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ABSTRACT 

The Modal Energy Analysis presented in this paper is a method to predict energy exchanges 

between vibro-acoustic subsystems. As well-known methods like Statistical Energy Analysis 

(SEA) or Statistical modal Energy distribution analysis (SmEdA), the proposed method is 

based on equations of motion of two coupled oscillators. However, these equations are here 

solved in narrow band. The net exchanged power between the two coupled oscillators is then 

proportional to the total energies of oscillators using a pure tone modal coupling loss factor. 

Extending it to the case of two continuous coupled subsystems (using dual modal 

formulation), it yields a system of linear equations linking modal injected power to modal 

energies of subsystems at a particular frequency. In that way, the non-resonant contribution of 

modes is intrinsically taken into account. In the present paper, the theoretical background of 

the proposed method will be explained and assumptions and domain of validity will be 

identified. Finally, numerical simulations on a plate/cavity and a cavity/plate/cavity test case 

will be addressed. A numerical example of a ribbed plate coupled to a cavity will be also 

presented. 

1. INTRODUCTION 

To compute the response of a vibro-acoustic system two main families of methods are 

available: deterministic or statistical methods. Deterministic methods mainly represented by 

finite element method permit to solve the response of the whole system whatever its 

complexity (provided that materials and couplings are well represented by elements). 

However, this method is well adapted for low to medium frequency because of the 

discretization of the geometry into elements that depends on frequency. Indeed, the number of 

degrees of freedom increases with frequency as well as the number of modes to solve. 

Contrary, the statistical methods as Statistical Energy Analysis (SEA) [1], often based on 

energy, are well adapted to high frequency band but rely on constraining assumptions that 

limits their domain of validity [2]. However, when assumptions are fulfilled, SEA quickly 

provides interesting information on energy exchanges between subsystems. 

SmEdA approach [3, 4] is a method in between finite element method and SEA. As 

SmEdA is based on energy exchanges between modes of subsystems, it is possible to use 
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finite element models of uncoupled subsystems to compute modal coupling loss factors. 

SmEdA thus overcomes the assumption of equipartition of modal energy needed in SEA. 

However, as in classical SEA, the non resonant contribution of modes was not initially 

taken into account. It is now possible, as Maxit has recently demonstrated it, to take into 

account non resonant contribution of modes in the case of a Cavity/Structure/Cavity system 

introducing indirect coupling between cavities [5]. 

The present article deals with an energy method [6] developed in the same framework as 

SmEdA approach (modal energy) but solved in narrow band. As will be demonstrated, a 

power balance can be written at pure tone and the net exchanged power can be linked to 

modal energies by a pure tone coupling factor. This method will be validated and illustrated 

by numerical examples: Plate/Cavity and Cavity/Plate/Cavity test cases. 

The definition of pure tone coupling loss factor will lead to a discussion about weak 

coupling definition and a criterion defined at pure tone will be proposed.   

2. POWER BALANCE BETWEEN OSCILLATORS 

2.1 System under study 

Let's take the case of two oscillators (masses M1 and M2, springs K1 and K2 and dampers 

and as presented in figure 1. Both masses are excited by uncorrelated forces F1 and F2. 

Figure 1: Oscillators coupled by a gyroscopic coupling and excited by uncorrelated forces 

The gyroscopic coupling is characterized by 

                                                                 (1) 

where  is the gyroscopic coupling coefficient. 

In that case, the equations of motion of masses write 
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where y1(t) and y2(t) are the temporal displacement of masses. In frequency domain, these 

equations can be written in a matrix form AY = F. Solving this system of equations, one can 

easily define transfer functions H11(), H12(), H21() and H22()  where Hij() denotes the 

transfer function between mass Mi and force Fj. 

Finally, the responses of masses to both forces simply write 

                                                                (4) 

and 

                                                                  (5) 

 



 

 

2.2 Kinetic energy of oscillators 

The kinetic energy of oscillators can be expressed as a function of displacement of masses as 
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where i=1,2 and the star denotes the complex conjugate. 

Considering two uncorrelated forces (F1F2
*
=F1

*
F2=0), the kinetic energies of masses can 

be expressed as a function of transfer functions 
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where Si() and Sj() are force auto-spectra. 

