t→±∞
eitH

±

Je−itH ,

also exist as operators from G to H.
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The Theorem 1.1 will be proved in several steps in Section 4.2. The main technical point is
to obtain a Limiting Absorption Principle (LAP) for the Hamiltonian H. This will be done in
Appendix B.3 by means of a Mourre theory. Once a LAP for H is obtained, the existence and
asymptotic completeness of the above wave operators follow from standard arguments of Kato’s
H-smooth operator theory (see for instance [47]).

The global time-dependent scattering operator is then defined by the standard rule

S = (W+(H,H+, I2))
∗ W−(H,H−, I2), (1.8)

which is clearly a unitary operator from H to H. Note that, due to our choice of unweighted
Hilbert space H, we can naturally compare two different scattering operators S and S̃ associated
to two different KN-dS black holes since they act on the same Hilbert space. In this paper
however, we are interested in inverse scattering problem at a fixed energy. That’s why we won’t
take the full scattering operator S given by (1.8) as the starting point of our inverse problem.
Instead, from S, we construct the corresponding time-dependent scattering matrix S(λ) at
energy λ. Since the asymptotic Hamiltonians H± are not identical, there is no canonical way
to define such a scattering matrix. Nevertheless, we follow the usual route and introduce the
following unitary operators on H

F+ψ(λ) =
1√
2π

∫

R

(

e−ix(λ−Ω+(Dϕ)) 0

0 eix(λ−Ω−(Dϕ))

)

ψ(x)dx, (1.9)

and

F−ψ(λ) =
1√
2π

∫

R

(

e−ix(λ−Ω−(Dϕ)) 0

0 eix(λ−Ω+(Dϕ))

)

ψ(x)dx, (1.10)

where Ω±(Dϕ) =
aEDϕ+qQr±

r2±+a2
. These operators diagonalize the asymptotic Hamiltonians H+

and H− respectively. Hence, we define the global scattering matrix at energy λ in a natural way
by the rule

S = (F+)
∗S(λ)F−. (1.11)

Note that S(λ) is a unitary operator on HS2 = L2(S2;C2).
The question we adress in this paper can be now more precisely stated. Does the knowledge

of S(λ) for a fixed energy λ ∈ R determine uniquely a KN-dS black hole? In fact, we can refine
considerably our uniqueness inverse result as follows. Note first that the scattering matrix S(λ)
has the following 2 by 2 matrix structure

S(λ) =

[

TL(λ) R(λ)
L(λ) TR(λ)

]

.

The operators TL(λ) and TR(λ) are the transmission operators at a fixed energy λ ∈ R whereas
R(λ) and L(λ) are the reflection operators from the right and from the left respectively at a
fixed energy λ. The formers measure the part of signal that is transmitted from one horizon to
the other in a scattering process. The latters measure the part of a signal that is reflected from
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one end to itself in a scattering process. Note at last that all of them act on the Hilbert space
L2(S2, dθdϕ;C).

To determine uniquely a KN-dS black hole, it will be enough to know only one of the
reflection operators R(λ) or L(λ) at a fixed energy. In fact, we can even obtain a better result
using the cylindrical symmetry of the spacetime. Clearly, this entails that all the operators
(Dirac Hamiltonian, wave and scattering operators) under study can be decomposed onto the
Hilbert sum of angular modes {eikϕ}k∈1/2+Z. Note our choice of half-integers k ∈ 1

2 +Z since we
want some anti-periodic conditions in the variable ϕ. Recall that we are working with spinors
that change sign after a complete rotation. Then, we have

HS2 = ⊕k∈ 1
2
+Z

Hk
S2
, Hk

S2
= L2((0, π), dθ;C2),

and the scattering matrix can be decomposed as the orthogonal sum

S(λ) = ⊕k∈ 1
2
+Z
Sk(λ), Sk(λ) =

[

TL
k (λ) Rk(λ)
Lk(λ) TR

k (λ)

]

,

where T
L/R
k (λ), Rk(λ) and Lk(λ) are the corresponding transmission and reflection operators

acting on the Hilbert space l = L2((0, π), dθ;C).
The main inverse result of this paper states that the knowledge of Rk(λ) or Lk(λ) at a fixed

energy λ ∈ R and for two different angular modes k ∈ 1
2 + Z is enough to determine uniquely a

KN-dS black hole. Precisely, we shall prove

Theorem 1.2. Let (M,Q2, a,Λ) and (M̃, Q̃2, ã, Λ̃) be the parameters of two a priori different
KN-dS black holes. Let λ ∈ R and denote by S(λ) and S̃(λ) the corresponding scattering matrices
at fixed energy λ. More generally, we shall add a symbol ˜to all the relevant scattering quantities
corresponding to the second black hole. Assume that one reduced reflection operators Rk(λ) or
Lk(λ) are known, i.e.

Rk(λ) = R̃k(λ), (1.12)

Lk(λ) = L̃k(λ),

as operators on l = L2((0, π), dθ;C) and for two different values of k ∈ 1
2 + Z. Then the

parameters of the two black holes coincide, i.e.

M = M̃, a = ã, Q2 = Q̃2, Λ = Λ̃.

In fact we obtain much better results in the course of the proof. Indeed, not only do we
recover four parameters, but we are in fact able to determine scalar functions depending on the
radial variable x. Precisely, the function

λ− c(x, k)

a(x)
, (1.13)
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is determined up to some diffeomorphisms. Since (1.13) is known for two different k, we deter-
mine in fact two different functions. Finally, note that if we specialize to the case of Kerr-de-Sitter
black hole, that is if we set Q = 0 in the metric (1.2), then we determine the functions

a(x), c(x, k), (1.14)

separately up to a discrete set of translations in the variable x. We emphasize that the recovery
of (1.13) and (1.14) from one of the scattering operators at a fixed energy λ is the main result
of this paper. We recover thus the potentials that appear in the expression of the Hamiltonian
H or rather H0. We then use the particular form of the functions (1.13) or (1.14) to determine
uniquely the parameters M,a,Q2,Λ.

Let us finish this introduction saying a few words on the strategy of the proof of Theorem
1.2. Since we need to introduce many other objects and notations for the full proof, we shall
restrict ourselves here to give only the main steps. However, we devote the entire Section 5 to
sketch the proof of our main Theorem in much more details, once we have introduced all the
necessary background.

The first step is to use the hidden symmetries of the equation to simplify further the problem.
As already said, the Dirac equation in KN-dS black holes can be separated into systems of ODEs.
Precisely, it will be shown in Section 3.2 that the stationary equation at a fixed energy λ ∈ R

Hψ = λψ, (1.15)

can be simplified as follows.

Theorem 1.3. Denote by I the set (1/2 + Z)× N
∗. Then, for all λ ∈ R, there exists a Hilbert

decomposition of the energy space H as

H =
⊕

(k,l)∈I
Hkl(λ),

where
Hkl(λ) = L2(R;C2)⊗ Ykl(λ) ≃ L2(R;C2),

with the following properties.

• The Ykl(λ) = Ykl(λ)(θ, ϕ) are L2 solutions of the eigenvalues angular equation
[

HS2 − λ
a sin θ√

∆θ
Γ3

]

Ykl(λ) = µkl(λ)Ykl(λ). (1.16)

More precisely, the Ykl(λ) are the normalized eigenfunctions of the selfadjoint angular
operator

AS2(λ) = HS2 − λ
a sin θ√

∆θ
Γ3. (1.17)

on HS2 = L2(S2;C2) associated to its positive eigenvalues µkl(λ) ordered in such a way
that ∀k ∈ 1

2 + Z, ∀l ∈ N
∗, µkl(λ) < µk(l+1)(λ). The µkl(λ)’s will be called generalized

angular momenta in what follows.
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• For all ψ =
∑

(k,l)∈I ψkl(x) ⊗ Ykl(λ) ∈ H, the stationary equation (1.15) is equivalent to
the countable family of one-dimensional radial stationary Dirac equations

[

Γ1Dx + µkl(λ)a(x)Γ
2 + c(x, k)

]

ψkl(x) = λψkl(λ), (1.18)

parametrized by the generalized angular momentum µkl(λ).

Before proceeding further, note that the generalized angular momenta µkl(λ) - that play
here the role of constants of separation - do depend on the energy λ, making the separation of
variables process highly non trivial. Now let us fix an energy λ ∈ R. Using the corresponding
decomposition of the Hilbert space H given in Theorem 1.3, the scattering matrix S(λ) can also
be written as the orthogonal sum of 2 by 2 unitary matrices in the following way

S(λ) = ⊕(k,l)∈ISkl(λ),

where

Skl(λ) =

[

T (λ, k, µkl(λ)) R(λ, k, µkl(λ))
L(λ, k, µkl(λ)) T (λ, k, µkl(λ))

]

.

The coefficients T (λ, k, µkl(λ)), R(λ, k, µkl(λ)) and L(λ, k, µkl(λ)) are naturally interpreted
as the transmission and reflection coefficients associated to the one-dimensional Dirac equation
(1.18). This is why we emphasize their dependence with respect to λ, k and µkl(λ) since the
equations (1.18) do depend on these parameters disjointly. Also, these transmission and reflec-
tion coefficients can be expressed in terms of determinants of particular fundamental solutions
of (1.18) - called Jost functions - having prescribed asymptotic behaviours at the horizons. One
important point to mention here is that we have at our disposal very precise expressions for the
coefficients T (λ, k, µkl(λ)), R(λ, k, µkl(λ)) and L(λ, k, µkl(λ)) as power series in the generalized
angular momentum µkl(λ). These exact expressions will allow us to make accurate calculations
of the asymptotics of the scattering coefficients needed in the next steps.

Summarizing at this stage, we see that the reflection operators Rk(λ), Lk(λ) which are
known by our main assumption (1.12), can be considerably simplified if we decompose them
onto the generalized spherical harmonics Ykl(λ), itselves eigenfunctions of the angular equation
(1.16). Notice that, and this is one of the main peculiarity of this model (with respect to [20]),
these generalized spherical harmonics also depend on the parameters of the KN-dS black hole
and thus are a priori unknown.

The second step is then to show that, although the previous remark entails that we don’t
know the scattering coefficients T (λ, k, µkl(λ)), R(λ, k, µkl(λ)) and L(λ, k, µkl(λ)) a priori, it can
be shown that - rougly speaking - our main assumption (1.12) implies that for a fixed k and for
large enough l >> 1, one of the following condition is satisfied.

R(λ, k, µkl(λ)) = R̃(λ, k, µ̃kl(λ)), (1.19)

L(λ, k, µkl(λ)) = L̃(λ, k, µ̃kl(λ)).
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Moreover, for large enough l >> 1, we can also show

Ykl(λ) = Ỹkl(λ). (1.20)

This will be proved in Section 6.2. We emphasize that the above results are not at all immediate
and are a consequence of the following intermediate results and arguments:

• A re-interpretation of the coefficients |R(λ, k, µkl(λ))|2 and |L(λ, k, µkl(λ))|2 as eigenvalues
associated to certain operators (for instance to Rk(λ)

∗Rk(λ) and Lk(λ)Lk(λ)
∗) which are

supposed to be known by (1.12).

• A detailed analysis of the asymptotics of T (λ, k, µkl(λ)), R(λ, k, µkl(λ)) and L(λ, k, µkl(λ))
when µkl(λ) → ∞. This leads to the proof that these coefficients are strictly increasing
with respect to the generalized angular momentum µkl(λ).

• A proof that for fixed k ∈ 1
2+Z, the generalized angular momenta increases as the integers,

i.e. there exists 0 < c < C such that cl ≤ µkl(λ) ≤ Cl for l large enough. This is done in
Appendix A.

• As a consequence of all these results put together, the scattering coefficients |R(λ, k, µkl(λ))|2
and |L(λ, k, µkl(λ))|2 are shown to be simple eigenvalues of the operators Rk(λ)

∗Rk(λ) and
Lk(λ)Lk(λ)

∗ for l large enough, associated with the eigenfunctions Y 1
kl(λ) or Y 2

kl(λ), first
or second components of Ykl(λ). This leads to the above results.

The third step detailed in Section 6 consists in solving an inverse problem for the angular
equation (1.16) from the knowledge of the generalized spherical harmonics Ykl(λ) given in (1.20).
This can be done for two reasons. First, we only have to recover two parameters since it turns
out that the angular operator (1.17) only depends on a and Λ. Second, the angular equation
(1.16) is a system of ODEs of Fuschian type having weakly singularities at the north and south
poles of S2 in our coordinate system. In consequence, this equation can be explicitely solved
by Frobenius method. In particular, we are able in Section 6.1 to construct (under the form of
singular power series in the variable θ) the generalized spherical harmonics Ykl(λ) as the unique
L2 solutions of (1.16). From the asymptotics of Ykl(λ) when θ → 0 (that we are able to calculate)
and (1.20), we easily prove that a and Λ are uniquely determined. From this in turn, we deduce
that all the quantites depending only on a and Λ are uniquely determined. This is the case
for instance for the generalized angular momenta µkl(λ) and µ̃kl(λ) which are thus shown to
coincide under the assumption (1.12). This will be used in the last step of the proof of our main
Theorem.

The fourth and main idea of this paper is to use the Complex Angular Momentum (CAM)
method (see [46, 44] for a presentation of the method in the historical setting of radial Schrödinger
operators on R

n) to get more informations from the reflection coefficients R(λ, , k, µkl(λ)) or
L(λ, , k, µkl(λ)) known for (k, l) ∈ (12 +Z)×N

∗. This method - already used in [20] in a simpler
setting - consists in allowing the generalized angular momentum µkl(λ) to be complex and in
using the particular analytic properties of the coefficients T (λ, k, z), R(λ, k, z), L(λ, k, z) with
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respect to z ∈ C. One of the main steps is to prove that certain quantities such as 1
T (λ,k,z) ,

T (λ, k, z)R(λ, k, z) and T (λ, k, z)L(λ, k, z) are entire functions of exponential type with respect
to z and belong to the Nevanlinna class of analytic functions. We refer to the beginning of
Section 7.2 for a precise definition. The important point here is that such functions are uniquely
determined by their values on a sequence αl of complex numbers satisfying a Müntz condition
such as

∑

l

1

1 + |αl|
= ∞.

But note that the generalized angular momenta µkl(λ) verify the above Müntz condition (see
Appendix A). Hence, using the additional fact that the reflection coefficients R(λ, k, z) and
L(λ, k, z) determine uniquely the transmission coefficient T (λ, k, z) (this is a simple conse-
quence of the analytic properties of these functions w.r.t. the variable z and Hadamard fac-
torization Theorem), we infer from our previous results that the Nevanlinna functions 1

T (λ,k,z) ,

T (λ, k, z)R(λ, k, z) and T (λ, k, z)L(λ, k, z) are known not only for z = µkl(λ), k ∈ 1
2 + Z and

for all l ∈ N
∗, but for all z ∈ C. This enlarges considerably the amount of information we can

extract from the initial reflection operators Rk(λ) or Lk(λ). From this novel amount of infor-
mation, we can straightforwardly obtain a first uniqueness result localized in energy. Precisely,
we prove

Theorem 1.4. Let (M,Q2, a,Λ) and (M̃, Q̃2, ã, Λ̃) be the parameters of two a priori different
KN-dS black holes. We denote by I a (possibly small) open interval of R. Assume that for all
λ ∈ I and for two different k ∈ 1

2 + Z, one of the following conditions holds

L(λ, k, µkl(λ)) = L̃(λ, k, µkl(λ)),

R(λ, k, µkl(λ)) = R̃(λ, k, µkl(λ)),

for all l ∈ Lk where the sets Lk ⊂ N
∗ satisfy a Müntz condition

∑

l∈Lk

1

l
= ∞.

Then, we have
a(x) = ã(x), c(x, k) = c̃(x, k). (1.21)

In particular, using the particular form of the potential a(x) and c(x, k), we can show that the
parameters of the two black holes coincide.

We refer to Section 7 for a proof of the above results on the CAM method.
Eventually, to obtain a uniqueness result from the scattering coefficients at a fixed energy,

we need more informations on the properties of the scattering coefficients with respect to the
complexified angular momentum z. In particular, using a convenient change of variable (ob-
tained by a Liouville transformation) and the corresponding form of the radial Dirac equation
(1.18), we shall obtain precise asymptotics of the scattering data T (λ, k, z), R(λ, k, z), L(λ, k, z)
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when z → +∞. These asymptotics, the results of the previous CAM method together with a
standard technique (as exposed first in [25] and used in this setting in [20]) will lead to the
unique determination of certain scalar functions depending on the radial variable (up to certain
diffeomorphisms). Once again, from the explicit form of these functions, we prove the uniqueness
of the parameters of the two black holes, that is our main Theorem 1.2. All these last results
will be proved in Sections 8 and 9.

2 Kerr-Newman-de-Sitter black holes

Kerr-Newman-de-Sitter black holes (KN-dS) are exact solutions of the Einstein-Maxwell equa-
tions that describe electrically charged rotating black holes with positive cosmological constant.
In Boyer-Lindquist coordinates, the exterior region of a KN-dS black hole is described by the
four-dimensional manifold

M = Rt×]r−, r+[r×S
2
θ,ϕ,

equipped with the Lorentzian metric (having signature (+,−,−,−))

g =
∆r

ρ2

[

dt− a sin2 θ

E
dϕ

]2

− ρ2

∆r
dr2 − ρ2

∆θ
dθ2 − ∆θ sin

2 θ

ρ2

[

a dt− r2 + a2

E
dϕ

]2

, (2.1)

where

ρ2 = r2 + a2 cos2 θ, E = 1 +
a2Λ

3
,

∆r = (r2 + a2)(1− Λr2

3
)− 2Mr +Q2, ∆θ = 1 +

a2Λcos2 θ

3
.

The three parameters M > 0, Q ∈ R and a ∈ R appearing above are interpreted as the
mass, the electric charge and the angular momentum per unit mass of the black hole whereas
the parameter Λ > 0 is the cosmological constant of the universe. The electromagnetic potential
1-form A solution of the Maxwell equation is also given by

A = Aadx
a = −Qr

ρ2

(

dt− a sin2 θ

E
dϕ
)

. (2.2)

For later use, we give another expression for the metric g where the coordinates 1-forms have
been isolated.

g =
∆r −∆θa

2 sin2 θ

ρ2
dt2 − 2a sin2 θ

Eρ2
(∆r −∆θa

2 sin2 θ)dtdϕ (2.3)

− ρ2

∆r
dr2 − ρ2

∆θ
dθ2 − sin2 θ

E2ρ2
(

∆θ(r
2 + a2)2 −∆ra

2 sin2 θ
)

dϕ2. (2.4)

The geometry of (M, g) crucially depends on the possible sign taken by the function ∆r. We
are interested here in describing KN-dS black holes, i.e. in the case where the function ∆r has
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three simple positive roots 0 < rc < r− < r+ and thus only a negative one rn = −(rc+r−+r+) <
0. As studied in [7], this is the case if the following conditions are fulfilled

(1) a2Λ
3 ≤ 7− 4

√
3, (2.5)

(2) M−
crit < M <M+

crit, (2.6)

with

M±
crit =

1√
18Λ

(

(

1− a2Λ

3

)

±
√

(

1− a2Λ

3

)2
− 4Λ(a2 +Q2)

)2

(

2
(

1− a2Λ

3

)2
∓
√

(

1− a2Λ

3

)2
− 4Λ(a2 +Q2)

)

.

In what follows, we shall always assume that the conditions (2.5) and (2.6) are fulfilled.
In this case, the hypersurfaces {r = rj}, j = +,−, c appear as singularities of the metric
(2.1). We recall that they are merely coordinate singularities that could be easily removed using
another coordinate systems. The hypersurface {r = rc} is called the Cauchy horizon whereas the
hypersurfaces {r = r−} and {r = r+} are called the event and cosmological horizons respectively.
It can be shown ([1, 52]) that they are regular null hypersurfaces that can be crossed one way
but would require speed greater than that of light to be crossed the other way. Hence their
name: horizons.

Remark 2.1. In contrast with the ”coordinate” singularities {r = rj}, j = c,−,+, there is
a curvature singularity located at each point of the ring

{

r = 0, θ = π
2

}

. Here some scalars
obtained by contracting the Riemann tensor explode.

Remark 2.2. When M = M−
crit, the Cauchy and event horizons coalesce and the metric (2.1)

represents an extremal KN-dS black hole. Similarly, whenM =M+
crit, the event and cosmological

horizons coalesce and we also obtain a black hole solution. We won’t study these special cases
in this paper and thus assume (2.6) with strict inequalities. Also, when the parameter a = 0, we
recover the family of spherically symmetric Reissner-Nordström-de-Sitter black holes and when
the parameters a = Q = 0, we obtain the more familiar family of Schwarzschild-de-Sitter black
holes. The former class of spherically symmetric solutions has been the object of the paper [20].

In this paper, we shall only consider the exterior region of a KN-dS black hole, that is the
region lying between the event and cosmological horizons {r− < r < r+}. Note that the function
∆r is positive there. Let us list a few geometrical properties of this region.

• It is a ”stationary” axisymmetric spacetime. Indeed the vector fields ∂t and ∂ϕ are clearly
Killing vectors that generate the time-translation and cylindrical symmetries of the space-
time. We write ”stationary” between commas since, strictly speaking, the stationarity
only happens in the region far from the event and cosmological horizons (see the third
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item below). Observe that the lack of spherical symmetry appears in the crossed term
(. . . ) dtdϕ in (2.3) and the dependence of the metric g with respect to the azimuthal vari-
able θ. The family of KN-dS black holes is thus a non trivial generalization of the family
of spherically symmetric Reissner-Nordström black holes studied in [20].

• The exterior region M is globally hyperbolic meaning that M is foliated by Cauchy hy-
persurfaces, given here by the level hypersurfaces Σt = {t = const.} of the time function
t. This, together with the stationarity of the spacetime, entail that the Dirac equation we
shall study in this paper will naturally take the form of an evolution equation with initial
data on the spacelike hypersurface Σ0 and with associated Dirac Hamiltonian independent
of the time coordinate t. General existence Theorems on hyperbolic systems of PDEs by
Leray assert that the corresponding Cauchy problem is well posed.

• The vector field ∂t is timelike except in two toroidal regions surrounding the event and
cosmological horizons: the ergospheres defined as the regions where r− < r < r+ and
∆r − ∆θa

2 sin2 θ < 0. Conversely the vector fields ∂r, ∂θ, ∂ϕ are spacelike everywhere in
the exterior region. Note that the presence of ergospheres indicates the lack of stationarity
of the exterior region of a KN-dS black hole, that is there exists no globally defined Killing
vector field that is timelike in M. This entails analytical difficulties when studying fields
with integral spin since we cannot find any quantities conserved along the evolution such
that the corresponding dynamics is then generated by a selfadjoint Hamiltonian. This is
also the root of the superradiance phenomenon that quantifies the possibility for fields
with integral spin to extract (rotational) energy from the black hole. We shall avoid this
difficulty here by considering Dirac fields (having spin 1/2) for which no superradiance
phenomenon occurs.

• The spacetime (M, g) is described from the point of view of stationary observers, that is
the class of observers who move on worldlines of constant r and θ and with a uniform
angular velocity ω, i.e. ϕ = ωt + const. When ω = 0, these observers are called static.
Choosing r− << r << r+, that is a region far from the event and cosmological horizons
and their ergospheres, we note that the function t is proportional to the proper time of
such observers. Thus the variable t measures the perception of time of stationary observers
located far from the event and cosmological horizons. This is the point of view we shall
adopt in this paper.

• The exterior region M is of Petrov type D, that is it possesses exactly two principal null
vectors given by (see [1, 51])

V ± =
r2 + a2

∆r

(

∂t +
aE

r2 + a2
∂ϕ

)

± ∂r, (2.7)

that generate the whole family of principal null geodesics. The spacetime is entirely foli-
ated by this family of shearfree null geodesics which should be thought as the trajectories
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of light-rays aimed at - or coming from - the event and cosmological horizons. As a con-
sequence of the term 1/∆r in the expression (2.7), we see that the event and cosmological
horizons are never reached in a finite time t by the principal null geodesics. We thus
point out that these horizons are asymptotic regions of spacetime from the point of view
of the stationary observers defined above. As a consequence, we stress the fact that we
won’t need to add boundary conditions at the event and cosmological horizons to study
the Cauchy problem of Dirac fields evolving the exterior region of a KN-dS black hole.

In order to simplify the later analysis and encode the fact that the event and cosmological
horizons are asymptotic regions in the Boyer-Linquist coordinates, we introduce a new radial
variable, the tortoise or Regge-Wheeler type coordinate x, by the requirement

dx

dr
=
r2 + a2

∆r
.

By integration, we find that

x =
1

2κ−
ln(r − r−) +

1

2κ+
ln(r+ − r) +

1

2κc
ln(r − rc) +

1

2κn
ln(r − rn) + c ∈ R, (2.8)

where the κj ’s are the quantities given by

κj =
∆′

r(rj)

2(r2j + a2)
, j = −,+, c, n,

and c is any constant of integration. The constants κ± are called the surface gravities of the
event and cosmological horizons and will be of importance later in this paper. Also, the constant
of integration c will play an important role in the definition of the scattering matrix at fixed
energy (see Subsection 4.1).

In the new coordinates sytem (t, x, θ, ϕ), we notice that the event and cosmological horizons
are then pushed away to {x = −∞} and {x = +∞} respectively. From (2.7), we also note that
the principal null directions are then expressed as

V ± =
r2 + a2

∆r

(

∂t ± ∂x +
aE

r2 + a2
∂ϕ

)

. (2.9)

Hence, in the t− x plane, the principal null geodesics are simply the straightlines x = ±t+ c0
with c0 any constant, mimicking in this plane the Minkowski spacetime. The addition of the ∂ϕ
term in (2.9) shows that the principal geodesics spin around the event and cosmological horizons
when they get closed to them. Note that the speed of rotation of the principal geodesics is given
by Ω− = aE

r2−+a2
at the event horizon whereas it is Ω+ = aE

r2++a2
at the cosmological horizon.

Summarising, we shall then work on the 4-dimensional manifold B = Rt×Rx×S
2
θ,ϕ equipped

with the Lorentzian metric

g =
∆r

ρ2

[

dt− a sin2 θ

E
dϕ
]2

− ρ2∆r

(r2 + a2)2
dx2 − ρ2

∆θ
dθ2 − ∆θ sin

2 θ

ρ2

[

a dt− r2 + a2

E
dϕ
]2
.
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The manifold B is a ”stationary” axisymmetric globally hyperbolic spacetime having two asymp-
totic regions: the event {x = −∞} and cosmological {x = +∞} horizons. These horizons have
particular geometries of asymptotically hyperbolic type when restricted to the spacelike hyper-
surfaces Σt (see Remark 3.1 below). We shall now study how massless and electrically charged
Dirac fields evolve in this spacetime and analyse precisely their scattering properties.

3 The massless charged Dirac equation

3.1 Hamiltonian formulation

We use the form of the massless charged Dirac equation in its Hamiltonian formulation obtained
in [7], formulae (4.1)-(4.7). This form of the equation is well suited to understand and use the
separation of variables mentionned in the introduction. Note also that these authors calculated
an expression for the ”massive” charged Dirac equation on a KN-dS background. In this paper
however, we consider the case of ”massless” charged Dirac fields to avoid additional technical
difficulties in the later analysis. For inverse scattering results in the massive case for spherically
symmetric black holes, we refer to [28].

Let us introduce some notations. The matrices Γ1,Γ2,Γ3 denote the usual 2 × 2 Dirac
matrices that satisfy the anticommutation relations

ΓiΓj + ΓjΓi = 2δijI2, ∀i, j = 1, 2, 3, (3.1)

where δij stands for the Kronecker symbol. More specifically, we shall work with the following
representations of the Dirac matrices

Γ1 =

(

1 0
0 −1

)

, Γ2 =

(

0 1
1 0

)

, Γ3 =

(

0 i
−i 0

)

. (3.2)

Note that this is not the representation used in [7]. This leads simply to an expression of the
Dirac equation that is unitarily equivalent to the one in [7] and particularly convenient for our
purpose. We shall also denote by Dx,Dθ,Dϕ the differential operators −i∂x,−i∂θ,−i∂ϕ.

The massless charged Dirac fields are represented by 2-components spinors with finite ”en-
ergy” belonging to

L2

(

R× S
2,

sin θ√
∆θ

dxdθdϕ ;C2

)

and the Hamiltonian form of the Dirac equation reads (see [7]).

i∂tφ = Dφ,

with

D =

[

(

1− ∆r

∆θ

a2 sin2 θ

(r2 + a2)2

)−1(

I2 −
√
∆r√
∆θ

a sin θ

r2 + a2
Γ3
)

]

D0, (3.3)
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and

D0 = Γ1Dx +

√
∆r

r2 + a2

[

√

∆θ

(

Γ2
(

Dθ − i
cot θ

2

)

+ Γ3 E

∆θ sin θ
Dϕ

)]

+

[

aE

r2 + a2
Dϕ +

qQr

r2 + a2

]

. (3.4)

Here the parameter q is the electric charge of the Dirac fields.
Let us introduce further notations in order to obtain a synthetic form of the above Hamilto-

nian. We introduce the scalar (differential) potentials

a(x) =

√
∆r

r2 + a2
, c(x,Dϕ) =

aE

r2 + a2
Dϕ +

qQr

r2 + a2
, (3.5)

and the matrix-valued multiplication operator

J = I2 + α(x, θ)Γ3, α(x, θ) =

√
∆r√
∆θ

a sin θ

r2 + a2
Γ3. (3.6)

It is shown in [7], (4.16) that η = sup
x,θ

α(x, θ) < 1. Since ‖Γ3‖∞ = 1, we conclude that the

operator J is invertible and a short calculation shows that

J−1 = (1− α2)(I2 − αΓ3) =
(

1− ∆r

∆θ

a2 sin2 θ

(r2 + a2)2

)−1(

I2 −
√
∆r√
∆θ

a sin θ

r2 + a2
Γ3
)

. (3.7)

Hence J−1 is precisely the term in front of D0 in (3.3) and the Hamiltonians D,D0 can be written
as

D = J−1
D0, D0 = Γ1Dx + a(x)

[

√

∆θ

(

Γ2
(

Dθ − i
cot θ

2

)

+ Γ3 E

∆θ sin θ
Dϕ

)]

+ c(x,Dϕ).

Let us continue our simplifications. In order to work in a Hilbert space that does not depend
explicitly on the parameters of the black hole (recall that we want to identify the scattering
matrices associated to two a priori different black holes in the later inverse problem), we consider
the weighted spinor

ψ =
sin θ

∆
1/4
θ

φ.

Hence, the new spinor ψ belongs to the Hilbert space

H = L2(R× S
2, dxdθdϕ ; C2),

and is easily shown to satisfy the evolution equation

i∂tψ = Hψ, (3.8)

20



where the Hamiltonian H is expressed as

H = J−1H0, H0 = Γ1Dx + a(x)HS2 + c(x,Dϕ), (3.9)

Here, HS2 denotes an angular Dirac operator on the 2-sphere S
2 which, in the spherical coordi-

nates (θ, ϕ), takes the form

HS2 =
√

∆θ

[

Γ2Dθ + Γ2 iΛa
2 sin(2θ)

12∆θ
+

Γ3

sin θ
Dϕ + Γ3Λa

2 sin(θ)

3∆θ
Dϕ

]

. (3.10)

Let us make a few comments on the Dirac Hamiltonian H. From (3.7) and (3.9), H can be
written as H = H0 − α(x, θ)Γ3H0 − α(x, θ)2H0 + α(x, θ)3Γ3H0. We shall show in (3.19) that
supθ |α(x, θ)| is exponentially decreasing as x→ ±∞. Hence H can be viewed as a ”small”, non
spherically symmetric perturbation of order 1 of the Hamiltonian H0 which in turn is composed
of

• A differential operator Γ1Dx + aE
r2+a2

Dϕ which, in view of (2.9) and (3.2), simply corre-
sponds to transport along the outgoing and incoming principal null geodesics.

• An angular differential operator HS2 weighted by a scalar potential a(x) (depending on the
radial variable only). Note that HS2 is a slight perturbation of the usual Dirac operator
on S

2 whose expression in our spherical coordinates and with our choice of weight on the
spinor is

DS2 = Γ2Dθ +
Γ3

sin θ
Dϕ. (3.11)

• A scalar perturbation qQr
r2+a2

caused by the interaction between the electric charge of the
black hole Q and that of the masless Dirac fields q.

Let us emphasize that the lack of spherical symmetry of the black hole is encoded both by
the operator J which is a slight non spherically symmetric perturbation of the identity I2 and
the presence of an extra differential operator Dϕ in the expression (3.9) of H0. However, we
can use the ”cylindrical” symmetry of the problem to simplify the equation. Decomposing the
Hilbert space H onto the angular modes {eikϕ}k∈1/2+Z, i.e.

