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Abstract—From a highly distributed timed automata specifi-
cation, the paper analyses an implementation in the form of
a looping controller, launching possibly many tasks in each
cycle. Qualitative and quantitative constraints are distinguished
on the specification to allow such an implementation, and the
analysis of the semantic differences between the specification
and the implementation leads to define an overapproximating
model. The implementation is then “sandwiched” between the
original specification and the new model, allowing to check if the
important properties of the specification are preserved by the
implementation.
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I. INTRODUCTION

Many complex systems have a real time flavour, where
some components have to react within a fixed delay when
some events occur inside or outside the considered area.
This is the case for example in mixed reality applications
which are evolving in an environment full of devices that
compute and communicate with their surrounding context [8].
Nowadays, the usual process for developing such applications
relies mostly on fast response and high hardware performances
to cope with time constraints. Yet, for some applications (for
example, robot teleoperation or haptic ones) the respect of time
constraints may be critical. It may be worth, in such a context,
to validate the application, before testing it on actual hardware,
by modeling it and applying formal method techniques to
prove its robustness. The benefits may be diverse:
• it may avoid unnecessary cost related to a possible

deterioration of hardware;
• in the case of design errors, it allows to identify their

sources (in terms of unsatisfied time constraints of com-
ponents), and to correct them before a new validation;

• since, contrary to a common belief in some communities,
real time applications do not rely on superfast, hence
expensive and energy consuming, devices to reach fast
response, but simply on the respect of the timing con-
straints, the benefit may also be economical.

Here, we propose a methodology starting from a formal
specification representing an ideal world, for which some
properties considered important may be checked, and use
this specification for producing an implementation aiming at
preserving those properties. As an originality of this approach,
a new model overapproximating the implementation is con-
structed from the original specification in order to verify the

properties of the implementation. Hence, the implementation
prototype is ‘sandwiched’ between the original specification
and the new model.

More precisely, we propose to start with a specification
A in the form of a network of timed automata [2]. The
implementation prototypes we consider take the form of a
looping controller CA,∆, obtained from the specification A
and parameterised with a sampling period ∆. Such a controller
may execute zero or several actions in the same period ∆.

Having this in mind, we first delineate the syntactical
constraints we shall require for the specifications (such as
disjoint clocks, urgent synchronisations, task notion, minimal
loop timing, ...). This leads to propose a modelling framework
we called TAST (Timed Automata with Synchronised Tasks),
adequate to model systems of sensors and actuators, and to
justify the kind of implementation described above.

We then discuss semantic differences between the imple-
mentation and the specification, coming mostly from the inter-
pretation of the continuous clock values in the sampled world
of the implementation, and investigate how to consequently
model the implementation in order to check if the essential
properties of the original specification are still satisfied by
the implementation. For example, one may easily observe that
even if the original specification A does not reach some error
state, the controller CA,∆ may reach it because the sampling
allows to evaluate transition conditions potentially larger than
it was the case in A.

This leads to consider a new model which “covers” the
evolutions of the controller CA,∆, hence “sandwiching” the
implementation between the original specification and this
auxiliary model. This model, A, is very similar to A, but with
relaxed timing constraints, and essentially allows to check if
the safety properties of the specification are preserved by the
implementation.

In the literature, a large amount of work has been devoted
to the differences between a timed automata specification and
its possible implementations. They grossly fall into two cate-
gories. Some consider the sampling effect due to a controller
similar to ours [1], [7], [9], [10]; however they usually assume
a single action is taken at each cycle and its execution is
instantaneous. Others consider enlargements of the constraints
of the specification due to imperfect clocks and reaction delays
[14], [15], [16]. In the present paper those enlargements are not
due to imperfect clocks, but to the controller itself. Hence, our
approach is in some sense a pragmatic mix of the enlargement
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and sampling approaches.
The paper is structured as follows: we first present in

section II the specifications we consider. Actually, we define
the class of timed automata with synchronised tasks (TASTs)
which takes into account the mandatory syntactical restrictions
with respect to the implementation issues. A simple running
example illustrates how TASTs may be used to easily model
systems of sensors and actuators. The next section presents the
looping controller CA,∆. As expected, this produces evolutions
presenting some distortions with respect to the dynamics of
the original TAST specification A: they are analyzed and
discussed in section IV. The TAST model A is also introduced
and it is shown that it actually “covers” the suitable evolutions
of the controller CA,∆. In section V, some quantitative imple-
mentability constraints are also analysed, which are necessary
to have enough time to perform all we want in each cycle ∆
and to preserve the original structure of the specification in A.
An auxiliary model Ã (which is not a TAST) is also defined
in order to determine an important parameter needed for
implementability. Finally, a methodology for the application of
our framework is given and illustrated on the running example.

II. TIMED AUTOMATA WITH SYNCHRONISED TASKS

Since their introduction in [2], [3], [4] timed automata have
been widely used to model complex real time systems and to
check their temporal properties. Since then many variants have
been considered [13]. Amongst them, the Timed Automata
with Tasks [5] may appear as the closest to TASTs introduced
below, but they are mostly used to transform design models
to executable code including a runtime scheduler preserving
the correctness and schedulability of the model, hence their
purpose is different from ours.

Here, the presentation of TASTs will follow that of UP-
PAAL (version 4.1). In order to get a compositional aspect,
UPPAAL starts from a network of timed automata from which
a synchronised product may be constructed to get a more
classical timed automaton. We shall not need here the full
generality of the timed automata allowed by UPPAAL, hence
we shall delineate which features will be used.

