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Abstract

The aim of this paper is to present a complete methodology to perform the seg-
mentation of a stack of MRI images. More precisely, we deal with (3D) of MRI images
of mice brain. We first develop an automatic selection of the cerbellum area. Un-
adapted segmentation methods are mentionned. At last, we decided to use a second
order decomposition method as a processing tool to perform denoising that does not
erode contours.We end the segmentation a 3D Mumford-Shah method and present
some results on the cerebellum volume estimates.

1 Introduction

The aim of this paper is to present a complete methodology to perform the segmentation
of a stack of MRI images. More precisely, we deal with (3D) of MRI images of mice brain.
Magnetic Resonance Imaging (MRI) is a non invasive imaging technique which can be used
for diagnostic or longitudinal therapeutic purposes. Proton MRI is well adapted to study
soft material such as cerebral tissue in animal models of human neuropathologies. However
MRI studies on small rodents are challenging due to the small sizes of their brains. The
recent use of high fields for MRI instruments enables the increase of the spatial resolution,
the improvement of the sensitivity of the technique and to optimize the signal-to-noise ra-
tio. Nevertheless, the increase in the magnetic field increases the sensitivity to the effects
of magnetic susceptibility and reduces the natural contrast between different tissues. Thus,
one of the research objectives in MRI today is to propose new methodological, technolog-
ical and instrumental developments to improve the contrast, sharpness, speed and spatial
resolution at high field. Manganese has paramagnetic properties leading to an enhance-
ment of the MRI signal. In this work, MR experiments were performed using manganese
as contrast agent in order to identify the consequences of the aneuploidy associated with
human chromosome 21 in mouse models on the development of the central nervous system.
Some mice are trisomic and some are healthy. The goal of the segmentation process is
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to estimate the volume of the cerebellum without killing the animal. A previous work
has been done in [2] but authors were concerned with the brain segmentation which is a
different issue. Indeed, brain contours are sharper and usual segmentation techniques as a
split and merge method for example are relevant. The conclusion of the quoted paper was
that there is no difference between of the brain volumes of trisomic and non trisomic mice.
Therefore, we focus on the cerebellum : the challenge is higher since the 3D cerebellum
stack is about 76 ˆ 50 ˆ 48 (the original whole head size stack was 341 ˆ 110 ˆ 110. As
often in MRI, images are awfully undersampled. In addition, contours are not sharp any
longer so that we have to look for dedicated methods.

Figure 1: 3D stack different views [11]
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Figure 2: 3D view

Figure 3: Axial view - slice 70

Figure 4: Sagittal view - slice 53
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Figure 5: Coronal view - slice 103

The paper is organized as follows: we first describe an automatic procedure to extract
the cerebellum area from the mouse head image : more precisely we define a 3D smaller
region of interest. Then we present methods that do not work and the method we finally
decided to use. Last section is devoted to the analysis of numerical results.

2 Preprocessing: automatic selection of the cerebellum area

We have many stacks to consider (here 14 mice) and we would like to perform an automatic
selection of the cerebellum area. In what follows we describe the generic methodology.

We decide to perform the same analysis with respect to sagittal, coronal and axial
views. We present the method on the axial (top) views. The goal is to create a 2D
thumbnail that will contains all the 2D images of the stack.

• We first extract the wider slice which is here the number 70. We may allow close
slices since we shall add some “security” pixels around the area.

• The (15) slices number 70 are contrasted and histograms are equalized.

• Then we perform a denoising process: we have used a variational filter based on
the total variation that perform a good denoising while preserving contours: more
precisely we have to compute the solution to

min
ÿ

i,j

pūi,j ´ ui,jq
2 ` λ

ÿ

i,j

|∇ui,j |, u P RN ˆ RM ,

where ū is the noisy image ∇ui,j “ p∇1ui,j ,∇2ui,jq is a discrete gradient and

|∇ui,j | “
b

p∇1ui,jq2 ` p∇2ui,jq2 .

For more details, one can refer to [1, 13, 14, 8]. We have used it with λ “ 50.
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• Then we use an EM (Expectation-maximisation) algorithm to identify the gaussian
parts of the histograms of filtered images. We recover two gaussian parts whose
parameters are the mean value µ1 ď µ2 and the standard deviation σi for i “ 1, 2.