H = ⊕k∈1/2+ZHk, Hk = L2(R × (0, π), dxdθ;C2) (3.12)

it is clear that the Hamiltonian H lets invariant each Hk and we have

H|Hk
:= Hk = J−1Hk

0 , H0|Hk
:= Hk

0 = Γ1Dx + a(x)Hk
S2

+ c(x, k). (3.13)

Thus the differential operator c(x,Dϕ) in (3.9) becomes c(x, k), k ∈ 1/2+Z and can be treated
as a mere potential.
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To understand the scattering properties of the Dirac fields, it is necessary to know the
asymptotics of the different potentials entering in the expression of the Hamiltonian Hk. We
first introduce the notations

Ω±(Dϕ) =
aEDϕ + qQr±

r2± + a2
, Ω±(k) =

aEk + qQr±
r2± + a2

. (3.14)

Using (2.8), (3.5), (3.6) and (3.14), it is straightforward to show that the asymptotics of the
scalar potentials a(x), c(x, k) and the matrix-valued potential J(x, θ) are given by

a(x) = a±e
κ±x +O(e3κ±x), x→ ±∞, (3.15)

a′(x) = a±κ±e
κ±x +O(e3κ±x), x→ ±∞, (3.16)

and for ∀k ∈ 1/2 + Z,

c(x, k) = Ω±(k) + c±e
2κ±x +O(e4κ±x), x→ ±∞, (3.17)

c′(x, k) = 2κ±c±e
2κ±x +O(e4κ±x), x→ ±∞, (3.18)

and
sup
θ

‖J(x, .) − I2‖∞ = sup
θ

|α(x, θ)| = j±e
κ±x +O(e3κ±x), x→ ±∞, (3.19)

where the quantities a±, c±, j± are constants that only depend on the parameters of the black
hole. We won’t need an explicit expression for these constants in the next analysis.

Remark 3.1. Since the surface gravities κ− > 0 and κ+ < 0, we see that the potentials a(x),
c(x, k) and supθ ‖J−I2‖∞(x) decay exponentially at both horizons {x→ ±∞}. This exponential
decay of the potentials reflects the geometry of asymptotically hyperbolic type near the horizons
as explained in the introduction.

We now summarize the spectral results on the Hamiltonians (H,H0) obtained in [7, 8]. We
first recall that the spinors ψ satisfying (3.8) belong to the ”energy” space L2(R×S

2, dxdθdϕ; C2).
We shall write

H = L2(R× S
2, dxdθdϕ; C2),

when this space is equipped with the usual L2 inner product (., .), whereas we write

G = L2(R× S
2, dxdθdϕ; C2),

when it is equipped with the modified inner product < ., . >= (., J.). Then H and G are Hilbert
spaces with equivalent norms since J is a bounded invertible matrix-valued potential. We have
[7]

Theorem 3.2. The Hamiltonians H0 and H are selfadjoint on H and G respectively on their
natural domains

D(H) = D(H0) = {ψ ∈ L2(R× S
2, dxdθdϕ; C2), H0ψ ∈ L2(R× S

2, dxdθdϕ; C2)}.
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Moreover
σ(H0) = σac(H0) = R, σ(H) = σac(H) = R. (3.20)

In particular
σpp(H0) = σpp(H) = ∅. (3.21)

The main point in Thm 3.2 is the absence of pure point spectrum and singular continuous
spectrum for the Hamiltonians H0 and H. It is worth mentioning that the absence of pure point
spectrum is a consequence of the separability of the Dirac equation into systems of radial and
angular ODEs. Note that the separation of variables is also used in [7, 8] to prove the absence of
singular continuous spectrum by relying on a standard decomposition method for the absolutely
continuous spectrum as exposed in [54]. In this paper, we shall give an alternative proof of
the absence of singular continuous spectrum for H,H0 by establishing a Limiting Absorption
Principle (LAP) for these operators by means of a Mourre theory (see Appendix B). These LAP
will entail in turn a complete scattering theory for theses Hamiltonians (see Section 4).

3.2 Separation of variables

Let us pause a moment (before studying the direct and inverse scattering theory for the Hamil-
tonian H) and study in much more details the separation of variables procedure for the Dirac
equation (3.8) since it will be in the heart of our analysis. We first introduce an additional
notation. Looking at (3.6), we can write

J = I2 + α(x, θ)Γ3, α(x, θ) = a(x)b(θ), (3.22)

where

a(x) =

√
∆r

r2 + a2
, b(θ) =

a sin θ√
∆θ

. (3.23)

Then, for λ ∈ R, we consider the ”stationary” Dirac equation

Hψ = λψ. (3.24)

Using (3.9) and (3.22), we can re-write (3.24) as

Hψ = λψ ⇐⇒ J−1(H0 − λJ)ψ = 0,

⇐⇒
[

Γ1Dx + a(x)HS2 + c(x,Dϕ)− λ(I2 + a(x)b(θ)Γ3)
]

ψ = 0,

⇐⇒
[

Γ1Dx + c(x,Dϕ)− λ+ a(x)(HS2 − λb(θ)Γ3)
]

ψ = 0. (3.25)

We denote by H(λ) the above stationary operator, i.e.

H(λ) = Γ1Dx + c(x,Dϕ)− λ+ a(x)(HS2 − λb(θ)Γ3). (3.26)

The stationary equation Hψ = λψ is thus equivalent to H(λ)ψ = 0.
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To proceed further, we need to study the angular part of H(λ). We introduce the notations

AS2(λ) = HS2 − λb(θ)Γ3 (3.27)

and
HS2 = L2(S2, dθdϕ;C2).

We are interested in studying the angular ”eigenvalues” equation on HS2

AS2(λ)ψkl = µkl(λ)ψkl. (3.28)

Following [7, 8], we can prove

Theorem 3.3. For all λ ∈ R, the operator AS2(λ) is selfadjoint on HS2 and has pure point
spectrum. More precisely, for all k ∈ 1

2 + Z and l ∈ Z
∗, there exists a sequence of eigenvalues

µkl(λ) ∈ R of AS2(λ) and associated normalized eigenfunctions Ykl(λ) ∈ HS2 such that

(1) HS2 = ⊕(k,l)∈I Span(Ykl(λ)), I = (12 + Z)× Z
∗,

(2) AS2(λ)Ykl(λ) = µkl(λ)Ykl(λ),

(3) DϕYkl(λ) = kYkl(λ).

Hence, the operators Dϕ and AS2(λ) possess a common basis of eigenfunctions Ykl(λ) that we
can use for the separation of variables. Before this and for later use, let us make a few comments
on the above result. To prove Thm 3.3, Belgiorno and Cacciatori in [7, 8] first decompose HS2

onto the angular modes {eikϕ} for all k ∈ 1/2 + Z, that are the eigenfunctions (with associated
eigenvalues k) for the selfadjoint operator Dϕ with anti-periodic boundary conditions. Then

HS2 = ⊕k∈1/2+ZHk
S2
, Hk

S2
= L2((0, π), dθ;C2) := L,

and clearly, the reduced subspaces Hk
S2

remain invariant under the action of AS2(λ). For each
k ∈ 1/2 + Z, we denote

Ak(λ) = AS2(λ)|Hk

S2
, (3.29)

or more explicitly

Ak(λ) =
√

∆θ

[

Γ2Dθ + Γ2 iΛa
2 sin(2θ)

12∆θ
+
kΓ3

sin θ
+ Γ3Λa

2k sin(θ)

3∆θ
− λ

a sin θ

∆θ
Γ3

]

. (3.30)

The study of the selfadjoint operator Ak(λ) on L is the object of the Sections 5.1.1 and 6.1 in
[8]. Using an appropriate form for the eigenvalue equation

Ak(λ)u(θ) = µk(λ)u(θ), (3.31)

and an analogue of Prüfer transformation for Dirac system (see [54]), they are able to show that
the operator Ak(λ) has ”discrete simple” spectrum. For each l ∈ Z

∗, we denote by µkl(λ) the
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simple eigenvalues of Ak(λ) and uλkl(θ) the corresponding eigenfunctions. Note that, since the
spectrum of Ak(λ) is discrete, it has no accumulation point and thus

∀k ∈ 1/2 + Z, |µkl(λ)| → +∞, as l → ∞.

Finally, the eigenfunctions Ykl(λ) of AS2(λ) appearing in Thm 3.3 are thus given by

∀k ∈ 1/2 + Z, l ∈ Z
∗, Ykl(λ)(θ, ϕ) = uλkl(θ)e

ikϕ. (3.32)

The choice of labeling the eigenvalues and eigenfunctions of Ak(λ) with an index l ∈ Z∗

is convenient for the following reason. Observe first that it follows from the anticommutation
relation (3.1) that the Dirac matrix Γ1 anticommutes with the operators Ak(λ) (and thus with
the operator AS2(λ)). Hence for each admissible (k, l) ∈ I = (12 + Z)× Z

∗, we have

Ak(λ)(Γ
1Ykl(λ)) = −Γ1Ak(λ)Ykl(λ) = −µkl(λ)Γ1Ykl(λ),

from which it follows that to each positive eigenvalue µkl(λ) and associated eigenfunction Ykl(λ),
there is a corresponding negative eigenvalue −µkl(λ) and associated eigenfunction Γ1Ykl(λ).
From this, for each k ∈ 1/2 + Z, we decide to label the positive eigenvalues of Ak(λ) (in
increasing order) by µkl(λ) with l ∈ N

∗, i.e.

0 < µk1(λ) < µk2(λ) < . . .

Conversely, the negative eigenvalues are thus labelled by the negative values of l by the require-
ment

∀l ∈ N
∗, µk,−l(λ) = −µkl(λ), Yk,−l(λ) = Γ1Ykl(λ). (3.33)

Let us come back to the separation of variables. Our aim is to decompose the Hilbert space
H in an Hilbert sum of reduced Hilbert spaces that remain invariant under the action of the
operator H(λ) given by (3.26) and allows separation of variables. We proceed as follows.

According to Thm 3.3, first note that

H = L2(R× S
2, dxdθdϕ;C2) = L2(R, dx) ⊗ L2(S2, dθdϕ;C2),

=
⊕

(k,l)∈(1/2+Z)×Z∗

(

L2(R, dx) ⊗ Ykl(λ)
)

.

The reduced Hilbert subspaces L2(R, dx)⊗Ykl(λ) - that clearly remain invariant under the action
of the angular operator AS2(λ) - does not remain invariant however under the radial part Γ1Dx

of the operator H(λ) since Γ1 sends Ykl(λ) onto Γ1Ykl(λ) = Yk,−l(λ) by our convention (3.33).
Instead we consider the decomposition

H =
⊕

(k,l)∈(1/2+Z)×N∗

(

L2(R, dx)⊗ Span(Ykl(λ), Yk,−l(λ))
)

.

We claim that the reduced Hilbert spaces L2(R, dx)⊗Span(Ykl(λ), Yk,−l(λ)) remain invariant
under the action of the operator (3.26) and allows separation of variables. To see this, we first
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remark that the reduced subspaces L2(R, dx)⊗Span(Ykl(λ), Yk,−l(λ)) for (k, l) ∈ (1/2+Z)×N
∗

can be identified with the tensorial products

L2(R, dx;C2)⊗ Ykl(λ).

Indeed, using our convention (3.33) and the particular form of Γ1 (see (3.2)), we have for all
ψ ∈ L2(R, dx)⊗ Span(Ykl(λ), Yk,−l(λ)),

ψ = ψ1(x)Ykl(λ) + ψ2(x)Yk,−l(λ) =
(

ψ1(x)I2 + ψ2(x)Γ
1
)

Ykl(λ),

which can be written in components

ψ =

(

ψ1(x) + ψ2(x)
ψ1(x)− ψ2(x)

)

⊗ Ykl(λ). (3.34)

Hence ψ ∈ L2(R, dx;C2)⊗ Ykl(λ).
Conversely, for all ψ ∈ L2(R, dx;C2)⊗ Ykl(λ), we have

ψ =

(

ψ1(x)
ψ2(x)

)

⊗ Ykl(λ) =
1

2

(

ψ1(x) + ψ2(x)
)

Ykl(λ) +
1

2

(

ψ1(x)− ψ2(x)
)

Yk,−l(λ), (3.35)

and thus ψ ∈ L2(R, dx)⊗ Span(Ykl(λ), Yk,−l(λ)).
In fact, we easily see that the map

Θ : L2(R, dx)⊗ Span(Ykl(λ), Yk,−l(λ)) −→ L2(R;C2)⊗ Ykl(λ),

ψ1(x)Ykl(λ) + ψ2(x)Yk,−l(λ) −→ 1√
2

(

ψ1(x) + ψ2(x)
ψ1(x)− ψ2(x)

)

⊗ Ykl(λ),

is unitary. For ease of notations, we shall work with the reduced Hilbert spaces

Hkl(λ) := L2(R;C2)⊗ Ykl(λ) ≃ L2(R,C2), (3.36)

for each (k, l) ∈ I := (1/2 + Z) × N
∗. We then have the following decomposition for the full

Hilbert space H
H =

⊕

(k,l)∈(1/2+Z)×N∗

Hkl(λ). (3.37)

Now it is a direct calculation to show that the subspaces Hkl(λ) remain invariant under the
action of the stationary operator (3.26). For instance, if

Hkl(λ) ∋ ψ = ψkl ⊗ Ykl(λ) =

(

ψ1(x)
ψ2(x)

)

⊗ Ykl(λ),

then by (3.35)

ψ =
1

2

(

ψ1(x) + ψ2(x)
)

Ykl(λ) +
1

2

(

ψ1(x)− ψ2(x)
)

Yk,−l(λ),
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and thus

Γ1ψ =
1

2

(

ψ1(x) + ψ2(x)
)

Γ1Ykl(λ) +
1

2

(

ψ1(x)− ψ2(x)
)

Yk,l(λ), by (3.33) and (Γ1)2 = I2,

=

(

ψ1(x)
−ψ2(x)

)

⊗ Ykl(λ), by (3.34),

= (Γ1ψkl)⊗ Ykl(λ) ∈ Hkl(λ), by (3.2).

Hence, the operator Γ1Dx appearing in (3.26) lets invariant Hkl(λ) and its action on ψ =
ψkl ⊗ Ykl(λ) ∈ Hkl(λ) is given by

Γ1Dxψ = (Γ1Dxψkl)⊗ Ykl(λ). (3.38)

Similarly, we have

AS2(λ)ψ =
1

2

(

ψ1(x) + ψ2(x)
)

µkl(λ)Ykl(λ)−
1

2

(

ψ1(x)− ψ2(x)
)

µkl(λ)Yk,−l(λ), by Thm 3.3,

= µkl(λ)

(

ψ2(x)
ψ1(x)

)

⊗ Ykl(λ), by (3.34),

= (µkl(λ)Γ
2ψkl)⊗ Ykl(λ) ∈ Hkl(λ), by (3.2).

Hence, the angular operator AS2(λ) appearing in (3.26) lets invariant Hkl(λ) and its action on
ψ = ψkl ⊗ Ykl(λ) ∈ Hkl(λ) is given by

AS2(λ)ψ = (µkl(λ)Γ
2ψkl)⊗ Ykl(λ). (3.39)

Summarising the whole stationary operator H(λ) lets invariant the Hkl(λ)’s and denoting
I = (1/2 + Z)× N

∗, we have for all

ψ(x, θ, ϕ) =
∑

(k,l)∈I
ψkl(x)⊗ Ykl(θ, ϕ) ∈ H,

H(λ)ψ = 0 ⇐⇒
[

Γ1Dx + c(x,Dϕ)− λ+ a(x)AS2(λ)
]

ψ = 0,

⇐⇒
∑

(k,l)∈I

[(

Γ1Dx + c(x, k)− λ+ µkl(λ)a(x)Γ
2
)

ψkl(x)
]

⊗ Ykl = 0, (3.40)

⇐⇒ ∀(k, l) ∈ I,
[

Γ1Dx + µkl(λ)a(x)Γ
2 + c(x, k)

]

ψkl(x) = λψkl(x).

In consequence, after decomposition onto the reduced subspaces Hkl(λ), the stationary equation
H(λ)ψ = 0 is equivalent to a countable family of radial stationary Dirac equations given by

Hkl(λ)ψkl(x) = λψkl(x), (3.41)

where the one-dimensional operators Hkl(λ) are given by

Hkl(λ) = Γ1Dx + µkl(λ)a(x)Γ
2 + c(x, k), (3.42)
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and are parametrized by the energy λ ∈ R of the system and the angular momenta k and µkl(λ)
for each (k, l) ∈ I.

This is the separation of variables for the massless charged Dirac equation in KN-dS black
holes. In order to have a synthetic view of the procedure, we summarize these results into a
theorem.

Theorem 3.4 (Separation of variables). Denote by I the set (1/2 + Z) × N
∗. Then, for all

λ ∈ R, there exists a Hilbert decomposition of the energy space H as

H =
⊕

(k,l)∈I
Hkl(λ),

where
Hkl(λ) = L2(R;C2)⊗ Ykl(λ) ≃ L2(R,C2),

and the Ykl(λ) are the eigenfunctions of the angular operator (defined in (3.27)) by

AS2(λ) = HS2 − λb(θ)Γ3

and associated to its positive eigenvalues µkl(λ). Moreover, the reduced subspaces Hkl(λ) remain
invariant under the action of the stationary Dirac Hamiltonian given in (3.25) by

H(λ) = Γ1Dx + c(x,Dϕ)− λ+ a(x)(HS2 − λb(θ)Γ3)

and for all ψ =
∑

(k,l)∈I ψkl(x)⊗ Ykl(λ), the stationary equation H(λ)ψ = 0 is equivalent to the
countable family of one-dimensional (radial) stationary Dirac equations

Hkl(λ)ψkl(x) = λψkl(λ),

where
Hkl(λ) = Γ1Dx + µkl(λ)a(x)Γ

2 + c(x, k).

3.3 Estimates on the eigenvalues of the angular operator

We end this section with a brief study of the angular operator AS2(λ) and more specifically of
its eigenvalues µkl(λ). In order to apply the Complex Angular Momentum method (see Section
7), we are interested in obtaining a rough estimate on the distribution of the eigenvalues µkl(λ)
when λ ∈ R and k ∈ 1/2 + Z are fixed et for large l ∈ N

∗. Precisely, we want to prove that

∑

l∈N∗

1

µkl(λ)
= +∞.

This result is a consequence of the following estimate on the growth of the eigenvalues µkl(λ).
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Proposition 3.5 (Estimate on µkl(λ)). For all λ ∈ R, for all k ∈ 1
2 + Z and for all l ∈ N

∗,
there exist constants C1 and C2 independent of k, l such that

(

2− e
1
26

)

(

|k| − 1

2
+ l

)

− C1|k| − C2 − |aλ| ≤ µkl(λ) ≤ e
1
26

(

|k| − 1

2
+ l

)

+ C1|k|+ C2 + |aλ|.

We thus conclude that for fixed λ ∈ R and k ∈ 1
2 + Z,

∑

l∈N∗

1

µkl(λ)
= +∞.

Proof. The proof of this Proposition follows from the theory of analytic perturbation due to
Kato [41] and is given in Appendix A.

4 The direct scattering problem

In this section, we formulate the direct scattering theory associated to massless Dirac fields
evolving in the exterior region of a KN-dS black hole. In a first part, a stationary expression of
the scattering matrix at fixed energy is given in terms of particular solutions of the separated
equations obtained in Section 3.2 and the physical relevance of its components are explained.
We emphasize that the different behaviors of the Dirac Hamiltonian H (given by (3.9)) at the
horizons {x = ±∞} as well as the presence of the long-range potential c(x,Dϕ) (given by
(3.5)) make the definition of the stationary scattering matrix quite involved and non canonical.
Another important feature of this stationary scattering matrix is its dependence on the choice
of Regge-Wheeler coordinate x which, as mentioned in the introduction, is defined up to a
constant of integration only. We thus give the expression of the whole one-parameter family of
stationary scattering matrices that describe the same black hole and decide to identify them in
the statement of the inverse problem in Section 5. In a second part, we make the link between
the stationary expression of the scattering matrix and its time-dependent counterpart that turns
out to be much more intrinsically and naturally defined. This helps us to better understand
for instance the dependence of the stationary scattering matrix on the choice of the constant
of integration in the definition of the Regge-Wheeler variable x. At last, the existence of the
time-dependent scattering matrix is proved essentially by means of a Mourre theory (similar to
[15, 34]) and its stationary expression is then obtained by a somewhat standard procedure as
presented in [55].

4.1 Stationary expression of the scattering matrix

Recall that we work on the Hilbert space H = L2(R × S
2, dxdθdϕ,C2) and that the evolution

of our Dirac fields ψ ∈ H is generated by the Hamiltonian (see Section 3.1 and more precisely
(3.5), (3.6) and (3.9) for the notations)

H = J−1H0, H0 = Γ1Dx + a(x)HS2 + c(x,Dϕ),
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where

J−1 = (1− α2)(I2 − αΓ3), α(x, θ) = a(x)b(θ) =

√
∆r

r2 + a2
a sin2 θ√

∆θ
.

The stationary scattering at energy λ ∈ R is thus governed by the stationary equation

Hψ = λψ, (4.1)

which, as explained in Section 3.4, can be re-written as

H(λ)ψ = 0,

where the Hamiltonian H(λ) defined in (3.26) is given by

H(λ) = Γ1Dx + c(x,Dϕ)− λ+ a(x)(HS2 − λb(θ)Γ3).

In view of Theorem 3.4, we decompose the Hilbert space H onto a Hilbert sum of reduced
Hilbert spaces Hkl(λ) each ones corresponding to a generalized spherical harmonics Ykl(λ), i.e.
the eigenfunctions of the angular operator AS2(λ). We recall that the indices (k, l) run over
the set I = (12 + Z) × N

∗ and that the reduced Hilbert spaces Hkl(λ) are all isomorphic to
h := L2(R;C2) and remain invariant under the action of the Hamiltonian H(λ). Thus the global
stationary equation (4.1) is equivalent to a countable family of one-dimensional stationary Dirac
equations given by

Hkl(λ)ψkl(x) = λψkl(λ), (4.2)

where
Hkl(λ) = Γ1Dx + µkl(λ)a(x)Γ

2 + c(x, k). (4.3)

Here the spinors ψkl belong to h and µkl(λ) are the eigenvalues of the angular operator AS2(λ)
obtained after separation of variables and studied in Section 3.2, Thm 3.4. We recall at last
that the potentials a(x) and c(x, k) for k ∈ 1

2 + Z satisfy the asymptotics (3.15) and (3.17)
respectively, that is a(x) is exponentially decreasing at both horizons {x = ±∞} whereas c(x, k)
tends to different and nonzero constants Ω±(k) given in (3.14) at each horizon.

Hence, to contruct the scattering matrix associated to (4.1), it suffices to construct the family
of reduced scattering matrices associated to the one-dimensional equations (4.2) parametrized
by the angular modes k ∈ 1/2 + Z and angular momenta µkl(λ). Then the global scattering
matrix will be defined by summation of these reduced scattering matrices over the generalized
spherical harmonics Ykl(λ).

4.1.1 The simplified reduced stationary scattering matrix

In what follows, we shall work on a separated equation (4.2) and thus we assume that the indices
(k, l) ∈ I = (12 +Z)×N

∗ are fixed and that we work on a generalized spherical harmonic Ykl(λ).
A direct scattering theory - and more precisely the construction of the scattering matrix at fixed
energy λ - associated to the one-dimensional Dirac equation (4.2)-(4.3) is almost standard and
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we would like to apply the nice framework given in [2]. However, since the potential c(x, k) is
long-range and thus does not belong to L1(R;C2), the equation (4.3) does not fit exactly this
framework. To remedy this situation, let us remove the potential c(x, k) by introducing the
family of unitary transforms on h

∀k ∈ 1/2 + Z, Uk = e−iC(x,k)Γ1
, (4.4)

where

C(x, k) =

∫ x

−∞
[c(s, k)− Ω−(k)]ds +Ω−(k)x+K, (4.5)

is a primitive of the potential c(x, k) parametrized by the constant of integration K. Consider
now the spinor φkl = U−1

k ψkl. The radial equation (4.2) for φkl then becomes
[

Γ1Dx + µkl(λ)a(x)
(

eiC(x,k)Γ1
Γ2e−iC(x,k)Γ1

)]

φkl = λφkl. (4.6)

We introduce the notation

Vk(x) = a(x)eiC(x,k)Γ1
Γ2e−iC(x,k)Γ1

,

which simplifies into

Vk(x) = a(x)e2iC(x,k)Γ1
Γ2 =

(

0 a(x)e2iC(x,k)

a(x)e−2iC(x,k) 0

)

,

thanks to (3.1) and (3.2). Hence the radial equation (4.6) becomes
[

Γ1Dx + µkl(λ)Vk(x)
]

φkl = λφkl. (4.7)

Note that the potential Vk(x) now decays exponentially at both horizons {x = ±∞} by (3.15)
and is thus a short-range potential. We shall define the scattering matrices associated to (4.7)
for any real value of the eigenvalues µkl(λ). Precisely, let us set z = −µkl(λ) ∈ R and qk(x) =
a(x)e2iC(x,k). We are led to consider the ”general” one-dimensional stationary equation

[

Γ1Dx − zVk(x)
]

φkl = λφkl, (4.8)

with

Vk(x) =

(

0 qk(x)
q̄k(x) 0

)

, qk(x) = a(x)e2iC(x,k). (4.9)

The equation (4.8) fits precisely the framework given in [2] except for the additional coupling
constant z ∈ R. The equation (4.8) is also quite similar to the one in our previous paper [20]
and we shall follow here the results obtained therein. The natural scattering matrix associated
to (4.8) can be defined in terms of particular solutions called Jost functions. These are 2 × 2
matrix-valued solutions of (4.8) with prescribed asymptotic behaviors at x = ±∞ given by

FL(x, λ, k, z) = eiΓ
1λx(I2 + o(1)), x→ +∞, (4.10)

FR(x, λ, k, z) = eiΓ
1λx(I2 + o(1)), x→ −∞. (4.11)
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From (4.8), (4.10) and (4.11), it is easy to see that such solutions (if there exist) must satisfy
the integral equations

FL(x, λ, k, z) = eiΓ
1λx − izΓ1

∫ +∞

x
e−iΓ1λ(y−x)Vk(y)FL(y, λ, k, z)dy, (4.12)

FR(x, λ, k, z) = eiΓ
1λx + izΓ1

∫ x

−∞
e−iΓ1λ(y−x)Vk(y)FR(y, λ, k, z)dy. (4.13)

But, since the potential Vk belongs to L1(R), it follows that the integral equations (4.12) and
(4.13) are uniquely solvable by iteration and using that ‖Vk(x)‖(:= sup1≤i,j≤2 |(Vk)ij(x)|) = a(x),
the Jost functions are shown to satisfy the estimates

‖FL(x, λ, k, z)‖ ≤ e|z|
∫+∞
x

a(s)ds, ‖FR(x, λ, k, z)‖ ≤ e|z|
∫ x

−∞
a(s)ds.

Moreover we can prove

Lemma 4.1. For λ ∈ R and z ∈ R, each of the Jost solutions FL(x, λ, k, z) and FR(x, λ, k, z)
forms a fundamental matrix of (4.8) and has determinant equal to 1. Moreover, the following
equalities hold

FL(x, λ, k, z)
∗ Γ1 FL(x, λ, k, z) = Γ1, (4.14)

FR(x, λ, k, z)
∗ Γ1 FL(x, λ, k, z) = Γ1, (4.15)

where ∗ denotes the matrix conjugate transpose.

Proof. See [2], Proposition 2.2.

Since the Jost solutions are fundamental matrices of (4.8), there exists a 2 × 2 matrix
AL(λ, k, z) such that FL(x, λ, k, z) = FR(x, λ, k, z)AL(λ, k, z). From (4.11) and (4.12), we get
the following integral expression for AL(λ, k, z)

AL(λ, k, z) = I2 − izΓ1

∫

R

e−iΓ1λyVk(y)FL(y, λ, k, z)dy. (4.16)

Moreover, the matrix AL(λ, k, z) satisfies the following equality (see [2], Proposition 2.2)

A∗
L(λ, k, z)Γ

1AL(λ, k, z) = Γ1, ∀λ ∈ R, z ∈ R. (4.17)

Using the matrix notation

AL(λ, k, z) =

[

aL1(λ, k, z) aL2(λ, k, z)
aL3(λ, k, z) aL4(λ, k, z)

]

,

the equality (4.17) can be written in components for all λ, z ∈ R as

|aL1(λ, k, z)|2 − |aL3(λ, k, z)|2 = 1,
|aL4(λ, k, z)|2 − |aL2(λ, k, z)|2 = 1,

aL1(λ, k, z)aL2(λ, k, z) − aL3(λ, k, z)aL4(λ, k, z) = 0.

(4.18)
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The matrices AL(λ, k, z) encode all the scattering information of the equation (4.8). Pre-
cisely, following [2, 20], we define the scattering matrix Ŝ(λ, k, z) associated to (4.8) by

Ŝ(λ, k, z) =

[

T̂ (λ, k, z) R̂(λ, k, z)

L̂(λ, k, z) T̂ (λ, k, z)

]

, (4.19)

where

T̂ (λ, k, z) =
1

aL1(λ, k, z)
, R̂(λ, k, z) = −aL2(λ, k, z)

aL1(λ, k, z)
, L̂(λ, z) =

aL3(λ, k, z)

aL1(λ, k, z)
. (4.20)

The relations (4.18) lead to the unitarity of the scattering matrix Ŝ(λ, k, z). Precisely, we have
proved the following Lemma

Lemma 4.2. For each λ ∈ R and z ∈ R, let the scattering matrix Ŝ(λ, k, z) be defined by
(4.19)-(4.20). We have

|T̂ (λ, k, z)|2 + |R̂(λ, k, z)|2 = 1,

|T̂ (λ, k, z)|2 + |L̂(λ, k, z)|2 = 1,

T̂ (λ, k, z)R̂(λ, k, z) + L̂(λ, k, z)T̂ (λ, k, z) = 0.

(4.21)

Remark 4.3. The quantities T̂ and R̂, L̂ are called the transmission and reflection coefficients
respectively associated to equation (4.8). The former measures the part of a signal transmitted
from an horizon to the other in a scattering process whereas the latters measure the part of a
signal reflected from an horizon to itself (event horizon for L̂ and cosmological horizon for R̂)3.

4.1.2 The simplified reduced time-dependent scattering matrix

Before proceeding further, let us make the link between the scattering matrix Ŝ(λ, k, z) given by
(4.19) and its time-dependent counterpart expressed in terms of time-dependent wave operators.
Consider the Hamiltonian

Ĥkz = Γ1Dx − zVk(x), (4.22)

appearing in (4.8) and the free Hamiltonian

H∞ = Γ1Dx. (4.23)

Using a standard Fourier transform, it is immediate that the Hamiltonian H∞ is selfadjoint
on h = L2(R;C2) and has purely absolutely continuous spectrum covering the whole line R.
Moreover, since the potential Vk(x) is globally bounded and exponentially decreasing at x = ±∞,
it is easy to see (by Kato-Rellich Theorem [47]) that Ĥkz is also selfadjoint on h, and by a

3Whence the notations L̂ for left reflection coefficient since the event horizon is located ”on the left”’ at
x = −∞ and R̂ for right reflection coefficient since the cosmological horizon is located ”on the right” at x = +∞.
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standard trace class method [47], that Ĥkz has purely absolutely spectrum given by the whole
line R and that the standard wave operators

W±(Ĥkz,H∞) = s− lim
t→±∞

eitĤkze−itH∞ , (4.24)

exist and are asymptotically complete on h, i.e. they are isometries on h and their inverse wave
operators given by

(W±(Ĥkz,H
∞))∗ =W±(H∞, Ĥkz) := s− lim

t→±∞
eitH∞e−itĤkz ,

also exist on h. .
Thus we can define the scattering operator associated to the pair of Hamiltonians (Ĥkz,H∞)

by the usual rule

Ŝ(k, z) =
(

W+(Ĥkz,H∞)
)∗
W−(Ĥkz,H∞). (4.25)

The operator Ŝ(k, z) is unitary on h and commutes with H∞. We thus can decompose the
scattering operator Ŝ(k, z) on the energy representation of the Hamiltonian H∞. For this, let
us introduce the unitary transform F on h by

(Fψ)(λ) = 1√
2π

∫

R

e−iΓ1xλψ(x)dx. (4.26)

Then the transform F diagonalizes the Hamiltonian H∞, i.e. FH∞F∗ = Mλ where Mλ is the
operator of multiplication by λ. Hence we define the scattering matrix Ŝ(λ, k, z) at energy λ by
the rule

Ŝ(k, z) = F∗Ŝ(λ, k, z)F , (4.27)

where now the scattering matrix Ŝ(λ, k, z) defined in (4.27) is a unitary 2× 2 - matrix.

Theorem 4.4. The time-dependent reduced scattering matrix Ŝ(λ, k, z) constructed through the
chain of identities (4.24)-(4.27) coincides exactly with the stationary reduced scattering matrix
Ŝ(λ, k, z) defined by (4.19)-(4.20) and constructed with the help of the Jost functions (4.10)-
(4.11) and scattering data AL(λ, k, z) given by (4.16). Whence the correspondence between the
stationary (4.19) and time-dependent (4.27) scattering matrices associated to the stationary
equation (4.8) and our use of the same notation for both objects.