 

2.2 Potential energy of oscillators 

In the same manner, the potential energies of oscillators can be expressed as a function of 

transfer functions 
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Considering the total energy as the sum of kinetic and potential energies, one can express 

force auto-spectra as a function of total energies of oscillators solving for each frequency the 

following system of equations 
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2.3 Net exchanged power between oscillators 

The net exchanged power transmitted from oscillator i to oscillator j is here only due to 

gyroscopic coupling: 
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and can also be expressed as a function of transfer functions 
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Finally, introducing expressions of Si() and Sj() obtained with equation (9) in equation 

(11), one can express the net exchanged power between oscillators as a function of total 

energies of oscillators 
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where ij() is a pure tone modal coupling loss factor whose expression writes 
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Considering the classic expressions of transfer functions Hij() of two coupled oscillators, 

this coupling loss factor can be expressed as a function of damping bandwidth         (   is 

the damping ratio) and angular eigen-frequency i of oscillator i 
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2.4 Extension to multi-modal subsystems 

Let’s consider two sets of modes Np and Nq representing two coupled continuous subsystems 

as presented in Fig. 2. Using a dual modal formulation, as done in SmEdA approach, a power 

balance for each mode of a set of modes coupled to another set of modes can be written. 

Modes of the uncoupled subsystems are expressed either in terms of displacement (free at the 

coupling interface) or in terms of stress (blocked at the coupling interface). In that case, there 



 

 

is no coupling between two modes of the same subsystem and the coupling between two 

modes of different subsystems is gyroscopic. This is due to the chosen formulation 

stress/displacement of the dual modal formulation and this is why only gyroscopic coupling is 

taken into account in previous section. This choice, already done in SmEdA, is explained in 

[3]. 

Figure 2 : Coupling between two sets of modes 

It has been demonstrated that the modes of subsystems can be considered as sets of 

oscillators and that the power injected into mode p, Πp
inj 

(ω), is either dissipated by the modal 

damping loss factor or transmitted to modes q of a set of modes Nq as  presented in equation 

(15): 
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where the power dissipated by mode p is 
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in case of viscous damping. 

The gyroscopic coefficient γpq between mode p of subsystem 1 and mode q of subsystem 2 

is proportional to the modal work between modes, expressed here in the case of a Plate/Cavity 

coupling 
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where Sc is the coupling surface between the plate and the cavity, Φp (M) is the displacement 

mode shape of the plate, Ψq (M) is the pressure mode shape of the cavity and Mp and Mq are 

the modal masses. 

To apply this power balance equation on two sets of oscillators, some assumptions have to 

be fulfilled: 

(i) the coupling between two modes has to be conservative. 

(ii) External forces applied on subsystems have to be uncorrelated. 

(iii) Isolating two modes, the ensemble of coupling forces due to other modes of the 

subsystems are considered as uncorrelated to external excitations. 

The assumption (iii) may be satisfied if the coupling is weak between both subsystems 

and/or if the coupling forces can be considered as forces with randomly distributed phase. 



 

 

4. PLATE/CAVITY TEST CASE 

To illustrate and validate this approach, a Plate/Cavity test case is addressed. As presented in 

figure 3, a plate excited by a point force at (Xe,Ye,0) is coupled to a cavity (dimensions Lx x 

Ly x Lz). The characteristics of the plate and the cavity can be found in Tables 1 and 2. 

Figure 3 : Plate/Cavity test case 

Length Lx (m)  1 

Width Ly (m) 1 

Thickness h (mm)  10 

Young Modulus (Pa)  2e11 

Density (kg/m3) 7800 

Poisson's coefficient 0,3 

damping 0,01 

Table 1: Characteristics of the plate 

Length Lx (m)  1 

Width Ly (m) 1 

Depth (m)  1 

Sound speed (m/s)  340 

Density (kg/m3) 1,2 

damping 0,01 

Table 2: Characteristics of the cavity 

For each frequency, a system of (Np + Nq) equations (15) has to be solved. The unknowns 

are here the modal energies at angular frequency  

Figure 4 presents the computed modal energies of modes of the plate and the cavity as 

function of frequency. 

(a)                                                              (b) 
Figure 4: modal energies of (a) the plate and (b) the cavity as function of frequency. The plate is excited by a 

point force. 



 

 

As can be seen in figure 4(a), some modes of the plate have low energy on the whole 

frequency range. This is due to the position of the point force which is close to a nodal line of 

these modes. In that case, the assumption of equipartition of modal energy is not fulfilled 

neither in the plate nor in the cavity. 

Summing all the modal energies, one can obtain the total energies of subsystems as a 

function of frequency. The total energies obtain with MODENA (MODal ENergy Analysis) 

approach is compared to a reference calculation [7] in figure 5. 