• We perform a thresholding with µ1 ` 2σ1 as a threshold.

• We count the white pixels line by line: the first line where this number rapidly
change sis the beginning of the mouse muzzle.

Next figure illustrates the process

(a) Original (b) Equalized (c) Denoised -
λ “ 50

(d) Thresh-
olded

Figure 6: Axial slice number 70

Figure 7: Slice 70 - automatic detection of the muzzle
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Then, we remove the muzzle and use a split and merge segmentation method to isolate
the brain area. Finally, anatomical information allows to extract the cerebellum area (first
40% pixels from the top):

(a) Brain location with
split and merge

(b) Extraction process after thresholding

Figure 8: Different steps for ROI extraction

Figure 9: Cerebellum area for slices close to 70

We perform the same work for the two other views (with slice 53 for the sagittal view
and slice 103 for the coronal view). We finally adjust the three 2D thumbnails we obtain
to get a 3D- box that contains the cerebellum for any stack. Note that we have validated
the results with manual selection of the box.
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3 Segmentation

Once we have isolated the 3D region of interest we perform a segmentation to find the
cerebellum contours. Once we get them, we may compute the volume by counting the
voxels inside. We tried first 2D segmentation slice by slice and counted the pixels to recover
the 3D volume. However, this method is slow and depends on the view we consider. There
are many errors and the results are not very good.

So we decided to perform a 3D segmentation. We have tried may techniques during
the 2D segmentation. We briefly report on techniques that are not satisfactory.

3.1 2D segmentation : methods that do not work

As the images are very poor sampled the classical techniques (gradient, Laplacian, high
pass filter) do not work and we have to look for more sophisticated methods. We first tried
the use of active contours (snake) methods as in [2]. A basic Fast-Marching Method (FFM)
to solve the eikonal equation is not satisfying and we have used a method by Forcadel et al
[10]. They have proposed a generalized FFM that deal with propagation speed with non
constant sign. This method includes Chan-Vese [9] model. Unfortunately, results were
not satisfying : the method is too sensitive to the parameters and to the initial contour.

Therefore, we have tried to use a active contour method with Gradient Vector Flow
as in [15, 16, 7]. However, though the results seem corrects theye are quite dependent on
the initial guess. Moreover, this method is quite sensitive to the choice of parameters and
it is impossible to get a robust stopping criterion. The results we present where stopped
manually. The itinial contour is chosen as many small circles.

Figure 10: GVF contours for different parameters

This last technique has not been tested on the original one that involved too many
contours. We used the Mumford-Shah model (see next section) as a preprocessing tool.

(a) Thumbnail (b) Preprocessing

Figure 11: Preprocessing with Mumford-Shah method
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3.2 Second order denoising process

First we have to perform denoising.We have to choose a method that preserves the con-
tours. So we decided to use a second order variational model that provides a filtered image
whose contours are not degraded and no additional contour (staircasing effect) appears
[5, 6]. We briefly recall the method. We use a classical finite difference scheme to compute
the gradient, the divergence and the second order derivative of images. In what follows
the image size is N1 ˆN2 ˆN3. The generic component of u P X :“ RN1ˆN2ˆN3 is ui,j,k.
The formulas we used to compute these quantites are given in appendix. We consider the
following functional F : X Ñ R` defined as

F pvq “
1

2

ÿ

i,j,k

pūi,j,k ´ vi,j,kq
2
` λTV 2pvq

where ū P Y is the image to be denoised, λ ą 0,

TV 2pvq :“
ÿ

i,j,k

}pHvqi,j,k}R9 ,

and for every W “ pWiq1ďiď9 P R9

}W }R9 :“

g

f

f

e

9
ÿ

i“1

pWiq
2 .