Proof. This follows from the results in [2] and more precisely [22].

4.1.3 The physical reduced scattering matrix

Let us now come back to the original and physical problem. The true scattering data are indeed
not associated to the equation (4.8) but instead to the general stationary equation (see (4.3))

[

Γ1Dx − za(x)Γ2 + c(x, k)
]

ψ = λψ, (4.28)
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where z ∈ R is any real number playing the role here of the angular momenta µkl(λ). The
subtlety in dealing with the one-dimensional equation (4.28) is that there is no canonical choice
for the associated scattering matrix due to the long-range potential c(x, k). Recall indeed that
c(x, k) tends to two distinct constants Ω±(k) when x tends to ±∞ respectively whereas a(x) is
exponentially decreasing at both horizons. We shall nevertheless define a ”natural” scattering
matrix associated with (4.28) as follows. Introduce first the Hamiltonian

Hkz = Γ1Dx − za(x)Γ2 + c(x, k). (4.29)

Recall now the asymptotics of the potentials a(x) and c(x, k) in the above description of
Hkz. We have

a(x) = a±e
κ±x +O(e3κ±x), x→ ±∞,

and
∀k ∈ 1/2 + Z, c(x, k) = Ω±(k) + c±e

2κ±x +O(e4κ±x), x→ ±∞,

where Ω±(k) are given by (3.14). This leads to define the following asymptotic selfadjoint
operators on h

H±∞
k = Γ1Dx +Ω±(k),

and we thus have

Hkz = H+∞
k +O(e2κ+x), x→ +∞,

Hkz = H−∞
k +O(e2κ−x), x→ −∞.

Hence, the operator Hkz is a short-range perturbation of H−∞
k at the event horizon and of

H+∞
k at the cosmological horizons. We thus expect that at the event horizon, the Hamilto-

nian Hkz can be compared with the asymptotic Hamiltonian H−∞
k whereas at the cosmological

horizon, Hkz can be compared with H+∞
k . In order to separate the two asymptotic regions, we

introduce (as in [14]) the projections

P± = 1R±(Γ1).

Here the projectors P± allow us to separate easily the part of the Dirac fields falling into the
event horizon and the part escaping toward the cosmological horizon. They correspond to the
asymptotic velocity operators associated to the Hamiltonian H∞ = Γ1Dx in the langage of [23].
For instance, when t tends +∞, we shall compare the part of the Dirac fields escaping to the
cosmological horizon with the simpler dynamic generated by H+∞

k P+ whereas the part of the
Dirac fields falling into the event horizon will be compared with the simpler dynamic generated
by H−∞

k P−.
Having this in mind, let us finally introduce the full asymptotic Hamiltonians

H±
k = H+∞

k P± +H−∞
k P∓. (4.30)

A complete direct scattering theory was obtained in [19] and also in [14] for the pair of Hamiltoni-
ans (Hkz,H

±
k ). We summarize these results here. The Hamiltonians Hkz and H

±
k are selfadjoint

on the Hilbert space h = L2(R;C2). Moreover, according to the analysis given in [14], we can
prove the following Theorem
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Theorem 4.5. For each k ∈ 1
2 + Z and z ∈ R, the Hamiltonians Hkz and H±

k have purely
absolutely continuous spectra, precisely

σ(Hkz) = σac(Hkz) = R, σ(H±
k ) = σac(H

±
k ) = R,

and the wave operators

W±(Hkz,H
±
k ) := s− lim

t→±∞
eitHkze−itH±

k , (4.31)

exist on h and are asymptotically complete, i.e. they are isometries on h and their inverse wave
operators given by

(W±(Hkz,H
±
k ))∗ =W±(H±

k ,Hkz) := s− lim
t→±∞

eitH
±
k e−itHkz ,

also exist on h.

Thus we can define the scattering operator associated to the pair of Hamiltonians (Hkz,H
±
k )

by
S(k, z) =

(

W+(Hkz,H
+
k )
)∗
W−(Hkz,H

−
k ), (4.32)

which is clearly unitary on h.
We now define the scattering matrix S(λ, k, z) at fixed energy λ associated to the scattering

operator (4.32). The difference between the previous situation and the current one is that now
the free Hamiltonians H−

k and H+
k differ and thus the definition of S(λ, k, z) is non-canonical.

Following the usual approach however, we first introduce the unitary transforms F±
k on h by

F+
k ψ(λ) = F

(

eiΩ+(k)x 0

0 e−iΩ−(k)x

)

ψ(λ),

=
1√
2π

∫

R

(

e−ix(λ−Ω+(k)) 0

0 eix(λ−Ω−(k))

)

ψ(x)dx, (4.33)

and

F−
k ψ(λ) = F

(

eiΩ−(k)x 0

0 e−iΩ+(k)x

)

ψ(λ),

=
1√
2π

∫

R

(

e−ix(λ−Ω−(k)) 0

0 eix(λ−Ω+(k))

)

ψ(x)dx. (4.34)

Then it is a straightforward calculation to show that the transforms F±
k diagonalize the Hamil-

tonians H±
k , i.e. F±

k H
±
k (F±

k )∗ =Mλ where Mλ is the operator of multiplication by λ. Similarly
to (4.27), we thus define in a natural way the scattering matrix S(λ, k, z) associated to (4.28)
by

S(k, z) = (F+
k )∗S(λ, k, z)F−

k . (4.35)
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Hence S(λ, k, z) is obviously a unitary 2× 2 - matrix.
It remains to make the link between the physical scattering matrix S(λ, k, z) defined by

(4.35) and the simplified or unphysical scattering matrix Ŝ(λ, k, z) obtained in (4.19) in terms
of the Jost functions solutions of (4.8). For this, we shall express the wave operators (4.31) in
terms of the wave operators (4.24). Remarking the identity Hkz = U−1

k ĤkzUk where Uk is the
unitary transform defined in (4.4), we get

W±(Hkz,H
±
k ) = UkU

−1
k s− lim

t→±∞
eitHkzUkU

−1
k e−itH±

k ,

= Uks− lim
t→±∞

eitU
−1
k

HkzUkU−1
k e−itH±

k ,

= Uks− lim
t→±∞

eitĤkze−itH∞eitH∞U−1
k e−itH±

k ,

= UkW
±(Ĥkz,H∞)G±

k , (4.36)

where we have used the chain-rule in the last step and where we have defined

G±
k = s− lim

t→±∞
eitH∞U−1

k e−itH±
k . (4.37)

Let us study the operators G±
k separatly. We prove

Lemma 4.6. Denote by β(k) the constant

β(k) =

∫ 0

−∞
[c(s, k) − Ω−(k)] ds+

∫ +∞

0
[c(s, k)− Ω+(k)] ds, (4.38)

which is well defined by (3.17). Then we have

G±
k = eiΓ

1[(Ω+(k)+β(k)+K)P± + (Ω−(k)+K)P∓], (4.39)

where K is the constant of integration in (4.5) and P± = 1R±(Γ1). Moreover, we have

FG+
k = eiΓ

1K

(

eiβ(k) 0
0 1

)

F+
k , (4.40)

and

FG−
k = eiΓ

1K

(

1 0

0 e−iβ(k)

)

F−
k . (4.41)

Proof. We only prove (4.39) and (4.40) in the case G+
k since the proof for G−

k is similar. Note
first that the projectors P± have the explicit form

P+ =

(

1 0
0 0

)

, P+ =

(

0 0
0 1

)

,
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thanks to (3.2) and that P±Γ1 = ±P± by definition of P±. Hence we can make explicit compu-
tations as follows.

eitH∞U−1
k e−itH+

k = eitΓ
1DxeiC(x,k)Γ1

e−itΓ1Dxe−it(Ω+(k)P++Ω−(k)P−),

= eitDxeiC(x,k)e−itDxe−itΩ+(k)P+ + e−itDxe−iC(x,k)eitDxe−itΩ−(k)P−,

= eiC(x+t,k)e−itΩ+(k)P+ + e−iC(x−t,k)e−itΩ−(k)P−. (4.42)

On one hand, we have

lim
t→+∞

e−iC(x−t,k)e−itΩ−(k)P− = lim
t→+∞

e−i
∫ x−t

−∞ [c(s,k)−Ω−(k)]ds−iΩ−(k)x−iKP−,

= e−i(Ω−(k)x+K)P−. (4.43)

On the other hand, using that

C(x, k) = −
∫ +∞

x
[c(s, k) − Ω+(k)]ds +Ω+(k)x + β(k) +K, (4.44)

a similar explicit calculation as (4.43) shows that

lim
t→+∞

eiC(x+t,k)e−itΩ−(k)P+ = lim
t→+∞

e−i
∫+∞
x+t

[c(s,k)−Ω+(k)]ds+iΩ+(k)x+iβ(k)+iKP+,

= ei(Ω+(k)x+β(k)+K)P+ . (4.45)

Putting (4.42) - (4.45) together, we get (4.39).
At last, (4.40) is a standard calculation using the definitions of F , F±

k and (4.39) that we
leave to the reader.

We can now make the link between the physical and simplified scattering matrices (4.35)
and (4.19). Using (4.36), (4.25), (4.27) and Lemma 4.6, we compute

S(k, z) =
(

W+(Hkz,H
+
k )
)∗
W−(Hkz,H

−
k ),

=
(

UkW
+(Ĥkz,H∞)G+

k

)∗
UkW

−(Ĥkz,H∞)G−
k ,

=
(

G+
k

)∗
Ŝ(k, z)G−

k ,

=
(

FG+
k

)∗
Ŝ(λ, k, z)FG−

k ,

=
(

F+
k

)∗
(

e−iβ(k) 0
0 1

)

e−iΓ1K Ŝ(λ, k, z)eiΓ
1K

(

1 0

0 e−iβ(k)

)

F−
k . (4.46)

Hence, identifying (4.35) with (4.46), we finally get

S(λ, k, z) =

(

e−iβ(k) 0
0 1

)

e−iΓ1K Ŝ(λ, k, z)eiΓ
1K

(

1 0

0 e−iβ(k)

)

,
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which in terms of the components (4.19) of Ŝ(λ, k, z) can be written as

S(λ, k, z) =

(

e−iβ(k)T̂ (λ, k, z) e−2i(β(k)+K)R̂(λ, k, z)

e2iK L̂(λ, k, z) e−iβ(k)T̂ (λ, k, z)

)

. (4.47)

For the scattering matrix S(λ, k, z), we shall use the notation

S(λ, k, z) =

[

T (λ, k, z) R(λ, k, z)
L(λ, k, z) T (λ, k, z)

]

.

Hence we obtain the identifications between the components of the physical and unphysical
scattering matrices

T (λ, k, z) = e−iβ(k)T̂ (λ, k, z),

R(λ, k, z) = e−2i(β(k)+K)R̂(λ, k, z),

L(λ, k, z) = e2iK L̂(λ, k, z).

From Lemma 4.2 and the above equalities, it is immediate to check the unitarity of the scattering
matrix S(λ, k, z) as was expected. Precisely we have

Lemma 4.7. For each λ ∈ R and z ∈ R, let the scattering matrix Ŝ(λ, k, z) be defined by
(4.19)-(4.20). We have

|T (λ, k, z)|2 + |R(λ, k, z)|2 = 1,
|T (λ, k, z)|2 + |L(λ, k, z)|2 = 1,

T (λ, k, z)R(λ, k, z) + L(λ, k, z)T (λ, k, z) = 0.

(4.48)

4.1.4 The global scattering matrix

Let us continue this section by coming back to the original scattering matrix associated to the
separated equation (4.2)-(4.3) and by defining the global scattering matrix at fixed energy λ.

We first state in the form of a Theorem the definition of the unphysical reduced scattering
matrix on a generalized spherical harmonic Ykl(λ) as well as the corresponding unphysical global
scattering matrix simply obtained by summation over the generalized spherical harmonics Ykl(λ).

Theorem 4.8. For all indices (k, l) ∈ I = (12 +Z)×N
∗ and for all λ ∈ R, denote by µkl(λ) the

eigenvalues of the angular operator AS2(λ) introduced in Thm 3.4 and define using (4.19)-(4.20)

Ŝkl(λ) =

[

T̂kl(λ) R̂kl(λ)

L̂kl(λ) T̂kl(λ)

]

:= Ŝ(λ, k, µkl(λ)), (4.49)

the unphysical reduced scattering matrix at energy λ constructed with the help of the Jost func-
tions (4.10) associated to (4.7)).
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The global unphysical scattering matrix Ŝ(λ) for all energies λ ∈ R is then defined as the
unitary operator from HS2 = L2(S2;C2) onto itself in the following way. For all ψ ∈ HS2, we
can decompose ψ onto the generalized spherical harmonics Ykl(λ) by

ψ =
∑

(k,l)∈I
ψkl ⊗ Ykl(λ), ψkl ∈ C

2,

(see Thm 3.4) and the global scattering matrix Ŝ(λ) is defined by

Ŝ(λ)ψ =
∑

(k,l)∈I

(

Ŝkl(λ)ψkl

)

⊗ Ykl(λ). (4.50)

We continue defining the physical global scattering matrix at energy λ associated to the
stationary equation (4.1).

Theorem 4.9. Using the same notations as in Thm 4.8 and using (4.35), define

Skl(λ) =

[

Tkl(λ) Rkl(λ)
Lkl(λ) Tkl(λ)

]

:= S(λ, k, µkl(λ)). (4.51)

The unitary 2× 2 - matrix Skl(λ) is the physical reduced scattering matrix at fixed energy λ and
it is expressed in terms of the unphysical and simplified scattering matrix Ŝkl(λ) by the formula

Skl(λ) =

(

e−iβ(k) 0
0 1

)

e−iΓ1K Ŝkl(λ)e
iΓ1K

(

1 0

0 e−iβ(k)

)

,

or in components

Tkl(λ) = e−iβ(k)T̂kl(λ),

Rkl(λ) = e−2i(β(k)+K)R̂kl(λ),

Lkl(λ) = e2iK L̂kl(λ),

where K is any constant of integration in (4.4) and

β(k) =

∫ 0

−∞
[c(s, k) − Ω−(k)] ds+

∫ +∞

0
[c(s, k)− Ω+(k)] ds.

Associated to the stationary equation (4.1), we then define the physical global scattering
matrix S(λ) for all energies λ ∈ R as the unitary operator from HS2 = L2(S2;C2) onto itself
in the following way. For all ψ ∈ HS2 , we can decompose ψ onto the generalized spherical
harmonics Ykl(λ) by

ψ =
∑

(k,l)∈I
ψkl ⊗ Ykl(λ), ψkl ∈ C

2,

(see Thm 3.4) and the physical global scattering matrix S(λ) is defined by

S(λ)ψ =
∑

(k,l)∈I
(Skl(λ)ψkl)⊗ Ykl(λ). (4.52)
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The global scattering matrix S(λ) defined in (4.52) will be the main object of investigation
in this paper. We aim to identify the metric of the KN-dS black hole from the knowledge of
S(λ) for a fixed energy λ ∈ R. In fact, we shall be able to prove better results.

First the knowledge of the restrictions of S(λ) on two angular modes {eikϕ} and {eik′ϕ} with
k 6= k′ ∈ 1/2 + Z is enough to identify the metric of the KN-dS black hole. Let us here define
these objects.

Definition 4.1. We denote by Sk(λ) the unitary operator on L = L2((0, π),C2) defined as the
restriction of the scattering matrix (4.52) at energy λ on the angular mode {eikϕ} with k ∈ 1

2+Z.
Precisely, for all ψ ∈ HS2, we can decompose ψ as

ψ =
∑

k∈ 1
2
+Z

ψk(θ)⊗ eikϕ, ψk(θ) ∈ L = L2((0, π),C2),

and we have
S(λ)ψ =

∑

k∈ 1
2
+Z

(Sk(λ)ψk)⊗ eikϕ, (4.53)

with
Sk(λ)ψk =

∑

l∈N∗

(Skl(λ)ψkl)⊗ uλkl(θ), (4.54)

where
ψk(θ) =

∑

l∈N∗

ψkl ⊗ uλkl(θ), and Ykl(λ)(θ, ϕ) = uλkl(θ)e
ikϕ.

Clearly, the operators Sk(λ) are unitary operators on L by construction.

Second, we don’t need to know the whole reduced scattering matrices Sk(λ) with k ∈ 1/2+Z,
but only one of its reflection operators. Recall that the diagonal components of Sk(λ) are the
transmission operators and the anti-diagonal components are the reflection operators. Let us
define here these objects and state their main properties.

Definition 4.2. For all k ∈ 1/2 + Z and λ ∈ R, we denote by TL
k (λ), T

R
k (λ), Rk(λ) and Lk(λ)

the transmission and reflection operators as the operators acting on l = L2((0, π);C) such that

Sk(λ) =

[

TL
k (λ) Rk(λ)
Lk(λ) TR

k (λ)

]

, (4.55)

where Sk(λ) is the reduced scattering matrix defined in Definition 4.1. More precisely, let us
introduce the operators

P1 :
L −→ l,

(ψ1, ψ2) −→ ψ1,
, P2 :

L −→ l,
(ψ1, ψ2) −→ ψ2,

,

as well as their adjoints

P ∗
1 :

l −→ L,
ψ1 −→ (ψ1, 0),

, P ∗
2 :

l −→ L,
ψ2 −→ (0, ψ2),

.
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Then the transmission and reflection operators are defined as the operators acting on l by

TL
k (λ) = P1Sk(λ)P

∗
1 , TR

k (λ) = P2Sk(λ)P
∗
2 ,

Rk(λ) = P1Sk(λ)P
∗
2 , Lk(λ) = P2Sk(λ)P

∗
1 .

On one hand, the transmission operators TL,R
k (λ) measure the part of a signal having energy

λ that is transmitted from an asymptotic region - say the cosmological horizon for TR
k - to the

other - the event horizon for TR
k - in a scattering experiment. On the other hand, the reflection

operators Rk(λ) (resp. Lk(λ)) measure the part of a signal having energy λ that is reflected
from the cosmological horizon (resp. event horizon) to itself in a scattering process. We shall
be able to prove that the knowledge of one of the latter operators at a fixed energy and for two
different angular modes is enough to determine uniquely the metric of a KN-dS black hole. For
this, we shall use several properties of the transmission and reflection operators that are easily
consequences of the previous definitions. We summarize these properties in the next proposition.

Proposition 4.10. Let k ∈ 1/2 + Z be fixed. For all l ∈ N
∗, we introduce the notation

Ykl(λ) = (Y 1
kl(λ), Y

2
kl(λ)) for the corresponding generalized spherical harmonics. Then, we can

prove the following results.

1) [Hilbert bases of l = L2((0, π);C)] The families {Y 1
kl(λ)}l∈N∗ and {Y 2

kl(λ)}l∈N∗ form Hilbert
bases of l = L2((0, π);C); precisely for all ψk ∈ l, we can decompose ψk as

ψk =
∑

l∈N∗

ψj
klY

j
kl(λ), j = 1, 2,

with

‖ψk‖2 =
1

2

∑

l∈N∗

|ψj
kl|2.

2) [Transmission operators] For all ψk ∈ l, we have

TL
k (λ)ψk = TL

k (λ)

(

∑

l∈N∗

ψ1
klY

1
kl(λ)

)

=
∑

l∈N∗

(

Tkl(λ)ψ
1
kl

)

Y 1
kl(λ), (4.56)

where Tkl(λ) is defined in Theorem 4.52. Also

TR
k (λ)ψk = TR

k (λ)

(

∑

l∈N∗

ψ2
klY

2
kl(λ)

)

=
∑

l∈N∗

(

Tkl(λ)ψ
2
kl

)

Y 2
kl(λ). (4.57)

In other words, we have

TL
k (λ)Y

1
kl = Tkl(λ)Y

1
kl, TR

k (λ)Y 2
kl = Tkl(λ)Y

2
kl, ∀l ∈ N

∗. (4.58)
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3) [Reflection operators] For all ψk ∈ l, we have

Rk(λ)ψk = Rk(λ)

(

∑

l∈N∗

ψ2
klY

2
kl(λ)

)

=
∑

l∈N∗

(

Rkl(λ)ψ
2
kl

)

Y 1
kl(λ), (4.59)

and

Lk(λ)ψk = Lk(λ)

(

∑

l∈N∗

ψ1
klY

1
kl(λ)

)

=
∑

l∈N∗

(

Lkl(λ)ψ
1
kl

)

Y 2
kl(λ), (4.60)

where Rkl(λ), Lkl(λ) are defined in Theorem 4.52. In other words,

Rk(λ)Y
2
kl = Rkl(λ)Y

1
kl, Lk(λ)Y

1
kl = Lkl(λ)Y

2
kl, ∀l ∈ N

∗. (4.61)

4) [Adjoints] Using that

TL
k (λ)

∗ = P1S
∗
k(λ)P

∗
1 , TR

k (λ)∗ = P2S
∗
k(λ)P

∗
2 ,

we get
TL
k (λ)

∗Y 1
kl = Tkl(λ)Y

1
kl, TR

k (λ)∗Y 2
kl = Tkl(λ)Y

2
kl, ∀l ∈ N

∗. (4.62)

Similarly, using that

Rk(λ)
∗ = P2S

∗
k(λ)P

∗
1 , Lk(λ)

∗ = P1S
∗
k(λ)P

∗
2 ,

we get
Rk(λ)

∗Y 1
kl = Rkl(λ)Y

2
kl, Lk(λ)

∗Y 2
kl = Lkl(λ)Y

1
kl, ∀l ∈ N

∗. (4.63)

5) [Unitarity] At last, the unitarity relations for Sk(λ) become in terms of the transmission
and reflection operators

(i) TL
k (λ)T

L
k (λ)

∗ +Rk(λ)Rk(λ)
∗ = Id = TR

k (λ)∗TR
k (λ) +Rk(λ)

∗Rk(λ),

(i) TL
k (λ)

∗TL
k (λ) + Lk(λ)

∗Lk(λ) = Id = TR
k (λ)TR

k (λ)∗ + Lk(λ)Lk(λ)
∗,

(iii) TR
k (λ)Rk(λ)

∗ + Lk(λ)T
L
k (λ)

∗ = 0 = TR
k (λ)∗Lk(λ) +Rk(λ)

∗TL
k (λ).

We shall need in Section 6 the following simple but crucial corollary of the previous Propo-
sition.

Corollary 4.11. The operators TL
k (λ), Rk(λ)Rk(λ)

∗ and Lk(λ)
∗Lk(λ) are diagonalizable on

the Hilbert basis of eigenfunctions (Y 1
kl)l∈N∗ associated to the eigenvalues Tkl(λ), |Rkl(λ)|2 and

|Lkl(λ)|2 respectively. Similarly, the operators TR
k (λ), Rk(λ)

∗Rk(λ) and Lk(λ)Lk(λ)
∗ are diag-

onalizable on the Hilbert basis of eigenfunctions (Y 2
kl)l∈N∗ associated to the eigenvalues Tkl(λ),

|Rkl(λ)|2 and |Lkl(λ)|2 respectively.
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4.1.5 Dependence on the Regge-Wheeler variable

We finish this Section explaining a subtle point in the definition of the reduced scattering
matrices given in Proposition 4.8 and the global scattering matrix given in Theorem 4.9 that
will play an important role in the statement of our main inverse result, Thm 5.1. As mentioned
in the Introduction, the stationary expression of Skl(λ) (and thus the one of S(λ)) depends on
the choice of the radial Regge-Wheeler coordinate through the constant of integration c in (2.8).

To see this, let us assume that the KN-dS black hole we are considering is described with
a Regge-Wheeler coordinate x̃ = x + c instead of the previous x Regge-Wheeler coordinate.
Here c is any constant of integration. We first analyse the influence of this change of variable
on the unphysical scattering matrix Ŝ(λ, k, z) defined in (4.27) through the chain of equations

(4.10)-(4.20). We denote by ˆ̃S(λ, k, z) the scattering matrix obtained using the variable x̃. Note
that in what follows, we shall add a subscript ˜to any quantities related to the choice of the x̃
radial variable. When described with the variable x̃, it is easy to see ([20]) that the potentials
a(x) and c(x, k) become new potentials defined by

ã(x) = a(x− c), c̃(x, k) = c(x− c, k), (4.64)

and the stationary scattering is governed by the new stationary equation

[Γ1Dx − zã(x)Γ2 + c̃(x, k)]ψ = 0.

The potentials ã and c̃ still have the asymptotics (3.15) and (3.17) where, according to (3.14)
and with obvious notations, Ω̃±(k) = Ω±(k). So, the primitive (4.5) of the new potential c̃(x, k)
becomes

C̃(x, k) =

∫ x

−∞
[c̃(s, k)− Ω−(k)] ds +Ω−(k)x+K. (4.65)

A straightforward calculation gives :

C̃(x, k) = C(x− c, k) + cΩ−(k). (4.66)

Then, q̃(x, k) := ã(x) e2iC̃(x,k) = q(x− c, k) e2icΩ−(k). Thus, we obtain

Ṽk(x) = eicΩ−(k)Γ1
Vk(x− c) e−icΩ−(k)Γ1

. (4.67)

Using (4.12) and (4.16), we deduce

F̃L(x, λ, k, z) = eicΩ−(k)Γ1
F (x− c, λ, k, z) e−icΩ−(k)Γ1

eiλcΓ
1
, (4.68)

ÃL(λ, k, z) = e−ic(λ−Ω−(k))Γ1
AL(λ, k, z) e

ic(λ−Ω−(k))Γ1
. (4.69)

We conclude with (4.19) and (4.20) that the stationary expression of ˆ̃S(λ, k, z) is then given in
term of Ŝ(λ, k, z) by

ˆ̃S(λ, k, z) = e−icλ−(k)Γ1
Ŝ(λ, k, z) eicλ

−(k)Γ1
, (4.70)
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where
λ±(k) = λ− Ω±(k), (4.71)

or written in components - using the notations (4.20) - by
[

ˆ̃T (λ, k, z) ˆ̃R(λ, k, z)
ˆ̃L(λ, k, z) ˆ̃T (λ, k, z)

]

=

[

T̂ (λ, k, z) e−2iλ−(k)cR̂(λ, k, z)

e2iλ
−(k)cL̂(λ, k, z) T̂ (λ, k, z)

]

. (4.72)

The scattering matrix (4.72) is not however the physical scattering matrix which is given in
fact by

S(λ, k, z) =

[

T (λ, k, z) R(λ, k, z)
L(λ, k, z) T (λ, k, z)

]

=

[

e−iβ(k)T̂ (λ, k, z) e−2i(β(k)+K)R̂(λ, k, z)

e2iK L̂(λ, k, z) e−iβ(k)T̂ (λ, k, z)

]

. (4.73)

We thus analyse the influence of the change of variable x̃ = x+c on the constant β(k) appearing
above. Recall that

β(k) =

∫ 0

−∞
[c(s, k) − Ω−(k)] ds+

∫ +∞

0
[c(s, k)− Ω+(k)] ds. (4.74)

Hence, plugging (4.64) into (4.74), we get for the new constant β̃(k)

β̃(k) =

∫ 0

−∞

[

c̃(s, k)− Ω̃−(k)
]

ds+

∫ +∞

0

[

c̃(s, k)− Ω̃+(k)
]

ds,

=

∫ 0

−∞
[c(s− c, k)− Ω−(k)] ds +

∫ +∞

0
[c(s − c, k)− Ω+(k)] ds, (4.75)

A change of variable in the above integral shows that

β̃(k) = β(k) +

∫ −c

0
[c(s, k)− Ω−(k)] ds+

∫ 0

−c
[c(s, k)− Ω+(k)] ds,

= β(k) + θ(k)c, (4.76)

with
θ(k) = Ω−(k)− Ω+(k). (4.77)

Coming back to (4.73), we see first that the physical scattering matrix S̃(λ, k, z) associated to
x̃ is expressed as

S̃(λ, k, z) =

[

T̃ (λ, k, z) R̃(λ, k, z)

L̃(λ, k, z) T̃ (λ, k, z)

]

=

[

e−iβ̃(k) ˆ̃T (λ, k, z) e−2i(β̃(k)+K) ˆ̃R(λ, k, z)

e2iK ˆ̃L(λ, k, z) e−iβ̃(k) ˆ̃T (λ, k, z)

]

. (4.78)

But, in view of (4.72) and (4.76) - (4.77), the scattering matrix S̃(λ, k, z) can be written in terms
of the components of the unphysical scattering matrix Ŝ(λ, k, z) by

S̃(λ, k, z) =

[

e−i(β(k)+θ(k)c)T̂ (λ, k, z) e−2i(β(k)+θ(k)c+K+λ−(k)c)R̂(λ, k, z)

e2i(K+λ−(k)c)L̂(λ, k, z) e−i(β(k)+θ(k)c)T̂ (λ, k, z)

]

, (4.79)
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or in terms of the physical scattering matrix S(λ, k, z) by

[

T̃ (λ, k, z) R̃(λ, k, z)

L̃(λ, k, z) T̃ (λ, k, z)

]

=

[

e−iθ(k)c T (λ, k, z) e−2iλ+(k)cR(λ, k, z)

e2iλ
−(k)cL(λ, k, z) e−iθ(k)c T (λ, k, z)

]

. (4.80)

Let us summarize these results for the true scattering data in a Proposition.

Proposition 4.12. Let the exterior region of a KN-dS black hole be described by two Regge-
Wheeler coordinates x and x̃ related by a constant c such that

x̃ = x+ c.

For all (k, l) ∈ I, we denote by

Skl(λ) =

[

Tkl(λ) Rkl(λ)
Lkl(λ) Tkl(λ)

]

, S̃kl(λ) =

[

T̃kl(λ) R̃kl(λ)

L̃kl(λ) T̃kl(λ)

]

,

the corresponding physical reduced scattering matrices at fixed energy λ associated to massless
Dirac fields as given in Thm 4.9. Then we have

[

T̃kl(λ) R̃kl(λ)

L̃kl(λ) T̃kl(λ)

]

=

[

e−ic(Ω+(k)−Ω−(k)) Tkl(λ) e−2icλ+(k)Rkl(λ)

e2icλ
−(k)Lkl(λ) e−ic(Ω+(k)−Ω−(k)) Tkl(λ)

]

, (4.81)

where
λ±(k) = λ− Ω±(k).

Moreover, the equality (4.81) holds with the underscript kl replaced only by k, that is for the
scattering matrices reduced onto an angular mode {e−ikϕ} only. At last, if

Ŝkl(λ) =

[

T̂kl(λ) R̂kl(λ)

L̂kl(λ) T̂kl(λ)

]

, ˆ̃Skl(λ) =

[

ˆ̃Tkl(λ)
ˆ̃Rkl(λ)

ˆ̃Lkl(λ)
ˆ̃Tkl(λ)

]

,

denote the corresponding unphysical reduced scattering matrices at fixed energy λ associated to
massless Dirac fields as given in Thm 4.8, then we have

[

ˆ̃Tkl(λ)
ˆ̃Rkl(λ)

ˆ̃Lkl(λ)
ˆ̃Tkl(λ)

]

=

[

T̂kl(λ) e−2iλ+(k)cR̂kl(λ)

e2iλ
−(k)cL̂kl(λ) T̂kl(λ)

]

. (4.82)

The dependence of the expression of the scattering matrix under a change of radial variable
will have important consequences for our main result. Since the exterior region of a KN-dS
black hole can be described uniquely by any choice of the Regge-Wheeler variable x, we shall
identify all the possible forms of the reduced scattering matrices (as given in Prop 4.12) in the
statement of our main inverse result (see Thm 5.1). However and in a first reading, the reader
is invited to take c = 0 in the next formulae to simplify the statement of our results.
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4.2 Time-dependent expression of the scattering matrix

In this Section, we give an alternative definition of the scattering matrix S(λ) by purely time-
dependent methods. This definition will be given in terms of time-dependent wave operators
associated to the Dirac Hamiltonian H and the natural asymptotic Hamiltonians corresponding
to the evolution of the Dirac waves in the neighbourhood of the event and cosmological hori-
zons. We shall then introduce the corresponding scattering operator S and finally, define the
time-dependent scattering matrix S(λ) by a standard procedure. In the next Section 4.3 , we
shall prove the equivalence of this definition of the time-dependent scattering matrix with the
stationary definition given in Section 4.1.

First recall that the Dirac Hamiltonian H is given by (see Section 3.1 and more precisely
(3.9))

H = J−1H0, H0 = Γ1Dx + a(x)HS2 + c(x,Dϕ),

where

J−1 = (1− α2)(I2 − αΓ3), α(x, θ) = a(x)b(θ) =

√
∆r

r2 + a2
a sin2 θ√

∆θ
.