A. TAST’s syntax

Syntactically, a timed automaton is an annotated directed
(and connected) graph, provided with a finite set of non-
negative real variables called clocks. The nodes (called lo-
cations) are annotated with invariants (predicates allowing
to enter or stay in a location). Since we aim at describing
systems of sensors and actuators, we shall distinguish the
locations associated with an internal activity (forming the
set L+) and the locations where one waits for some event
or contextual condition (forming the set L−). The arcs are
annotated with guards (predicates allowing to perform a move)
or communication actions, and possibly with some clock
resets. Guards are conjunctions of elementary predicates of
the form x < e or x ≥ e where x is a clock and e a (possibly

parameterised) positive integer constant1. Invariants are either
empty or a single downwards closed elementary predicate of
the form x < e. As usual, the empty conjunction is interpreted
as true. The set of all guard predicates will be denoted by G,
and the set of all invariant predicates will be denoted by GI .

In order to glue together the various components of a
network of timed automata, some arcs will be classically
annotated with communication actions which may be either of
the form k!, meaning the emission of a signal on a channel k,
or a complementary k?, meaning the reception of some signal
on channel k, supposed to synchronise with a k!. We denote
by K the set of all communication actions. The absence of
synchronisation label on an arc indicates an internal activity of
the automaton. Communication labels and non-empty guards
are mutually exclusive in TAST arc annotations. Since we
aim at considering highly distributed systems, we shall assume
that there is no clock sharing between the components of the
network, so that synchronisations will be the only kind of in-
teraction between them, and they will have precedence on time
passing (this corresponds to urgent channels in UPPAAL).

Definition 1: A timed automaton with synchronised tasks
(or TAST for short) is a tuple A = (L, l0, X,K,E, I), where

• L = L+ ] L− is a set of locations,
• l0 ∈ L is the initial location,
• X is the set of clocks,
• K is a set of urgent communication labels,
• E ⊆ L × (K ∪ G) × 2X × L is a set of arcs between

locations with a communication label in K or a guard in
G, and a set of clock resets,

• I : L→ GI assigns invariants to locations.

L+ is the set of activity locations, where a task is launched;
hence, we require that for each l ∈ L+ there is some clock
denoted by xl (we may have xl = xl′ if l 6= l′ ∈ L+) such
that

• xl is reset on all incoming arcs to l (but some other clocks
may also be reset) and I(l) is of the form xl < e,

• each outgoing arc from l has a guard of the form xl ≥ e′∧
F , with F ∈ G; this materialises a mode of execution of
the corresponding task, with an execution time between e′

(included) and e (excluded); the extra condition F allows
to reduce the execution window (xl < e′′) and/or include
constraints on the time since the launching of previous
activities of the automaton, but it will often be empty.

L− is the set of waiting locations, where one waits for some
delay or for some synchronisation; hence, we require that for
each l ∈ L− there is possibly some clock xl such that

• if used, xl is reset on all incoming arcs to l (but some
other clocks may also be reset), and I(l) is empty or of
the form xl < e,

• each outgoing arc from l has either a communication label
(k! or k?) or a guard of the form xl ≥ e′ ∧ F or simply
F , with F ∈ G.

1Note that, in general, timed automata allow more kinds of elementary
predicates, but they are not suitable here for implementability reasons;
for instance, the constraint x == e may not be exactly enforced in an
implementation, hence also x ≤ e ∧ x ≥ e.
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In order to structurally avoid infinite histories taking no
time (the most striking example of Zeno evolutions), we shall
finally assume that each loop in the graph of the automaton
presents (at least) a constraint x≥e in a guard (recall that e is
strictly positive) and a reset of x, for some clock x.

B. Networks and dynamics
A specification with TASTs is composed of a set of disjoint

TASTs without any shared clock.

Definition 2: A network of TASTs over a common set
of communication labels and disjoint sets of locations and
clocks, is a set A = {A1, . . . , An} of TASTs where each
Ai = (Li, l

0
i , Xi,K,Ei, Ii).

The semantics of a network of TASTs is that of the subja-
cent timed automaton (synchronising together through urgent
channels) as recalled below, with the following notations. A
location vector is a vector l̄ = (l1, . . . , ln); the initial location
vector is l̄0 = (l01, . . . , l

0
n). We denote by li

b
r→ l′i the arcs

between locations, where b is a communication label or a
guard, and r is a set of clocks to be reset. The invariant
predicates are composed of predicates over location vectors
I(l̄) =

∧
i Ii(li). We write l̄[l′i/li] to denote the vector where

the ith element li of l̄ is replaced by l′i. A valuation is a
function ν from the set of clocks to the non-negative reals.
Let V be the set of all clock valuations, and ν0(x) = 0
for all x ∈ X =

⊎n
i=1Xi. We shall denote by ν � F the

fact that the valuation ν satisfies (makes true) the formula F .
If r is a clock reset, we shall denote by ν[r] the valuation
obtained after applying clock reset r to ν; and if d ∈ R>0 is
a delay, ν+d is the valuation such that, for any clock x ∈ X ,
(ν + d)(x) = ν(x) + d.

