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MODal ENergy Analysis (MODENA)

N. Totaro 1 and J.L. Guyader

Laboratoire Vibrations Acoustique - INSA-Lyon - Bâtiment St Exupery

20, avenue Albert Einstein - F69621 Villeurbanne Cedex - France

Abstract

Energy methods like Statistical Energy Analysis (SEA) or Statistical modal Energy distri-
bution Analysis (SmEdA), based on the well known equations of two coupled oscillators,
are both limited when non-resonant contributions of modes are not negligible (typically
in the case of cavity/structure/cavity coupling). In SEA, this non-resonant contribution
can be taken into account introducing indirect coupling between subsystems. In SmEdA,
the non-resonant contribution is more difficult to estimate as indirect coupling is not al-
lowed. However, this issue can be a matter of importance to compute Transmission Loss
(TL) of highly damped structures for example.
The present work deals with an energy method, developped within the framework of
SmEdA, which solves the system of equations of two coupled oscillators at pure tone,
taking thus intrinsically into account the non-resonant contributions of oscillators. As in
SEA or SmEdA, the net exchanged power between two coupled oscillators is proportional
to the weighted difference of total energies of oscillators. The expression of a critical cou-
pling strength is also proposed and may be related to classical weak coupling criterion
of SEA.
Extending equations obtained for two coupled sets of oscillators to the case of two linear
continuous subsystems, one can compute easily frequency dependent modal energies of
modes, total energies of subsystems, power transmitted between two modes and power
dissipated.
The theoretical bases and assumptions of the proposed MODal ENergy Analsys (MOD-
ENA) are first exposed and the case of two coupled oscillators is addressed. Then,
Plate/Cavity and Cavity/Plate/Cavity systems are treated with MODENA and com-
pared to an exact solution. Finally, it is demonstrated that the non-resonant contribution
of a highly damped plate is correctly represented by MODENA.

Keywords: Statistical Energy Analysis, SmEdA, weak coupling, non-resonant modes,
Transmission Loss, MODal ENergy Analysis

1. Introduction

For the computation of responses of vibro-acoustic systems, two philosophies oppose.
First, a deterministic approach based on the division of the domains in finite elements,
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the so-called Finite Element Method (FEM), is a powerfull and widely used tool to pre-
dict frequency response of the whole system. FEM provides fine and almost exact results
(provided that the mesh of elements is fine enough and that the characteristics of the
structures are exactly known). This method is adapted for any geometry and excitation
making it virtually universal. However, it suffers from some defects: (i) as the mesh
size depends on frequency it is limited to low to medium frequency range, (ii) physical
variability of characteristics raises the question of real meaning of computed modes, (iii)
the huge quantity of information (typically millions of degrees of freedom and thousands
of modes) makes the interpretation difficult. Second, a statistical approach, the so-called
Statistical Energy Analysis (SEA) [1, 2, 3], estimates energy exchanges between coupled
subsystems. Based on the extension of power balance between two coupled oscillators
to two continuous linear subsystems, SEA provides an almost intantaneous estimation
of power flow between subsystems. In addition, SEA is representative of a population of
nearly identical structures and can thus give useful information on mean and variance
of responses [4, 5]. The frequency average and the use of a very simple system of equa-
tion make SEA really easy to understand. However, the assumptions underlying these
equations are difficult to fulfill [6] in the case of industrial applications and the domain
of validity [7] is quite difficult to estimate in real cases. In addition, to take into account
non-resonant contributions of modes, it is necessary to introduce indirect couplings [8, 9]
or to consider resonant as well as the non-resonant response as two separate subsystems
[10] otherwise the energy exchanges are underestimated.
The proposed approach is within the framework of Statistical modal Energy distribution
Analysis (SmEdA) [11, 12, 13] which makes a link between these two worlds, energy
methods and Finite Element Method. Compared to SEA, SmEdA approach is based on
modal energies rather than global energies of subsystems and withdraws the assumption
of equi-partition of modal energies made by SEA opening the way to subsystems with
modal behavior and local excitations. On the other hand, as SmEdA uses eigenmodes
of uncoupled subsystems it can’t predict the ensemble average of a population of struc-
tures but only the response of the nominal model. In addition, SmEdA only takes into
account resonant contributions of modes in a frequency band and the introduction of
indirect couplings is not provided. Finally, both SEA and SmEdA deal with frequency
average and only provide energy of subsystems per frequency band which was voluntary
to solve a few systems of equations.
The MODal ENergy Analysis (MODENA) proposed here is based on a power balance be-
tween two oscillators at pure tone contrary to SEA method where broad band excitation
is considered. As in SmEdA, this power balance is extended to the case of two continuous
coupled subsystems using dual modal formulation [14]. As will be demonstrated, under
some classical assumptions, the net exchanged power between two coupled oscillators still
depends on the total energies of oscillators and on a modal coupling loss factor at a pure
tone. This approach provides the energy frequency response of each modes taking then
intrinsically into account the non-resonant contribution of modes without considering
indirect couplings.
The present article is organized as follows. First, the theoretical background of MOD-
ENA and its extension to multimodal susbystems will be presented. Then, two test
cases will be addressed. The plate/cavity test case will demonstrates the applicability of
MODENA approach comparing it to reference calculations. Then the cavity/plate/cavity
test case will be used to show that MODENA is able to take into account non-resonant
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contribution of modes of a highly damped plate.