Observe that, by (3.19), we have J−1 = I2 +O(e−κ|x|), κ = min(|κ−|, |κ+|) > 0 when x→ ±∞.
Hence, the operator H can be viewed as a short-range perturbation of order 1 of the operator
H0, i.e

H = H0 +O(e−κ|x|)H0,

and we expect that we can compare the dynamics generated by H and H0 at late times. In fact,
we are able to prove a complete scattering theory for the pair of selfadjoint operators (H,H0).
Before stating this first result, recall that the Hamiltonians H0 and H act on the different
Hilbert spaces H and G respectively (defined before Theorem 3.2). In consequence, we use the
two Hilbert spaces scattering formalism as exposed in [55] to state our first Theorem. Precisely,
we have

Theorem 4.13. The Hamiltonians H0 and H have purely absolutely continuous spectra, pre-
cisely

σ(H0) = σac(H0) = R, σ(H) = σac(H) = R,

and the following wave operators

W±(H,H0, I2) := s− lim
t→±∞

eitHe−itH0 ,

exist as operators from H to G and are asymptotically complete, i.e. they are isometries from
H to G and their inverse wave operators given by

(W±(H,H0, I2))
∗ =W±(H0,H, J) := s− lim

t→±∞
eitH0Je−itH ,

exist as operators from G to H. (Note that the identity operator I2 : H −→ G has been used as
identification operator between H and G in the definition of the direct wave operators, whereas
the dual operator (I2)

∗ = J : G −→ H appears in the definition of the inverse wave operators).
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Proof. The proof of this Theorem given in Appendix B is a direct consequence of the Limiting
Absorption Principles (LAP) for the Hamiltonians H and H0 and the theory of H-smooth
operators as exposed in [47]. These LAPs in turn are obtained with the help of a non trivial
Mourre theory similar to the ones obtained in [15, 34].

The interest in comparing first the dynamic e−itH with the dynamic e−itH0 at late times
is that the operator H0 can be considerably simplified if we decompose it onto its restrictions
to the generalized spherical harmonics Ykl(0), that are common eigenfunctions of the operators
HS2 = AS2(0) and Dϕ. Indeed the Hamiltonian H0 is nothing but the Hamiltonian H(0)
introduced in (3.26) for which separation of variable is available. Referring to Theorems 3.3 and
3.4 for the details, we consider precisely the following decomposition of the Hilbert space H

H = ⊕(k,l)∈IHkl(0),

where

I = (
1

2
+ Z)× N

∗,

and
Hkl(0) = L2(R,C2)⊗ Ykl(0) ≃ L2(R,C2) := h.

These reduced Hilbert spaces remain invariant under the action of H0 and we are led to study
the family of one-dimensional Dirac operators

H0|Hkl(0) = Hkl(0) := Γ1Dx + µkl(0)a(x)Γ
2 + c(x, k).

Hence, in order to obtain a complete scattering theory for H0, it is enough to obtain a
complete scattering theory for each of the one-dimensional Dirac operators Hkl(0), a much
simpler problem already studied in [14] and which is a particular case of the one studied in
Section 4.1. Recall indeed that the Hamiltonian Hkl(0) defined above is simply the Hamiltonian
Hkz with z = µkl(0) defined in (4.29), i.e.

Hkl(0) = Hk(µkl(0)),

and for which a complete scattering theory has been obtained in Theorem 4.5. We recall these
results here in our particular case. Introducing the asymptotic Hamiltonians

H±
k = (Γ1Dx +Ω+(k))P± + (Γ1Dx +Ω−(k))P∓,

where P± = 1R±(Γ1), we can prove the following Proposition

Proposition 4.14. For each (k, l) ∈ I, the Hamiltonians Hkl(0) and H
±
k have purely absolutely

continuous spectra, precisely

σ(Hkl(0)) = σac(Hkl(0)) = R, σ(H±
k ) = σac(H

±
k ) = R,
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and the wave operators

W±(Hkl(0),H
±
k ) := s− lim

t→±∞
eitHkl(0)e−itH±

k ,

exist on h and are asymptotically complete, i.e. they are isometries on h and their inverse wave
operators given by

(W±(Hkl(0),H
±
k ))∗ =W±(H±

k ,Hkl(0)) := s− lim
t→±∞

eitH
±
k e−itHkl(0),

also exist on h.

By summing over all the generalized spherical harmonics Ykl(0), it is immediate to re-write
this result in a global form as follows. Define the global asymptotic Hamiltonians

H± = (Γ1Dx +Ω+(Dϕ))P± + (Γ1Dx +Ω−(Dϕ))P∓. (4.83)

Then

Theorem 4.15. The wave operators

W±(H0,H
±) = s− lim

t→±∞
eitH0e−itH±

,

exist on H and are asymptotically complete, i.e. they are isometries on H and their inverse
wave operators given by

(W±(H0,H
±))∗ =W±(H±,H0) = s− lim

t→±∞
eitH

±

e−itH0 ,

also exist on H.

Finally we can finish the construction and the proof of existence of global wave operators
associated to our Dirac Hamiltonian H and to the natural asymptotic Hamiltonians H±. Using
Theorems 4.13 and 4.15 and the chain-rule for wave operators, we obtain

Theorem 4.16. The global wave operators

W±(H,H±, I2) = s− lim
t→±∞

eitHe−itH±

,

exist as operators from H to G and are asymptotically complete, i.e. they are isometries from
H to G and their inverse wave operators given by

(W±(H,H±, I2)
∗ =W±(H±,H, J) = s− lim

t→±∞
eitH

±

Je−itH ,

also exist as operators from G to H.
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We are now in position to define the global time-dependent scattering operator by the stan-
dard rule

S = (W+(H,H+, I2))
∗ W−(H,H−, I2), (4.84)

which is clearly a unitary operator from H to H. In order to finish the construction of the
corresponding time-dependent scattering matrix S(λ) at energy λ, we introduce the following
unitary operators on H

F+ψ(λ) =
1√
2π

∫

R

(

e−ix(λ−Ω+(Dϕ)) 0

0 eix(λ−Ω−(Dϕ))

)

ψ(x)dx, (4.85)

and

F−ψ(λ) =
1√
2π

∫

R

(

e−ix(λ−Ω−(Dϕ)) 0

0 eix(λ−Ω+(Dϕ))

)

ψ(x)dx. (4.86)

As already explained in Section 4.1 and more precisely in (4.33)-(4.34), these operators diago-
nalize the Hamiltonians H+ and H− respectively. Hence, we define the global scattering matrix
at energy λ in a natural way by the rule

S = (F+)
∗S(λ)F−. (4.87)

At this stage, we have obtained a complete time-dependent scattering theory for the Dirac
Hamiltonian H. The meaning of the above definitions for the wave operators is the following. At
late times (from the point of view of a stationary observer for which the variable t corresponds
to proper time), the energy of massless charged Dirac fields escape towards the two asymptotic
regions: the event and cosmological horizons. This is a direct consequence of the absence of
pure point spectrum for H. Moreover, in these regions, the massless charged Dirac fields are
shown to obey simpler evolutions governed by the asymptotic Hamiltonians H±. From the
expressions (4.83) of H± and (2.7) for the principal null geodesics, we immediately see that, at
late times and from the point of view of a stationary observer, the Dirac fields simply obey a
system of transport equations along the incoming and ougoing principal null geodesics in the
neighbourhood of the event and cosmological horizons.

4.3 Link between the stationary and time-dependent expressions of the scat-

tering matrices

In this section, we make the link between the stationary scattering matrix S(λ) defined by (4.52)
in Theorem 4.9 and the time-dependent scattering matrix S(λ) defined by (4.87). We shall show
that the two definitions coincide, justifying then the use of the same notation for the two objects.

To do this, we start from the time-dependent scattering matrix S(λ) defined by (4.87) and
shall obtain a stationary representation of S(λ) following the approach of Kuroda [39] or Isozaki-
Kitada [36]. We also refer to Yafaev ([55]) where similar formulae are proved. The procedure is
quite standard in the case of a general Hamiltonian H which is a short-range perturbation by a
potential of a given Hamiltonian H0. This is not so easy in our case however for two reasons.
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• The Hamiltonian H is a short-range perturbation of order 1 of the asymptotic Hamilto-
nians H±.

• The dynamics e−itH is compared with different dynamics e−itH±
when t→ ±∞.

Both problems entail technical difficulties in adapting the methods of [39, 36, 55]. Finally, the
stationary representation of S(λ) obtained in this way from (4.87) will be shown to coincide with
the stationary representation (4.52) obtained through the separation of variables procedure.

4.3.1 First simplifications

In order to avoid the second above difficulty, we shall slightly simplify the problem as follows.
Recall that the fact that we compare the dynamics e−itH with different dynamics e−itH±

at
late times follows from the presence of the long-range potential c(x,Dϕ) in the expression of
H. But, in Section 4.1.1, we removed this potential of the equation by introducing a convenient
unitary transform (4.4) on each generalized spherical harmonics Ykl(λ). This leaded us to define
a simplified stationary scattering matrix Ŝ(λ) expressed in terms of the Jost functions solutions
of the simplified stationary equation. We shall follow the same approach here, that is first
remove the potential c(x,Dϕ) from the expression of H and obtain the corresponding expression
for the time-dependent scattering matrix, and second obtain a stationary expression of this
time-dependent scattering matrix by the route proposed in [39, 36, 55].

Let us then introduce the unitary transform U from H to H defined by

Uψ = e−iC(x,Dϕ)Γ1
ψ, (4.88)

where C(x,Dϕ) is defined by (4.5). Note that this unitary transform is simply the unitary
transform (4.4) when restricted onto the angular modes {eikϕ}, k ∈ 1/2 + Z. Let us introduce
some new notations

Ĵ = U−1JU, (4.89)

Ĥ0 = U−1H0U = Γ1Dx + a(x)U−1HS2U, (4.90)

Ĥ = U−1HU = ĴĤ0, (4.91)

H∞ = Γ1Dx. (4.92)

Note that the Hamiltonian Ĥ is still a short-range perturbation of order 1 of the Hamiltonian
Ĥ0, which in turn can now be viewed as a short-range perturbation of the Hamiltonian H∞
after decomposition onto convenient generalized spherical harmonics. In other words, after
conjugation by the unitary transform U , we are able to compare the dynamics generated by Ĥ
with a single dynamics generated by H∞ at late times. Thus we have removed the second above
difficulty.

Let us now write the details. We define the new Hilbert space

Ĝ = L2(R× S
2, dxdθdϕ;C2),

equipped with the scalar product (., Ĵ .)H. Then from Thm 3.2 we immediately have
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Lemma 4.17. 1) The operators Ĵ , Ĥ0,H∞ are selfadjoint on H.
2) The operator Ĥ is selfadjoint on Ĝ.
3) The transform U is unitary on H and isometric from Ĝ to G.
4) The dynamics e−itĤ = U−1e−itHU is unitary on Ĝ.

Let us also introduce the operators

G± = s− lim
t→±∞

eitH∞U−1e−itH±

, (4.93)

and

β(Dϕ) =

∫ 0

−∞
[c(s,Dϕ)− Ω−(Dϕ)] ds+

∫ +∞

0
[c(s,Dϕ)− Ω+(Dϕ)] ds. (4.94)

These operators are simply the operators (4.37) and (4.38) when restricted onto the angular
modes {eikϕ}, k ∈ 1/2 + Z. Using Lemma 4.6, we thus get

Lemma 4.18. The operators G± are unitary on H and we have

G± = eiΓ
1[(Ω+(Dϕ)+β(Dϕ)+K)P± + (Ω−(Dϕ)+K)P∓], (4.95)

where K is the constant of integration in (4.5) and P± = 1R±(Γ1). Moreover, we have

FG+ = eiΓ
1K

(

eiβ(Dϕ) 0
0 1

)

F+, (4.96)

and

FG− = eiΓ
1K

(

1 0

0 e−iβ(Dϕ)

)

F−. (4.97)

We are now able to prove

Theorem 4.19. The wave operators

W±(Ĥ,H∞, I2) = s− lim
t→±∞

eitĤe−itH∞ ,

exist as operators from H to Ĝ and are asymptotically complete, i.e. they are isometries from
H to Ĝ and their inverse wave operators given by

(W±(Ĥ,H∞, I2)
∗ =W±(H∞, Ĥ, Ĵ) = s− lim

t→±∞
eitH∞ Ĵe−itĤ ,

also exist as operators from Ĝ to H. Moreover, we have

W±(Ĥ,H∞, I2) = U−1W±(H,H±, I2)G
±,

W±(H∞, Ĥ, Ĵ) = G±W±(H±,H, J)U.
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Proof. The first part of the Thm is a direct consequence of Thm 4.16, Lemma 4.18 and the
unitarity of U . The second part of the Thm is the same as the calculations obtained in (4.36)
on a fixed generalized spherical harmonics. We omit the details.

Using Thm 4.19, we can thus define the scattering operator unitary on H

Ŝ = (W+(Ĥ,H∞, I2))
∗W−(Ĥ,H∞, I2). (4.98)

Recalling that the unitary transform F given by (4.26) diagonalizes H∞, we define the corre-
sponding scattering matrix Ŝ(λ) unitary on L2(S2,C2) by

Ŝ = F∗Ŝ(λ)F . (4.99)

Finally, using the same calculation as in (4.46), we can make the link between the physical
time-dependent scattering matrix S(λ) and the simplified one Ŝ(λ). Precisely, we get

S(λ) =

(

e−iβ(Dϕ) 0
0 1

)

e−iΓ1K Ŝ(λ)eiΓ
1K

(

1 0

0 e−iβ(Dϕ)

)

(4.100)

4.3.2 Stationary formulation for Ŝ(λ)

In this Section, we show that the simplified time-dependent scattering matrix Ŝ(λ) obtained in
(4.99) is nothing but the simplified stationary scattering matrix Ŝ(λ) obtained in Thm 4.8 by
means of separation of variables. Hence the equivalence of the two definitions and our use of
the same notation.

Let us obtain thus a stationary formulation for the one shell energy scattering matrix Ŝ(λ)
defined by (4.99). To do this, we adapt the well-known Kuroda’s approach in our context, ([39],
[36]).

For l ∈ R, we define
Hl = L2(R× S

2;< x >2l dxdθdϕ;C2), (4.101)

and for l > 1
2 , we set

Γ0(λ) : Hl → L2(S2;C2)

Ψ → 1√
2π

∫

R

e−iΓ1xλ Ψ(x, θ, ϕ) dx. (4.102)

Clearly, Γ0(λ) is a bounded operator from Hl to HS2 = L2(S2,C2), and we have for l > 1
2 ,

Γ0(λ)
∗ : L2(S2;C2) → H−l

Ψ → eiΓ
1xλ Ψ(θ, ϕ). (4.103)
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The operator Γ0(λ) is the one-shell energy restriction of the unitary transform F defined in
(4.26) that diagonalizes the operator H∞. We shall use constantly the spectral decomposition
for H∞, that is the following relation: for all u, v ∈ Hl, l > 1/2, we have

(u, v) = (Fu,Fv) =
∫

Rλ

< Γ0(λ)u,Γ0(λ)v > dλ, (4.104)

where < ., . > denotes here the scalar product in HS2 .
Since Ŝ commutes with H∞ and

Γ0(λ)H∞ = λΓ0(λ), (4.105)

on a suitable domain, Ŝ is a decomposable operator (see [47]). It means in particular that for
a.e λ ∈ R, there exists unitary operators Ŝ(λ) on HS2 such that, for f = u1 ⊗ v1, g = u2 ⊗ v2,
with ûj ∈ C∞

0 (R,C2) and vj ∈ L2(S2,C2),

((Ŝ − Id)f, g) =

∫ +∞

−∞
< (Ŝ(λ)− Id)Γ0(λ)f,Γ0(λ)g > dλ. (4.106)

Recall that the space HS2 can be decomposed first onto the angular modes {eikϕ}, k ∈
1/2+Z, then onto the generalized spherical harmonics Ykl(λ0) where λ0 ∈ R is any fixed energy.
Precisely, we first have the decomposition

HS2 = ⊕k∈ 1
2
+Z

Hk
S2
, Hk

S2
= L2((0, π);C2)⊗ eikϕ ≃ L2((0, π);C2).

Second, each Hk
S2

can be decomposed onto

Hk
S2

= ⊕l∈N∗Hkl
S2
(λ0), Hkl

S2
(λ0) = C

2 ⊗ Ykl(λ0) ≃ C
2.

This above decomposition explains why we shall study the quantity ((Ŝ − Id)f, g) with test
functions f and g having the form f = φ⊗ Ykl(λ0) and g = ψ⊗ Ypq(λ0) with φ̂, ψ̂ with compact
support.

We start rewriting the wave operatorsW± := W±(Ĥ,H∞; Id) defined in Thm 4.19 with their
so-called abelian limits in order to systematically deal with well-defined integral expressions.
Precisely, we have

W±f = lim
t→±∞

eitĤ Id e−itH∞f

= lim
µ→0+

µ

∫ ±∞

0
e−µ|t| eitĤ Id e−itH∞f dt,

where we recall that the operator Id is used as identification operator between the Hilbert spaces
H and Ĝ. Integrating by parts, we obtain

(W± − Id)f = lim
µ→0+

i

∫ ±∞

0
e−µ|t| eitĤ T e−itH∞f dt, (4.107)
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where we have set T := Ĥ Id − IdH∞. Thus, using the classical intertwining property for the
wave operators W±, we can write

((Ŝ − Id)f, g) =
(

W+∗(W− −W+)f, g
)

= − lim
µ→0+

(

W+∗( i
∫ +∞

−∞
e−µ|t| eitĤ T e−itH∞f dt), g

)

= − lim
µ→0+

(

( i

∫ +∞

−∞
e−µ|t| eitH∞W+∗ T e−itH∞f dt), g

)

= − lim
µ→0+

(I1(µ) + I2(µ)), (4.108)

where

I1(µ) =

(

( i

∫ +∞

−∞
e−µ|t| eitH∞ Ĵ T e−itH∞f dt), g

)

,

I2(µ) =

(

( i

∫ +∞

−∞
e−µ|t| eitH∞(W+∗ − Ĵ) T e−itH∞f dt), g

)

.

Let us first examine I1(µ). Using the spectral decomposition (4.104)-(4.105) for H∞ and the
resolvent formula, we have :

I1(µ) =

∫ +∞

−∞
< Γ0(λ)ĴT

(

i

∫ +∞

−∞
e−µ|t| e−it(H∞−λ)f dt

)

,Γ0(λ)g > dλ

=

∫ +∞

−∞
< Γ0(λ)ĴT (R∞(λ+ iµ)−R∞(λ− iµ)) f,Γ0(λ)g > dλ,

where R∞(z) = (H∞− z)−1 denotes the resolvent for H∞. In order to use carefully the limiting
absorption principle for H∞, we remark that the unbounded operator ĴT can be written as

ĴT = Ĥ0 − ĴH∞
= a(x) e2iC(x,k)Γ1

(HS2 − b(θ)Γ3Γ1Dx). (4.109)

Hence, the term

ĴT (R∞(λ+ iµ)−R∞(λ− iµ))f = a(x) e2iC(x,k)Γ1
[(R∞(λ+ iµ)−R∞(λ− iµ))φ⊗ (HS2Ykl(λ0))

−Γ3(R∞(λ+ iµ)−R∞(λ− iµ))(Γ1Dxφ)⊗ (b(θ)Ykl(λ0))],

is well-defined for all µ > 0 since f = φ⊗ Ykl(λ0) with φ̂ with compact support. Thus, we can
apply the limiting absorption principle for H∞ and Stone’s theorem to deduce

lim
µ→0+

I1(µ) =

∫ +∞

−∞
< Γ0(λ)ĴT (R∞(λ+ i0) −R∞(λ− i0)) f,Γ0(λ)g > dλ

= 2iπ

∫ +∞

−∞
< Γ0(λ)ĴTΓ0(λ)

∗Γ0(λ)f,Γ0(λ)g > dλ. (4.110)
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Now, using (4.109) again and the fact that the operators Γ0(λ) and Γ∗
0(λ) let invariant the

special form of f , for instance

Γ0(λ)f = (Γ0(λ)φ) ⊗ Ykl(λ0),

we see that

ĴTΓ0(λ)
∗Γ0(λ)f = a(x) e2iC(x,k)Γ1 (

HS2 − λb(θ)Γ3
)

Γ0(λ)
∗Γ0(λ)f

= a(x) e2iC(x,k)Γ1 (

(HS2 − λ0b(θ)Γ
3) + (λ0 − λ)b(θ)Γ3

)

Γ0(λ)
∗Γ0(λ)f

= a(x) e2iC(x,k)Γ1 (

AS2(λ0) + (λ0 − λ)b(θ)Γ3
)

Γ0(λ)
∗Γ0(λ)f

= a(x) e2iC(x,k)Γ1 (

µkl(λ0)Γ
2 + (λ0 − λ)b(θ)Γ3)

)

Γ0(λ)
∗Γ0(λ)f

= a(x)
(

µkl(λ0)Γ̂
2 + (λ0 − λ)b(θ)Γ̂3

)

Γ0(λ)
∗Γ0(λ)f

=
(

µkl(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)

)

Γ0(λ)
∗Γ0(λ)f, (4.111)

where
Γ̂2 = e2iC(x,k)Γ1

Γ2, Γ̂3 = e2iC(x,k)Γ1
Γ3.

Thus, we deduce from (4.110) and (4.111) that

lim
µ→0+

I1(µ) = 2iπ

∫ +∞

−∞
< Γ0(λ)

[

µkl(λ0)a(x)Γ̂
2

+(λ0 − λ)(Ĵ − 1)
]

Γ0(λ)
∗Γ0(λ)f,Γ0(λ)g > dλ. (4.112)

Now, let us study I2(µ). As in (4.107), the existence of W+∗ ensures that

W+∗ − Ĵ = s− lim
ν→0+

−i
∫ +∞

0
e−sν eisH∞T ∗e−isĤds. (4.113)

Thus,

I2(µ) = − lim
ν→0+

((

i

∫ +∞

−∞
e−µ|t| eitH∞

[

i

∫ +∞

0
e−sν eisH∞T ∗e−isĤds

]

T e−itH∞f dt
)

, g
)

= − lim
ν→0+

∫ +∞

−∞

〈

Γ0(λ)T
∗
[

i

∫ +∞

0
e−sν e−is(Ĥ−λ)ds

]

T

(

i

∫ +∞

−∞
e−µ|t| e−it(H∞−λ)f dt

)

,Γ0(λ)g
〉

dλ, (4.114)
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where we have used again the spectral decomposition (4.104)-(4.105) for H∞. Thus, setting
R̂(z) = (Ĥ − z)−1, we obtain using the resolvent formula

I2(µ) = − lim
ν→0+

∫ +∞

−∞
< Γ0(λ)T

∗R̂(λ+ iν)T

[R∞(λ+ iµ)−R∞(λ− iµ)]f,Γ0(λ)g > dλ,

= − lim
ν→0+

I(µ, ν), (4.115)

where

I(µ, ν) =

∫ +∞

−∞

(

R̂(λ+ iν)T [R∞(λ+ iµ)−R∞(λ− iµ)]f, TΓ0(λ)
∗Γ0(λ)g

)

Ĝ
dλ

=

∫ +∞

−∞

(

R̂(λ+ iν)T [R∞(λ+ iµ)−R∞(λ− iµ)]f,

ĴTΓ0(λ)
∗Γ0(λ)g

)

H
dλ (4.116)

Now, let us recall that J = I2+α(r, θ)Γ3 with sup
r,θ

α(r, θ) < 1. Then there exists c > 0 such

that Ĵ−1 ≥ c in the sense of operators on Ĝ. For ν > 0, we set

H(ν) = Ĥ − iνĴ−1. (4.117)

It follows from ([48], Lemma 2.1) that H(ν) is a maximal dissipative operator with domain
D(H(ν)) = D(Ĥ), and for all λ ∈ R, H(ν)− λ is invertible with bounded inverse. Then, using
the resolvent identity, we can split I(µ, ν) into two terms by I(µ, ν) = I1(µ, ν) + I2(µ, ν) where

I1(µ, ν) =

∫ +∞

−∞

(

(H(ν)− λ)−1T [R∞(λ+ iµ)−R∞(λ− iµ)]f,

ĴTΓ0(λ)
∗Γ0(λ)g

)

H
dλ, (4.118)

I2(µ, ν) = iν

∫ +∞

−∞

(

R̂(λ+ iν)(Ĵ−1 − 1)(H(ν) − λ)−1T

[R∞(λ+ iµ)−R∞(λ− iµ)]f, ĴTΓ0(λ)
∗Γ0(λ)g

)

H
dλ. (4.119)

First, let us study I1(µ, ν). We easily see that

I1(µ, ν) =

∫ +∞

−∞

(

(Ĥ0 − λĴ − iν)−1ĴT [R∞(λ+ iµ)−R∞(λ− iµ)]f,

ĴTΓ0(λ)
∗Γ0(λ)g

)

H
dλ. (4.120)
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Thus, using the limiting absorption principle for Ĥ0 − λĴ given in Proposition B.13 and the
same simplifications as in (4.111), we obtain

lim
µ,ν→0+

I1(µ, ν) = 2iπ

∫ +∞

−∞

(

(Ĥ0 − λĴ − i0)−1ĴT Γ0(λ)
∗Γ0(λ)f,

ĴTΓ0(λ)
∗Γ0(λ)g

)

H
dλ.

= 2iπ

∫ +∞

−∞

(

(Ĥ0 − λĴ − i0)−1[µkl(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)]Γ0(λ)

∗Γ0(λ)f,

[µpq(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)]Γ0(λ)

∗Γ0(λ)g
)

H
dλ. (4.121)

We now observe that the operator Ĥ0 − λĴ = Γ1Dx + a(x)e2iC(x,k)Γ1
AS2(λ)− λ acts on Hkl

S2
(λ)

by
(Ĥ0 − λĴ)(φ⊗ Ykl(λ)) = (Ĥkl(λ)φ)⊗ Ykl(λ),

where we have used the notation from (4.22)

Ĥkl(λ) = Γ1Dx + µkl(λ)a(x)Γ̂
2 = Γ1Dx + µkl(λ)Vk(x). (4.122)

Then we have,

lim
µ,ν→0+

I1(µ, ν) = 2iπ

∫ +∞

−∞

(

(Ĥkl(λ)− λ− i0)−1[µkl(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)] Γ0(λ)

∗Γ0(λ)f,

[µpq(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)]Γ0(λ)

∗Γ0(λ)g
)

H
dλ. (4.123)

Thus, we have obtained

lim
µ,ν→0+

I1(µ, ν) = 2iπ

∫ +∞

−∞

〈

Γ0(λ) [µpq(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)] (Ĥkl(λ)− λ− i0)−1

[µkl(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)] Γ0(λ)

∗Γ0(λ)f,Γ0(λ)g
〉

dλ.

Similarly, we show easily that
lim

µ,ν→0+
I2(µ, ν) = 0. (4.124)

In consequence, we get

lim
µ→0+

I2(µ) = −2iπ

∫ +∞

−∞

〈

Γ0(λ) [µpq(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)] (Ĥkl(λ)− λ− i0)−1

[µkl(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)] Γ0(λ)

∗Γ0(λ)f,Γ0(λ)g
〉

dλ. (4.125)
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Coming back to (4.106)-(4.108) and using (4.104), (4.112), (4.125), we have shown that for
all f = φ⊗ Ykl(λ0) and g = ψ ⊗ Ypq(λ0), and for a.e λ ∈ R,

< (Ŝ(λ)− Id)Γ0(λ)f,Γ0(λ)g > = −2iπ < Γ0(λ) [µkl(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)] Γ0(λ)

∗Γ0(λ)f,Γ0(λ)g >

+2iπ < Γ0(λ) [µpq(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)] (Ĥkl(λ)− λ− i0)−1

[µkl(λ0)a(x)Γ̂
2 + (λ0 − λ)(Ĵ − 1)]

Γ0(λ)
∗Γ0(λ)f,Γ0(λ)g > .

In particular, choosing λ = λ0, we obtain

< (Ŝ(λ)− Id)Γ0(λ)f,Γ0(λ)g > = −2iπ < Γ0(λ) µkl(λ)a(x)Γ̂
2 Γ0(λ)

∗Γ0(λ)f,Γ0(λ)g >

+2iπ < Γ0(λ) µpq(λ)a(x)Γ̂
2 (Ĥkl(λ)− λ− i0)−1

µkl(λ)a(x)Γ̂
2Γ0(λ)

∗Γ0(λ)f,Γ0(λ)g > .(4.126)

Thus, since the Γ0(λ)f,Γ0(λ)g are dense in Hkl
S2
(λ) = C

2 ⊗ Ykl(λ) and the spaces Hkl
S2
(λ) form

an orthogonal Hilbert decomposition of HS2 , we can write (4.126) concisely

Ŝ(λ) = ⊕k,l

(

Ŝkl(λ)⊗ Ykl(λ)
)

, (4.127)

where Ŝkl(λ) are operators acting on C
2 given by

Ŝkl(λ) = Id− 2iπΓ0(λ) µkl(λ)a(x)Γ̂
2
[

Id− (Ĥkl(λ)− λ)−1µkl(λ)a(x)Γ̂
2
]

Γ0(λ)
∗, (4.128)

or using the notation (4.122)

Ŝkl(λ) = Id− 2iπΓ0(λ) µkl(λ)Vk(x)
[

Id− (Ĥkl(λ)− λ)−1µkl(λ)Vk(x)
]

Γ0(λ)
∗. (4.129)

We emphasize that (4.127) is the stationary expression of the simplified time-dependent
scattering matrix Ŝ(λ) defined in (4.99). On each generalized spherical harmonics Ykl(λ), we
have shown that its expression is simplified into Ŝkl(λ) given in (4.129) which is nothing but
the usual stationary expression for the scattering matrix associated to the pair of 1-dimensional
Hamiltonians (Ĥkl(λ),H∞). Representation formulae for Ŝkl(λ) in terms of stationary solutions
of the equation (the Jost functions) are well known and are studied for instance in [22]. In
particular, the expression (4.129) for Ŝkl(λ) coincide with the stationary definition in Thm 4.8
given by the separation of variables procedure. Whence the link between the two a priori distinct
definitions for the scattering matrix S(λ).

5 Uniqueness results in the inverse scattering problem at fixed

energy

In this Section, we state our main Theorem, that is a uniqueness result that, roughly speaking,
asserts that the scattering matrix S(λ) at a fixed energy λ ∈ R associated to massless charged
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Dirac fields evolving in a KN-dS black hole determines uniquely the parameters of the black
hole and thus its metric. In fact, we shall obtain more and better results in the course of the
proof of our main Thm.

First, it is enough to know only one of the reduced reflection operators Rk(λ) or Lk(λ) and
this, only for two different angular modes {eikϕ}, k ∈ 1

2 + Z in order to determine uniquely
the black hole. We refer to Thm 4.9 for the notations. Remark that we cannot assume the
knowledge of the fully reduced scattering coefficients Rkl(λ) or Lkl(λ) onto the generalized
spherical harmonics Ykl(λ) since the latters depend on the black hole, precisely on the two
parameters a and Λ, that we are trying to determine uniquely.

Second, we are able to recover more than only the four parameters M,Q2, a,Λ that charac-
terize the black hole. The Complex Angular Momentum (CAM) method of Section 7 allows us
indeed to determine functions depending on the radial variable (up to diffeomorphisms), that is

infinite dimensional objects. For instance, we are able to determine the function λ−c(x,k)
a(x) (up to

diffeomorphisms). Note that, in the particular case of Kerr-de-Sitter black hole (Q = 0) or for
massless uncharged Dirac fields (q = 0), we are able to determine the functions a(x) and c(x, k)
separatly up to a discrete set of translations. That is we recover the potentials appearing in the
separated radial equation (3.41).

Let us state now our main Thm.

Theorem 5.1. Let (M,Q2, a,Λ) and (M̃, Q̃2, ã, Λ̃) be the parameters of two a priori different
KN-dS black holes. Let λ ∈ R and denote by S(λ) and S̃(λ) the corresponding scattering matrices
at fixed energy λ (given by Thm 4.9). More generally, we shall add a symbol ˜to all the relevant
scattering quantities corresponding to the second black hole. Assume that one reduced reflection
operators Rk(λ) or Lk(λ) are known in the sense that there exist constants cR(λ, k), cL(λ, k) ∈ R

such that one of the following equalities is fulfilled

Rk(λ) = eicR(λ,k) R̃k(λ), (5.1)

Lk(λ) = eicL(λ,k) L̃k(λ),

as operators on l = L2((0, θ);C) and for two different values of k ∈ 1
2 +Z. Then the parameters

of the two black holes coincide, i.e.

M = M̃, a = ã, Q2 = Q̃2, Λ = Λ̃.

Remark 5.2. We emphasize that we add the constants cR(λ, k) and cL(λ, k) in the assumption
(5.1) to include the possibility that a KN-dS black hole be described by two different Regge-
Wheeler variables x and x̃ = x+ c for a constant c. Precisely, these constants have the following
expression

cR(λ, k) = 2λ+(k)c, cL(λ, k) = −2λ−(k)c.