Definition 3: The semantics of a network of TASTs
A = {A1, . . . An} is defined as a timed transition system
(S, s0,→), where S = (L1×, . . . × Ln) × V is the set of
states, s0 = (l̄0, ν0) is the initial state, and →⊆ S × S is the
transition relation defined by:
• (silent): (l̄, ν)→ (l̄′, ν′) if there exists li g

r→ l′i, for some
i, such that l̄′ = l̄[l′i/li], ν � g and2 ν′ = ν[r],

• (sync): (l̄, ν)→ (l̄′, ν′) if there exist two arcs li k?
ri
→ l′i

and lj k!
rj
→ l′j with i 6= j, l̄′ = l̄[l′i/li, l

′
j/lj ] and

ν′ = ν[ri ∪ rj ],
• (timed): (l̄, ν) → (l̄, ν + d) if ν + d � I(l̄) and

there is no synchronisation possible (synchronisations
have precedence on time passing, i.e., the channels are
interpreted as urgent in UPPAAL).

Note that, since any cycle in each automaton contains at
least one arc with a guard including a predicate of the form
x ≥ e, and another arc resetting x, it is not possible to have
infinite silent or synchronised evolutions with a finite duration
time.

C. A small running example
As an illustration, we consider a setup performing a live

video stream processing controlled by a graphical user inter-
face. The system includes three looping components:

2Note that, due to the constraints on TASTs, if ν � I(l̄), then ν′ � I(l̄′) .

• a camera (Cam) which performs an initialisation task E
lasting at most 10ms, and then enters a loop composed
of an image capturing task C lasting between 30 and
40ms, followed by a rendez-vous S with the processing
component on channel kF .

• a graphical user interface controller (Gui) which is com-
posed of a loop containing a minimal delay of 5ms of
idling I for receiving an event followed by a rendez-vous
S′ with the processing component on channel kO.

• a video stream processing component (Proc) which is a
loop starting with a rendez-vous W either on kF with the
camera process or on kO with the graphical controller
followed by a rendez-vous Wc on kF with the camera
process, and a processing task that lasts between 40 and
50 ms.

From this description the translation into TASTs is quite
straightforward and the result is shown in Fig. 1. It is easy
to check that this specification does not deadlock.

E C SxE < 10

xC < 40

xC := 0

xC ≥ 30

xC := 0

kF !
Cam

I S′
xI ≥ 5

xI := 0

kO!
Gui

W

Wc

P xP < 50

kO?

kF ?

xP := 0

kF ?

xP := 0

xP ≥ 40Proc

Fig. 1. Specification A: the TAST representations for Cam, Gui and Proc.

As an illustration of the dynamics of the specification given
in Fig. 1, we give the first steps of one possible execution
scenario starting from the initial state (for each component
automaton, we detail the current location and clock values):

(Cam.E : xE = xC = 0;Gui.I : xI = 0;Proc.W : xP = 0)

(Cam.C : xE = xC = 0;Gui.I : xI = 0;Proc.W : xP = 0)

(Cam.C:xE = xC = 30;Gui.I:xI = 30;Proc.W :xP = 30)

(Cam.S:xE = xC = 30;Gui.I:xI = 30;Proc.W :xP = 30)

(Cam.C:xE = 30, xC = 0;Gui.I:xI = 30;Proc.P :xP = 0)

(silent) Cam evolves from I to C

(timed) delay: 30

(silent) Cam evolves from C to S

(sync) synchronisation on kF

D. Implementation

Our aim is to construct from such a specification A an
implementation, i.e., a practical realisation which overapprox-
imates the modeled system, in the sense that the evolutions
of A (in terms of the visited locations) correspond to similar
evolutions allowed by the implementation. An implementation
may allow more behaviours, but it should be the case that the
approximation is close enough to keep the properties of the
model considered important for the users. An implementation
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may rely on some parameters to be chosen adequately, and
it may happen that some constraints are needed in order that
the realisation is always able to perform all its operations in
due time. If this is the case, we shall say that the system is
implementable.

III. SAMPLED EXECUTION

In order to implement a network of TASTs, we shall adopt a
rather pragmatic and application oriented point of view, where
TASTs’ locations are interpreted as places where application
tasks have to be launched for a duration which may be
bounded by invariants, or where the TAST waits for some
condition to occur or some communication to engage. The
proposed implementation architecture is then subdivided into
two layers (see Fig. 2); the lowest (closest to the execution
platform) layer consists in a set of components implementing
the tasks of the application, and the highest (more abstract)
layer is composed of a controller whose role is to interpret
the TASTs specification A, by periodically (with a period ∆)
executing transitions, updating clocks and triggering tasks.

high-level

low-level

Controller

Task 1 Task 2 · · · Task n

Execution platform(s)

Fig. 2. Execution environment architecture.

A. The controller

Intuitively, given a TASTs specification A and a period ∆,
the controller CA,∆ will then work as sketched in Algorithm 1
and will be explained below. We assume that A does not dead-
lock, since deadlocks are usually the indication that something
went wrong. The period ∆ may be considered as a parameter
that must be chosen carefully according to the structure of the
specification and to time constants of the system, in order to
produce an implementation preserving suitable properties and
allowing a valid execution: we shall come back to these points
in sections V and VI.

Let us detail it a bit: the controller maintains its own
versions of the clocks of the original system, denoted with a
tilde, initialised to 0 and updated at each global sampling loop,
so that they are multiples of ∆. It also maintains the current
location li of each component, starting from the initial state
of the specification A.