We look for a solution to the optimization problem:

inf
vPX

F pvq (3.1)

We us the following algorithm as [5]:
Choose τ ą 0

1. Let p0 “ 0, n “ 0.

2. Suppose pn is known, we compute pn`1 as follows:

pni,j,k “ pn`1
i,j,k ` τ

”

pH
”

H˚p´
ū

λ

ı

qi,j,k `

›

›

›
pH

”

H˚pn ´
ū

λ

ı

qi,j,k

›

›

›

R9
pn`1
i,j,k

ı

which implies:

pn`1
i,j,k “

pni,j,k ´ τpH
”

H˚pn ´
ū

λ

ı

qi,j,k

1` τ
›

›

›
pH

”

H˚pn ´
ū

λ

ı

qi,j,k

›

›

›

R9
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(a) Original 3D image (b) Filtered 3D image

Figure 12: Denoising with second-order variational model - λ “ 20

3.3 Approximated Mumford Shah method

We mentionned above that we used the Mumford-Shah [12] method as a preprocessing
treatment. In fact, it an alternative to snakes methods. We used an approximate version
as in [3]. This method is simple to use but it depends on many parameters that we have to
tune. We first recall what the Ambrosio-Tortorelli approximation for the Mumford-Shah
model is. We present the method in the general n-dimensional framework. We used it for
2D and 3D images.

Let Ω be a bounded open domain of Rn, n “ 2, 3 and a function uo : Ω Ñ r0, 1s that
represents the normalized image to segment. We look for the contours as the compact set
of jumps of u0 and a smooth approximation to u0 outside Γ that we call u. We look for a
pair pΓ, uq that minimizes the Mumford-Shah functional

JMSpK,uq “

ż

ΩzΓ

|∇u|2 dx` α
ż

ΩzΓ

|u´ uo|
2 dx` β `pΓq , (3.2)

where `pΓq is the perimeter of Γ, α and β are scaling and contrast parameters. From the
practical point of view the Munford-Shah functional has to be approximated. We have
chosen the Ambrosio-Tortorelli approach [3] which is easy to implement. We introduce an
auxiliary function v that is a approximate function to the characteristic function 1 ´ χΓ

of ΩzΓ ( equal to 0 on Γ and 1 outside). For every ε ą 0 set

Fεpu,Γ “ α

ż

Ω

pu´ uoq
2dx` β

ż

Ω

v2|∇u|2dx`
ż

Ω

ˆ

ε|∇v|2 ` 1

4ε
pv ´ 1q2

˙

dx .

The minimum of Fε is computed by solving the system:

$

’

&

’

%

Bu

Bt
“ ´2αpu´ uoq ` 2β div pv2∇uq in Ω ,

Bv

Bt
“ 2ε∆v ´ 1

2εpv ´ 1q ´ 2β|∇u|2v in Ω ,
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with usual homogeneous Neuman boundary conditions (normal derivative equal to 0 on
the boudary). We have used a time explicit Euler scheme and a classical finite difference
spatial discretization. This part can be improved of course.

4 Numerical results

4.1 2D approach

We first have performed 2D segmentation of every slice of 3D stack using the coronal,
sagittal and axial views respectively. We have computed the 3D volume by counting the
pixels inside the obtained contours for each slice.

(a) Axial view - slide 18 (b) Sagittal view - slice 30 (c) Coronal view - slice 25

Figure 13: Original slices

(a) Axial view - slide 18 (b) Sagittal view - slice 30 (c) Coronal view - slice 25

Figure 14: Denoised slices - λ “ 10
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(a) Axial view - slide 18 (b) Sagittal view - slice 30 (c) Coronal view - slice 25

Figure 15: Mumford-Shah segmentation - α “ 1, β “ 0.5, ε “ 0.001

As the Mumford-Shah model depends on parameters pα, β, εq we performed tests with
different values

α, β P t0.1, 1, 5, 10, 20u, ε P t10´1, 10´2, 10´3u ,

a maximal number of iterations set to Nmax “ 10000 and a time step δt “ 10´4. Then we
chose the median volume among the results. We report the results below:

Mouse H/T Axial Sagittal Coronal Mean :Axial Mean : Sagittal Mean : Coronal Mean

Sagittal Coronal Axial 3 views

CN2 H 28560 31040 27710 29800 29375 28135 29103

CW3 H 40560 43160 39590 41860 41375 40075 41103

CX2 H 35270 274200 34650 36345 36035 34960 35780

CY1 H 41980 40150 39540 41065 39845 40760 40557

CZ3 H 32100 33450 31350 32775 32400 31725 32300

s79092 H 57130 60160 56680 58645 58420 56905 57990

s79103 H 45220 46060 45450 45640 45755 45335 45577

s79220 H 30820 35400 29210 33110 32305 30015 31810

s79224 H 34160 36240 33500 35200 34870 33830 34633

s79102 T 23060 27510 23650 25285 25580 23355 24740

s79105 T 32220 36060 32670 34140 34365 32445 33650

s79106 T 34040 41890 36040 37965 38965 35040 37323

s79219 T 25470 30200 26580 27835 28390 26025 27417

s79225 T 25660 30460 26120 28060 28290 25890 27413

Table 1: Volume of cerebellum for healthy (H) and trisomic (T) mice
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Figure 16: Volumes comparison