We refer to Section 4.1.5 and precisely to Proposition 4.12 for this subtlety and the notations.
For simplicity, the reader is invited to take c = 0 and thus cR = cL = 0 in a first reading.
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Let us now explain the strategy for the proof of Thm 5.1. We recall from Corollary 4.11
that the quantities |Rkl(λ)|2 and |Lkl(λ)|2 are the eigenvalues of the operators R∗

k(λ)Rk(λ) or
Rk(λ)R

∗
k(λ) for the formers and L∗

k(λ)Lk(λ) and Lk(λ)L
∗
k(λ) for the latters. Since these oper-

ators are uniquely determined by our main assumption (5.1), their eigenvalues (and associated
eigenspaces) would be also uniquely determined if they were simple! It turns out that we can
prove this, but only for large enough l ∈ N

∗. This will be showed using a precise study of
the asymptotic behaviour of the scattering coefficients T (λ, k, z), R(λ, k, z) and L(λ, k, z) when
z → +∞ given in Section 8.4. At last, since {Y 1

kl}l∈N∗ and/or {Y 2
kl}l∈N∗ are the eigenfunctions

associated to the ”simple” eigenvalues |Rkl(λ)|2 and |Lkl(λ)|2 for l large enough, we shall obtain
the following result

Theorem 5.3. Under the assumption (5.1), there exists L > 0 such that for all l ∈ N
∗, l ≥ L,

one of the following conditions holds

|Rkl(λ)| = |R̃kl(λ)|, (5.2)

|Lkl(λ)| = |L̃kl(λ)|. (5.3)

Moreover for all l ≥ L, there exists αj
kl with |αj

kl| = 1 for j = 1, 2 such that

Y 1
kl = α1

klỸ
1
kl, Y 2

kl = α2
klỸ

2
kl. (5.4)

To go further, let us use first the second information given in Theorem 5.3, namely the
uniqueness (5.4) of the eigenfunctions Y j

kl, j = 1, 2, to prove that the parameters a and Λ are
uniquely defined. Note that such a result would entail

µkl(λ) = µ̃kl(λ), ∀(k, l) ∈ I, (5.5)

since the angular operator (3.30) only depends on these two parameters.
To prove this, we perform a detailed analysis of the angular eigenvalues equation (3.28) and

its associated eigenfunctions. This is what we do in Section 6. Recasting this equation into
a convenient form, we get a system of ODEs of Fuschian type with weakly singularities at 0
and π. Hence we can use the Frobenius method to construct a system of fundamental solutions
(SFS) for this equation, that is a system of linearly independent solutions. It turns out that only
one of the solutions of the SFS belongs to L2 in a neighbourhood of 0 and thus is a constant
multiple of the generalized spherical harmonics Ykl(λ). Moreover the Frobenius method allows
to construct the Ykl(λ)’s as singular power series in the variable θ. The asymptotic expansion
of Ykl(λ)(θ, ϕ) when θ → 0 together with (5.4) lead to the proof that the two parameters a
and Λ are uniquely determined. As already said, this entails (5.5) and also the equality (up to
multiplicative constants of modulus 1) between the generalized spherical harmonics Ykl(λ) and
Ỹkl(λ) for all values k ∈ 1

2 +Z and all angular momenta l ∈ N
∗. Summarising, we shall prove in

Section 6

Theorem 5.4. Let the assumptions of Thm 5.1 (and thus the results of Theorem 5.3) hold.
Then

a = ã, Λ = Λ̃.
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Hence, for all (k, l) ∈ (12 + Z)× N
∗, we have

µkl(λ) = µ̃kl(λ),

and there exist αkl ∈ C, |αkl| = 1 such that

Ykl(λ) = αklỸkl(λ).

As a consequence, we also get

Rkl(λ) = eicR(λ,k) R̃kl(λ), (5.6)

Lkl(λ) = eicL(λ,k) L̃kl(λ),

where cR(λ, k) and cL(λ, k) are the constants in Theorem 5.1.

At that point, we have shown that a = ã and Λ = Λ̃. Therefore, it remains to prove
the uniqueness of the parameters M and Q that appear in the radial Dirac equation. But we
face now a situation quite similar to the one studied in [20]. We are led indeed to study a
uniqueness inverse scattering problem for the countable family of one-dimensional radial Dirac
equations (3.41) - (3.42) parametrized by the uniquely determined angular momenta µkl(λ) from
the equality of the reflection coefficients (5.6).

Let us analyse for instance some consequences of (5.6) when cR(λ, k) is supposed to be
0 for simplicity. Recall that Rkl(λ) = R(λ, k, µkl(λ)) where µkl(λ) are the eigenvalues of the
angular operator Ak(λ) (given in (3.30)) labeled according to their increasing order, i.e. µkl(λ) <
µk,l+1(λ), ∀l ∈ N

∗. Then (5.6) reads

∀(k, l) ∈ I, R(λ, k, µkl(λ)) = R̃(λ, k, µkl(λ)). (5.7)

The main idea of this work is to use next the CAM method, that is to complexify the angular
momentum µkl(λ) and study the analytic properties of the corresponding scattering coefficients.
Precisely, we shall show in Section 7 that the functions

z −→ 1

T (λ, k, z)
, T (λ, k, z)R(λ, k, z), T (λ, k, z)L(λ, k, z),

are entire with respect to z ∈ C (the other parameters λ and k being fixed) and belongs to
a certain class of analytic functions - the Nevanlinna class - which possess good uniqueness
properties. A Nevanlinna function is indeed uniquely determined by its values on any sequences
(αl) of reals numbers satisfying a Müntz condition

∑

l∈N∗
1
αl

= ∞. But note that the eigenvalues
µkl(λ) satisfy the Müntz condition above since they grow linearly with respect to l ∈ N

∗ (see
Appendix A). Using this and an argument involving Hadamard factorization Theorem, we are
able to prove from (5.7) that

∀z ∈ C \ {poles}, T (λ, k, z) = T̃ (λ, k, z),

∀z ∈ C \ {poles}, R(λ, k, z) = R̃(λ, k, z), (5.8)

∀z ∈ C \ {poles}, L(λ, k, z) = L̃(λ, k, z).
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This will be done in Section 7.
We emphasize here that (5.8) is one of the essential results given by the CAM method, result

which turns out to be useful in the study of inverse scattering problems (see [25, 20] and below)
since we can play with the - now - complex angular momentum to obtain more informations
from the scattering coefficients.

As a first application of (5.8) and from the explicit expressions of the reflection coefficients, we
can easily show that the Fourier transforms of the potentials a(x) and c(x, k) at the fixed energy
2λ are uniquely determined (in fact almost uniquely determined). Using the exponential decay
of these potentials at the cosmological and event horizons and some straighforward additional
work, we are already able to prove at this stage a nice uniqueness result localized in energy.
Precisely,

Theorem 5.5. Let (M,Q2, a,Λ) and (M̃, Q̃2, ã, Λ̃) be the parameters of two a priori different
KN-dS black holes. We denote by I a (possibly small) open interval of R. Assume that, there
exists a constant c ∈ R such that for all λ ∈ I and for two different k ∈ 1

2 + Z, one of the
following conditions holds

Lkl(λ) = e−2iλ−(k)c L̃kl(λ),

Rkl(λ) = e2iλ+(k)c R̃kl(λ),

for all l ∈ Lk where the sets Lk ⊂ N
∗ satisfy a Müntz condition

∑

l∈Lk

1

l
= ∞.

Then, we have
a(x) = ã(x− c), c(x, k) = c̃(x− c, k). (5.9)

In particular, using the particular form of the potential a(x) and c(x, k), we can show that the
parameters of the two black holes coincide.

Remark 5.6. Note that we used here the precise form of the constants

cR(λ, k) = 2λ+(k)c, cL(λ, k) = −2λ+(k)c,

of the main assumption (5.1). Then the uniqueness result (5.9) shows that the potentials a(x)
and c(x, k) are uniquely determined up to a translation and that this translation is precisely
given by the constant c that encodes the possibility to describe the same KN-dS black hole by two
Regge-Wheeler variables.

To obtain a uniqueness result from the scattering coefficients at a fixed energy, we need
more informations on the properties of the scattering data with respect to the complexified
angular momentum z. In particular, using a convenient change of variable (given by a Liouville
transformation) and the corresponding form of the radial Dirac equation (4.2), we shall obtain
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precise asymptotics of the scattering data T (λ, k, z), R(λ, k, z), L(λ, k, z) when z → +∞. On
one hand, these asymptotics are an important ingredient in the proof of Proposition 5.3. On the
other hand, these asymptotics, CAM’s results such that (5.8) together with a standard technique
(as exposed first in [25] and used in this setting in [20]) will lead to the unique determination
of certain scalar functions depending on the radial variable (up to diffeomorphisms). From the
explicit form of these functions, we prove the uniqueness of the parameters of the two black
holes. Precisely, we prove

Theorem 5.7. Consider two a priori different KN-dS black holes and add a ˜ to the quantities
related to the second black hole. Assume that for a fixed energy λ ∈ R and for two different

k ∈ 1
2 + Z, there exist sets Lk ⊂ N

∗ satisfying a Müntz condition
∑

l∈Lk

1

l
= ∞ such that

∀l ∈ Lk, µkl(λ) = µ̃kl(λ),

and one of the following condition holds

Rkl(λ) = eicR(λ,k) R̃kl(λ), (5.10)

Lkl(λ) = eicL(λ,k) L̃kl(λ).

Here the constants cT (λ, k), cR(λ, k) and cL(λ, k) are the same as in Thm 5.1. Then

λ− c(x̃, k)

a(x̃)
=
λ− c(x, k)

a(x)
, (5.11)

where x̃ = x̃(x) is a diffeomorphism on R. Moreover, from the explicit forms of the potentials,
the parameters of the two black holes are shown to coincide,

M = M̃, a = ã, Q2 = Q̃2, Λ = Λ̃.

Finally, in the particular case of Kerr-de-Sitter black holes (Q = 0), we get more precise results.
Precisely, under the same assumption, there exists a constant σ ∈ R such that

x̃ = x+ σ,

ã(x) = a(x− σ), (5.12)

c̃(x, k) = c(x− σ, k).

Note that this last result holds true in the case of KN-dS black hole (Q 6= 0) if we assume that
(5.10) is known for two different energies λ ∈ R or in the case of uncharged Dirac fields (q = 0).

The proof of Thm 5.7 will be the object of Sections 8 and 9.
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6 The angular equation and partial inverse result

6.1 The Frobenius method: construction and asymptotics of the generalized

spherical harmonics Ykl(λ)

In this Section, we study rigorously the angular equation (3.28) that arises in the separation of
variables procedure exposed in Section 3.2. Let us recall first some notations and definitions.
For each fixed energy λ ∈ R, we define for all (k, l) ∈ I = (12 +Z)×N

∗ the generalized spherical
harmonics Ykl(λ) as normalized eigenfunctions of the angular (selfadjoint) operator AS2(λ) given
by (3.27) and (3.10) associated to its positive eigenvalues µkl(λ). Using the cylindrical symmetry
of the equation and the corresponding decomposition onto the angular modes {eikϕ} with k ∈
1
2 + Z, it was shown in (3.32) that the Ykl(λ)’s can be written as

Ykl(λ)(θ, ϕ) = uλkl(θ)e
ikϕ,

where the uλkl(θ) are normalized eigenfunctions of the reduced angular equation

Ak(λ)u
λ
kl(θ) = µkl(λ)u

λ
kl(θ). (6.1)

Here the operator Ak(λ) is given by

Ak(λ) =
√

∆θ

[

Γ2Dθ + Γ2 iΛa
2 sin(2θ)

12∆θ
+
kΓ3

sin θ
+ Γ3Λa

2k sin(θ)

3∆θ
− λ

a sin θ

∆θ
Γ3

]

. (6.2)

and is selfadjoint on L := L2((0, π), dθ;C2). Recall at last that the spectrum of Ak(λ) is
composed of discrete simple eigenvalues and thus, uλkl(θ) is the unique (up to a multiplicative
constant of modulus 1) normalized solution of (6.1) that belongs to L.

Our aim is to construct and give the asymptotics of the eigenfunctions uλkl(θ) when θ → 0.
For this, we use the explicit form of the above angular equation and recast it into a usual first-
order system of ODEs. The resulting system possesses weakly singular points at θ = 0 and θ = π
and turns out to be a system of ODEs of Fuschian type. We refer for instance [52], chapter V,
for a classical presentation of these systems of singular ODEs with some explicit examples very
well adapted to our case. Thanks to the classical Frobenius method, we are able to construct a
fundamental system of solutions and provide a series expansion for these solutions. In particular,
choosing the unique solution that belongs to L to be uλkl(θ) , we obtain easily the asymptotics
of uλkl(θ) when θ → 0 from its series expansion.

We introduce the notations ζ = Λa2

3 and we fix (k, l) ∈ I. Then the eigenvalue equation (6.1)
- (6.2) can be written as the equivalent system of ODEs

∂θu = A(θ)u, (6.3)

with

A(θ) =
1

θ

[

iµkl(λ)θ√
∆θ

Γ2 − kθ

sin θ
Γ1 +

ζθ sin(2θ)

4∆θ
I2 −

(ζk − aλ)θ sin θ

∆θ
Γ1

]

. (6.4)
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Note that the singularity at θ = 0 is given by the term 1
θ whereas the term θA(θ) is analytic

in the (complex) variable θ in a neighbourhood of 0. Hence the latter can be written as a

power serie in θ, i.e θA(θ) =

∞
∑

n=0

Anθ
n where the An’s are 2 × 2 matrix-valued coefficients. In

what follows, we shall need the first terms in this power serie up to order 3. Recalling that
∆θ = 1 + ζ cos2 θ, we get from (6.4)

θA(θ) = A0 +A1θ +A2θ
2 +O(θ3), θ → 0, (6.5)

where the coefficients A0, A1, A2 are given by

A0 =

[

−k 0
0 k

]

, A1 =

[

0 iµkl(λ)√
1+ζ

iµkl(λ)√
1+ζ

0

]

, (6.6)

A2 =

[

−k
6 + ζ

2(1+ζ) −
ζk−aλ
1+ζ 0

0 k
6 + ζ

2(1+ζ) +
ζk−aλ
1+ζ

]

(6.7)

In the following we assume that k ∈ 1
2 + N (the other case is handled similarly) and we

use the Frobenius method. According to [53], chap. V, there exist two linearly independent
solutions of (6.3) that have the following form

vkl(θ) = θkh0(θ), (6.8)

wkl(θ) = θ−k(h1(θ) + log θh2(θ)),

where the vector-valued functions hj are analytic in θ in a neighbourhood of 0. Since k ∈ 1
2 +N,

we see that vkl is the unique solution (up to a multiplicative constant) that belongs to L2 in a
neighbourhood of 0. Hence, the eigenfunction uλkl(θ) must be a constant multiple of vkl(θ).

Even better, according to [53], chap. V, the solution vkl takes the form

vkl(θ) = θk
+∞
∑

n=0

vnkl θ
n,

where the vectors vnkl ∈ C
2 can be explicitly constructed by the following induction.

• The vector v0kl is an eigenvector of A0 corresponding to the eigenvalue k.

• For n ≥ 1, the vectors vnkl are uniquely determined by

((k + n)I2 −A0) v
n
kl =

n−1
∑

j=0

An−jv
j
kl.
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Let us apply this procedure to our case. From (6.6), we choose

v0kl =

[

0
1

]

, (6.9)

and applying the above rules, we successively obtain

v1kl =

[

iµkl(λ)
(2k+1)

√
1+ζ

0

]

, v2kl =

[

0
k
12 +

ζ
4(1+ζ) +

ζk−aλ
2(1+ζ) −

µkl(λ)
2

2(2k+1)(1+ζ)

]

. (6.10)

We conclude that the solution vkl has the asymptotic expansion when θ → 0

vkl = θk
(

v0kl + v1klθ + v2klθ
2 +O(θ3)

)

, (6.11)

where the vjkl’s are given by (6.9) - (6.10). Since the eigenfunction uλkl(θ) is a constant multiple
of vkl(θ), we have proved the following Proposition

Proposition 6.1. For all λ ∈ R and (k, l) ∈ (12 + N) × N
∗, there exist constants cλkl ∈ C such

that

uλkl(θ) = cλkl

{

(

0
1

)

θk +
iµkl(λ)

(2k + 1)
√
1 + ζ

(

1
0

)

θk+1 (6.12)

+
1

2

[

k

6
+

ζ

2(1 + ζ)
+
ζk − aλ

1 + ζ
− µkl(λ)

2

(2k + 1)(1 + ζ)

](

0
1

)

θk+2 + O(θk+3)

}

,

as θ → 0. Moreover
Ykl(λ)(θ, ϕ) = uλkl(θ)e

ikϕ.

We finish this short Section mentioning that similar asymptotics are obtained when k ∈ 1
2−N

∗

simply by inverting the roles of the solutions vkl and wkl in (6.8). We omit these calculations.

6.2 Application to the uniqueness inverse problem: proofs of Theorems 5.3

and 5.4

Proof of Theorem 5.3. Assume for instance that for λ ∈ R fixed and two different k ∈ 1
2 + Z

Rk(λ) = eicR(λ,k)R̃k(λ), (6.13)

for a certain constant cR(λ, k). Hence we have

Rk(λ)R
∗
k(λ) = R̃k(λ)R̃

∗
k(λ), R∗

k(λ)Rk(λ) = R̃∗
k(λ)R̃k(λ). (6.14)

We recall from Corollary 4.11 that |Rkl(λ)|2 are the eigenvalues of Rk(λ)R
∗
k(λ) and R

∗
k(λ)Rk(λ)

associated to the eigenfunctions Y 1
kl and Y 2

kl respectively. Thus our assumption (6.13) implies
for instance that the operators Rk(λ)R

∗
k(λ) and R̃k(λ)R̃

∗
k(λ) have the same eigenvalues with the

same mutiplicities. Hence, we immediately get
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Lemma 6.2. There exists a bijective map ϕ : N
∗ −→ N

∗ such that for all l ∈ N
∗,

|Rkl(λ)|2 = |R̃kϕ(l)(λ)|2.

The next step is to prove that the |Rkl(λ)|2’s are in fact simple eigenvalues of Rk(λ)R
∗
k(λ)

when l is large enough. To prove this, we need some additional a priori results on the scattering
coefficients

Tkl(λ) = T (λ, k, µkl(λ)), Rkl(λ) = R(λ, k, µkl(λ)), Lkl(λ) = L(λ, k, µkl(λ)), (6.15)

when l is large. The next Lemma is a direct consequence of the study of the asymptotics of the
scattering data given in Section 8.

Lemma 6.3. For λ ∈ R and k ∈ 1
2 + Z fixed,

(i) Tkl(λ) → 0 when l → ∞.
(ii) For all l ∈ N

∗, Tkl(λ) 6= 0.
(iii) There exists L > 0 such that the map l ∈ N

∗ −→ |Tkl(λ)| is strictly decreasing for l ≥ L.
As a consequence, the eigenvalues Tkl(λ) of T

L
k (λ) are simple for l large enough.

Proof. We shall systematically use the fact that for fixed λ and k

µkl(λ) → +∞, l → +∞. (6.16)

Hence, the first point (i) is a consequence of (6.15) and of the asymptotics of T (λ, k, z) when
z → +∞ given in Theorem 8.18. The second point (ii) is clear since

T (λ, k, z) =
1

aL1(λ, k, z)
, (6.17)

Tkl(λ) = T (λ, k, µkl(λ)) and aL1(λ, k, z) is entire in z ∈ C. Eventually, the last point (iii) follows
imediately from (6.16), (6.17) and Proposition 8.20.

Using the unitarity of the reduced scattering matrix Skl(λ), and in particular

|Tkl(λ)|2 + |Rkl(λ)|2 = 1 = |Tkl(λ)|2 + |Lkl(λ)|2,

we also have an analogous statement for the reflection coefficients Rkl(λ) and Lkl(λ).

Lemma 6.4. For λ ∈ R and k ∈ 1
2 + Z fixed,

(i) |Rkl(λ)| → 1 when l → ∞.
(ii) For all l ∈ N

∗, |Rkl(λ)| 6= 1.
(iii) There exists L > 0 such that the map l ∈ N

∗ −→ |Rkl(λ)| is strictly increasing for l ≥ L.
Moreover the same is true of we replace the reflection coefficient from the right Rkl(λ) by the re-
flection coefficient from the left Lkl(λ). In consequence, the eigenvalues |Rkl(λ)|2 of Rk(λ)R

∗
k(λ)

and |Lkl(λ)|2 of L∗
k(λ)Lk(λ) are simple for l large enough.

Let us come back to the proof of Theorem 5.3. From Lemma 6.3, we can prove easily
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Corollary 6.5. (i) The bijective map ϕ : N
∗ −→ N

∗ from Lemma 6.2 is also strictly increasing
for l large enough. As a consequence, there exists L > 0 such that for all l ≥ L, ϕ(l) = l.

(ii) For all l ≥ L,
|Rkl(λ)| = |R̃kl(λ)|,

and there exists αj
kl ∈ C, |αj

kl| = 1 such that

Y j
kl = αj

klỸ
j
kl, j = 1, 2.

Proof. The first assertion (i) is a direct consequence of Lemma 6.3. Since ϕ is bijective and
strictly increasing for large enough l, we conclude that ϕ(l) = l for l large enough.
The second assertion is then a consequence of Lemma 6.2.
The third assertion comes from the fact that the family {Y 1

kl}l≥L and {Y 2
kl}l≥L are the eigen-

functions of the operators Rk(λ)R
∗
k(λ) and R∗

k(λ)Rk(λ) associated to the simple eigenvalues
|Rkl(λ)|2 according to Lemma 6.3.

We conclude that under the assumptions (6.13), Theorem 5.3 is proved. Of course, the proof
of Theorem 5.3 from the knowledge of the reflection operator from the left Lk(λ) is similar and
we omit it.

We are now in position to prove Theorem 5.4.

Proof of Theorem 5.4. According to Theorem 5.3, for λ ∈ R fixed and two different k ∈ 1
2 + Z,

there exists L > 0 such that for all l ≥ L, there exist constants α1
kl, α

2
kl ∈ C with |αj

kl| = 1 such
that

Y 1
kl = α1

klỸ
1
kl, Y 2

kl = α2
klỸ

2
kl. (6.18)

We also assume that k ∈ 1
2+N since the other case is treated similarly. According to Proposition

6.1, we know the asymptotics of the eigenfunctions Ykl when θ → 0. Precisely, there exists cλkl ∈ C

such that

Ykl(θ, ϕ) = cλkle
ikϕ

{

(

0
1

)

θk +
iµkl(λ)

(2k + 1)
√
1 + ζ

(

1
0

)

θk+1 (6.19)

+
1

2

[

k

6
+

ζ

2(1 + ζ)
+
ζk − aλ

1 + ζ
− µkl(λ)

2

(2k + 1)(1 + ζ)

](

0
1

)

θk+2 + O(θk+3)

}

,

where we use the notation

ζ =
a2Λ

3
. (6.20)

In fact, the constant cλkl plays no role in what follows. Hence, we take it equal to 1. It follows
from (6.19) that when θ → 0,

Y 1
kl(θ, ϕ) = eikϕ

iµkl(λ)

(2k + 1)
√
1 + ζ

θk+1 +O(θk+3), (6.21)
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and

Y 2
kl(θ, ϕ) = eikϕ

{

θk+

[

k

12
+

ζ

4(1 + ζ)
+
ζk − aλ

2(1 + ζ)
− µkl(λ)

2

2(2k + 1)(1 + ζ)

]

θk+2 + O(θk+4)

}

. (6.22)

Now using (6.18), (6.21) and (6.22) and equating the terms with same orders in θ → 0, we
get

µkl(λ)√
1 + ζ

= α1
kl

µ̃kl(λ)
√

1 + ζ̃
, (6.23)

1 = α2
kl, (6.24)

[

ζ

2(1 + ζ)
+
ζk − aλ

1 + ζ
− µkl(λ)

2

(2k + 1)(1 + ζ)

]

=

[

ζ̃

2(1 + ζ̃)
+
ζ̃k − ãλ

1 + ζ̃
− µ̃kl(λ)

2

(2k + 1)(1 + ζ̃)

]

. (6.25)

Taking the modulus of (6.23), we obtain

µkl(λ)√
1 + ζ

=
µ̃kl(λ)
√

1 + ζ̃
,

and putting this in (6.25), we get

ζ

2(1 + ζ)
+
ζk − aλ

1 + ζ
=

ζ̃

2(1 + ζ̃)
+
ζ̃k − ãλ

1 + ζ̃
. (6.26)

Since (6.26) is true for two different values of k, we thus obtain two decoupled equalities.

ζ

1 + ζ
=

ζ̃

1 + ζ̃
, (6.27)

ζ

2(1 + ζ)
− aλ

1 + ζ
=

ζ̃

2(1 + ζ̃)
− ãλ

1 + ζ̃
. (6.28)

From (6.27), we get
ζ = ζ̃. (6.29)

Using then (6.28), we get
a = ã. (6.30)

Finally, (6.29), (6.30) and (6.20) lead to

Λ = Λ̃.

Hence, the parameters a and Λ are uniquely determined from our main assumption (5.1). At
last, since the angular operator Ak(λ) appearing in (3.28) only depends on the parameters a
and Λ, the other assertions of Theorem 5.4 follow immediately from the uniqueness of a and Λ.
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Remark 6.6. 1. We emphasize that we used the fact that the scattering coefficients are
known for two distinct k ∈ 1

2 + Z in the above proof. Otherwise we wouldn’t be able
to determine uniquely a and Λ.

2. Our method also depends on the small number of parameters to recover. If the angular
operator had depended not on a few parameters, but on - say - a scalar function with
respect to the variable θ, our method would have of course failed down. Instead, we should
try to show that the eigenvalues µkl(λ) are uniquely determined from our main assumption
(5.1), at least for large enough l ∈ N

∗. From this and the fact that the eigenfunctions Ykl
are uniquely determined for large enough l (see Theorem 5.3), we could easily determine
the unknown scalar function. Such a result has been proved in the different context of
asymptotically hyperbolic Liouville surface in [16].

7 The radial equation: complexification of the angular momen-

tum.

In this section, we follow the strategy exposed in [20] and we allow the eigenvalues µkl(λ) of the
angular operator AS2(λ) to be complex. We shall denote by z the complexified angular momenta
and study the analytic properties (with respect to the variable z) of all the relevant scattering
quantities such as the Jost functions FL(x, λ, k, z), FR(x, λ, k, z) and the matrix AL(λ, k, z)
introduced in Section 4.1. The main result of this Section is that the coefficients of the matrix
AL(λ, k, z) belong to the Nevanlinna class (see Section 7.2). This will be a crucial ingredient
in the proof of our main Theorem. As a by-product, we prove a first inverse uniqueness result
localized in energy.

7.1 Analytic properties of the Jost functions and matrix AL(λ, k, z).

For all complexified angular momentum z ∈ C, the Jost functions FL(x, λ, k, z) and FR(x, λ, k, z)
are solutions of the stationary equation

[Γ1Dx − zVk(x)]ψ = λψ, ∀z ∈ C. (7.1)

with prescribed asymptotics at x→ ±∞ given by (4.10) and (4.11). Recall from (4.9) that

Vk(x) =

(

0 qk(x)
q̄k(x) 0

)

, qk(x) = a(x)e2iC(x,k).

As in [20], we introduce the Faddeev matrices ML(x, λ, k, z) and MR(x, λ, k, z) defined by

ML(x, λ, k, z) = FL(x, λ, k, z)e
−iΓ1λx, MR(x, λ, k, z) = FR(x, λ, k, z)e

−iΓ1λx, (7.2)

which satisfy the boundary conditions

ML(x, λ, k, z) = I2 + o(1), x→ +∞, (7.3)

MR(x, λ, k, z) = I2 + o(1), x→ −∞. (7.4)
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We shall systematically use the notations

ML(x, λ, k, z) =

[

mL1(x, λ, k, z) mL2(x, λ, k, z)
mL3(x, λ, k, z) mL4(x, λ, k, z)

]

, (7.5)

MR(x, λ, k, z) =

[

mR1(x, λ, k, z) mR2(x, λ, k, z)
mR3(x, λ, k, z) mR4(x, λ, k, z)

]

. (7.6)

From (4.12) and (4.13), the Faddeev matrices satisfy the integral equations

ML(x, λ, k, z) = I2 − izΓ1

∫ +∞

x
e−iΓ1λ(y−x)Vk(y)ML(y, λ, k, z)e

iΓ1λ(y−x)dy, (7.7)

MR(x, λ, k, z) = I2 + izΓ1

∫ x

−∞
e−iΓ1λ(y−x)Vk(y)MR(y, λ, k, z)e

iΓ1λ(y−x)dy. (7.8)

Iterating (7.7) and (7.8) once, we get the uncoupled systems

mL1(x, λ, k, z) = 1 + z2
∫ +∞

x

∫ +∞

y
e2iλ(t−y)qk(y)qk(t)mL1(t, λ, k, z)dtdy, (7.9)

mL2(x, λ, k, z) = −iz
∫ +∞

x
e−2iλ(y−x)qk(y)dy

+z2
∫ +∞

x

∫ +∞

y
e−2iλ(y−x)qk(y)qk(t)mL2(t, λ, k, z)dtdy, (7.10)

mL3(x, λ, k, z) = iz

∫ +∞

x
e2iλ(y−x)qk(y)dy

+z2
∫ +∞

x

∫ +∞

y
e2iλ(y−x)qk(y)qk(t)mL3(t, λ, k, z)dtdy, (7.11)

mL4(x, λ, k, z) = 1 + z2
∫ +∞

x

∫ +∞

y
e−2iλ(t−y)qk(y)qk(t)mL4(t, λ, k, z)dtdy, (7.12)

and

mR1(x, λ, k, z) = 1 + z2
∫ x

−∞

∫ y

−∞
e−2iλ(y−t)qk(y)qk(t)mR1(t, λ, k, z)dtdy, (7.13)

mR2(x, λ, k, z) = iz

∫ x

−∞
e2iλ(x−y)qk(y)dy

+z2
∫ x

−∞

∫ y

−∞
e2iλ(x−y)qk(y)qk(t)mR2(t, λ, k, z)dtdy, (7.14)

mR3(x, λ, k, z) = −iz
∫ x

−∞
e−2iλ(x−y)qk(y)dy

+z2
∫ x

−∞

∫ y

−∞
e−2iλ(x−y)qk(y)qk(t)mR3(t, λ, k, z)dtdy, (7.15)

mR4(x, λ, k, z) = 1 + z2
∫ x

−∞

∫ y

−∞
e2iλ(y−t)qk(y)qk(t)mR4(t, λ, k, z)dtdy. (7.16)
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The equations (7.9)-(7.12) are of Volterra type and we can solve them by iteration. We obtain
easily the following lemma

Lemma 7.1. (i) Set m0
L1(x, λ, k) = 1 and for all n ≥ 1

mn
L1(x, λ, k) =

∫ +∞

x

∫ +∞

y
e2iλ(t−y)qk(y)qk(t)m

n−1
L1 (t, λ, k)dtdy.

Then we get by induction

|mn
L1(x, λ, k)| ≤

1

(2n)!

(

∫ +∞

x
a(y)dy

)2n
.

For x, λ ∈ R fixed, the serie mL1(x, λ, k, z) =
∞
∑

n=0

mn
L1(x, λ, k)z

2n converges absolutely and uni-

formly on each compact subset of C and satisfies the estimate

|mL1(x, λ, k, z)| ≤ cosh
(

|z|
∫ +∞

x
a(s)ds

)

, ∀x ∈ R, z ∈ C.

Moreover, the application z −→ mL1(x, λ, k, z) is entire and even.

(ii) Set m0
L2(x, λ, k) = −i

∫ +∞
x e−2iλ(y−x)qk(y)dy and for all n ≥ 1

mn
L2(x, λ, k) =

∫ +∞

x

∫ +∞

y
e2iλ(x−y)qk(y)qk(t)m

n−1
L2 (t, λ, k)dtdy.

Then we get by induction

|mn
L2(x, λ, k)| ≤

1

(2n+ 1)!

(

∫ +∞

x
a(y)dy

)2n+1
.

For x, λ ∈ R fixed, the serie mL2(x, λ, k, z) =
∞
∑

n=0

mn
L2(x, λ, k)z

2n+1 converges absolutely and

uniformly on each compact subset of C and satisfies the estimate

|mL2(x, λ, k, z)| ≤ sinh
(

|z|
∫ +∞

x
a(s)ds

)

, ∀x ∈ R, z ∈ C.

Moreover, the application z −→ mL2(x, λ, k, z) is entire and odd.

(iii) Set m0
L3(x, λ, k) = i

∫ +∞
x e2iλ(y−x)qk(y)dy and for all n ≥ 1

mn
L3(x, λ, k) =

∫ +∞

x

∫ +∞

y
e2iλ(y−x)qk(y)qk(t)m

n−1
L3 (t, λ, k)dtdy.
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Then we get by induction

|mn
L3(x, λ, k)| ≤

1

(2n+ 1)!