2. Responses of two coupled oscillators

2.1. Transfer functions

Let’s consider two coupled oscillators as presented in Fig. 1. Each oscillator i is
composed by a mass Mi (i = 1, 2), a spring ki and a damper λi. Each oscillator is
excited by a random force fi(t). The coupling is of gyroscopic type characterized by

G =
√

M1M2γ (1)

where γ is the gyroscopic coupling coefficient.
The temporal displacements y1(t) and y2(t) of masses M1 and M2 must verify the two
equations of motion:

ÿ1(t) +
λ1

M1

ẏ1(t) +
k1
M1

y1(t)−
√

M2

M1

γẏ2(t) =
f1(t)

M1

(2)

and

ÿ2(t) +
λ2

M2

ẏ2(t) +
k2
M2

y2(t) +

√

M1

M2

γẏ1(t) =
f2(t)

M2

. (3)

Considering the Fourier transform of Eqs. (2) and (3), one can obtained the system of
Eq. (4) which has the form AY = F:





ω2
1 − ω2 + jω∆1 − jω

√

M2

M1

γ

jω
√

M1

M2

γ ω2
2 − ω2 + jω∆2





{

Y1

Y2

}

=

{

F1

M1

F2

M2

}

, (4)

where ωi is the eigen frequency and the ∆i = λi/Mi is the damping bandwith of oscillator
i.
Four transfer functions can be easily obtained solving the system of Eq. (4): H11(ω),
H21(ω), H12(ω) and H22(ω) where the transfer functions Hij(ω) is the response of mass
Mi when force Fj is applied to oscillator j. The expressions of these transfer functions
are given by Eqs. (5) to (8):

H11(ω) =
1

M1

ω2
2 − ω2 + jω∆2

detA
, (5)

H21(ω) = − jω
γ√

M1M2

1

detA
, (6)

H12(ω) = jω
γ√

M1M2

1

detA
, (7)

H22(ω) =
1

M2

ω2
1 − ω2 + jω∆1

detA
, (8)

where detA is the determinant of the matrix A. The responses of the oscillators excited
by forces F1 and F2 simultaneously are obtained by the summation of the responses to
each force:

Y1(ω) = H11(ω)F1(ω) +H12(ω)F2(ω) (9)

and
Y2(ω) = H21(ω)F1(ω) +H22(ω)F2(ω). (10)
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2.2. Kinetic energies of oscillators

The kinetic energy of oscillator 1 writes:

E1
k(ω) =

1

4
M1ℜ(Ẏ1(ω)Ẏ

∗

1 (ω)) =
1

4
M1ω

2ℜ (Y1(ω)Y
∗

1 (ω)) , (11)

where the star (∗) and ℜ(•) denote respectively the complex conjugate and real part of
a complex number. Introducing Eq. (9) in Eq. (11), one can express the kinetic energy
of oscillator 1 as a function of transfer functions:

E1
k(ω) =

ω2

4
M1ℜ

(

(H11(ω)F1(ω) +H12(ω)F2(ω)) (H11(ω)F1(ω) +H12(ω)F2(ω))
∗
)

.

(12)
Considering two uncorrelated forces F1(ω) and F2(ω) (i.e F1(ω)F

∗

2 (ω) = F ∗

1 (ω)F2(ω) = 0,
this is the case for two harmonic forces with random phase between 0 and 2π for example),
Eq. (12) reduces to

E1
k(ω) =

1

4
M1ω

2
(

|H11(ω)|2S1(ω) + |H12(ω)|2S2(ω)
)

, (13)

where |•| denotes the absolute value of a number. As well, the kinetic energy of oscillator
2 writes

E2
k(ω) =

1

4
M2ω

2
(

|H21(ω)|2S1(ω) + |H22(ω)|2S2(ω)
)

, (14)

where force auto-spectra S1(ω) = F1(ω)F
∗

1 (ω) and S2(ω) = F2(ω)F
∗

2 (ω) have been in-
troduced.