A short statistical study is finally carried out on (average) estimated cerebellum vol-
umes. On our sample, healthy mouses seem to have a greater estimated cerebellum volume
than trisomic ones (for instance in terms of median, first and third quartiles, see Figure
16). This difference is proved to be significant from a Mann-Whitney test (whose p-
value=0.02997). This is enough to conclude healthy mouses tend (stochastically) to have
a greater cerebellum volume than trisomic ones (with a risk of 0.03 of being wrong).

4.2 3D approach

We have noticed that the best choice was ε “ 0.1 and that α “ 1 and β “ 0.1.
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(a) Filtered 3D image - λ “ 20 (b) Contours with α “ 1, β “ 0.01, ε “ 0.1

Figure 17: 3D Segmentation with approximate Mumford-Shah model

(a) Outside (b) Inside

Figure 18: 3D Segmentation with α “ 1, β “ 0.01, ε “ 0.1 - λ “ 20
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(a) Outside (b) Inside

Figure 19: 3D Segmentation with α “ 1, β “ 0.1, ε “ 0.1 - λ “ 10

(a) Outside (b) Inside

Figure 20: 3D Segmentation with α “ 1, β “ 0.1, ε “ 0.1 - λ “ 20

Once we have obtained the contours, we perform a thresholding and count the voxels
from the center of the box to the contours in order to get the volume estimate. We compute
the 3D volume by counting the voxels inside the obtained contours.

5 Conclusion

The complete process gives promising results. In particular, the hypothesis that trisomic
mice have a smaller cerebellum than healthy ones can be validated. Therefore, the method-
ology can be used for other pathologies: the use of MRI imaging implies that mice are not
sacrified.
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However, the method is not robust enough since the segmentation is not completely
satisfactory. We actually develop (statistical) region methods that should be more precise
even in the case where images are not of high quality. This will be adressed in a future
work.

Appendix

Gradient

The discrete gradient of an image u P Y is computed with a forward finite difference
scheme:

p∇ui,j,kq “ p∇u1
i,j,k,∇u2

i,j,k,∇u3
i,j,kq

where

∇u1
i,j,k “

"

ui`1,j,k ´ ui,j,k, i ă N1

0, i “ N1

∇u2
i,j,k “

"

ui,j`1,k ´ ui,j,k, j ă N2

0, j “ N2

∇u3
i,j,k “

"

ui,j,k`1 ´ ui,j,k, k ă N3

0, k “ N3

Second order derivative

The second order derivative of v P Y is computed as :

pHvqi,j,k “pHv
11
i,j,k, Hv

12
i,j,k, Hv

13
i,j,k, Hv

21,
i,j,k

Hv22
i,j,k, Hv

23
i,j,k, Hv

31
i,j,k, Hv

32
i,j,k, Hv

33
i,j,kq.

For every i “ 1, ..., N1, j “ 1, ..., N2 and k “ 1, ..., N3,

pHvq11
i,j,k “

$

&

%

vi`1,j,k ´ vi,j,k ` vi´1,j,k 1 ă i ă N1

vi`1,j,k ´ vi,j,k, i “ 1
vi,j,k ´ vi´1,j,k, i “ N1

pHvq12
i,j,k “

$

’

’

&

’

’

%

vi,j`1,k ´ vi,j,k ´ vi´1,j`1,k ` vi´1,j,k,
1 ă i ď N1, 1 ď j ă N2

0, j “ N2

0, i “ 1

pHvq22
i,j,k “

$

&

%

vi,j`1,k ´ vi,j,k ` vi,j´1,k, 1 ă j ă N2

vi,j`1,k ´ vi,j,k, j “ 1
vi,j,k ´ vi,j´1,k, j “ N2

pHvq23
i,j,k “

$

’

’

&

’

’

%

vi,j,k`1 ´ vi,j,k ´ vi,j´1,k`1 ` vi,j´1,k,
1 ă j ď N2, 1 ď k ă N3

0, j “ 1
0, k “ N3
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pHvq31
i,j,k “