(

∫ +∞

x
a(y)dy

)2n+1
.

For x, λ ∈ R fixed, the serie mL3(x, λ, k, z) =
∞
∑

n=0

mn
L3(x, λ, k)z

2n+1 converges absolutely and

uniformly on each compact subset of C and satisfies the estimate

|mL3(x, λ, k, z)| ≤ sinh
(

|z|
∫ +∞

x
a(s)ds

)

, ∀x ∈ R, z ∈ C.

Moreover, the application z −→ mL3(x, λ, k, z) is entire and odd.

(iv) Set m0
L4(x, λ, k) = 1 and for all n ≥ 1

mn
L4(x, λ, k) =

∫ +∞

x

∫ +∞

y
e−2iλ(t−y)qk(y)qk(t)m

n−1
L4 (t, λ, k)dtdy.

Then we get by induction

|mn
L4(x, λ, k)| ≤

1

(2n)!

(

∫ +∞

x
a(y)dy

)2n
.

For x, λ ∈ R fixed, the serie mL4(x, λ, k, z) =

∞
∑

n=0

mn
L4(x, λ, k)z

2n converges absolutely and uni-

formly on each compact subset of C and satisfies the estimate

|mL4(x, λ, k, z)| ≤ cosh
(

|z|
∫ +∞

x
a(s)ds

)

, ∀x ∈ R, z ∈ C.

Moreover, the application z −→ mL4(x, λ, k, z) is entire and even.

(v) Note at last the obvious symmetries

mL1(x, λ, k, z) = mL4(x, λ, k, z̄), ∀z ∈ C, (7.17)

mL2(x, λ, k, z) = mL3(x, λ, k, z̄), ∀z ∈ C. (7.18)

Of course we have similar results for the Faddeev functions mRj(x, λ, k, z), j = 1, .., 4.

Remark 7.2. It is clear that the Jost functions FL(x, λ, k, z) and FR(x, λ, k, z) are also entire
in z ∈ C. Moreover, using ([2], Prop. 2.2) and the analytic continuation, we have

det(FL(x, λ, k, z)) = det(FR(x, λ, k, z)) = 1, ∀x ∈ R, z ∈ C. (7.19)
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Using the notations

FL(x, λ, k, z) =

[

fL1(x, λ, k, z) fL2(x, λ, k, z)
fL3(x, λ, k, z) fL4(x, λ, k, z)

]

,

FR(x, λ, k, z) =

[

fR1(x, λ, k, z) fR2(x, λ, k, z)
fR3(x, λ, k, z) fR4(x, λ, k, z)

]

,

we see that

fLj(x, λ, k, z) = eiλxmLj(x, λ, k, z), fRj(x, λ, k, z) = eiλxmRj(x, λ, k, z), j = 1, 3,(7.20)

fLj(x, λ, k, z) = e−iλxmLj(x, λ, k, z), fRj(x, λ, k, z) = e−iλxmRj(x, λ, k, z), j = 2, 4.(7.21)

Secondly, using the integral equations (7.9)-(7.16), we prove easily that the fLj(x, λ, k, z) and
fRj(x, λ, k, z) satisfy second order differential equations with complex potentials. For instance,
the components fLj(x, λ, k, z) and fRj(x, λ, k, z), j = 1, 2 satisfy

[

− d2

dx2
+
q′k(x)

qk(x)

d

dx
+ z2a2(x)− iλ

q′k(x)

qk(x)

]

f = λ2f, (7.22)

where
q′k(x)

qk(x)
=
a′(x)
a(x)

+ 2ic(x, k). (7.23)

Similarly, the components fLj(x, λ, k, z) and fRj(x, λ, k, z), j = 3, 4 satisfy

[

− d2

dx2
+

(

q′k(x)

qk(x)

)

d

dx
+ z2a2(x) + iλ

(

q′k(x)

qk(x)

)

]

f = λ2f. (7.24)

Now, let us study the matrix

AL(λ, k, z) =

[

aL1(λ, k, z) aL2(λ, k, z)
aL3(λ, k, z) aL4(λ, k, z)

]

,

for z ∈ C. Using (4.16) and (7.5), we express the components of AL(λ, k, z) by means of the
Faddeev functions mLj(x, λ, k, z) as

aL1(λ, k, z) = 1− iz

∫

R

qk(x)mL3(x, λ, k, z)dx, (7.25)

aL2(λ, k, z) = −iz
∫

R

e−2iλxqk(x)mL4(x, λ, k, z)dx, (7.26)

aL3(λ, k, z) = iz

∫

R

e2iλxqk(x)mL1(x, λ, k, z)dx, (7.27)

aL4(λ, k, z) = 1 + iz

∫

R

qk(x)mL2(x, λ, k, z)dx. (7.28)

Hence we get using Lemma 7.1
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Lemma 7.3. (i) For λ ∈ R fixed and for all z ∈ C,

aL1(λ, k, z) = 1− i

∞
∑

n=0

(

∫

R

qk(x)m
n
L3(x, λ, k)dx

)

z2n+2,

aL2(λ, k, z) = −i
∞
∑

n=0

(

∫

R

e−2iλxqk(x)m
n
L4(x, λ, k)dx

)

z2n+1,

aL3(λ, k, z) = i

∞
∑

n=0

(

∫

R

e2iλxqk(x)m
n
L1(x, λ, k)dx

)

z2n+1,

aL4(λ, k, z) = 1 + i

∞
∑

n=0

(

∫

R

qk(x)m
n
L2(x, λ, k)dx

)

z2n+2.

(ii) Set A =

∫

R

a(x)dx. Then

|aL1(λ, k, z)|, |aL4(λ, k, z)| ≤ cosh(A|z|), ∀z ∈ C, (7.29)

|aL2(λ, k, z)|, |aL3(λ, k, z)| ≤ sinh(A|z|), ∀z ∈ C. (7.30)

(iii) The functions aL1(λ, k, z) and aL4(λ, k, z) are entire and even in z whereas the functions
aL2(λ, k, z) and aL3(λ, k, z) are entire and odd in z. Moreover they satisfy the symmetries

aL1(λ, k, z) = aL4(λ, k, z̄), ∀z ∈ C, (7.31)

aL2(λ, k, z) = aL3(λ, k, z̄), ∀z ∈ C. (7.32)

(iv) The following relations hold for all z ∈ C

aL1(λ, k, z)aL1(λ, k, z̄)− aL3(λ, k, z)aL3(λ, k, z̄) = 1, (7.33)

aL4(λ, k, z)aL4(λ, k, z̄)− aL2(λ, k, z)aL2(λ, k, z̄) = 1. (7.34)

Proof. The proof is identical to [20], Lemma 3.3. The relation (7.33)-(7.34) are simply the
expression of the unitarity of the scattering matrix associated to AL.

Note in particular that the components of the matrix AL(λ, k, z) are entire functions of
exponential type in the variable z. Precisely, from (7.29) and (7.30), we have

|aLj(λ, k, z)| ≤ eA|z|, ∀z ∈ C, j = 1, .., 4, (7.35)

where A =

∫

R

a(x)dx. Using the relations (7.33), (7.34), the parity properties of the aLj(λ, k, z)

and the Phragmén-Lindelöf theorem, we can slightly improve this estimate as in [20]. Precisely,
we have

Lemma 7.4. Let λ ∈ R be fixed. Then for all z ∈ C

|aLj(λ, k, z)| ≤ eA|Re(z)|, j = 1, .., 4. (7.36)
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Proof. We refer the reader to [20], Lemma 3.4.

Remark 7.5. For later use, we mention that we have also the corresponding estimates for the
Jost functions fLj(x, λ, k, z) and fRj(x, λ, k, z). Precisely. for all j = 1, .., 4 and for all x ∈ R,

|fLj(x, λ, k, z)| ≤ C e|Re(z)|
∫∞
x

a(s)ds, (7.37)

|fRj(x, λ, k, z)| ≤ C e|Re(z)|
∫ x

−∞
a(s)ds. (7.38)

Remark 7.6. In [20], Lemma 3.6, it was shown that for Reissner-Nordström-de-Sitter black
holes (a = 0 in our model), the scattering matrix at energy 0 could be explicitely calculated and
given precisely by

S(0, k, z) =

[

cosh(zA) i sinh(zA)
−i sinh(zA) cosh(zA)

]

, A =

∫

R

a(x)dx.

As a by product, the full scattering matrix S(0) did not determine uniquely the parameters of a
RN-dS black hole. For Kerr-Newmann-de-Sitter black holes (a 6= 0), the situation is completely
different. First, due to the presence of the non vanishing phase C(x, k) appearing in the potential
q(x, k) (see (4.9)), we can not obtain explicit formulae. Second, we shall see in Section 9 that,
even in the case of zero energy λ = 0, the parameters of a KN-dS black hole are uniquely
determined by the (partial) knowledge of the scattering matrix.

7.2 Nevanlinna class.

Let us denote the right half complex plane by Π+ = {z ∈ C : Re(z) > 0}. We recall that the
Nevanlinna class N(Π+) is defined as the set of all analytic functions f(z) on Π+ that satisfy
the estimate

sup
0<r<1

∫ π

−π
ln+

∣

∣

∣
f
(1− reiθ

1 + reiθ

)
∣

∣

∣
dθ <∞,

where ln+(x) =

{

lnx, lnx ≥ 0,
0, lnx < 0.

In [45], (see also [20], Lemma 3.8), the following lemma is

proved

Lemma 7.7. Let h ∈ H(Π+) be an holomorphic function in Π+ satisfying

|h(z)| ≤ CeARe(z), ∀z ∈ Π+, (7.39)

where A and C are two constants. Then h ∈ N(Π+).

Thanks to Lemmata 7.4 and 7.7, we thus get in our model

Corollary 7.8. For each λ ∈ R fixed, the applications z −→ aLj(λ, k, z)|Π+ belong to N(Π+).

Let us prove now a usefull uniqueness theorem involving functions in the Nevanlinna class
N(Π+). This result is very close to [45], Theorem 1.3, and uses the following result :
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Theorem 7.9 ([50], Thm 15.23). Let f be a holomorphic function in the unit disc D. Assume
that f belongs to the Nevanlinna class in D, that is

sup
0<r<1

∫ π

−π
ln+(| f(reiθ |) dθ < ∞.

Assume also that f(αl) = 0 for a sequence αl ∈ D satisfying

∞
∑

l=0

(1− |αl|) = ∞.

Then, f ≡ 0 in D.

Now, we can establish the following theorem.

Theorem 7.10. For λ ∈ R and k ∈ 1
2 + Z fixed, let h ∈ N(Π+) satisfy h(µkl(λ)) = 0 for all

l ∈ L where L ⊂ N
∗ with

∑

l∈L

1

l
= ∞. Then h ≡ 0 in Π+.

Proof. The function g : D → Π+ defined by

g(z) =
1− z

1 + z

maps conformally D onto Π+ and for u ∈ Π+,

g−1(u) =
1− u

1 + u
.

Let us define f : D → C by f(z) = h(g(z)) = h(
1− z

1 + z
). Clearly, f belongs to the Nevanlinna

class in D if h belong s to the Nevanlinna class in Π+. Moreover, from our assumptions, we

have f(αl) = 0 for αl =
1− µkl(λ)

1 + µkl(λ)
. But according to Appendix A, there exist suitable constants

0 < C1 < C2 such that for all l ∈ N
∗

C1l ≤ µkl(λ) ≤ C2l

Hence we get for l large enough,

1− |αl| = 1−
∣

∣

∣

∣

1− µkl(λ)

1 + µkl(λ)

∣

∣

∣

∣

=
2

1 + µkl(λ)
≥ 2

1 + C2l
,

Thus,
∑

l∈L
(1− |αl|) = ∞.

From Theorem 7.9, we obtain f ≡ 0 and then h ≡ 0.
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Now we deduce from Corollary 7.8 and Theorem 7.10

Corollary 7.11. Consider two KN-dS black holes and denote by aLj(λ, k, z) and ãLj(λ, k, z)

the corresponding scattering data for fixed λ and k. Let L ⊂ N
∗ satisfying

∑

l∈L

1

l
= ∞. Assume

that one of the following equality holds

aLj(λ, k, µkl(λ)) = ãLj(λ, k, µkl(λ)), ∀l ∈ L, j = 1, .., 4.

Then
aLj(λ, k, z) = ãLj(λ, k, z), ∀z ∈ C, j = 1, .., 4.

Proof. Using Lemma 7.7, we see that aLj(λ, k, z) − ãLj(λ, k, z) belongs to N(Π+). Then, we
apply Theorem 7.10 to get the result.

Remark 7.12. Till here, we have seen that the scattering data aLj(λ, k, z) are uniquely de-
termined as functions of z ∈ C if we know their values on the physical angular momenta
µkl(λ), ∀l ∈ L. We now improve this uniqueness result assuming that only the physical scatter-
ing data - precisely the reflection coefficients L̂kl(λ) or R̂kl(λ) - are known (up to phase factors
in order to obtain a result independent of our choice of radial coordinates, (see (4.82)).

Proposition 7.13. Consider two KN-dS black holes and denote by Z and Z̃ all the corresponding
scattering data. Assume that, for λ ∈ R and k ∈ 1

2 +Z fixed, there exists a constant d(λ, k) ∈ R

such that one of the following equality holds for all l ∈ L with L ⊂ N
∗ satisfying

∑

l∈L

1

l
= ∞:

L̂kl(λ) = e−id(λ,k) ˆ̃Lkl(λ), (7.40)

R̂kl(λ) = eid(λ,k) ˆ̃Rkl(λ). (7.41)

Assume moreover that µkl(λ) = µ̃kl(λ), ∀l ∈ L. Then for all z ∈ C,

[

aL1(λ, k, z) aL2(λ, k, z)
aL3(λ, k, z) aL4(λ, k, z)

]

=

[

ãL1(λ, k, z) eid(λ,k) ãL2(λ, k, z)

e−id(λ,k) ãL3(λ, k, z) ãL4(λ, k, z)

]

. (7.42)

Proof. The proof is identical to [20], Proposition 3.12. Since it is instructive, we reproduce it
here.

Assume for instance (7.40). Then using the equality

L̂kl(λ) =
aL3(λ, k, µkl(λ))

aL1(λ, k, µkl(λ))
,

we get

aL3(λ, k, µkl(λ))ãL1(λ, k, µkl(λ)) = e−id(λ,k)aL1(λ, k, µkl(λ))ãL3(λ, k, µkl(λ)), ∀n ∈ L. (7.43)
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By Lemmata 7.4 and 7.7, the product functions aL3(λ, k, z)ãL1(λ, k, z) and aL1(λ, k, z)ãL3(λ, k, z)
belong to the Nevanlinna class N . Therefore, the equality (7.43) extends analytically to the
whole complex plane C. Hence

aL3(λ, k, z)ãL1(λ, k, z) = e−d(λ,k)aL1(λ, k, z)ãL3(λ, k, z), ∀z ∈ C. (7.44)

But recall from Lemma 7.3, (iv), that

aL1(λ, k, z)aL1(λ, k, z̄) = 1− aL3(λ, k, z)aL3(λ, k, z̄), ∀z ∈ C,

from which we deduce that aL1(λ, k, z) and aL3(λ, k, z) have no common zeros. Hence we infer
from (7.44) that the zeros of aLj(λ, k, z) and ãLj(λ, k, z) for j = 1, 3 coincide with the same
multiplicity.

Now recall that the function aL1(λ, k, z) is even. Thus we can write aL1(λ, k, z) = g(z2)
where g is an entire function. Since aL1(λ, k, z) is of order 1 (i.e. |aL1(λ, k, z)| ≤ eA|z|), we
deduce that g is of order 1

2 . Hence the Hadamard’s factorization theorem, (see [9], Th 2.7.1),
yields

g(ζ) = G

∞
∏

n=1

(

1− ζ

ζn

)

,

where the ζn 6= 0 are the zeros of g counted according to multiplicity, G = g(0) = aL1(λ, k, 0) = 1
by Lemma 7.3, (i). But note that ζn = z2n where the zn are the zeros of aL1(λ, k, z) by definition
of g. Hence we obtain

aL1(λ, k, z) =

∞
∏

n=1

(

1− z2

z2n

)

.

Similarly, we have

ãL1(λ, k, z) =
∞
∏

n=1

(

1− z2

z̃2n

)

,

where the z̃n are the zeros of ãL1(λ, k, z). Since zn = z̃n by the previous discussion, we conclude
that

aL1(λ, k, z) = ãL1(λ, k, z), ∀z ∈ C. (7.45)

From (7.45), (7.44), (7.31) and (7.32), we thus deduce (7.42).
The proof starting from (7.41) is analogous and so we omit it.

Remark 7.14. In the proof of the above Theorem, it is worth mentioning that the knowledge
of one of the reflection coefficients L̂kl(λ) or R̂kl(λ) for an infinite number of angular momenta
µkl(λ) allows to determine uniquely the transmission coefficient T̂ (λ, k, z) = 1

aL1(λ,k,z)
for all

z ∈ C. The crucial ingredients needed to prove this are the fact that the different functions
aLj(λ, k, z) belong to the Nevanlinna class, Hadamard’s factorization Theorem and the unitary
relations of the scattering coefficients.

80



7.3 A first uniqueness result.

We finish this section with a first application of the previous uniqueness result to the study of
an inverse scattering problem in which the reflection coefficients Lkl(λ) or Rkl(λ) are supposed
to be known on an interval of energy (and not simply at a fixed energy λ). Precisely we prove
Theorem 5.5 that, for the convenience of the reader, we recall here

Theorem 7.15. Consider two KN-dS black holes and denote by Z and Z̃ all the corresponding
scattering data. Let I be a (possibly small) open interval of energy. Assume that, there exists
c ∈ R such that, for all λ ∈ I and for two different k, one of the following conditions holds for

all l ∈ Lk where the subsets Lk ⊂ N
∗ satisfy the Müntz condition

∑

l∈Lk

1

l
= ∞ :

Lkl(λ) = e−2iλ−(k)cL̃kl(λ), (7.46)

Rkl(λ) = e2iλ
+(k)cR̃kl(λ), (7.47)

where λ±(k) = λ− Ω±(k). Then for all x ∈ R,

a(x) = ã(x− c), c(x, k) = c̃(x− c, k),

and the parameters of the two KN-dS black holes coincide.

Proof. Let us prove for instance the corollary under condition (7.47). As it was explained in
Proposition 4.12, the condition (7.47) on the physical reflection operators is equivalent to the
following equality on the unphysical reflection coefficients

R̂kl(λ) = e2iλ
+(k)c ˆ̃Rkl(λ). (7.48)

Applying Proposition 7.13, we see in particular that

aL2(λ, k, z) = e2iλc e−2iΩ+(k)c ãL2(λ, k, z), ∀z ∈ C, ∀λ ∈ I.

From the first term of the series defining aL2(λ, k, z) and ãL2(λ, k, z) (see Lemma 7.3, (ii)), we
thus obtain

q̂k(2λ) = e2iλc e−2iΩ+(k)c ˆ̃qk(2λ), ∀λ ∈ I, (7.49)

where q̂k and ˆ̃qk denote the Fourier transforms of the potentials qk and q̃k. Since these potentials
are exponentially decreasing at both horizons, their Fourier transforms are analytic in a small
strip K around the real axis. Thus the equality (7.49) extends analytically to the whole strip
K. In particular, we have

q̂k(2λ) = e2iλc e−2iΩ−(k)c ˆ̃qk(2λ), ∀λ ∈ R, (7.50)

and therefore
qk(x) = e−2iΩ−(k)c q̃k(x− c), ∀x ∈ R. (7.51)
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Note that from the modulus of (7.51), we obtain

a(x) = ã(x− c). (7.52)

Also, taking the logarithmic derivative with respect to x in (7.51), we get

q′k(x)

qk(x)
=
q̃′k(x− c)

q̃k(x− c)
, (7.53)

or equivalently,
a′(x)
a(x)

+ 2ic(x, k) =
ã′(x− c)

ã(x− c)
+ 2ic̃(x− c, k). (7.54)

Thus, from the imaginary parts of (7.54), we obtain

c(x, k) = c̃(x− c, k). (7.55)

Now, let us use the particular forms of the potentials a(x) and c(x, k) to recover the param-
eters of the black hole. Recall that

c(x, k) =
aEk + qQr

r2 + a2
, E = 1 +

a2Λ

3
. (7.56)

Using that (7.55) is true for two different k, and using the fact that a = ã, Λ = Λ̃ (proved in
Thm 5.4), we obtain the following decoupled equations

qQr

r2 + a2
=

qQ̃r̃

r̃2 + a2
, (7.57)

aE

r2 + a2
=

aE

r̃2 + a2
, (7.58)

where we use the notation r̃ = r̃(x − c). Since a 6= 0 and E 6= 0, we deduce from (7.58) that
r = r̃. Now, from (7.57), we obtain Q = Q̃ when q 6= 0.

Similarly, recall that

a(x) =

√
∆r

r2 + a2
, (7.59)

with

∆r = (r2 + a2)(1− Λ

3
)− 2Mr +Q2. (7.60)

Since r = r̃, we obtain using (7.52),

∆r = ∆̃r̃ = ∆̃r. (7.61)

Then, from (7.60), we obtain M = M̃ and Q2 = Q̃2 in the case q = 0.
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8 Large z asymptotics of the scattering data

In this Section, we follow the results of the Section 4 in [20] to obtain the asymptotic expansion
of the scattering data when the angular momentum z → +∞, z real. To do this, we introduce a
convenient change of variable X = g(x) which turns out to be a simple Liouville transformation
between some underlying Sturm-Liouville equations that appear in our model (see below). This
Liouville transformation as well as the asymptotics of the scattering data will be useful later to
study the inverse scattering problem.

It is convenient in this Section not to work with the simplified stationary equation (4.8)
but rather with the initial stationary equation (4.2). Following the reverse procedure given in
Section 4.1.1, we introduce the following functions

HL(x, λ, k, z) = e−iC(x,k)Γ1
FL(x, λ, k, z), (8.1)

HR(x, λ, k, z) = e−iC(x,k)Γ1
FR(x, λ, k, z), (8.2)

that are matrix-valued solutions of the stationary equation

[Γ1Dz − za(x)Γ2 + c(x, k)]HL/R = λHL/R.

Clearly, from (7.19), we see that

det HL(x, λ, k, z) = det HR(x, λ, k, z) = 1. (8.3)

We shall also use the notations

HL(x, λ, k, z) =

[

hL1(x, λ, k, z) hL2(x, λ, k, z)
hL3(x, λ, k, z) hL4(x, λ, k, z)

]

, (8.4)

HR(x, λ, k, z) =

[

hR1(x, λ, k, z) hR2(x, λ, k, z)
hR3(x, λ, k, z) hR4(x, λ, k, z)

]

. (8.5)

Thus, for j = 1, 2, we have

hLj(x, λ, k, z) = e−iC(x,k)fLj(x, λ, k, z), hRj(x, λ, k, z) = e−iC(x,k)fRj(x, λ, k, z), (8.6)

whereas for j = 3, 4, we have

hLj(x, λ, k, z) = e+iC(x,k)fLj(x, λ, k, z), hRj(x, λ, k, z) = e+iC(x,k)fRj(x, λ, k, z). (8.7)

We recall that the fLj(x, λ, k, z) and fRj(x, λ, k, z) satisfy the second order differential equa-
tions (7.22) and (7.24). Thus, using (8.6) and (8.7), it is easy to see that the components
hLj(x, λ, k, z) and hRj(x, λ, k, z), j = 1, 2 satisfy

[

− d2

dx2
+
a′(x)
a(x)

d

dx
+ z2a(x)− iλ

a′(x)
a(x)

+ s(x, λ, k)
]

f = λ2f, (8.8)
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where

s(x, λ, k) = −ic′(x, k)− c2(x, k) + i
a′(x)
a(x)

c(x, k) + 2λc(x, k). (8.9)

In the same way, the components hLj(x, λ, k, z) and hRj(x, λ, k, z), j = 3, 4 satisfy

[

− d2

dx2
+
a′(x)
a(x)

d

dx
+ z2a(x) + iλ

a′(x)
a(x)

+ s(x, λ, k)
]

f = λ2f. (8.10)

8.1 The Liouville transformation.

We follow the same strategy as in [20], (see also [12], [13]). Considering the differential equations
(8.8) and (8.10) satisfied by the modified Jost functions hLj(x, λ, z) and hRj(x, λ, z), we use a
Liouville transformation X = g(x), that transforms the equations (8.8) and (8.10) into singular
Sturm-Liouville differential equations in which the angular momentum z becomes the spectral
parameter (see Lemma 8.1 below).

We define the variable X by

X = g(x) =

∫ x

−∞
a(t) dt. (8.11)

Clearly, g is a C1-diffeomorphism from R to (0, A) where

A =

∫ +∞

−∞
a(t) dt. (8.12)

We denote by h = g−1 the inverse diffeomorphism of g and we shall use the notation y′(X) for
the derivative of y(X) with respect to X. We also define for j = 1, ..., 4, and for X ∈]0, A[,

fj(X,λ, k, z) = hLj(h(X), λ, k, z). (8.13)

gj(X,λ, k, z) = hRj(h(X), λ, k, z). (8.14)

Let us begin by an elementary result.

Lemma 8.1.

1. For j = 1, 2, fj(X,λ, k, z) and gj(X,λ, k, z) satisfy on ]0, A[ the Sturm-Liouville equation

y′′ +Q(X, k)y = z2y. (8.15)

2. For j = 3, 4, fj(X,λ, k, z) and gj(X,λ, k, z) satisfy on ]0, A[ the Sturm-Liouville equation

y′′ +Q(X, k)y = z2y, (8.16)
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where the potential Q(X, k) is given by

Q(X, k) = (λ− c(h(X), k))2h′(X)2 − i(λ− c(h(X), k))h′′(X) + ic′(h(X), k)h′(X)2,

or in the initial Regge-Wheeler variable x

Q(X, k) =
(λ− c(x, k))2

a2(x)
+ i

(

a(x)c′(x, k) + a′(x)(λ− c(x, k))

a3(x)

)

.

Proof. Using (8.8), (8.10) and
dX

dx
= a(x), a straightforward calculation gives (8.15) and (8.16).

In order to obtain the asymptotics of the modified Jost functions fj and gj when z is large
and real, we shall solve the Sturm-Liouville equations (8.15)- (8.16) by a perturbative argument.
Following [20], we consider Q(X, k) as a perturbation of a function Q+(X, k) where Q+(X, k)
is given by the same formula as Q(X, k), but with c(h(X), k) replaced by Ω+(k) - that is
its equivalent at +∞ - and h(X) = g−1(X) is replaced by another diffeomorphism denoted
h+(X) = g−1

+ (X) where the diffeomorphism g+ is defined in the same manner as g, with a(x)
replaced by its equivalent at +∞.

More precisely, if we write A − g(x) =
∫ +∞
x a(t) dt and recalling the asymptotics of a(x)

given in (3.15), it is natural to set for X ∈]0, A[

A− g+(x) =

∫ +∞

x
a+ eκ+t dt = −a+

κ+
eκ+x.

So, we define

h+(X) = g−1
+ (X) =

1

κ+
log(A−X) + C+, (8.17)

with

C+ =
1

κ+
log(−κ+

a+
). (8.18)

Then, we can set

Q+(X, k) = (λ− Ω+(k))
2h′+(X)2 − i(λ− Ω+(k))h

′′
+(X). (8.19)

Note that an elementary calculation gives

Q+(X, k) =
ω+(k)

(A−X)2
, (8.20)

where

ω+(k) =

(

λ+(k)

κ±

)2

+ i
λ+(k)

κ±
, (8.21)

λ+(k) = λ−Ω+(k). (8.22)
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Now, let us prove that Q+(X, k) is a suitable perturbation of Q(X, k), in the sense that in the
variable X, the modified Jost functions fj(X,λ, k, z) and gj(X,λ, k, z) satisfy Sturm Liouville
equations with potentials having quadratic singularities at the boundary X = A. To do this, we
have to control h(X)− h+(X).

We recall the following result ([20], Lemma 4.7):

Lemma 8.2. Let X0 ∈]0, A[ fixed. Then, there exists C > 0 such that for k = 0, 1, 2

| h(k)(X)− h
(k)
+ (X) | ≤ C (A−X)2−k , ∀X ∈]X0, A[. (8.23)

Then, we can prove

Lemma 8.3. Let X0 ∈]0, A[ fixed. Then

Q(X, k) = Q+(X, k) + q+(X, k) , with q+(X, k) ∈ L∞(X0, A), (8.24)

Proof. We recall that the potential a(x) has the asymptotics (3.15) when x→ +∞

a(x) = a+ eκ+x + O(e3κ+x). (8.25)

When x→ +∞, or equivalently when X → A, it thus follows that

A−X =

∫ +∞

x
a(t) dt =

a+
κ+

eκ+x + O(e3κ+x) =
1

κ+
a(x) + O(e3κ+x),

from which we also have
eκ+x = O(A−X), X → A.

Hence, when X → A,
a(x) = κ+(A−X) +O((A−X)3). (8.26)

Similarly, we recall the asymptotics (3.17) of the function c(x, k) when x→ +∞

c(x, k) = Ω+(k) + c+e
2κ+x +O(e4κ+x), (8.27)

c′(x, k) = 2c+κ+e
2κ+x +O(e4κ+x). (8.28)

Hence, we obtain when X → A:

c(x, k) = Ω+(k) +O((A−X)2), (8.29)

c′(x, k) = O((A−X)2). (8.30)

Moreover, it follows from Lemma 8.2 that for X ∈ (X0, A),

h′(X) = O((A−X)−1) , h′′(X) = O((A−X)−2). (8.31)
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Now, using (8.26), (8.29), (8.30), (8.31) and Lemma 8.2, we write for X ∈ (X0, A) :

Q(X, k) = (λ− c(h(X), k))2h′(X)2 − i(λ− c(h(X), k))h′′(X) + ic′(h(X), k)h′(X)2,

= (λ− c(h(X), k))2h′(X)2 − i(λ− c(h(X), k))h′′(X) +O(1),

= [λ+(k)− (c(h(X), k) − Ω+(k))]2h′(X)2

−i[λ+(k) − (c(h(X), k) − Ω+(k))]h′′(X) +O(1),

= (λ+(k))2h′(X)2 − iλ+(k)h′′(X) +O(1),

= (λ+(k))2h′+(X)2 − iλ+(k)h′′+(X) +O(1),

= Q+(X, k) +O(1).

Let us calculate here some Wronskians between modified Jost functions that will be useful
later. We recall that the Wronskian of two functions f, g is given by W (f, g) = fg′ − f ′g.

Lemma 8.4. For z ∈ C, we have :

W (f1, f2) =W (g1, g2) =W (f3, f4) =W (g3, g4) = iz.

Proof. For example, let us calculate W (f1, f2). Using
dX

dx
= a(x) again, it is clear that

W (f1, f2) =
1

a(x)
W (e−iC(x,k)fL1(x, λ, k, z), e

−iC(x,k)fL2(x, λ, k, z)) (8.32)

=
e−2iC(x,k)

a(x)
W (fL1(x, λ, k, z), fL2(x, λ, k, z)). (8.33)

Using (7.1) and (7.19), we obtain easily :

W (fL1(x, λ, z), fL2(x, λ, z)) = fL1[iλfL2 + izq(x, k)fL4]− fL2[iλfL1 + izq(x, k)fL3]

= izq(x, k) det FL(x, λ, k, z) = izq(x, k),

which implies the result.

8.2 Asymptotics of the Jost functions.

In this section, we determine the asymptotics of the modified Jost functions fj(X,λ, k, z) and
gj(X,λ, k, z) when z → +∞. We emphasize here that the same type of asymptotics for solutions
of singular Sturm-Liouville equations more general than (8.15) - (8.16) have been yet studied by
Freiling and Yurko in [25]. However their asymptotics are given up to multiplicative constants
that, in our case, should be determined precisely in order to solve our inverse scattering problem.
So, we prefer to follow a self-contained approach which only uses the series expansion for the
Jost functions obtained in Section 7 and a simple perturbative argument.
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Let us study first the modified Jost function hL1(x, λ, k, z). From Lemma 7.1 and (7.20), we
recall that for z ∈ C,

hL1(x, λ, k, z) = e−iC(x,k)eiλx
+∞
∑

n=0

mn
L1(x, λ, k) z

2n (8.34)

where

m0
L1(x, λ, k) = 1,

mn
L1(x, λ, k) =

∫ +∞

x

∫ +∞

y
e2iλ(t−y) qk(y) qk(t)) m

n−1
L1 (t, λ, k) dt dy , for n ≥ 1.