A current location l in some automaton is considered active
if the task (for an activity location) or waiting (for a waiting
location with guarded outgoing arcs) associated with l is
terminated. We assume that the maximal duration specified by
the invariant associated to l is always respected. Initially, the
task or waiting (if any) of each initial location is launched. A
guarded arc l g

r→ l′ of A originating from an active location
l in some component will be said enabled by the controller if
the guard g̃ associated with the arc is satisfied by the current

Algorithm 1: The controller CA,∆ for A = {A1, . . . , An}
and a period ∆.
Clocks: a variable x̃ for each clock x in A, taking values
in m∆ for m ∈ N ;
Start from the initial state, assuming that A is not
deadlocking ;
forall the Clocks do x̃ := 0
foreach TAST Ai do launch the task or waiting
associated to the initial state of Ai ;
foreach time step ∆ // a ∆-round
do

while there are executable transitions do choose one
and execute it ;
forall the Clocks do x̃ := x̃+ ∆ ;
wait for the end of the current ∆-period

end

values of the discrete clock variables x̃. g̃ is obtained from g
by replacing clock variables by their discrete versions and by
enlarging the constraints as described in section IV-B, in order
to keep the evolutions allowed by A despite the distortions
analysed in section IV-A. A communicating arc l k!

r→ l′ or
l k?

r → l′ is immediately enabled, whenever the automaton
enters the location l (i.e., when l is current): it only has to
wait for a matching k? or k! enabled communication in another
automaton. It remains enabled until the component leaves the
location l.

Definition 4: A transition is said executable if it comes
from an enabled guarded arc or an enabled compatible pair
of communication arcs in some Ai and Aj in A.

When an executable transition is chosen (if any) and
executed, in each concerned automaton (one for a guarded
transition, two for a communication) the current location is
updated, the adequate clocks are reset (if any) and the task or
waiting (if any) corresponding to the newly current location
is launched. This is performed repeatedly by the while loop
of the algorithm until there is no more executable transitions
for the current (discrete) clock values.

Observe that there are various ways to implement the while
loop. A first (obvious) strategy is to consider the guarded
arcs from active locations or pairs of matching communication
arcs from current locations in some order until one is found
executable. The ordering may be random or deterministic (with
a well chosen priority criterion, for instance considering the
pairs first). Another strategy is to construct the whole set of
executable transitions before choosing one of them (randomly
or with a specific choice algorithm). This may seem less
efficient, but the worst case (which is the only thing to look
at here) is about the same: even if one stops at the first found
executable transition, if there is none or if by bad luck the
only executable transition is the last one we check, we will
have to check all the potential executable transitions, which is
exactly the work to do to construct a whole set. Moreover, it
is possible to update the set of executable transitions instead
of reconstructing it from scratch at each iteration.

But for scheduling reasons that will be made clear in
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section IV-D, we suggest to use a mixture of these two
strategies and to construct a list of the executable transitions,
following an ordering similar to the ones mentioned above,
to update it, and to systematically choose the first executable
transition (if any) for execution. This mixed strategy is detailed
below.

B. Alternative algorithm of the controller

The strategy we describe here uses the construction of a list
of executable transitions following some ordering, updates it
and chooses the first executable transition (if any) for execu-
tion. Hence, for each ∆-round, since the list is currently empty
(initially, or since this is the stopping criterion of the previous
∆-round), one constructs the list from scratch following a
well-chosen ordering. Of course, one may only consider a
single transition from each location since the execution of
this transition will change the current location. Note that, at
that point, a communication transition may not be discovered
(but at the very first construction of the list) since such a
synchronisation would also be enabled at the end of the while
loop of the previous ∆-round and had to occur there (because
synchronisations have precedence on time passing, and remain
enabled when time passes if the locations do not change).
Hence a synchronisation during a round may only occur after
the execution of another executable transition. Then, after each
transition execution, one simply updates the list, observing that
(since the clocks are not shared between automata and the
discrete clocks x̃ do not change during the while loop if they
are not reset) an executable transition remains so unless we
just executed it (or another from the same location). Thus, we
only have to consider the transitions from the newly reached
location(s), and the ones from the other locations which were
not executable at the previous iteration of the while loop but
are now executable because a task or waiting is terminated:
again, since the clocks x̃ are unchanged and are not shared
between automata, the value of the guard of a non-executed
arc may not change. This time, communication transitions may
become executable. This leads to the schema illustrated in
Algorithm 2.

IV. DISTORTIONS

As expected, the controller CA,∆ introduces some distor-
tions with respect to the original specificationA. Some of them
are illustrated in Fig. 3, taking as example the evolution of a
clock xl and the corresponding discrete variable x̃l, depicted
from the left to the right, when the controller follows the same
path (in terms of the visited locations) as the specification.
Since the constraints in the controller guards are weakened,
the controller may take new paths, but then of course it is not
possible to compare the clock values.