(a)                                                              (b) 

Figure 5: total energies of (a) the plate and (b) the cavity as function of frequency. Solid black line: reference 

calculation; dashed gray line: MODENA. The plate is excited by a point force. 

As can be seen in figure 5, the comparison between MODENA and the reference 

calculation is very good even if the plate is excited by a point force. This example clearly 

validates the MODENA approach. 

Compared to SmEdA approach, MODENA gives more information on energy responses of 

the subsystems (picks due to the eigen frequencies for example) and rely only on the 

assumption of uncorrelated modal forces. SmEdA is based on the same assumptions as SEA 

except equipartition of energy.  

As the sum over modes is not restrained in MODENA, the influence of all the modes of the 

uncoupled subsystems are taken into account and the non resonant transmission can thus be 

well-estimated. 

However, as all modes of uncoupled subsystems have to be taken into account, the system 

of equations to solve in MODENA can be huge. This is the main criticism that can be made to 

MODENA approach which moves away from SEA point of view. If all modes have to be 

taken into account, even if it is modes of uncoupled subsystems, one can think that this 

method has the same drawbacks as FEM. This is partially true but as in SmEdA, MODENA 

can be viewed as a tool to post-process FE data and to find, for example, couples of modes 

which are mainly responsible of energy exchanges between subsystems. In addition, in case of 

acoustic subsystems, some reduction technique can be easily introduced. The simplest 

technique is to use a sliding sum for modes of cavities because only low frequency modes of 

the structure are mainly responsible of non resonant transmission as demonstrated in [5]. This 

kind of techniques will be applied in future works. 

5. CAVITY/PLATE/CAVITY TEST CASE 

Let's consider the Cavity/Plate/Cavity test case presented in figure 6. In this test case, a 

simply supported rectangular plate is placed in between two air filled cavities. The 

characteristics of the Plate and both cavities can be found in Tables 3 and 4. A monopole is 

acting in cavity A at (0,1 ; 0,1 ; 0,1)m. 



 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 : Cavity/Plate/Cavity test case. 

Length Lx (m)  0,9 

Width Ly (m) 0,7 

Thickness h (mm)  5 

Young Modulus (Pa)  2e11 

Density (kg/m3) 7800 

Poisson's coefficient 0,3 

damping 0,01/0,05 

Table 3: Characteristics of the plate 

 Cavity A Cavity B 

Length Lx (m)  0,9 0,9 

Width Ly (m) 0,7 0,7 

Depth (m)  1 1,2 

Sound speed (m/s)  340 340 

Density (kg/m3) 1,2 1,2 

damping 0,01 0,01 

Table 4: Characteristics of the cavities 

Figure 7 illustrates the influence of damping of the plate (here 1% or 5%) on the energy 

ratio EA/EB between cavities. As already known [8], the damping of the plate has rather no 

influence on energy ratio below the critical frequency whereas an increase of damping of the 

plate is efficient above critical frequency to improve acoustic insulation of the panel. 

This test case demonstrates that the non-resonant transmission of the plate is well 

represented by MODENA. 

 

 

 

 

 

 

 

 

Figure 7: influence of damping of the plate on energy ratio between cavities. Solid black line: damping 1%; 

dashed gray line : damping 5%. 



 

 

6. RIBBED PLATE/CAVITY TEST CASE 

In previous example, an analytical solution for eigenmodes was used. In this example, a 

ribbed plate is modelled by finite element method and is coupled to an analytical model of 

cavity. In that case, a rectangular simply supported ribbed plate (15 stiffeners) is excited by a 

point force and radiates into an “analytical” cavity. The model of the plate is presented in 

figure 8. The eigenmodes of the plate have been computed up to 8,5kHz and the energy 

responses of the plate and the cavity have been computed from 10 to 8000Hz (frequency step 

1Hz). 

 

Figure 8. FE model of the ribbed plate. 

Figure 9. Total energies of the ribbed plate (black) and the cavity (gray) when the ribbed plate is excited by a 

point force. 

As can be seen in figure 9, the energy frequency responses of subsystems can be computed 

up to high frequency using uncoupled modes of subsystems. In the present example, all the 

modes between 0 and 8500Hz have been used but more efficient strategy may be chosen to 

speed up calculations as already discussed (sliding sum on cavity modes for example). 