So, using the Liouville transformation, we immediately obtain

Lemma 8.5.

f1(X,λ, k, z) =

+∞
∑

n=0

an(X,λ, k) z
2n, (8.35)

where

a0(X,λ, k) = e−iC(h(X),k) eiλh(X),

an(X,λ, k) = e−iC(h(X),k) eiλh(X)

∫ A

X

∫ A

Y
e−2iλh(Y ) eiλh(T )e2iC(h(Y ),k) e−iC(h(T ),k)

an−1(T, λ, k) dT dY , for n ≥ 1. (8.36)

As previously, we shall consider f1(X,λ, k, z) as a perturbation of a function f+1 (X,λ, k, z)
where f+1 (X,λ, k, z) is defined by the same series (8.35)-(8.36) where h(X) is replaced by h+(X)
and C(h(X), k) is replaced by a new function C+(h+(X), k) which we define now. Recall from
(4.44) that

C(x, k) = β(k)−
∫ +∞

x
[c(t, k) −Ω+(k)] dt+Ω+(k)x. (8.37)

So, replacing c(t, k) by its equivalent at +∞, it is natural to set

C+(h+(X), k) = β(k) + Ω+(k)h
+(X). (8.38)

The function f+1 (X,λ, k, z) is thus defined by

f+1 (X,λ, k, z) =
+∞
∑

n=0

a+n (X,λ, k) z
2n, (8.39)

where
a+0 (X,λ, k) = e−iβ(k) ei(λ−Ω+(k))h+(X),

and for n ≥ 1

a+n (X,λ, k) = ei(λ−Ω+(k))h+(X)

∫ A

X

∫ A

Y
e−2i(λ−Ω+(k))h+(Y ) ei(λ−Ω+(k))h+(T ) a+n−1(T, λ, k) dT dY.
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Remark 8.6. It is clear by definition that the function f+1 (X,λ, k, z) satisfies the following
singular Sturm-Liouville equation

y′′ +Q+(X, k)y = z2y ⇐⇒ y′′ +
ω+

(A−X)2
y = z2y. (8.40)

Exact solutions of (8.40) are well known and called modified Bessel functions. We refer for
instance to [42] for a description of these functions. In the following, we prove that f1(X,λ, k, z)
is a small perturbation of f+1 (X,λ, k, z). In consequence, the asymptotics of f1(X,λ, k, z) when
z → +∞ will be read from the corresponding well known asymptotics for f+1 (X,λ, k, z).

Thanks to our choice of diffeomorphism h+, the coefficients of the serie (8.39) can be ex-
plicitely calculated. Precisely, denoting by Γ the well-known Euler Gamma function, we have

Lemma 8.7. For X ∈]0, A[, z ∈ C and for all n ≥ 0

a+n (X,λ, k) = e−iβ(k) (−κ+
a+

)
i
λ+(k)
κ+ Γ(1− ν+(k))

1

22n n! Γ(n+ 1− ν+(k))
(A−X)

2n+i
λ+(k)
κ+

with

ν+(k) =
1

2
− i

λ+(k)

κ+
. (8.41)

Proof. We prove the formula by induction. For n = 0, the result is clear by (8.17), (8.18) and
(8.38). For n ≥ 1, an elementary calculation gives

a+n (X,λ, k) = (−κ+
a+

)
i
λ+(k)
κ+

1

(1 + 2iλ+(k)
κ+

) · · · (2n− 1 + 2iλ+(k)
κ+

) 2 · · · (2n)
(A−X)

2n+i
λ+(k)
κ+

(8.42)
Using the functional equality Γ(z + 1) = zΓ(z), Lemma 8.7 is proved.

Now, it turns out that the expressions for the coefficients a+n (X,λ, k) can be written in terms
of the modified Bessel function I−ν(x). Let us recall its definition ([42], Eq. (5.7.1), p. 108),

I−ν(x) =

+∞
∑

n=0

1

Γ(n− ν + 1) n!

(x

2

)−ν+2n
, x ∈ C, | Arg x |< π. (8.43)

As in [20], Corollary 4.5, we have

Corollary 8.8.

1. For X ∈]0, A[ and z ∈ C,

f+1 (X,λ, k, z) = e−iβ(k)

(

−κ+
a+

)i
λ+(k)
κ+

Γ(1− ν+(k))
√
A−X

(z

2

)ν+(k)
I−ν+(k)(z(A−X)).
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2. Let X1 ∈]0, A[ fixed. Then, for j = 0, 1 and uniformly in X ∈]X1, A[, the following
asymptotics hold when z → +∞, z real

f
+(j)
1 (X,λ, k, z) = (−1)j

2−ν+(k)

√
2π

(−κ+
a+

)
iλ

+(k)
κ+ Γ(1−ν+(k)) z

j−iλ
+(k)
κ+ ez(A−X)

(

1+O(
1

z
)
)

.

Now, we prove some useful properties for an(X,λ, k) and a
+
n (X,λ, k) with k fixed.

Lemma 8.9.

1. For n ≥ 0 and X ∈]0, A[, we have

| an(X,λ, k) |≤
(A−X)2n

(2n)!
, (8.44)

2. Let X0 ∈ (0, A) be fixed. For n ≥ 0 and for all X ∈]X0, A[,

a′n(X,λ, k) = O
(

(A−X)2n−1
)

. (8.45)

The same estimates hold for a+n (X,λ, k).

Proof. The first point is clear by a simple induction. Let us prove the second one. For n = 0,
we observe that

a′0(X,λ, k) = i(λ− c(h(X), k))h′(X) a0(X,λ, k). (8.46)

Using c(h(X), k) = O(1) and the estimate

h′(X) = O

(

1

A−X

)

, ∀X ∈]X0, A[, (8.47)

we obtain a′0(X,λ, k) = O((A−X)−1). For n ≥ 1, we have

a′n(X,λ, k) = i(λ− c(h(X), k))h′(X) an(Xλ, k)

−eiC(h(X),k) e−iλh(X)

∫ A

X
eiλh(T ) e−iC(h(T ),k) an−1(T, λ, k) dT. (8.48)

Thus, the result follows from (8.44) and (8.47) by induction. For a+n (X,λ, k), the proof is
identical.

Now, we want to control the difference f1(X,λ, k, z) − f+1 (X,λ, k, z). To do this, we set

en(X,λ, k) = an(X,λ, k) − a+n (X,λ, k), (8.49)

and thus, we have

f1(X,λ, k, z) − f+1 (X,λ, k, z) =

+∞
∑

n=0

en(X,λ, k) z
2n. (8.50)

In the next lemma, we show that an(X,λ, k), a
+
n (X,λ, k) and en(X,λ, k) satisfy second order

differential equations.
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Lemma 8.10.

1. For n ≥ 1, an(X,λ, k) and a+n (X,λ, k) satisfy on ]0, A[,

a′′n(X,λ, k) +Q(X, k) an(X,λ, k) = an−1(X,λ, k), (8.51)

a+n
′′
(X,λ, k) +Q+(X, k) a

+
n (X,λ, k) = a+n−1(X,λ, k), (8.52)

2. For n ≥ 1, en(X,λ, k) satisfies on ]0, A[,

en
′′(X,λ, k) +Q+(X, k) en(X,λ, k) = en−1(X,λ, k) − q+(X, k) an(X,λ, k) (8.53)

where
q+(X, k) = Q(X, k) −Q+(X, k). (8.54)

Proof. Since f1(X,λ, k, z) =
+∞
∑

n=0

an(X,λ, k) z
2n, (8.51) follows directly from (8.15). The proof

of (8.52) is identical. At last, (8.53) is a direct consequence of (8.51) and (8.52).

Now we show that the equation (8.53) can be rewritten as an integral equation which will
be useful to estimate the error term en.

Lemma 8.11. For n ≥ 1 and for all X ∈]X0, A[, en(X,λ, k) satisfies the integral equation

en(X,λ, k) = eiλ
+(k)h+(X)

∫ A

X

∫ A

Y
e−2iλ+(k)h+(Y ) eiλ

+(k)h+(T )

[en−1(T, λ, k) − q+(T, k) an(T, λ, k)] dT dY. (8.55)

Proof. We denote by fn(X,λ, k) the (R.H.S) of (8.55). Using (8.53), we have :

fn(X,λ, k) = eiλ
+(k)h+(X)

∫ A

X

∫ A

Y
e−2iλ+(k)h+(Y ) eiλ

+(k)h+(T ) en
′′(T, λ, k) dT dY

+ eiλ
+(k)h+(X)

∫ A

X

∫ A

Y
e−2iλ+(k)h+(Y ) eiλh+(T ) Q+(T, k) en(T, λ, k) dT dY.

Integrating by part twice the first integral and using Lemma 8.9 yield (8.55).

In the next lemma, for k fixed, we estimate en(X,λ, k) and its derivative.

Lemma 8.12. Let X0 ∈ (0, A) be fixed. There exists a constant C > 0 such that for all n ≥ 0
and for all X ∈]X0, A[,

| en(X,λ, k) | ≤ C (n+ 1)
(A−X)2n+2

(2n + 2)!
(8.56)

| en′(X,λ, k) | ≤ C (n+ 1)
(A−X)2n+1

(2n + 1)!
(8.57)
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Proof. We prove the lemma by induction. For n = 0, we have

e0(X,λ, k) = a0(X,λ, k) − a+0 (X,λ, k) (8.58)

= e−iC(h(X),k) eiλh(X) − e−iβ(k) eiλ
+(k)h+(X). (8.59)

Using (8.37),

C(h(X), k) = β(k) + Ω+(k)h(X) −
∫ A

X
[c(h(T ), k) − Ω+(k)]

1

a(h(T ))
dT, (8.60)

= β(k) + Ω+(k)h(X) +O((A−X)2). (8.61)

It follows from Lemma 8.2 that, for a suitable constant C > 0,

| e0(X,λ, k) |≤
C

2
(A−X)2, ∀X ∈ (X0, A).

Assuming that the property is true for n− 1, we have by (8.44) and (8.55),

| en(X,λ, k) |≤
∫ A

X

∫ A

Y

(

C n
(A− T )2n

(2n)!
+ C

(A− T )2n

(2n)!

)

dT dY, ∀X ∈ (X0, A),

where we have supposed that C ≥ || q+(., k) ||L∞(X0,A). So,

| en(X,λ, k) |≤ C (n+ 1)
(A −X)2n+2

(2n + 2)!
, ∀X ∈ (X0, A).

We prove (8.57) similarly.

Now, we can establish the main result of this section.

Proposition 8.13.

1. There exists C > 0 such that for j = 0, 1, for all X ∈]X0, A[ and all z > 0,

| f (j)1 (X,λ, k, z) − f
+(j)
1 (X,λ, k, z) | ≤ C (A−X) zj−1 ez(A−X). (8.62)

2. For fixed X0 < X1 with Xj ∈]0, A[, ∀j = 0, 1, ∀X ∈]X0,X1[, we have the following
asymptotics, when z → +∞,

f
(j)
1 (X,λ, k, z) = (−1)j

2−ν+(k)

√
2π

(

−κ+
a+

)iλ
+(k)
κ+

Γ(1− ν+(k))z
j−iλ

+(k)
κ+ ez(A−X)

(

1 +O(
1

z
)
)

.

(8.63)
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Proof. The proof is identical to [20], Proposition 4.12, but for the convenience of the reader, we
repeat the argument. We only prove (8.62) in the case j = 0 since the case j = 1 is similar. By
Lemma 8.12 and for z > 0, we have

| f1(X,λ, k, z) − f+1 (X,λ, k, z) | ≤
+∞
∑

n=0

| en(x, λ, k) | z2n

≤
+∞
∑

n=0

C (n+ 1)
(A−X)2n+2

(2n + 2)!
z2n

≤ C

z
(A−X)

+∞
∑

n=0

(n+ 1)

2n+ 2

(z(A−X))2n+1

(2n+ 1)!

≤ C

2z
(A−X) sinh(z(A−X))

≤ C

z
(A−X) ez(A−X).

Now, since z is real, (8.63) follows from Corollary 8.8 and (8.62).

In order to calculate the asymptotics of f2(X,λ, k, z), we follow the same method as for
f1(X,λ, k, z). We thus only give the final results omitting the details. First, we construct
f+2 (X,λ, k, z) which approximates f2(X,λ, k, z) as in (8.62). We obtain

f+2 (X,λ, k, z) = −i (−κ+
a+

)
−iλ

+(k)
κ+ Γ(1− µ+(k))

√
A−X (

z

2
)µ+(k) I1−µ+(k)(z(A−X)), (8.64)

where

µ+(k) =
1

2
+ i

λ+(k)

κ+
. (8.65)

Then, using the well-known asymptotics for the modified Bessel functions [42], we deduce

Proposition 8.14. For fixed X0 < X1 with Xj ∈]0, A[, ∀j = 0, 1, ∀X ∈]X0,X1[, we have the
following asymptotics, when z → +∞,

f
(j)
2 (X,λ, k, z) = (−1)j+1 i

2−µ+(k)

√
2π

(

−κ+
a+

)−i
λ+(k)
κ+

Γ(1−µ+(k)) z
j+i

λ+(k)
κ+ ez(A−X)

(

1+O(
1

z
)
)

.

(8.66)

In order to obtain the asymptotics of the scattering data, we need to calculate the asymp-
totics of the Jost functions gj(X,λ, k, z). Since the procedure is the same as the one for the
fj(X,λ, k, z), we give without proof the main steps to obtain the asymptotics of gj(X,λ, k, z), j =
1, 2, when z → +∞. Since gj(X,λ, k, z) satisfies (8.15) with a boundary condition at X = 0,
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we work with an other diffeomorphism, denoted by h−(X), in order to construct the functions
g−j (X,λ, k, z) that approximate gj(X,λ, k, z). This new diffeomorphism is defined as follows

h−(X) =
1

κ−
logX +C−, (8.67)

where

C− =
1

κ−
log

(

κ−
a−

)

. (8.68)

Also, recalling that

C(x, k) =

∫ x

−∞
[c(t, k) − Ω−(k)] dt+Ω−(k)x, (8.69)

we replace C(h(X), k) appearing in the definition of the modified Jost functions gj(X,λ, k, z)
by C−(h−(X), k) = Ω−(k)h−(X).

As previously, we can calculate g−j (X,λ, k, z) explicitely and we obtain the following equali-
ties

g−1 (X,λ, k, z) =

(

κ−
a−

)i
λ−(k)
κ− √

X Γ(1− ν−(k))
(z

2

)ν−(k)
I−ν−(k)(zX),

where

λ−(k) = λ− Ω−(k), (8.70)

ν−(k) =
1

2
− i

λ−(k)
κ−

. (8.71)

Similarly, we have

g−2 (X,λ, k, z) = i

(

κ−
a−

)−iλ
−(k)
κ− √

X Γ(1− µ−(k))
(z

2

)µ−(k)
I1−µ−(k)(zX),

where

µ−(k) =
1

2
+ i

λ−(k)
κ−

. (8.72)

The g−j (X,λ, k, z) are perturbations of the gj(X,λ, k, z). Precisely, we have for fixed k,

Lemma 8.15. For X1 ∈]0, A[ fixed, there exists C > 0 such that for p = 0, 1, for all X ∈]0,X1[
and for all z > 0,

| g(p)j (X,λ, k, z) − g
−(p)
j (X,λ, k, z) | ≤ C X zp−1 ezX , j = 1, 2. (8.73)

Then, using the asymptotics of the modified Bessel functions [42], we obtain
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Proposition 8.16. For fixed X0 < X1 with Xj ∈]0, A[, ∀j = 0, 1, ∀X ∈]X0,X1[, we have the
following asymptotics, when z → +∞,

g
(j)
1 (X,λ, k, z) =

2−ν−(k)

√
2π

(

κ−
a−

)i
λ−(k)
κ−

Γ(1− ν−(k)) z
j−i

λ−(k)
κ− ezX

(

1 +O(
1

z
)
)

, (8.74)

g
(j)
2 (X,λ, k, z) = i

2−µ−(k)

√
2π

(

κ−
a−

)−i
λ−(k)
κ−

Γ(1− µ−(k))z
j+i

λ−(k)
κ− ezX

(

1 +O(
1

z
)
)

. (8.75)

8.3 Asymptotics of the scattering data.

In this section, we put together all the previous results and calculate the asymptotics of the
scattering data aLj(λ, k, z), j = 1, ..., 4 when z → +∞.

First, we recall that for j = 1, 2, 3, 4

fj(X,λ, k, z) = e−iC(h(X),k) fLj(X,λ, k, z), (8.76)

gj(X,λ, k, z) = e−iC(h(X),k) fRj(X,λ, k, z). (8.77)

Second, we recall that for all x ∈ R,

FL(x, λ, z) = FR(x, λ, z) AL(λ, z). (8.78)

Calculating (8.78) components by components, it follows from (8.76) and (8.77) that (in the
variable X)

f1(X,λ, k, z) = aL1(λ, k, z) g1(X,λ, k, z) + aL3(λ, k, z) g2(X,λ, k, z)

f2(X,λ, k, z) = aL2(λ, k, z) g1(X,λ, k, z) + aL4(λ, k, z) g2(X,λ, k, z)

So, by Lemma 8.4, we obtain for z 6= 0 :

aL1(λ, k, z) =
1

iz
W (f1, g2) , aL2(λ, k, z) =

1

iz
W (f2, g2),

aL3(λ, k, z) = − 1

iz
W (f1, g1) , aL4(λ, k, z) = − 1

iz
W (f2, g1).

The following Theorem is then an easy consequence of Propositions 8.13, 8.14, 8.16 and of the
preceding formulae
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Theorem 8.17. When z → +∞, we have

aL1(λ, k, z) ∼ e−iβ(k)

2π

(

−κ+
a+

)i
λ+(k)
κ+

(

κ−
a−

)−i
λ−(k)
κ−

Γ

(

1

2
− i

λ−(k)
κ−

)

Γ

(

1

2
+ i

λ+(k)

κ+

)

(z

2

)i

(

λ−(k)
κ−

−λ+(k)
κ+

)

ezA,

aL2(λ, k, z) ∼ −i e
iβ(k)

2π

(

−κ+
a+

)−iλ
+(k)
κ+

(

κ−
a−

)−iλ
−(k)
κ−

Γ

(

1

2
− i

λ−(k)
κ−

)

Γ

(

1

2
− i

λ+(k)

κ+

)

(z

2

)i

(

λ−(k)
κ−

+
λ+(k)
κ+

)

ezA

aL3(λ, k, z) ∼ i
e−iβ(k)

2π

(

−κ+
a+

)i
λ+(k)
κ+

(

κ−
a−

)i
λ−(k)
κ−

Γ

(

1

2
+ i

λ−(k)
κ−

)

Γ

(

1

2
+ i

λ+(k)

κ+

)

(z

2

)−i

(

λ−(k)
κ−

+λ+(k)
κ+

)

ezA

aL4(λ, k, z) ∼ eiβ(k)

2π

(

−κ+
a+

)−iλ
+(k)
κ+

(

κ−
a−

)iλ
−(k)
κ−

Γ

(

1

2
+ i

λ−(k)
κ−

)

Γ

(

1

2
− i

λ+(k)

κ+

)

(z

2

)−i

(

λ−(k)
κ−

−λ+(k)
κ+

)

ezA

From the asymptotics of the aLj’s when z → +∞, we can also obtain the asymptotics of the

simplified scattering coefficients T̂ (λ, k, z), R̂(λ, k, z), L̂(λ, k, z) using (4.20). Further, we finally
obtain the asymptotics of the true scattering coefficients using (4.47). They are given by

Theorem 8.18. When z → +∞, we have

T (λ, k, z) ∼
2π
(

−κ+

a+

)−i
λ+(k)
κ+

(

κ−

a−

)i
λ−(k)
κ−

Γ
(

1
2 − iλ

−(k)
κ−

)

Γ
(

1
2 + iλ

+(k)
κ+

)

(z

2

)−i

(

λ−(k)
κ−

−λ+(k)
κ+

)

e−zA,

R(λ, k, z) ∼ i

(

−κ+
a+

)−2i
λ+(k)
κ+

Γ
(

1
2 − iλ

+(k)
κ+

)

Γ
(

1
2 + iλ

+(k)
κ+

)

(z

2

)2iλ
+(k)
κ+ ,

L(λ, k, z) ∼ i

(

−κ−
a−

)2i
λ−(k)
κ−

Γ
(

1
2 + iλ

−(k)
κ−

)

Γ
(

1
2 − iλ

−(k)
κ−

)

(z

2

)−2iλ
−(k)
κ− .

Remark 8.19. Thanks to Theorems 5.4 and 8.18 and Proposition 7.13 (see also Remark 7.14),
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the following parameters

A =

∫

R

a(x)dx,
λ−(k)
κ−

=
λ− Ω−(k)

κ−
=

λ

κ−
− aEk

(r2− + a2)κ−
− qQr−

(r2− + a2)κ−
,

λ+(k)

κ+
=
λ− Ω+(k)

κ+
=

λ

κ+
− aEk

(r2+ + a2)κ+
− qQr+

(r2+ + a2)κ+
,

are uniquely determined from the knowledge of the scattering operators Rk(λ), Lk(λ). If we
suppose that these scattering operators are known for two different k as well as for two different
λ, we can thus determine uniquely the following parameters

A, κ±, r±,

which clearly have an important physical meaning.

8.4 Derivatives of the scattering data with respect to z.

The previous Theorem shows that for all j = 1, ..., 4, ∃Cj > 0 such that |aLj(λ, k, z)|2 ∼ Cj e
2zA

when z → +∞. It is reasonable to think that d
dz (|aLj(λ, k, z)|2) ∼ 2ACj e

2zA. This would
be true if we could take the derivatives with respect to z of the asymptotics of aLj(λ, k, z) in
Theorem 8.17. In this Section, we prove that this is indeed the case. In consequence, it follows
that z → |aLj(λ, k, z)| is a strictly increasing function for large real z. We emphasize that this
result is one of the crucial ingredient in the proof of Proposition 5.3 and more generally in the
proof of our inverse problem.

In what follows, we shall use the notation ḟ = d
dzf and prove the Lemma

Lemma 8.20. There exists a real z0 large enough such that, for z ≥ z0, z →| aLj(λ, k, z) | is a
strictly increasing function.

Proof. For instance, let us prove the lemma in the case j = 1. Clearly, it suffices to show that

d

dz

(

|aL1(λ, k, z)|2
)

= 2Re (ȧL1(λ, k, z)aL1(λ, k, z)) > 0 , z ≫ 1. (8.79)

By (8.78), one has :

aL1(λ, k, z) = f1(X,λ, k, z)g4(X,λ, k, z) − f3(X,λ, k, z)g2(X,λ, k, z). (8.80)

So,

ȧL1(λ, k, z) = ḟ1(X,λ, k, z)g4(X,λ, k, z) + f1(X,λ, k, z)ġ4(X,λ, k, z)

− ḟ3(X,λ, k, z)g2(X,λ, k, z) − f3(X,λ, k, z)ġ2(X,λ, k, z). (8.81)

Recalling that

g4(X,λ, k, z) = g1(X,λ, k, z), (8.82)

f3(X,λ, k, z) = f2(X,λ, k, z), (8.83)
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we only have to study the asymptotics of ḟj(X,λ, k, z) and ġj(X,λ, k, z) for j = 1, 2 when
z → +∞. For instance, let us study ḟ1(X,λ, k, z) since the other cases are similar. First, (8.50)
implies

ḟ1(X,λ, k, z) − ḟ+1 (X,λ, k, z) =

+∞
∑

n=1

2n en(X,λ, k) z
2n−1. (8.84)

Using (8.56), we easily obtain in the same way as in Proposition 8.13, the following estimate for
X ∈]X0, A[,

| ḟ1(X,λ, k, z) − ḟ+1 (X,λ, k, z) |≤ C(A−X)2

z
ez(A−X). (8.85)

Now, let us recall that

f+1 (X,λ, k, z) = e−iβ(k) (−κ+
a+

)
i
λ+(k)
κ+ Γ(1− ν+(k))

√
A−X (

z

2
)ν+(k) I−ν+(k)(z(A−X)). (8.86)

So, using (see [42], Eq. (5.7.9)), the well-known asymptotics for the modified Bessel functions
as well as the relation

d

dw
(wνI−ν(w)) = wνI−ν+1(w), (8.87)

and finally (8.85), we obtain in a similar way as in (8.63),

ḟ1(X,λ, k, z) =
2−ν+(k)

√
2π

(−κ+
a+

)
i
λ+(k)
κ+ Γ(1−ν+(k)) z

−i
λ+(k)
κ+ (A−X)ez(A−X)

(

1+O(
1

z
)
)

. (8.88)

This means that ḟ1(X,λ, k, z) has precisely the expected asymptotics, that is the asymptotics
we would obtain taking the derivative (with respect to z) of the asymptotics (8.63). Similarly,
the asymptotics of ḟ2(X,λ, k, z), ġ1(X,λ, k, z) and ġ2(X,λ, k, z) are simply the derivatives of
the asymptotics (8.66), (8.74) and (8.75). Thus (8.79) follows easily.

9 The inverse scattering problem.

In this section, we prove Theorem 5.7 and thus finish the proof of our main result Theorem 5.1.
Precisely, we prove the uniqueness of the mass M , the charge Q, the cosmological constant Λ
and the angular momentum per unit mass a of a KN-dS black hole from the knowledge of one of
the reflection coefficients Lkl(λ) and Rkl(λ), at a fixed energy λ ∈ R, for two distinct k ∈ 1

2 + Z

and for all l ∈ Lk ⊂ N
∗ satisfying a Müntz condition

∑

l∈Lk

1

l
= ∞.

In fact, we recover more than only 4 parameters as explained in Theorem 5.7. We recover some
scalar functions (up to some diffeomorphisms) that appear in the potentials of the separated
radial equation (see below).
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Proof of Theorem 5.7. We recall that we have yet recovered the two parameters a and Λ from
the study of the angular separated equation and the Frobenius’s method (see Section 6.1 and
Theorem 5.4). Thus we only have to recover the remaining parameters Q and M from the
scattering data. As usual let us consider two KN-dS black holes with parameters (M,Q,Λ, a)
and (M̃, Q̃,Λ, a) respectively. We shall use the notation Z̃ for all the data associated with the
parameters (M̃, Q̃,Λ, a).

We also recall that we want to include the possiblity of describing the same KN-dS black
hole by two different RW variables and make our result coordinates independent (see Section
4.1.5). Hence, we assume that there exists c ∈ R such that for two distinct k ∈ 1

2 + Z, one of
the following equalities holds for all l ∈ Lk ⊂ N

∗

{

Rkl(λ) = e2icλ
+(k) R̃kl(λ),

Lkl(λ) = e−2icλ−(k) L̃kl(λ).
(9.1)

As shown in (4.81), these equalities are equivalent to (in terms of the simplified scattering
coefficients)

{

R̂kl(λ) = e2iλ
+(k)c ˆ̃Rkl(λ),

L̂kl(λ) = e−2iλ−(k)c ˆ̃Lkl(λ).
(9.2)

Recall moreover from Theorem 5.4 that µkl(λ) = µ̃kl(λ), ∀l ∈ L‖. Hence, using Proposition
7.13, we deduce from (9.2) that there exists a suitable constant d(λ, k) ∈ R such that for all
z ∈ C

aL1(λ, k, z) = ãL1(λ, k, z) , aL2(λ, k, z) = e2id(λ,k)ãL2(λ, k, z), (9.3)

aL3(λ, k, z) = e−2id(λ,k) ãL3(λ, k, z) , aL4(λ, k, z) = ãL4(λ, k, z). (9.4)

As a first consequence, we deduce from the asymptotics of Theorem 8.17 that :

A :=

∫ +∞

−∞
a(x) dx =

∫ +∞

−∞
ã(x) dx = Ã. (9.5)

As in [20], Section 5, (see also [25]), we can thus define the diffeomorphisms h, h̃ : ]0, A[→ R

as the inverse diffeomorphisms of the Liouville transforms g and g̃ given by (8.11) in which we
use the potentials a(x) and ã(x) respectively. We emphasize that these diffeomorphisms act on
the same interval ]0, A[ by (9.5). Let us now introduce for X ∈]0, A[ the matrix

P (X,λ, k, z) =

(

P1(X,λ, k, z) P2(X,λ, k, z)
P3(X,λ, k, z) P4(X,λ, k, z)

)

,

defined by
P (X,λ, k, z) H̃R(h̃(X), λ, k, z) = HR(h(X), λ, k, z) eid(λ,k)Γ

1
, (9.6)

where HR and H̃R are the modified Jost solutions from the right associated with a(x) and ã(x)
defined by (8.2). As in the previous Section, for k = 1, ..., 4, we set

gk(X,λ, k, z) = hRk(h(X), λ, k, z), (9.7)

g̃k(X,λ, k, z) = h̃Rk(h̃(X), λ, k, z). (9.8)
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Using (8.1) and (8.2) again, we remark that HL(x, λ, z) = HR(x, λ, z) AL(λ, z). So, we face
exactly the same situation than the one exposed in [20], Section 5. Following line by line the
proof of the uniqueness of the parameters exposed therein, we can show that the components
Pj(X,λ, k, z) of P are independent of z ∈ C. In particular, we obtain

Pj(X,λ, k, z) = Pj(X,λ, k, 0), ∀z ∈ C, ∀j = 1, ..., 4. (9.9)

But it follows from the definition of the Jost functions that

HR(x, λ, k, 0) = e−iC(x,k)Γ1
eiλΓ

1x, H̃R(x, λ, k, 0) = e−iC̃(x,k)Γ1
eiλΓ

1x.

Then, taking z = 0 in (9.6), we obtain

P (X,λ, k, 0) = ei [λ (h(X)−h̃(X))+d(λ,k)−C(h(X),k)+C̃(h̃(X),k) ]Γ1
. (9.10)

Then, using (9.9), (9.10) and (9.6) we get

{

g̃1(X,λ, k, z) = eiα(X,k) g1(X,λ, k, z),

g̃2(X,λ, k, z) = e−2id(λ,k) eiα(X,k) g2(X,λ, k, z),
(9.11)

where α(X, k) = λ (h̃(X) − h(X)) + C(h(X), k) − C̃(h̃(X), k).
By Lemma 8.4, the wronskians W (g1, g2) = W (g̃1, g̃2) = iz. Then, a straightforward calcu-

lation gives
e2i(α(X,k)−d(λ,k)) = 1. (9.12)

Thus, by a standard continuity argument, there exists pk ∈ Z such that

λ(h̃(X)− h(X)) + C(h(X), k) − C̃(h̃(X), k) − d(λ, k) = pkπ , ∀X ∈]0, A[, (9.13)

We differentiate (9.13) with respect to X and we get

λ

ã(h̃(X))
− λ

a(h(X))
+
c(h(X), k)

a(h(X))
− c̃(h̃(X), k)

ã(h̃(X))
= 0. (9.14)

In other words, using the notations x = h(X) and x̃ = h̃(X) = h̃ ◦ h−1(x), we have

λ− c̃(x̃, k)

ã(x̃)
=
λ− c(x, k)

a(x)
, (9.15)

which proves (5.11). Note in passing that if we know (9.15) for two different energies λ 6= λ′,
then we obtain

1

ã(h̃(X))
=

1

a(h(X))
. (9.16)

Since dh(X)
dX = 1

a(h(X)) , we thus see that there exists σ ∈ R such that h̃(X) = h(X) + σ and also

ã(x) = a(x− σ), c̃(x, k) = c(x− σ, k).
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Now, let us from (9.14) and the exact expressions of the potentials a(x) and c(x, k) recover
the missing parameters M and Q. We first recall that

c(x, k) =
aEk + qQr

r2 + a2
,

where r stands for r(x) the inverse of the Regge-Wheeler diffeomorphism and E = 1+ a2Λ
3 . So,

using (9.14) for two different k, recalling that the angular momentum a and the cosmological
constant Λ are unique, we obtain the following decoupled equations :

λ

ã(h̃(X))
− λ

a(h(X))
+

qQr

(r2 + a2)a(h(X))
− qQ̃r̃

(r̃2 + a2)ã(h̃(X))
= 0, (9.17)

aE

(

1

(r2 + a2)a(h(X))
− 1

(r̃2 + a2)ã(h̃(X))

)

= 0, (9.18)

where we have denoted r̃ = r̃(x̃). Recalling that

a(x) =

√
∆r

r2 + a2
, (9.19)

with

∆r = (r2 + a2)(1− Λ

3
)− 2Mr +Q2, (9.20)

and using the fact that a,E 6= 0, we obtain from (9.18),

√

∆r =

√

∆̃r̃ . (9.21)

Using
dX

dx
= a(x),

dx

dr
=
r2 + a2

∆r
and (9.19), a straightforward calculation gives

d

dX
[r(h(X))] =

√

∆r. (9.22)

So, (9.21) implies
r(h(X)) = r̃(h̃(X)) − b, (9.23)

for a suitable constant b. Then, using again (9.21), we obtain

∆r = ∆̃r̃ = ∆̃r+b. (9.24)

Eventually, we use (9.20) and we identify the terms in r3 in the equality ∆r = ∆̃r+b. We obtain
easily

−4Λ

3
b = 0. (9.25)

Hence, b = 0 and ∆r = ∆̃r and this leads to the uniqueness of the parameters by (9.20).