2.3. Potential energies of oscillators

In the same manner, the potential energy of oscillator 1 and 2 write:

E1
p(ω) =

1

4
K1

(

|H11(ω)|2S1(ω) + |H12(ω)|2S2(ω)
)

. (15)

and

E2
p(ω) =

1

4
K2

(

|H21(ω)|2S1(ω) + |H22(ω)|2S2(ω)
)

. (16)

2.4. Total energies of oscillators

The total energy of an oscillator is defined as the sum of kinetic and potential energies.
Then total energies of oscillators 1 and 2 can be expressed as

E1
t (ω) = E1

k(ω) + E1
p(ω) =

1

4
M1(ω

2 + ω2
1)
(

|H11(ω)|2S1(ω) + |H12(ω)|2S2(ω)
)

(17)

and

E2
t (ω) = E2

k(ω) + E2
p(ω) =

1

4
M2(ω

2 + ω2
2)
(

|H21(ω)|2S1(ω) + |H22(ω)|2S2(ω)
)

(18)

It is possible using Eqs. (17) and (18) to express S1(ω) and S2(ω) as a function of E1
t (ω)

and E2
t (ω) solving the following system of equations

[

|H11|2 |H12|2
|H21|2 |H22|2

]{

S1

S2

}

=







4E1

t

M1(ω2+ω2

1)
4E2

t

M2(ω2+ω2

2)







(19)
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2.5. Net exchanged power transmitted from oscillator 1 to oscillator 2

The net exchanged power transmitted from oscillator 1 to oscillator 2 is only due to
the gyroscopic coupling

Π12(ω) = −G 〈ẏ2∗(t)ẏ1(t)〉t = −1

2
Gℜ

(

Ẏ2

∗

(ω)Ẏ1(ω)
)

. (20)

Introducing Eqs. (9) and (10) in Eq. (20) and considering two uncorrelated forces, one
can express the net exchanged power as a function of transfer functions

Π12(ω) = −1

2
Gω2ℜ (H∗

21(ω)H11(ω)S1(ω) +H∗

22(ω)H12(ω)S2(ω)) . (21)

2.6. Relation between net exchanged power and total energies of oscillators

Introducing expressions of S1 and S2 obtained with system of Eqs. (19) in Eq. (21),
it yields a relation between the net exchanged power and the total energies of oscillators
as follows

Π12(ω) = α12(ω)E
1
t (ω)− α21(ω)E

2
t (ω), (22)

where αij(ω) is a coupling coefficients whose expression writes

αij = − 2Gω2

Mi (ω2 + ω2
i )

ℜ
(

H∗

jiHii

)

|Hjj |2 −ℜ
(

H∗

jjHij

)

|Hji|2
|Hii|2|Hjj |2 − |Hij |2|Hji|2

(23)

Finally, using expressions of transfer functions (Eqs. (5), (7), (6) and (8)), the expression
of coupling coefficient αij can be simplified in

αij(ω) =
2γ2

(

1 +
ω2

i

ω2

)

∆jω
2
(

(ω2
i − ω2)2 + ω2∆2

i

)

+ ω4γ2∆i

((ω2
i − ω2)2 + ω2∆2

i )
(

(ω2
j − ω2)2 + ω2∆2

j

)

− ω4γ4
. (24)

It is important to underline here that Eq. (22) which expresses the relation between net
exchanged power and total energies of oscillators is exact when only one force is acting
(i.e. F1 = 0 or F2 = 0) or when forces F1(ω) and F2(ω) are uncorrelated. In the case
of totally or partially correlated forces, the net exchanged power estimated by Eq. (22)
is an approximation. This assumption of uncorrelated forces is also supposed in SEA or
SmEdA however in this case the frequency averaging leads to the symmetry of αij(ω).
One can notice that the determinant of the matrix in Eq. (19) can be equal to zero.
At each angular frequency, a critical coefficient γcrit can be defined. For this particular
couple of angular frequency and γ, an unique solution of Eq. (19) can’t be found. The
expression of γcrit is given by

|H11|2|H22|2 = |H12|2|H21|2 (25)

that is the condition for having the determinant of matrix of Eq. (19) null. Using
expressions of transfer functions, the γcrit writes