 

 

7. CRITICAL GYROSCOPIC COUPLING 

The pure tone coupling loss factor defined in equation (13) can be positive or negative. The 

limit between a positive or a negative value for ij() is driven by the denominator of 

equation (13). Indeed, three different zones can be defined: 

– If                                       , ij() is positive 

– If                                       , ij() is negative 

– If                                       , ij() tends to infinity                (18) 

Contrary to SEA, the power can flow from oscillator with the lowest energy to the one 

with the highest energy. 

Figure 10.  Pure tone coupling loss factor ij() as a function of frequency and gyroscopic coupling coefficient. 

The upper figure plots the coefficient for =500 

Figure 10 demonstrates that ij() can be negative for  approximately (in that case). 

Below this value, the behaviour is comparable to SEA. Above this value an “anti-

thermodynamic” behaviour appears. 

This limit can be expressed using condition (18). Thus a critical gyroscopic coupling 

coefficient can be defined as 
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Figure 11 presents the evolution of the critical gyroscopic coupling coefficient as a 

function of frequency in the case of two coupled oscillators. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: Critical gyroscopic coupling coefficient as a limit between positive and negative zones for ij() 

For a given value of  (500 in figure 11), the coupling between modes can be considered as 

weak or strong depending on the frequency. 

It is then possible to define a criterion on couple of modes. If 

   
      

                                                           (20) 

mode p of subsystem 1 and mode q of subsystem 2 can be considered as strongly coupled as 

in that case the power flows from the mode with the lowest energy to the mode with the 

highest energy. 

This criterion can be computed whatever the complexity of subsystems. Indeed,    
    only 

depends on eigen-frequencies of uncoupled subsystems and    is proportional to the modal 

work between modes as shown in equation (17). 

Let's take the example of a plate coupled to a big cavity filled either with air or water. In 

the first case, the coupling between the plate and the cavity is usually considered to be a weak 

coupling whereas in the second case the coupling is strong (i.e. the presence of the fluid 

highly modifies the behaviour of the plate). This can be verified using criterion (20) for each 

couple of modes. 

Figure 12 plots couples of modes that verify criterion (20) in the case of light (air) or heavy 

(water) fluid. Figure 12 demonstrates that, for three different frequencies (100Hz, 500Hz and 

1000Hz), no couple of modes verify the criterion (20) in the case of light fluid (figures 12(a), 

13(a) and 14(a)). Contrary, in case of heavy fluid, at each frequency, some couples of modes 

are strongly coupled and verify criterion (20). 

At 100Hz (figure 12(b)), some resonant modes of the plate are strongly coupled to non 

resonant modes of the cavity (mostly high order modes). 

At 500Hz (figure 13(b)), resonant modes of the cavity are strongly coupled to non resonant 

modes of the plate (mostly low order modes). 

At 1000Hz (figure 14(b)), some resonant modes of the plate are strongly coupled to some 

resonant modes of the cavity and resonant modes of the cavity are strongly coupled to non 

resonant modes of the plates. 

As a conclusion on the analysis of these figures, one can conclude that the particular effect 

observed when criterion (20) is fulfilled doesn’t occur when a structure is coupled to a light 

fluid. In that case, the power always flows from the modes of the structures to the modes of 

the cavities (if only the structure is excited). Contrary, in case of heavy fluid, energy of modes 

of the cavity can be transmitted to modes of the structure even if they have lower values. 

This phenomenon doesn’t appear in SEA (or even in SmEdA) because of broad band 

excitation. 



 

 

  
(a)                                                                                         (b) 

Figure 12. Couples of modes verifying strong coupling criterion (20). Cavity filled with air (a) or water (b). 

100Hz 

 
(a)                                                                                         (b) 

Figure 13. Couples of modes verifying strong coupling criterion (20). Cavity filled with air (a) or water (b). 

500Hz                                                                                         

(a)                                                                                         (b) 

Figure 14. Couples of modes verifying strong coupling criterion (20). Cavity filled with air (a) or water (b). 

1000Hz                                                                                         

 

 

 

 



 

 

 

 

CONCLUSION 

The present paper deals with an energy method based on equations of motion of two coupled 

oscillators at pure tone. A power balance can be written between injected, dissipated and 

transmitted power. Extending this power balance to multi-modal subsystems, one can obtain a 

system of equations linking modal energies of subsystems at pure tone. 

The approach has been validated in the case of Plate/Cavity and Cavity/Plate/Cavity 

coupling showing that this method is able to take into account non resonant transmission and 

can be applied to any kind of subsystems thank to FE models. 

Finally, the pure tone modal coupling loss factor defined for this method can give 

information about the coupling strength between modes. 
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