We assume that, at the beginning of the scenario, after some
∆-rounds, clock variable x̃l = 2∆ and xl is close to it. At
some point of the while loop, after a delay εxl

, we enter
location l ∈ L+, xl and x̃l are both reset (x̃l by the controller,
xl by Tl), and we launch the associated task Tl (situation (a)
in Fig. 3). We can see that after the end of each while loop
x̃l is updated by ∆. Then, assume that we do three more

Algorithm 2: An implementation of the controller CA,∆.
Clocks: a variable x̃ for each clock x in A, taking values
in m∆ for m ∈ N ;
Etrans: list of executable transitions ;
Start from the initial state, assuming that A is not
deadlocking ;
forall the Clocks do x̃ := 0 ;
foreach TAST Ai do launch the task or waiting
associated to the initial state of Ai ;
foreach time step ∆ do

compute Etrans ; // computes the executable
transitions (at most one for each automaton)
while Etrans 6= ∅ do

execute the first transition in Etrans ;
update Etrans ;

end
forall the Clocks do x̃ := x̃+ ∆ ;
wait for the end of the current ∆-period

end

∆-rounds, execute and finish the while loop, update x̃l and
wait for the end of the ∆ period, when task Tl terminates
(situation (b) in Fig. 3) after a time close to maxl. The
corresponding termination signal cannot be detected before the
next ∆-round, because the while loop is no more active. This
means that while the invariant xl < maxl of l is respected
in A, the corresponding condition x̃l < maxl will not be
respected in the controller. Also, if there are more urgent
transitions to manage, it is possible that the transition leaving
l is only handled at the end of the while loop of the next ∆-
round (situation (c) in Fig. 3), even if the guard was already
satisfied from point (b), so that a task Tl′ which should follow
immediately Tl in A may be delayed in the controller by
almost 2∆ in extreme cases (in the figure, it is already more
than ∆).

A. Clock distortions

First, we may observe that the discrete clocks x̃ are good
approximations of the continuous ones x, if ∆ is small. This
immediately results from the examination of Fig. 3.

More precisely, let us consider a clock x and its discrete
approximation x̃, from a reset associated to a task launching,
hence when entering a location in L+, and the next reset
(if any). Let εx be the delay of the first reset inside its ∆-
round (hence 0 initially, and in general 0 ≤ εx < ∆). In
each ∆-round, let γ be the delay of the discrete clocks update
(0 < γ < ∆) which arrives at the end of the while loop.
Then, x and x̃ will verify the following inequalities inside
each ∆-round:
• x̃− εx ≤ x ≤ x̃ before min(εx, γ);
• x̃ ≤ x < x̃+ (γ − εx) between εx and γ (if εx < γ);
• x̃− (εx − γ)−∆ ≤ x ≤ x̃− εx beyond γ.

Note that, in the latter case, if γ < εx (see for example the
second ∆-round in Fig. 3), the difference x̃− x may be close
to 2∆. Note also that, when the guards are evaluated by CA,∆,
hence inside any while loop, x̃ = ∆bx+εx

∆ c.
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∆
εxl

γ γ γ γ γ γ

time

clock’s variables values

2∆

x̃l

x̃l

xl
xl

a launch of task Tl with invariant xl < maxl

b end of task Tl

c launch of task Tl′

Fig. 3. Evolution of the discrete clock x̃l and of the corresponding continuous one xl. Grey layers correspond to active while loops.

The situation is similar for a clock reset when entering a
location in L−, except that there is no task launching.

All those observations lead to:

Proposition 1: For any clock x, if the controller follows the
same paths as the specification, we have:

1) x̃− 2∆ < x < x̃+ ∆ at any instant;
2) x̃−∆ < x < x̃+ ∆ inside any while loop;
3) x̃ ∈ {x, x + ∆} if x ≡ 0 (mod ∆) (i.e., if x is a

multiple of ∆).

B. Guard adjustment in the controller

Now, let us consider a guarded arc l g
r→ l′ and assume

that it may be executed at some point in A, hence that the
corresponding task or waiting (if any) is terminated and the
guard is evaluated to true. We would like that the correspond-
ing transition in CA,∆ may also be executed in order to get
an overapproximation of A, as expected. For the termination

condition, this is checked faithfully by the controller (and the
execution platforms) and we shall here concentrate on the
guard. The guard g is a conjunction of elementary predicates of
the form x < e and/or x ≥ e. We may consider three different
times at which the discrete clock x̃ may be considered: the
time t1 where the guard g is evaluated true, the time t2
where the corresponding guard g̃ is evaluated true by the
controller, and the time t3 where the transition is executed by
the controller. It may be observed that x̃(t1) = x̃(t2) = x̃(t3),
hence we may simply use x̃ for all of them without specifying
the time at which it is considered. It may happen that the
guard is evaluated by CA,∆ slightly after the time it should
be discovered true by A, during the next iteration of the
while loop in the current ∆-round. Similarly, it may also
be discovered true at the beginning of the next ∆-round if
the transition becomes executable after the end of the current
while loop. In any case, from Proposition 1, we get that
x̃− 2∆ < x < x̃+ ∆.
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Let us first consider the case x ≥ e. To be sure that the
predicate is satisfied by the discrete clock, we must replace
x ≥ e by x̃ > e−∆, which is equivalent to x̃ ≥ ∆b e

∆c since
x̃ is a multiple of ∆. For the case x < e, to be sure that the
predicate is satisfied by the discrete clock, we must replace
x < e by x̃ < e+2∆, which is equivalent to x̃ ≤ ∆(d e

∆e+1)
since x̃ is a multiple of ∆. In summary, when going from
g to g̃, each predicate x ≥ e is replaced by x̃ ≥ ∆b e

∆c (or
dropped if b e

∆c = 0), and each predicate x < e is replaced by
x̃ ≤ ∆(d e

∆e+ 1).
For the communication arcs, since no guard is used, nothing

has to be changed. Moreover, nothing has to be made for
the invariants since they are irrelevant in the functioning of
the controller (if felt necessary, we could apply the same
transformation to invariants and replace I ≡ x < e by
Ĩ ≡ x̃ ≤ ∆(d e

∆e+ 1)). Hence, we have:

Proposition 2: With the guard adjustments just described,
CA,∆ overapproximates A.