γcrit = 4

√

√

√

√

(

(ω2
1 − ω2)

2

ω2
+∆2

1

)(

(ω2
2 − ω2)

2

ω2
+∆2

2

)

(26)

The physical meaning of critical coefficient γcrit will be discussed in the following sections.
When condition defined by Eq. (25) occurs, the coefficient αij and αji tend to infinity
at the same time. However, even at this condition, the net power exchange defined in
Eq. (24) tend to a finite value as will be demonstrated in the following section.
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2.7. Power balance between coupled oscillators

The power injected into oscillator i is equal to the sum of power dissipated by oscillator
i and the net exchanged power between oscillators i and j

Πinj
i (ω) = Πdiss

i (ω) + Πij(ω). (27)

In case of viscous damping and considering Eq. (22), the power balance writes

Πinj
i (ω) = 2∆iE

i
k(ω) + αij(ω)E

i
t(ω)− αji(ω)E

j
t (ω), (28)

Let’s consider the ratio between coupling coefficients αij and αji as

Γ =
αij

αji

=
(ω2 + ω2

j )

(ω2 + ω2
i )

∆j

(

(ω2
i − ω2)2 + ω2∆2

i

)

+ ω2γ2∆i

∆i

(

(ω2
j − ω2)2 + ω2∆2

j

)

+ ω2γ2∆j

. (29)

Using the fact that Ei
k =

Ei
t

1+ω2

ω2

i

, one can express the energy of oscillator i

Ei
t(ω) =

Πinj
i (ω)

(

1 +
∆̃j

αij

)

+Πinj
j (ω)

∆̃i + ∆̃jΓ +
∆̃i∆̃j

αji

, (30)

where ∆̃i =
2ω2

i∆i

ω2

i
+ω2

.

An interesting point concerning this relation is the singularity of the coefficients αij and
αji that tend to infinity when Eq. (25) applies as already noticed in the previous section.
When αij and αji tend to infinity the previous expressions of energies are undeterminated.
However, as the coefficient Γ has a finite value even if αij and αji tend to infinity, it is
possible to calculate the limit of Eq. (30)

lim
αji→∞

(

Ei
t(ω)

)

=
Πinj

i +Πinj
j

∆̃i + ∆̃jΓ
. (31)

It is clear that the singularity of αij and αji is not affecting the energy of the two
oscillators that have finite values. It can be noticed that the damping coefficients of
oscillators are controlling the energy responses.
The net power exchanged can also be calculated in the same manner

Πij(ω) =
Πinj

i ∆̃i −Πinj
j ∆̃jΓ

∆̃i + ∆̃jΓ +
∆̃i∆̃j

αji

. (32)

Again, the limit of the net exchanged power remains finite when αji tends to infinity

lim
αji→∞

(Πij(ω)) =
Πinj

i ∆̃i −Πinj
j ∆̃jΓ

∆̃i + ∆̃jΓ
. (33)

This property was not clear in Eq. (22) where αij and αji tend to infinity when Eq. (25)
applies.
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2.7.1. Influence of gyroscopic coupling strength