101



To finish the proof of Theorem 5.7, let us consider separately the case of Kerr-de-Sitter black
holes. Assume thus that Q = 0. Recall then that

c(x, k) =
aEk

r2 + a2
= c(x)k.

From the equalities (9.14) or equivalently (9.15) and playing with two different k, we determine
uniquely and separately

λ

ã(h̃(X))
=

λ

a(h(X))
,

c̃(h̃(X))

ã(h̃(X))
=
c(h(X))

a(h(X))
.

By the same argument as above, we conclude that there exists σ ∈ R such that

h̃(X) = h(X) + σ ⇐⇒ x̃ = x+ σ,

and
ã(x) = a(x− σ), c̃(x) = c(x− σ),

which finishes the proof of the Theorem.

A Growth estimate of the eigenvalues µkl(λ)

In this Appendix, we prove the following Proposition.

Proposition A.1 (Estimate on µkl(λ)). For all λ ∈ R, for all k ∈ 1
2 + Z and for all l ∈ N

∗,
there exist constants C1 and C2 independent of k, l such that

(

2− e
1
26

)

(

|k| − 1

2
+ l

)

− C1|k| − C2 − |aλ| ≤ µkl(λ) ≤ e
1
26

(

|k| − 1

2
+ l

)

+ C1|k|+ C2 + |aλ|.

We thus conclude that for fixed λ ∈ R and k ∈ 1
2 + Z,

∑

l∈N∗

1

µkl(λ)
= +∞.

Proof. To do this, we shall apply the theory of analytic perturbation due to Kato [41]. Recall
first that for each λ ∈ R and k ∈ 1/2 + Z, the µkl(λ) are eigenvalues of the selfadjoint operator
Ak(λ) given by (3.30) on L := L2((0, π), dθ,C2). Introducing the notations

ζ =
a2Λ

3
, ξ = aλ,

the operator Ak(λ) can be written as

Ak(ζ, ξ) =
√

1 + ζ cos2 θDk
S2

+ iΓ2 ζ sin(2θ)

4
√

1 + ζ cos2 θ
+ Γ3 (ζk − ξ) sin θ

√

1 + ζ cos2 θ
, (A.1)
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where

D
k
S2

= Γ2Dθ + Γ3 k

sin θ
. (A.2)

Note that according to (2.5), the physical parameters ζ and ξ belong to [0, 7 − 4
√
3] ⊂ [0, 1

13,8 ]
and R respectively. In what follows, we shall allow these parameters to be complex, for instance
in B(0, 1

13)×S where S is a narrow strip containing the real axis. Note at last that the operator

Ak(0, 0) = D
k
S2
,

is simply the restriction of the intrinsic Dirac operator on the 2-sphere S2 onto the angular mode
{eikϕ}, k ∈ 1/2 + Z. Hence it is well known that Ak(0, 0) is selfadjoint on L with its natural
domain given by

D = {u ∈ L, u is absolutely continuous and D
k
S2
u ∈ L and anti-periodic boundary conditions}.

We introduce the notations

Ak(ζ, ξ) = A(ζ)Dk
S2

+B(ζ, ξ),

with

A(ζ) =
√

1 + ζ cos2 θ, B(ζ, ξ) = iΓ2 ζ sin(2θ)

4
√

1 + ζ cos2 θ
+ Γ3 (ζk − ξ) sin θ

√

1 + ζ cos2 θ
.

Clearly the operators A(ζ) and B(ζ, ξ) are bounded (matrix-valued) multiplication operators
that are analytic in the variables (ζ, ξ) ∈ B(0, 1

13 )×S. Since the operator A(ζ) is also invertible,
it follows that the operator domain of Ak(ζ, ξ) is always D and is thus independent of (ζ, ξ) ∈
B(0, 1

13)× S. Since for all u ∈ D, Ak(ζ, ξ)u is a vector-valued analytic function with respect to
(ζ, ξ), we conclude that Ak(ζ, ξ) is an analytic family of type (A) in Kato’s classification ([41],
chap. VII, sect. 1). Moreover, if (ζ, ξ) ∈ [0, 1

13 ]× R, then Ak(ζ, ξ) is selfadjoint on L by [7, 8].
Hence, according to [41], Chap. VII, sect. 3, Ak(ζ, ξ) forms a self-adjoint holomorphic family of
type (A) in the variable (ζ, ξ) ∈ B(0, 1

13 )× S.
We also know that Ak(0, 0) = D

k
S2

has simple discrete spectrum given by (see [6], Appendix
A)

µk,l(0, 0) = sgn(l)
(

|k| − 1

2
+ |l|

)

, l ∈ Z
∗. (A.3)

In particular, Ak(0, 0) has compact resolvent. From [41], Chap. V, sect. 2, Thm 2.4, it follows
that Ak(ζ, ξ) has compact resolvent for all (ζ, ξ) ∈ B(0, 1

13)×S. As a consequence, the spectrum
of Ak(ζ, ξ) is discrete and since Ak(ζ, ξ) is in the limit point case at θ = 0 and θ = π (see [7, 8]),
it consists of simple eigenvalues for (ζ, ξ) ∈ [0, 1

13 ]×R. According to [41], chap. V, sect. 3, Thm
3.9, we conclude that, for a fixed k ∈ 1/2 + Z, the eigenvalues

µkl(ζ, ξ), k ∈ 1

2
+ Z, l ∈ Z

∗,

of Ak(ζ, ξ) are simple and depend holomorphically on (ζ, ξ) in a complex neighbourhood of
[0, 1

13 ]× R.
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To estimate the growth of the eigenvalues µkl(ζ, ξ) for fixed k and large l, we use [41], Chap.
VII, sect. 3, Thm 3.6. Let us first estimate the growth of the eigenvalues µkl(ζ, 0) when l → ∞.
For each u ∈ D and all ζ ∈ [0, 1

13 ], we have from (A.1)

∂ζAk(ζ, 0)u =
cos2 θ

2
√

1 + ζ cos2 θ
D
k
S2

+
1 + ζ

2 cos
2 θ

(1 + ζ cos2 θ)3/2

(

i
sin(2θ)

4
Γ2 + k sin θΓ3

)

,

that can be re-written as

∂ζAk(ζ, 0)u =
cos2 θ

2(1 + ζ cos2 θ)
Ak(ζ, 0) −

cos2 θ

2(1 + ζ cos2 θ)

ζ
√

1 + ζ cos2 θ

(

i
sin(2θ)

4
Γ2 + k sin θΓ3

)

+
1 + ζ

2 cos
2 θ

(1 + ζ cos2 θ)3/2

(

i
sin(2θ)

4
Γ2 + k sin θΓ3

)

,

Hence for each u ∈ D and for all ζ ∈ [0, 1
13 ], we get

‖∂ζAk(ζ, 0)u‖ ≤ a′‖u‖+ b′‖Ak(ζ, 0)u‖, (A.4)

with

a′ = (1 +
1

26
)(|k| + 1

4
), b′ =

1

2
.

We conclude from (A.4) and [41], Chap. VII, sect. 3, Thm 3.6, that

|µkl(ζ, 0)− µkl(0, 0)| ≤
1

b′
(a′ + b′|µkl(0, 0)|)(eb

′ |ζ| − 1). (A.5)

More precisely, recalling that ζ ∈ [0, 1
13 ] and using (A.3), we obtain for all k ∈ 1

2 + Z and for all
l ∈ N

∗

|µkl(ζ, 0)− (|k| − 1

2
+ l)| ≤

(

e
1
26 − 1

)

(|k| − 1

2
+ l) + 2

(

e
1
26 − 1

)

(1 +
1

26
)(|k|+ 1

4
).

Thus there exist constants C1, C2 independent of k, l such that for all k ∈ 1
2 + Z, l ∈ N

∗ and
for all ζ ∈ [0, 1

13 ]

(

2− e
1
26

)

(

|k| − 1

2
+ l

)

− C1|k| − C2 ≤ µkl(ζ, 0) ≤ e
1
26

(

|k| − 1

2
+ l

)

+ C1|k|+ C2. (A.6)

To get an estimate of the growth of µkl(ζ, ξ) for all (ζ, ξ) ∈ [0, 1
13 ] × R, for fixed k ∈ 1

2 + Z

and large l ∈ N
∗, we use the same strategy. We first note that for all u ∈ D, we have according

to (A.1)

∂ξAk(ζ, ξ)u = −Γ3 sin θ
√

1 + ζ cos2 θ
u.

Hence, for all (ζ, ξ) ∈ [0, 1
13 ]×R, we have

‖∂ξAk(ζ, ξ)u‖ ≤ ‖u‖,
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and we conclude from [41], Chap. VII, sect. 3, Thm 3.6, that

|µkl(ζ, ξ)− µkl(ζ, 0)| ≤ |ξ|. (A.7)

Putting together (A.6) and (A.7), we finally see that for all (ζ, ξ) ∈ [0, 1
13 ]×R, for all k ∈ 1

2 +Z

and for all l ∈ N
∗, we have

(

2− e
1
26

)

(|k| − 1

2
+ l)−C1|k| −C2 − |ξ| ≤ µkl(ζ, ξ) ≤ e

1
26 (|k| − 1

2
+ l)+C1|k|+C2 + |ξ|. (A.8)

Recalling that ξ = aλ, this finishes the proof of the Proposition.

B Limiting Absorption Principles and scattering theory for H0

and H

In this Appendix, we prove the main result that permitted us to establish a complete time-
dependent scattering theory for the Dirac Hamiltonian H, namely Theorem 4.13. For definite-
ness, we recall it here.

Theorem B.1. The Hamiltonians H0 and H have purely absolutely continuous spectra, precisely

σ(H0) = σac(H0) = R, σ(H) = σac(H) = R,

and the following wave operators

W±(H,H0, I2) := s− lim
t→±∞

eitHe−itH0 ,

exist as operators from H to G and are asymptotically complete, i.e. they are isometries from
H to G and their inverse wave operators given by

(W±(H,H0, I2))
∗ =W±(H0,H, J) := s− lim

t→±∞
eitH0Je−itH ,

exist as operators from G to H. (Note that the identity operator I2 : H −→ G has been used as
identification operator between H and G in the definition of the direct wave operators, whereas
the dual operator (I2)

∗ = J : G −→ H appears in the definition of the inverse wave operators).

The results of this Theorem are quite similar to the results obtained in [34, 15] in the setting
of Kerr and Kerr-Newman black holes (Λ = 0 in our model). In particular, the absence of pure
point spectrum for H is a consequence of the separation of variables and the integrability of
the potentials a(x) and c(x, k) at both horizons. This has been proved rigorously in this setting
in [8]. Also the absence of singular continuous spectrum for H and the construction of wave
operators for massless Dirac fields near the event horizon of a Kerr or Kerr-Newman black holes
given in [34, 15] can be used almost without changes in the case of Kerr-Newman-de-Sitter black
holes at both the event and the cosmological horizons. Therefore, in what follows, we shall only
sketch the essential steps of the proof and refer to [34, 15] for some of the technical details.

Our strategy is first to prove limiting absorption principles (LAP) for the Hamiltonians H0

andH by means of a Mourre theory. Second we prove the existence and asymptotic completeness
of the wave operators corresponding to the pair of Hamiltonians (H,H0) using the theory of
H-smooth operators due to Kato and exposed for instance in [47].
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B.1 Abstract Mourre theory

The principle of Mourre theory for a selfadjoint operator H on a Hilbert space H is to find a
selfadjoint operator A on H so that the pair (H,A) satisfies the following assumptions (see [43]).
Let I ⊂ R an open interval.

(M1) e−itAD(H) ⊂ D(H).

(M2) i[H,A] defined as a quadratic form onD(H)∩D(A) extends to an element of B(D(H),H).

(M3) [A, [A,H]] well defined as a quadratic form on D(H) ∩ D(A) by (M2), extends to an
element of B(D(H),D(H)∗).

(M4) There exists a strictly positive constant ǫ and a compact operator K such that

1I(H)i[H,A]1I (H) ≥ ǫ1I(H) + 1I(H)K1I(H). (B.1)

The fundamental assumption here is the Mourre estimate (M4). Its meaning is that we must
find an observable A which essentially increases along the evolution e−itH . The other conditions
are more technical and turn out to be difficult to check directly in the case where A and H
are unbounded selfadjoint operators having no explicitely known domains. We give below some
other criteria to verify them. If the pair (H,A) satisfy these assumptions then we say that A
is a conjugate operator for H on I. The existence of a conjugate operator provides important
informations on the spectrum of H. Precisely, we have (see for example [3, 43])

Theorem B.2. Let H,A two selfadjoint operators on H. Assume that A is a conjugate operator
for H on the interval I. Then H has no singular continuous spectrum in I. Furthermore, the
number of eigenvalues of H in I is finite (counting multiplicity).

Furthermore, a Limiting Absorption Principle holds [3, 47, 55]. Precisely, assume that A is
a conjugate operator for H on an interval I. By shrinking the length of the interval I and using
the compactness of K in the Mourre estimate (B.1), there exists a positive constant δ such that
for small enough I

1I(H)i[H,A]1I (H) ≥ δ1I(H). (B.2)

Theorem B.3 (Limiting Absorption Principle). Let H,A two selfadjoint operators on H. As-
sume that A is a conjugate operator for H on the interval I and that the Mourre estimate (B.2)
holds. Then for all closed interval J ⊂ I and for s > 1

2 , there exists a constant C such that

sup
λ∈J

‖〈A〉−s(H − λ)−1〈A〉−s‖ ≤ C <∞. (B.3)

Before we find a conjugate operator for the Hamiltonians H0 and H, let us give some preci-
sions concerning the conditions (M1), (M2) and (M3) of Mourre’s theory. One of the difficulties
in Mourre theory consists in working with commutators i[H,A] (see (M2)) between unbounded
selfadjoint operators. We have to be careful to define correctly such quantities since D(H) and
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D(A) can be unknown or have an intersection which is not even dense in H. Similarly, the
assumption (M1) is not easy to prove since the action of eisA may also be unknown. Therefore,
it is useful to have different criterion.

Let us first give a definition. For a selfadjoint operator A, we say that another selfadjoint
operator H belongs to Ck(A), k ∈ N, if and only if ∃z ∈ C \ σ(H), s −→ eisA(H − z)−1e−isA

belongs to Ck(Rs;B(H)) for the strong topology of B(H). It has been shown in [3] that we
can replace the assumptions (M1) and (M2) by the unique assumption H ∈ C1(A) without
changing the conclusions of Theorem B.2. Roughly speaking, this condition allows that the
following equality

[A, (z −H)−1] = (z −H)−1[A,H](z −H)−1,

makes sense on H. Also from [3], H ∈ C1(A) is equivalent to

(ABG1) ∃z ∈ C \ σ(H), (H − z)−1D(A) ⊂ D(A), (H − z)−1D(A) ⊂ D(A),

(ABG2) |(Hu,Au) − (Au,Hu)| ≤ C(‖Hu‖2 + ‖u‖2), ∀u ∈ D(H) ∩D(A),

which is close to both conditions (M1) and (M2) and are easier to check.
At last, we mention that the condition H ∈ C1(A) together with the condition (M2) imply

the condition (M1) thanks to a result due to Gérard and Georgescu [29]

Lemma B.4 (Georgescu, Gérard). Let H and A two self-adjoint operators such that H ∈ C1(A)
and i[H,A] ∈ B(D(H),H) then eisAD(H) ⊂ D(H) for all s ∈ R.

B.2 Conjugate operators for H0 and H

How can we choose a conjugate operator? For Schrödinger or Dirac operators in flat spacetime,
the usual generator of dilations is a good choice although not at all the only one (see [3]). In the
particular case of Dirac operators for instance, there exist other choices (see [11], [14], [15], [33])
which could be used. For the Dirac Hamiltonian H0 appearing in our KN-dS model, precisely

H0 = Γ1Dx + a(x)HS2 + c(x,Dϕ),

the situation is in some sense similar to that of Dirac operators in flat spacetime thanks to the
possibility of decomposing the problem onto the generalized spherical harmonics Ykl := Ykl(0)
(see Theorem 3.3). We are led to study a countable family of one-dimensional Dirac operators

Hkl
0 = Γ1Dx + µkla(x)Γ

2 + c(x, k),

parametrized by µkl = µkl(0) ∈ R
+ with k ∈ 1

2 +Z and l ∈ N
∗. Here the operators a(x)HS2 and

c(x,Dϕ) can be thus treated as mere potentials that are exponentially decreasing on R. The
existence of locally conjugate operators for each one-dimensional Dirac operators Hkl

0 is easy to
establish. For instance, the conjugate operator

A = Γ1x,
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already used in a similar situation in [14] is particularly adapted to this type of Dirac operators.
On the other hand, although we can consider H as a short-range perturbation of H0 of order

1,

H = J−1H0, J−1 =
1

1− (a(x)b(θ))2
(

I2 − a(x)b(θ)Γ3
)

,

and by (3.6)
sup
θ

‖J−1 − I2‖ = O(e−c|x|), x→ ±∞,

this perturbation breaks the ”symmetries” of H0 and thus, we cannot use a decomposition onto
the generalized spherical harmonics Ykl. Instead the full operator HS2 must be conserved in
the course of the calculations, or equivalently, we must be able to control the one-dimensional
Mourre estimates relatively to the indices k, l.

To be more specific, recall that the evolution described by H can be understood as an
evolution on a Riemanniann manifold (given here by Σ = Rx × S

2) having two ends: the
cosmological and event horizons {x = ±∞}. At both horizons, the metric is exponentially large
or, in other words, the geometry of the two ends is asymptotically hyperbolic. The choice of a
conjugate operator turns out to be more complicated in this kind of situation but is by now well
studied. For instance, analogous situations have been treated before, first by Froese and Hislop
[26] in the case of a second-order-elliptic Hamiltonian, then by De Bièvre, Hislop and Sigal [21]
for the wave equation, more recently, by Häfner and Nicolas [34] for a massless Dirac equation
in a Kerr background and the first author [15] for a massive Dirac equation in Kerr-Newman
black hole. For the wave equation, we also mention more recent results due to Bouclet [10] and
Isozaki, Kurylev [35] who also study the corresponding inverse scattering problem. We follow
here the presentation given in [34, 15] in the case of Dirac operators.

Let us study a toy model of the situation at the black hole event horizon and consider the
operator

H0 = Γ1Dx + eκ−xHS2 +Ω−(Dϕ),

acting on L2(R− × S
2;C2). In this toy model, we are only interested indeed in what happens

in a neighbourhood of x = −∞. Hence we simply replaced the potentials a(x) and c(x,Dϕ) by
their asymptotics at x = −∞ in the expression of H0. Let us try to use the operator A = Γ1x
as a conjugate operator for H0. This very simple operator is indeed well adapted to the case of
massless Dirac operator. Since HS2 anti-commutes with Γ1, we get

i[H0, A] = 1 + 2xeκ−xHS2Γ
1.

The first term is a positive constant (what we want) but the second term has no sign and is
not controlled by H0. The origin of the problem comes from the fact that the term xeκ−x does
not decay faster than eκ−x when x → −∞. Note that the same problem happens if we use the
generator of dilations instead of A. Therefore, the Mourre estimate has no chance to hold if we
proceed in this manner. Instead, we introduce the unitary transformation

U = e
− i

κ−
ln |H

S2 |Dx
,
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and we try to find a conjugate operator for

Ĥ0 = U∗H0U = Γ1Dx + eκ−x HS2

|HS2 |
.

This is equivalent to the initial problem since U is unitary. Now, if we compute the commutator
between Ĥ0 and A, we obtain

i[Ĥ0, A] = 1 + 2xeκ−x HS2

|HS2 |
Γ1.

Since
H

S2

|H
S2 |

is bounded, the term χ(Ĥ0)xe
κ−x H

S2

|H
S2 |

Γ1χ(Ĥ0) is now compact for any χ ∈ C∞
0 (R)

by standard compactness criterion. Therefore, we can use

UAU∗ = Γ1(x+ κ−1
− ln |HS2 |),

as conjugate operator for the toy Hamiltonian H0 on L2(R− × S2;C2). The conjugate operator
for the true Hamiltonians H0 and H we propose below, closely follows this procedure. Roughly
speaking, we glue together two locally conjugate operators of the above type, each one corre-
sponding to a different end: the event and cosmological horizons. The technical difficulties we
shall avoid here lie of course in this ”gluing together” operation.

In order to separate the problems at the event horizon and at the cosmological horizon, we
define two cut-off functions j± ∈ C∞(R) satisfying

j−(x) = 1, for x ≤ 1

2
, j−(x) = 0, for x ≥ 1,

j+(x) = 1, for x ≥ −1

2
, j+(x) = 0, for x ≤ −1.

Now, for S ≥ 1, we set

R−(x,HS2) = (x+ κ−1
− ln |HS2 |) j2−

(x+ κ−1
− ln |HS2 |
S

)

,

and

R+(x,HS2) = (x+ κ−1
+ ln |HS2 |) j2+

(x+ κ−1
+ ln |HS2 |
S

)

.

The addition of a parameter S is part of the technical difficulties mentioned above. Following
our previous discussion, we define the conjugate operators A by

A = R−(x,HS2)Γ
1 +R+(x,HS2)Γ

1.

Before showing the Mourre estimate for the couple of operators (H0, A), let us give some of
the important properties of the conjugate operator A proved in [15]. Note first that on each
generalized spherical harmonics Ykl, A reduces to the operator of multiplication by

A = R−(x, µkl)Γ
1 +R+(x, µkl)Γ

1,
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on L2(R;C2) where µkl denotes the positive eigenvalues of the angular operator AS2(0). Thanks
to this, we can prove easily

Lemma B.5. For all S ≥ 1 and i = 1, 2,

|R±(x, µkl)| ≤ C〈x〉, uniformly in k,l,

|R(i)
± (x, µkl)| ≤ C, uniformly in k,l.

As a consequence, the domains of the operators R±(x,HS2) and thus A contain D(〈x〉).
Moreover, if j1, j2 ∈ C∞(R) satisfy j1(x) = 1 for x ≤ 1 and j1(x) = 0 for x ≥ 3

2 , and
j2(x) = 1 for x ≥ −1 and j2(x) = 0 for x ≤ −3

2 then

R
(i)
− (x,HS2) = R

(i)
− (x,HS2)j

2
1 (
x

S
), i = 0, 1, 2,

R
(i)
+ (x,HS2) = R

(i)
+ (x,HS2)j

2
2 (
x

S
), i = 0, 1, 2,

Proof. The proof is almost the same as the one given in [15], Lemma 4.4. It suffices to replace
the Dirac operator DS2 on S

2 in [15] by our angular Dirac operator HS2 and also the angular
momenta k = l + 1

2 of DS2 in [15] by µkl.

Lemma B.6. H0 ∈ C1(A). Moreover, the commutator i[H0, A] belongs to B(D(H0),H). Also,
the double commutator [i[H0, A], A] extends to a bounded operator in B(D(H0),H). Conse-
quently, assumptions (M1),(M2) and (M3) of Mourre theory are satisfied.

Proof. We refer to [15], lemmata 4.5, 4.6, 4.7 and 4.8 for these technical results.

Lemma B.7. Set A± = R±(x,HS2)Γ
1. Let λ0 ∈ R. Then there exists a function χ ∈ C∞

0 (R)
with suppχ containing λ0, a strictly positive constant ǫ and compact operators generically de-
noted by K such that for S ≥ 1 large enough

χ(H0)i[H0, A−]χ(H0) ≥ ǫ χ(H0)j
2
1(
x

S
)χ(H0) + χ(H0)Kχ(H0),

χ(H0)i[H0, A+]χ(H0) ≥ ǫ χ(H0)j
2
2(
x

S
)χ(H0) + χ(H0)Kχ(H0),

where the functions j1, j2 are given the ones given in Lemma B.5.

Proof. We refer to [15], Lemma 4.11.

We can put together the previous results in order to obtain a Mourre estimate for (H0, A).
Precisely, we can prove
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Proposition B.8. Let λ0 ∈ R. Then there exists a function χ ∈ C∞
0 (R) with suppχ containing

λ0, a strictly positive constant ǫ and a compact operator K such that

χ(H0)i[H0, A]χ(H0) ≥ ǫ χ2(H0) + χ(H0)Kχ(H0), (B.4)

for S ≥ 1 large enough.

Proof. Using the same notations as in Lemma B.7 and the fact that A = A− +A+, we have

χ(H0)i[H0, A]χ(H0) ≥ ǫ χ(H0)
(

j21(
x

S
) + j22(

x

S
)
)

χ(H0) + χ(H0)Kχ(H0).

We set j20 = 1 − j21 − j22 . Then, from the defining properties of j1, j2, we see that j0 ∈ C∞
0 (R).

Hence,

χ(H0)i[H0, A]χ(H0) ≥ ǫ χ2(H0) + χ(H0)j
2
0(
x

S
)χ(H0) + χ(H0)Kχ(H0).

We conclude using the standard compactness criterion

f(x)g(H0) compact if f ∈ C∞(R), g ∈ C∞(R). (B.5)

From the Mourre estimate for (H0, A), we obtain easily a Mourre estimate for (H,A). Recall
first that H is selfadjoint on G = L2(R × S

2;C2) equipped with the scalar product (., J.)H.
According to Theorem 3.2, the norms ‖.‖H and ‖.‖G are equivalent and the domains D(H0) and
D(H) coincide. Hence, it is immediate that the pair (H,A) satisfies the assumptions (M1)-(M3)
of Mourre theory. Let us check that the Mourre estimate of Proposition B.8 still holds. Precisely,
we prove

Proposition B.9. Let λ0 ∈ R. Then there exists a function χ ∈ C∞
0 (R) with suppχ containing

λ0, a strictly positive constant ǫ and a compact operator K such that

χ(H)i[H,A]χ(H) ≥ ǫ χ2(H) + χ(H)Kχ(H), (B.6)

for S ≥ 1 large enough.

Proof. We use first the following result proved in [15], Corollary 3.2. For all χ ∈ C∞
0 (R), the

operator χ(H)−χ(H0) is compact. This is indeed a consequence of the Helffer-Sjostrand formula
and the fact that

H = H0 + (J−1 − I2)H0 = H0 +O(e−c|x|)H0, (B.7)

according to (3.6). Now we get

χ(H)i[H,A]χ(H) = χ(H0)i[H,A]χ(H0) + χ(H)Kχ(H),

for a compact operator K. Using (B.7), we then obtain

χ(H)i[H,A]χ(H) = χ(H0)i[H0, A]χ(H0) + χ(H0)i[(J
−1 − I2), A]H0χ(H0) (B.8)

+χ(H0)(J
−1 − I2)i[H0, A]χ(H0) + χ(H)Kχ(H).
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The last three terms in (B.8) are compact by the compacness criterion (B.5). Hence, we conclude
from Proposition B.8 that

χ(H)i[H,A]χ(H) ≥ ǫ χ2(H) + χ(H)Kχ(H),

for S ≥ 1 large enough.

Remark B.10. We emphasize here that the Mourre estimates (B.4) and (B.6) are obtained in
small neighbourhoods of any given energy λ ∈ R with no exception. In particular, the choice of
the conjugate operator A avoids to make appear a threshold at the energy 0. This wouldn’t be
the case if we had used a conjugate operator constructed around the generator of dilations as in
[34].

Combining Theorem B.2 with the absence of pure point spectrum for H0 and H, we thus
have proved the first assertion in Theorem 4.13. Using Theorem B.3, we also have proved the
following LAPs

Proposition B.11. For all λ ∈ R and for s > 1
2 , there exists a small enough interval I

containing λ such that

sup
λ∈I

‖〈A〉−s(H0 − λ)−1〈A〉−s‖ <∞, sup
λ∈I

‖〈A〉−s(H − λ)−1〈A〉−s‖ <∞. (B.9)

Remark B.12. We finish this Section with a technical result used in Section 4.3.2. Precisely
we prove a LAP at energy 0 for the operator L0 = H0 − λJ when λ ∈ R is fixed.

Proposition B.13. Let λ ∈ R fixed. Then, for s > 1
2 ,

‖〈A〉−s(L0 − 0)−1〈A〉−s‖ <∞.

Proof. Let us write L0 = H0 − λ+ λ(I2 − J). Recalling that I2 − J = O(e−c|x|) by (3.6), we see
easily that the operator A is still a conjugate operator for L0. Using the standard compactness
criterion (B.5), we deduce the result from Theorem B.3.

B.3 H-smooth theory and wave operators

Let us recall the definition of locally H-smooth operator. We say that a bounded operator K is
H-smooth on an interval I if there exists a constant C such that

∫

R

∥

∥Ke−itH1I(H)u
∥

∥

2
dt ≤ C‖u‖2. (B.10)

It is well known that LAPs such as the ones given in Proposition B.11 entail H0 and H-
smoothness for the operator 〈A〉−s, s > 1

2 . Precisely, we have (see [47, 55])
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Proposition B.14 (H-smoothness). Let (H,A) be selfadjoint operators on H such that the
estimate (B.9) holds on an interval I. Then the operator 〈A〉−s, s > 1

2 is H0 and H-smooth on
I.

There is a deep connection between H0 and H-smoothness and the existence and asymptotic
completeness of wave operators for the pair (H0,H). We shall use the following result from [55]

Theorem B.15 (Wave Operators by the H-smooth method). Let H0,H be selfadjoint operators
on Hilbert spaces H and G respectively. Let P : H −→ G be a bounded identification operator.
Assume that H −H0 = K∗K0 where K0 and K are H0 and H-smooth operators on an interval
J . Then the wave operators

W±(H,H0, J1J (H0)) = s− lim
t→±∞

eitHJe−itH01J (H0),

and
W±(H0,H, J

∗1J(H)) = s− lim
t→±∞

eitH0J∗e−itH1J(H),

exist.

Let us use the Theorem B.15 and the Proposition B.14 to prove the existence and asymptotic
completeness of the wave operators in Theorem 4.13. We do this in three steps.

Step 1. We show that for s > 1
2 , the operator 〈x〉−s is H0 and H-smooth on any compact

interval I ⊂ R. We only give the proof for H0 since the proof is identical for H. We have to
show that

∫

R

∥

∥〈x〉−se−itH01I(H0)u
∥

∥

2
dt ≤ C‖u‖2. (B.11)

Using the compactness of I, we can suppose that the length of I is as small as we want in (B.11).
Let χ ∈ C∞

0 (R) such that χ = 1 on I and suppχ is small. It is thus enough to show

∫

R

∥

∥〈x〉−se−itH0χ(H0)u
∥

∥

2
dt ≤ C‖u‖2. (B.12)

From Lemma B.5, we see easily that for all s > 0 the operator 〈x〉−s〈A〉s is a bounded operator
on H. Let us fix an s such that s > 1

2 and use Proposition B.14. We get (the constants C differ
from line to line in what follows)

∫

R

∥

∥〈x〉−se−itH0χ(H0)u
∥

∥

2
dt ≤

∫

R

∥

∥〈x〉−s〈A〉s〈A〉−se−itH0χ(H0)u
∥

∥

2
dt,

≤ C

∫

R

∥

∥〈A〉−se−itH0χ(H0)u
∥

∥

2
dt,

≤ C‖u‖2.

This proves (B.12) and thus our claim.
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Step 2. By definition, we haveH−H0 = (J−1−I2)H0. By (3.6), we see that J−1−I2 = O(e−c|x|)
where the positive constant c is given by c = min(κ−,−κ+) > 0. We thus define

K0 = e
c
2
|x|(J−1 − I2)H0, K = K∗ = e−

c
2
|x|,

in such a way that
H −H0 = K∗K0.

We now prove that the operators K0 and K are H0 and H-smooth respectively on any compact
intervals I. We only give the proof for K0 since the proof for K is identical. As above, it suffices
to consider a cut-off function χ ∈ C∞

0 (R) such that suppχ is small enough and χ = 1 on I. Let
s > 1

2 . We have

∫

R

∥

∥K0e
−itH0χ(H0)u

∥

∥

2
dt =

∫

R

∥

∥

∥
e

c
2
|x|(J−1 − I2)〈x〉s〈x〉−se−itH0H0χ(H0)u

∥

∥

∥

2
dt. (B.13)

We denote ˜chi(H0) = H0χ(H0). Then the function χ̃ ∈ C∞
0 (R) and supp χ̃ is still small. Using

(3.6), we also have
‖e c

2
|x|(J−1 − I2)〈x〉s‖ ≤ C.

Hence, from (B.12), we obtain

∫

R

∥

∥K0e
−itH0χ(H0)u

∥

∥

2
dt ≤ C

∫

R

∥

∥〈x〉−se−itH0 χ̃(H0)u
∥

∥

2
dt,

≤ C‖u‖2,

which proves the assertion.

Step 3. (Conclusion): The existence of the wave operators in Theorem 4.13

W±(H,H0, I2) := s− lim
t→±∞

eitHe−itH0 ,

(W±(H,H0, I2))
∗ =W±(H0,H, J) := s− lim

t→±∞
eitH0Je−itH ,

follows then from Steps 1 and 2, Theorem B.15 (which gives the local existence on an interval
of energy I) and finally, an easy density argument (for the global existence).
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