But now, since we adjusted the guards in CA,∆ in order
to work with the discrete clocks and allow the transitions
allowed by A, the other way round this also allows transitions
in circumstances where they would not be allowed by A, and
if we want to cover the evolutions of CA,∆ by a network of
TASTs in order to check for instance with UPPAAL if the
desired properties of the system are still satisfied, we have to
introduce a new model, which we will call A, obtained from
A by adjusting once more the guards (and invariants).

C. Guard adjustment in A
Again, let us consider a predicate x < e in a guard g of A.

Since the controller uses the corresponding enlarged predicate
x̃ < e + 2∆, it may happen that an event which should be
detected for some value of the clock x just after the start of a
∆-round is only handled at the end of the next ∆-round (see
situations (b) and (c) in Fig. 3); hence we should replace the
predicate x < e by x < e+ 2∆ in A.

This also applies for the invariant of a location (if any). It
may in fact be observed that an invariant xl < e is very similar
to adding it as an extra predicate to all guards of outgoing arcs
(here also for communication arcs).

Conversely, for a predicate x ≥ e, replaced by x̃ > e −∆
in CA,∆, it could happen that the event should be detected at
the end of a ∆-round, while the controller detects it at the
beginning of the previous ∆-round; hence we should replace
the predicate x ≥ e by x ≥ e− 2∆ (or drop it if e− 2∆ ≤ 0)
in A.

This is illustrated in figure 4 for the running example.

D. Scheduling distortions

When various transitions are enabled at some point, the
controller chooses one of them in a way left free. Hence, if
it is not randomly chosen, it may happen that some paths are
systematically avoided, while in principle the extension of the
guards in CA,∆ have been chosen in order to cover the possible
evolutions of A.

E

C S

xE < 14

xC < 44

xC := 0

xC ≥ 26

xC := 0

kF !

(a) Camera (Cam)

I S′
xI ≥ 1

xI := 0

kO!

(b) User interface (Gui)

W

Wc

P xP < 54

kO?

kF ?

xP := 0

kF ?

xP := 0

xP ≥ 36

(c) Processing element (Proc)

Fig. 4. The enlarged model A of the running example for ∆ = 2ms.

When the while loop stops because there is no more exe-
cutable transition, we wait for the next ∆-round but meanwhile
a task or a waiting launched for some location l may terminate
and we shall only observe it at the next ∆-round. It may also
happen that a task/waiting finishes during the while loop, but
the guard only becomes true between the end of the loop and
the next ∆-round.

One may wonder why we do not leave the while loop active
till the end of the current ∆-round: the problem is that if
something happens just before the end of the latter, it could
happen that we do not have enough time left to handle it.

Hence also, not only the system does not react in due time
(as if the tasks/waiting were virtually longer than in reality,
as expressed in A, and all terminate simultaneously at the
beginning of the ∆-round), but we have no clue about the order
in which those transitions really became executable. It may
thus happen that a transition becomes executable after another
one but is chosen before, or even instead of, the earlier. Note
however that there will be no competition between guarded
transitions and communication ones, since the latter will only
be discovered executable during the while loop, after the
execution of a guarded transition.

Similarly, between two iterations of the while loop, new
transitions may become executable because the corresponding
task/waiting(s) terminated: again we are unable to react imme-
diately, and we do not know how to order them correctly. But
we know that they should come after the executable transitions
already detected, hence the way to update the list of executable
transitions in Algorithm 2. Communication transitions may
also become executable due to the execution of the transition
in the previous while iteration, but we know this occurred after
the other transitions already detected as enabled. This is why it
may be not justified to systematically choose a communication
transition when the controller has the choice. But anyway, all
those evolutions are compatible with the modified model A.

Note also that the controller never stops, but it may happen
that the while loops do not execute any transition from some
point. On the contrary, A may deadlock. Indeed, the enlarge-
ment of the constraints may open new paths with respect
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to the specification A, hence reaching a state previously
unreachable, where the invariant may not be respected despite
its weakening.

E. Overapproximation

From all the previous observations, we get:
Proposition 3: If A does not deadlock, it overapproximates

CA,∆.
Note that the restriction to non-deadlocking models may be

necessary, since a deadlocking evolution of A may correspond
in CA,∆ to an evolution where the time may continue to
progress, and possibly find transitions to follow. But anyway,
deadlocks are the indication that something suspect happened
and for this reason should be checked on A.

V. THE CHOICE OF ∆

We shall now present some arguments driving the choice
of the parameter ∆, i.e., the frequency of the sampling. First,
we may observe that it may be a good idea for observability
reasons to request that ∆ is twice smaller than the smallest
constant in A:

Proposition 4: A and A have the same structure (in the
sense that they only differ by the value of the constants
in corresponding predicates) if ∆ < 1

2min(D), where D
is the set of all positive integer constants occurring in the
specification A.

Proof: The only difference in the structure of A and A
is that some constraints of the form x′≥(e− 2∆) disappear if
e− 2∆ ≤ 0.

It is not absolutely necessary to respect this constraint
to implement the looping controller and to keep interesting
temporal properties, however. Instead, it may be useful to
introduce another, milder, constraint in order to ascertain
structurally that no ∆-round will be infinite. To do so, we
should assume that in each automaton each loop resets some
clock x while there is a guard x ≥ e with e ≥ ∆. In
that case the corresponding guard in the controller will be
x̃ ≥ ∆b e

∆c > 0, which may not be executed in the same
∆-round after the reset.