It is possible from Eqs. (22) and (24) to evaluate the influence of the gyroscopic
coupling strength on the coupling factor αij(ω). Fig. 2 shows the map of coupling factor
αij(ω) as a function of gyroscopic coupling coefficient γ and the frequency (the colormap
is limited to -50 to 100 to distinguish the whole behavior of the coupling factor). A
cutting plane A-A is also represented for γ = 500.
It is interesting to notice that the coupling factor α12(ω) and α21(ω) are strictly positive
on the whole frequency band for γ < 300 in this example. Thus, the power flow is the
same as in standard SEA, the bigger the energy of an oscillator the higher it transmits
power to the other oscillator. For γ > 300, the behavior of coupling factor changes.
Indeed, around the eigen-frequencies of oscillators, the coupling factor becomes negative
suddenly. Thus, the power flow is opposite compared to standard SEA, the bigger the
energy of an oscillator the higher it absorbs power from the other oscillator. This is a
major difference with coupling factor derived by Lyon [1] and Newland [2] and used in
SmEdA [11] that is strictly positive.
This sudden transition from a strictly positive coefficient (for γ < 300 in Fig. 2) to a
coefficient alternatively positive or negative may be considered as a traduction of a weak
coupling between oscillators. At this point, no assumption of weak coupling is made
and Eqs. 22 and 24 are exact even in the case of strong coupling provided that external
forces are uncorrelated. Then, this strong coupling influence can be observed in Fig.3.
Indeed, when comparing the energies of oscillators for three different values of γ (γ = 10,
γ = 500 and γ = 1000, only the oscillator 1 is directly excited), one can remark that for
low value of γ the energy response of oscillator 1 (Fig. 3(a)) is almost not affected by
the presence of the second oscillator and the net exchanged power (Fig. 3(b)) is positive
but low. In that case, both eigen-frequencies of the coupled system are rather equal to
those of uncoupled oscillators.
Increasing the gyroscopic coupling coefficient γ (see Fig. 3(c) for energies and 3(d) for
net exchanged power when γ = 500) the influence of oscillator 2 on the energy response
of oscillator 1 becomes observable around the uncoupled eigen-frequency of oscillator 2
where an anti-resonance appears. The two eigen-frequencies of the coupled systems are
also beginning to shift relative to eigen-frequencies of uncoupled oscillators. This behav-
ior is even more pronounced for higher values of γ (see Fig. 3(e) and Fig. 3(f)).
Finally, one can notice that, for high value of γ (γ = 500 or γ = 1000) and around
the second eigen-frequency, the energy of oscillator 2 is higher than energy of oscillator
1 nevertheless it is directly excited. As the net exchanged power from oscillator 1 to
oscillator 2 is positive as shown in Figs. 3(d) and 3(f), one can say that the power flows
from the oscillator with the lowest energy to the one with the highest energy in that
frequency band (around the second eigen-frequency). This remark is in contradiction
with the thermic approach of the energy exchanges between oscillators that states that
power flows from oscillator with the highest energy to the one with the lowest energy.
The critical coefficient γcrit defines the limit between a ”thermodynamic” and an ”anti-
thermodynamic” behavior. In the example presented in Fig. 4, the value of γ = 500
is plotted on the evolution of γcrit coefficient. In that case, the power flow between os-
cillators is almost always comparable to a ”thermodynamic” behavior except near the
eigen-frequencies of coupled oscillators. In that frequency bands, the coupling is too
strong and an ”anti-thermodynamic” behavior appears.
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2.7.2. Error due to correlated forces

When external forces f1(t) and f2(t) are correlated, Eqs. (22) and (24) are not ex-
act any more because they neglect cross-spectrum between forces. It is nevertheless
interesting to evaluate the error due to the use of Eq. (24) even though the forces are
correlated. Fig. 5 shows the net exchanged power transmitted from oscillator 1 to oscil-
lator 2 as a function of frequency for four different amplitude ratios of correlated forces
(|F1|/|F2| = 101, 102, 103 and 104). It is clear in Fig. 5 that two correlated forces,
even with a high amplitude ratio, lead to high error on net exchanged power mainly far
from eigen-frequencies, that is to say when the modes have low responses. Obviously, for
extremely high amplitude ratio (see Fig. 5(d)) this error becomes negligible on the whole
frequency range. This tends to demonstrates that Eq. (22) can be a good approximation
in case of weak coupling between oscillators.
Let’s assume now that at angular frequency ω the phase between both force Fourier
transforms is random and that we are interested in the expectation of the responses of
oscillators to this ensemble of correlated forces with random phase (Φ = 0..2π). Fig. 6
presents the expectation of net exchanged power (averaged on 2500 realizations) com-
pared to Eq. (24) calculation. The inserted figures represent the net exchanged power
computed for each of the 2500 realizations compared to the statistical average. Compar-
ing Fig. 5 and Fig. 6, it is very clear that the error due to the use of correlated forces
drastically decreases when comparing MODENA approach (which supposes uncorrelated
forces) to expectation of responses of oscillators to forces with random phase. Thus, even
for low amplitude ratio of forces, the error becomes negligible on the whole frequency
band. This result can be associated to the ensemble average assumption in standard SEA.

2.8. Extension to multi-modal coupling

Let’s consider two sets of modes Np and Nq representing two coupled continuous
subsystems as presented in Fig. 7. Using a dual modal formulation [14], as done in
SmEdA approach [11, 12, 13], a power balance for each mode of a set of modes coupled to
another set of modes can be written. Modes of the uncoupled subsystems are expressed
either in terms of displacement (free at the coupling interface) or in terms of stress
(blocked at the coupling interface). In that case, there is no coupling between two
modes of the same subsystem and the coupling between one mode of each subsystem is
gyroscopic. It has been demonstrated that the modes of subsystems can be considered as
sets of oscillators and that the power injected into mode p, Πinj

p (ω), is either dissipated
by the modal damping loss factor or transmitted to modes q of a set of modes Nq

Πinj
p (ω) = Πdiss

p (ω) +
∑

q

αpq(ω)E
p
t (ω)−

∑

q

αqp(ω)E
q
t (ω). (34)

In the case of viscous damping ηvisqp (as was supposed in section 2), the power dissipated
by a mode is proportional to its kinetic energy,

Πdiss
p (ω) = 2ηvisqp ωpE

p
k(ω) = 2ηvisqp ωp

Ep
t (ω)

1 + ω2

ω2
p

(35)
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whereas, in the case of structural damping ηstrucp , the power dissipated by a mode is
proportional to its potential energy,

Πdiss
p (ω) = 2ηstrucp ωEp

k(ω) = 2ηstrucp ω
Ep

t (ω)

1 +
ω2

p

ω2

. (36)

In addition, in the case of viscous damping, the coupling factor αpq(ω) writes

αpq(ω) =
2γ2

pq
(

1 +
ω2

p

ω2

)

∆visc
q ω2

(

(ω2
p − ω2)2 + ω2(∆visc

p )2
)

+ ω4γ2
pq∆

visc
p

(

(ω2
p − ω2)2 + ω2(∆visc

p )2
) (

(ω2
q − ω2)2 + ω2(∆visc

q )2
)

− ω4γ4
pq

.

(37)
whereas in the case of structural damping, this expression changes in

αpq(ω) =
2γ2

pq
(

1 +
ω2

p

ω2

)

∆struc
q ωqω

(

(ω2
p − ω2)2 + ω2

p(∆
struc
p )2

)

+ ωpω
3γ2

pq∆
struc
p

(

(ω2
p − ω2)2 + ω2

p(∆
struc
p )2

) (

(ω2
q − ω2)2 + ω2

q (∆
struc
q )2

)

− ω4γ4
pq

,

(38)
where ∆visc

p = ηviscp ωp and ∆struc
p = ηstrucp ωp. The gyroscopic coefficient γpq is propor-

tional to the modalwork between a mode p and mode q, expressed here in the case of a
Plate/Cavity coupling [12]

γpq =
1

√

MpMq

∫

Sc

Φplate
p (Q)Ψcav

q (Q)dQ, (39)

where Sc is the coupling surface between the plate and the cavity, Φplate
p (Q) is the

displacement mode shape of the plate, Ψcav
q (Q) is the pressure mode shape of the cavity

and Mp and Mq are the modal masses.
To apply this power balance equation of two sets of oscillators, some assumptions have
to be fulfilled:

(i) the coupling between two modes has to be conservative.

(ii) External forces applied on subsystems have to be uncorrelated.

(iii) Isolating two modes, the ensemble of coupling forces due to other modes of the
subsystems are considered as uncorrelated to external excitations.

As already shown in sections 2.7.1 and 2.7.2, the assumption (iii) may be satisfied if the
coupling is weak between both subsystems and/or if the coupling forces can be consid-
ered as forces with randomly distributed phase.

3. Plate/Cavity coupling

Fig. 8 presents the first test case: a plate excited by a point force coupled to a cavity
with rigid walls. Properties of the cavity and the plate are listed in Tables 1 and 2. To
solve this problem with the MODENA approach, the powers injected into each mode of
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the plate at angular frequency ω have to be determined. The modal power due to a point
force F is given by

Πinj
p (ω) =

1

2
ℜ
(

F (ω)V ∗

p (ω)
)

. (40)

Assuming weak coupling, that is to say that modal input powers due to an unit force
located at (Xe, Ye) = (0.7, 0.2) can be calculated neglecting the cavity, we found

Πinj
p (ω) =

∆pω
2 (Φp(Xe, Ye))