More generally, it may seem a good idea to choose a
small value for ∆ since, as said before, CA,∆ is sandwiched
between A and A which only differ by at most 2∆. Hence the
distortions are smaller (albeit not necessarily negligible) if ∆
is small. However, we may not choose ∆ too small, because
we need to have enough time to perform the while loop at
each ∆-round.

Proposition 5: A TAST specification A = {A1, . . . , An}
may be realised by the controller CA,∆ if

∆ > max iter (n ∆g δg + n(n− 1)∆c δ
+
c δ−c + 2∆l)

where
• max iter is the maximal number of iterations of the while

loop;
• ∆g is the time needed to determine if a guard is satisfied

and δg is the maximal number of guarded arcs from a
location;

• ∆c is the time needed to check if a pair of commu-
nications is matching, δ+

c is the maximal number of
output communication arcs from a location, and δ−c is
the maximal number of input communication arcs from
a location;

• ∆l is the maximal time to choose an executable transition
and to launch a task or waiting condition.
Proof: The first term in the sum expresses the fact that,

in the worst case, for each component we have to check
all the guards of the outgoing guarded arcs from its current
location (if enabled), to observe that none is enabled. Similarly,
the second term, still in the worst case, checks all the pairs
of communication arcs from (different) current locations of
the components (to see that none is matching). The third
term is taken twice since, in the case of a (finally found)
synchronisation, at most two tasks may be launched.

The parameters ∆g , ∆c and ∆l are determined by the
characteristics of the platform used for the controller, by the
complexity of the guards in A, by the platforms used for the
tasks and by the network connecting them to the platform
of the controller. The parameters n, δg , δ+

c and δ−c are only
determined by the complexity of the original specification A.

The quadratic aspect of the formula in Proposition 5 arises
from the fact that we have to detect all the pairs of synchronis-
ing k!–k?, but it is sometimes possible to speed up the process:
if each output label k! appears only once and the corresponding
input label k? appears also only once in another automaton,
then the term n(n − 1)∆c δ

+
c δ
−
c may be replaced by m∆c,

where m is the number of such compatible used k!–k? pairs.
If it is not possible to find a parameter ∆ satisfying those

constraints, or if the wanted properties are not preserved by A,
it will be necessary to find better bounds, change the platforms
or revise the original model (and its parametric constants).

A. Computation of max iter

In order to be able to apply Proposition 5, we still have
to obtain a bound for max iter . Under the assumption made
after Proposition 4, there is a structural bound for it: let d′i be
the length of the longest path in Ai which may be executed
in zero time in CA,∆, then max iter ≤

∑
i d
′
i + 1, the extra 1

corresponding to the last check, which will discover the loop
is finished.

If this bound is too coarse, it is also possible to obtain a
better bound by using an auxiliary model Ã which mimics
more faithfully the controller. Ã is not a network of TASTs
and since it works with the discretised clocks, it may lead to
much larger state spaces than A and A.

The construction of this new model is driven by the rules
sketched in Fig. 5 and illustrated for the running example
in Fig. 6. Starting from A, we add a new (discrete and
global) clock x̃∆. For each guard, we add a zero test on
x̃∆, materialising the fact that in the controller the discrete
clocks do not evolve during the while loops, but by the resets.
Each invariant is extended by a check that we do not wait
more than ∆, and we add an arc comparing x̃∆ to ∆ around
each location. Moreover, we introduce a global integer variable
iCnt devoted to compute the number of transitions which are
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g

r becomes
g̃ ∧ x̃∆==0

r̃, iCnt++

k?
r becomes

k?

r̃

k!
r becomes

k!

r̃, iCnt++

l I becomes l Ĩ ∧ x̃∆ ≤ ∆

x̃∆==∆

x̃∆ := 0, iCnt := 0

Fig. 5. Translation of A into Ã.

potentially executable without any delay. The maximum value
of iCnt , if it exists, may then be computed by exploring the
state space of this enriched model. In practice, we may use
the UPPAAL command sup : iCnt .

VI. VALID PROPERTIES

Since the controller may choose arbitrarily the next exe-
cutable transition when there is a choice, it could happen
that some execution paths are excluded with respect to the
original specification A. But in fact, this was also true for A:
the bounds are often coarse ones, or it may happen that we
have more detailed information about those timings but that
they are difficult to express in the timed automata formalism.
Hence, not all (CTL or the like) requests which may be asked
(to UPPAAL for instance) have a true meaning in our context.

Moreover, since the new model A is a relaxed version of
the controller (as well as of the original one), it may allow
execution paths not devised by CA,∆ (or A). However, since
the evolutions of the latter systems are a subset of the traces
of the A, we have:

Proposition 6: Let A be a TAST specification imple-
mentable with the period ∆. If A and A do not deadlock
and if φ is a safety property preserved by the evolutions of A,
then φ is also preserved by the evolutions of CA,∆.

Concerning the reachability properties, we may not rely on
their verification in general, unless they have a safety form.
For instance, it is not meaningful to check in A that some state
is reachable from another one, but checking that all paths from
a state reach another one is valid. This means that the general
form of valid requests in UPPAAL will be A[ ]φ meaning
that φ will be satisfied in every state; A<>φ meaning that
φ is satisfied at any point in each path; or φ → φ′ meaning
that from each reachable state satisfying φ, eventually a state
satisfying φ′ will be reached. The last two properties may be
used in a combination allowing to express more interesting
behaviours.

E

C S

x̃E ≤ 12 ∧ x̃∆ ≤ 2

x̃C ≤ 42 ∧ x̃∆ ≤ 2 x̃∆ ≤ 2

x̃∆ == 0
x̃C := 0
iCnt++

x̃C ≥ 30 ∧ x̃∆ == 0

iCnt++

x̃C := 0,iCnt++

kF !

x̃∆ == 2

iCnt := 0
x̃∆ := 0

x̃∆ == 2
x̃∆ := 0
iCnt := 0

x̃∆ == 2
x̃∆ := 0
iCnt := 0

(a) Camera (Cam)

I S′
x̃I ≥ 4 ∧ x̃∆ == 0

iCnt++

x̃I := 0,iCnt++

kO!

x̃∆ ≤ 2 x̃∆ ≤ 2

x̃∆ == 2

iCnt := 0
x̃∆ := 0

x̃∆ == 2

iCnt := 0
x̃∆ := 0

(b) User interface (Gui)

W

Wc

P
x̃P ≤ 52 ∧ x̃∆ ≤ 2

x̃∆ ≤ 2

x̃∆ ≤ 2

kO?

kF ?

x̃P := 0

kF ?

x̃P := 0

x̃P ≥ 40 ∧ x̃∆ == 0

iCnt++

x̃∆ == 2

iCnt = 0
x̃∆ := 0

x̃∆ == 2
x̃∆ := 0
iCnt := 0

x̃∆ == 2
x̃∆ := 0
iCnt := 0

(c) Processing element (Proc)

Fig. 6. The model Ã of the running example.

A. Illustration on the running example

In order to apply our sandwich methodology on the running
example, we defined the following timed automata specifica-
tions from the original one (see A in Fig. 1):
• The enlarged model A (Fig. 4), with ∆ = 2ms;
• The enriched controller model for determining the

max iter parameter (see Ã in Fig. 6).
The parameter max iter has been computed on Ã, giving 5

for the maximum number of transitions to perform in a single
∆-round.

The satisfaction of the property “is the processing task P
performed an infinite number of times?” has been checked
on model A. We proceeded by decomposing it in three
independent (safety) queries:
• A<> Proc.P – “is the processing task P performed at

least once?”,
• A[] (Proc.P imply A<> Proc.W) – “whenever

Proc is in P , does it eventually end up in W ?”, and
• A[] (Proc.W imply A<> Proc.P) – “whenever

Proc is in W , does it eventually end up in P ?”.
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Note that, the last two properties can be expressed in UPPAAL
as Proc.P --> Proc.W and Proc.W --> Proc.P.

To further illustrate the use of the auxiliary models, we
slightly modify the camera Cam from specification A in order
to produce the automaton shown in Fig. 7. We introduce a new
failure location F which is expected to never be reached. It
leads to a new specification B. However, by enlarging B to B,
the model checker finds out that the controller CB,∆ can reach
location F in Cam, hence the safety property “the location F
may not be reached” is not preserved, and a lower ∆ should
be chosen.

E

F

C SxE < 10

xC < 40

xC := 0

xC ≥ 30

xC := 0

kF !
xE ≥ 13

Cam

Fig. 7. Modified camera Cam for specification B

The table I sums up the results of the queries we performed,
with the information about which specification/model they
were applied and how many states have been explored by
UPPAAL. Note that the number of explored states may be
a bit misleading: some may be hidden in the construction of
the elaborate structures used by UPPAAL; that is probably
why the third question requires no visit while Proc.P is not
the initial state.

Query Model States Result
A[] not deadlock A 17 true

A[] not deadlock Ã 271 true
A<> Proc.P A 0 true
Proc.P --> Proc.W A 19 true
Proc.W --> Proc.P A 19 true

sup: iCnt Ã 365 5
A[] not Cam.F B 15 true
A[] not Cam.F B 1 false
A[] not deadlock B 9 false

A[] not deadlock B̃ 281 true

TABLE I
UPPAAL QUERIES AND RESULTS

VII. CONCLUSIONS AND PERSPECTIVES

In the context of systems composed of entities evolving and
communicating in their surrounding environment by the mean
of sensors and actuators, the ’sandwich’ methodology has been
proposed. Networks of TASTs have been introduced with a
twofold motivation: on the one hand, to allow the modelling
of such systems and their verification using timed automata,
and on the other hand, to reduce as much as possible potential
problems in building automatically implementation prototypes,
while preserving as much as possible their timing and causality
constraints.

A detailed analysis of the implementation, identified here
as a looping controller CA,∆, led us to propose a guideline
allowing to ensure (at least up to some extent) the desired

properties despite various distortions with respect to the evo-
lution of the original specification A. Depending on the kind
of properties, it is possible to check them with the UPPAAL
model-checker on the enlarged model A, and have guarantees
that they are still preserved by the prototype.

Our future work will certainly concern the development of
real-size case studies, with the aid of simple tools to build
TAST specifications from modelling patterns, to build enlarged
models from the specifications, and to check their properties.
It will also be useful to check local livelocks; indeed, when
checking deadlocks, UPPAAL essentially looks for situations
where the time is blocked (by some trespassed invariant) or
where indefinite time passing is the only possible evolution;
but it could happen that some components are blocked while
other ones are allowed to progress.
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