2

2Mp

[

(ω2
p − ω2)2 + (∆pω)2

] , (41)

where Φp(Xe, Ye) is the mode shape of the mode p at point force location.
Solving a system of Nplate +N cav equations like Eq. (34) we get the modal energies of
each subsystem as a function of frequency. The coupling coefficient αpq can be associated
to viscous damping using Eq. (37) or structural damping (Eq. (38)) depending on the
case of interest. Modal energies of the plate and the cavity are plotted in Fig. 9. One
can first notice that, for the plate only few modes are contributing to the response at
each frequency. Two groups of modes can be seen, one is controlling the response, the
second has low contribution whatever the frequency because of the excitation located
near their nodal lines. In the cavity the number of modes is larger and the splitting in
two groups cannot be done however at each frequency the number of modes contributing
significantly to the energy level is small again.
One can also notice that the frequency response of each modal energy does not follow
exactly the one of an isolated oscillator and coupling effects to the modes of the other
subsystem can be observed. In the case of the plate, each modal energy is influenced
by modes of the cavity and blocking effects can be seen at these particular resonance
frequencies of the cavity. The same remarks can be done for the modal energies of the
cavity.
In the case of a rain-on-the-roof excitation (here introduced by 100 uncorrelated ran-
domly distributed point forces), all the plate modes are equally excited and the response
is no more separated in two groups of modes as shown in Fig. 10. With a rain-on-the-roof
excitation, modal energies are globally identical on the frequency band corresponding to
the equipartition of energy assumed in SEA energy, however when looking to the plate
modal energies at a given frequency a very small number of modes are controlling the re-
sponse. In Fig. 10, cavity modal energies are presented. Cavity modes spatially coupled
with plate modes dominate and equipartition of energy is not achieved. In addition, at
a given frequency, the number of modes participating to the energy level is small.
Fig. 11 shows the global energies (i.e the sum of each modal energy) of the plate and the
cavity compared to the CVALOR reference calculation (a vibro-acoustic benchmark for
simple structures [15]) and to SmEdA calculation. As can be seen, the global energy of
each subsystem prediction with MODENA agrees well with reference calculations. This
simple test case validates the MODENA approach to compute modal and global energies
of subsystems as a function of frequency.

4. Cavity/Plate/Cavity coupling

Fig. 12 presents the second test case: a plate inserted in between two cavities A and
B. The dimensions and properties of the cavities are presented in Table 4 and those of
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plate 1 are listed in Table 3. The excitation is created by a single monopole in cavity A at
(Xe, Ye, Ze) = (0.1, 0.1, 0.1). The simulation is compared to a direct frequency response
computed by Actran software between 50 and 700Hz. The MODENA calculation agrees
well to this reference calculation. This result is important because standard SEA has
difficulty to take into account the non-resonant contribution of plate modes and indirect
coupling must be introduced for agreeing reality.
As demonstrated in this reference test case, MODENA approach is able to represent
Cavity/Plate/Cavity systems for which non resonant contribution is important. Using
plate 2LD (Low Damping) and plate 2HD (HighDamping) described in Table 3, one can
illustrate some well known effects of damping on Transmission Loss [16]. Below the criti-
cal frequency, an increase of damping of the structure has little influence on transmission
because it is dominated by non-resonant mode contributions. On the contrary, above
the critical frequency, an increase of damping is efficient to improve acoustic insulation
of the panel, as shown in Fig. 14.

5. Conclusion

The proposed approach is an energy based method but contrary to SEA or SmEdA
method it provides a pure tone analysis of power flow. It has been demonstrated that the
net exchanged power transmitted from one oscillator to the other only depends on total
energies of oscillators and of a ”modal coupling loss factor at pure tone” whose expres-
sion is a function of resonance frequencies and damping of uncoupled oscillators. The
main particularity of the power flow/energy relation is the possibility of having negative
coefficient contrary to SEA relation. In this case the power flows from the oscillator of
low energy to that of high energy and not from the oscillator of high energy to that of
low energy, this possibility is however restricted to sufficiently strong coupling.
The coupling between oscillators has been extended to the coupling between two con-
tinuous subsystems as done in SmEdA using dual modal formulation. The plate/cavity
test case has been treated as example. The energies of the plate (directly excited by a
point force) and the cavity have been compared to a reference calculation showing a good
agreement. Then, sound transmission through a panel separating two cavites has been
studied. The contribution of non-resonant plate mode to the transmission is well known
in this problem and necesssitate in standard SEA the introduction of indirect coupling.
In the present approach non-resonant contribution of modes is included and as expected
the prediction is good.
Finally, as this approach is close to Statistical modal Energy distribution Analysis (SmEdA),
the same advantages and extensions apply. Indeed, (i) the modal coupling loss factor at
pure tone only depends on quantities which can be easilly obtained with finite element
methods, (ii) finite element computations are only necessary on uncoupled subsystems,
(iii) subsystems with low modal overlap and local excitations can be addressed and (iv)
using modal energy of subsystems it is possible to estimate the energy distribution into
subsystems.
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Figure 1: Sketch of two oscillators coupled by a gyroscopic coupling
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Figure 2: Coupling factor α12 as a function of frequency and of gyroscopic coupling coefficient. Top
figure represents a cut of this map for γ = 500.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Total energies of oscillators 1 (solid black line) and 2 (dashed gray line) when oscillator 1 is
excited by a unit force for (a) γ = 10, (c) γ = 500 and (e) γ = 1000 and corresponding transmitted
power from oscillator 1 to oscillator 2 for (b) γ = 10, (d) γ = 500 and (f) γ = 1000. Vertical dotted lines
represent the positions of eigen-frequencies of uncoupled oscillators.
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Figure 4: Critical coefficient γcrit as a function of frequency. The dashed line represents γ = 500.
The critical coefficient defines the limit between a ”thermodynamic” behavior (αij > 0) and an ”anti-
thermodynamic” behavior (αij < 0).

(a) (b)

(c) (d)

Figure 5: Power transmitted from oscillator 1 to oscillator 2 when oscillators 1 and 2 are excited by two
correlated forces with (a) |F1|/|F2| = 101, (b) |F1|/|F2| = 102, (c) |F1|/|F2| = 103 and (d) |F1|/|F2| =
104. Black solid line: exact analytical solution, gray dashed line: MODENA approach. Vertical dotted
lines represent the positions of eigen-frequencies of uncoupled oscillators.
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(a) (b)

(c) (d)

Figure 6: Power transmitted from oscillator 1 to oscillator 2 when oscillators 1 and 2 are excited by two
forces with random phase with (a) |F1|/|F2| = 101, (b) |F1|/|F2| = 102, (c) |F1|/|F2| = 103 and (d)
|F1|/|F2| = 104. Black solid line: averaged analytical solution over 2500 realizations with random phase
from 0 to 2π; gray dashed line: MODENA approach with two correlated forces. Vertical dotted lines
represent the positions of eigen-frequencies of uncoupled oscillators. The inserted figures show each of
2500 realizations with random phase (in gray) compared to the average response (in black).

Figure 7: Coupling between two sets of modes
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Figure 8: Sketch of Plate/Cavity coupling test case. The plate is excited by a point force at (xe, ye)

(a) (b)

Figure 9: Modal energies of modes of (a) the plate and (b) the cavity when the plate is excited by a
single point force.

(a) (b)

Figure 10: Modal energies of modes of (a) the plate and (b) the cavity when the plate is excited by a
rain-on-the-roof excitation (100 uncorrelated point forces of amplitude 1/100N).
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(a) (b)

Figure 11: Total energy of (a) the plate and (b) the cavity as a function of frequency. Solid black line
: CVALOR reference calculation; dashed gray line : MODENA calculation. The plate is excited by one
point force.

Figure 12: Sketch of Cavity/Plate/Cavity coupling test case. The cavity is excited by a monopole at
(Xe, Ye, Ze)

Figure 13: Energy ratio between cavity A and cavity B when cavity A is excited by one monopole. Black
solid line : ACTRAN reference calculation; Dashed gray line : MODENA calculation.
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Figure 14: Energy ratio between cavity A and cavity B when cavity A is excited by 20 randomly
located monopoles. Solid gray line : MODENA calculation (Plate 2LD, damping 1%); Solid black line :
MODENA calculation (Plate 2HD, damping 5%).
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Plate
Lx (m) 1
Ly (m) 1
Ep (Pa) 2e11

ρp (kg/m3) 7800
νp 0.3

hp (mm) 10
ηviscp 0.01

Table 1: Characteristics of the plate for the Plate/Cavity test case

Cavity
Lx (m) 1
Ly (m) 1
Lz (m) 1

ρc (kg/m3) 1.2
cc (m/s) 340
ηstrucc 0.01

Table 2: Characteristics of the cavity for the Plate/Cavity test case

Plate 1 Plate 2LD Plate 2HD
Lx (m) 0.9
Ly (m) 0.7
Ep (Pa) 2e11

ρp (kg/m3) 7800
νp 0.3

hp (mm) 10 5
ηviscp 0.01 0.05

Table 3: Characteristics of the plates for the Cavity/Plate/Cavity test case.

Cavity A Cavity B
Lx (m) 0.9
Ly (m) 0.7
Lz (m) 1 1.2

ρc (kg/m3) 1.2
cc (m/s) 340
ηstrucc 0.01

Table 4: Characteristics of the cavities for the Cavity/Plate/Cavity test case.
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