$

’

’

&

’

’

%

vi`1,j,k ´ vi,j,k ´ vi`1,j,k´1 ` vi,j,k´1,
1 ă k ď N3, 1 ď i ă N1

0, k “ 1
0, i “ N1

pHvq32
i,j,k “

$

’

’

&

’

’

%

vi,j`1,k ´ vi,j,k ´ vi`,j`1,k´1 ` vi,j,k´1,
1 ď j ă N, 1 ă k ď N3

0, j “ N2

0, k “ 1

pHvq33
i,j,k “

$

&

%

vi,j,k`1 ´ vi,j,k ` vi,j,k´1, 1 ă k ă N3

vi,j,k`1 ´ vi,j,k, k “ 1
vi,j,k ´ vi,j,k´1, k “ N3

Adjoint of the second order derivative

The adjoint ofH˚ : X9 Ñ X is defined for every p “ pp11, p12, p13, p21, p22, p23, p31, p32, p33q P

X9, as

pH˚pqi,j,k “ σ11
i,j,k ` σ

12
i,j,k ` σ

13
i,j,k ` σ

21
i,j,k ` σ

22
i,j,k

` σ23
i,j,k ` σ

31
i,j,k ` σ

32
i,j,k ` σ

33
i,j,k

where

σ11
i,j,k “

$

&

%

p11
i`1,j,k ´ 2p11

i,j,k ` p
11
i´1,j,k, 1 ă i ă N1

p11
i`1,j,k ´ p

11
i,j,k, i “ 1

p11
i´1,j,k ´ p

11
i,j,k, i “ N1

σ22
i,j,k “

$

&

%

p22
i,j`1,k ´ 2p22

i,j,k ` p
22
i,j´1,k, 1 ă j ă N2

p22
i,j`1,k ´ p

22
i,j,k, j “ 1

p22
i,j´1,k ´ p

22
i,j,k, j “ N2

σ33
i,j,k “

$

&

%

p33
i,j,k`1 ´ 2p33

i,j,k ` p
33
i,j,k´1, 1 ă k ă N3

p33
i,j,k`1 ´ p

33
i,j,k, k “ 1

p33
i,j,k´1 ´ p

33
i,j,k, k “ N3

σ12
i,j,k “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

p12
i`1,j,k, i “ 1, j “ 1

´p12
i`1,j´1,k, i “ 1, j “ N2

p12
i`1,j,k ´ p

12
i`1,j´1,k, i “ 1, 1 ă j ă N2

´p12
i,j,k, i “ N1, j “ 1

p12
i,j´1,k, i “ N1, j “ N2

p12
i,j´1,k ´ p

12
i,j,k, i “ N1, 1 ă j ă N2

p12
i`1,j,k ´ p

12
i,j,k, 1 ă i ă N1, j “ 1

p12
i,j´1,k ´ p

12
i`1,j´1,k, 1 ă i ă N1, j “ N2

p12
i,j´1,k ´ p

12
i,j,k ´ p

12
i`1,j´1,k ` p

12
i`1,j,k,

1 ă i ă N1, 1 ă j ă N2
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σ13
i,j,k “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

p13
i`1,j,k, i “ 1, k “ 1

´p13
i`1,j,k´1, i “ 1, k “ N3

p13
i`1,j,k ´ p

13
i`1,j,k´1, i “ 1, 1 ă j ă N3

´p13
i,j,k, i “ N1, k “ 1

p13
i,j,k´1, i “ N1, k “ N3

p13
i,j,k´1 ´ p

13
i,j,k, i “ N1, 1 ă k ă N3

p13
i`1,j,k ´ p

13
i,j,k, 1 ă i ă N1, k “ 1

p13
i,j,k´1 ´ p

13
i`1,j,k´1, 1 ă i ă N1, k “ N3

p13
i,j,k´1 ´ p

13
i,j,k ´ p

13
i`1,j,k´1 ` p

13
i`1,j,k,

1 ă i ă N1, 1 ă k ă N3

σ21
i,j,k “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

p21
i,j`1,k, j “ 1, i “ 1

´p21
i´1,j`1,k, j “ 1, i “ N1

p21
i,j`1,k ´ p

21
i´1,j`1,k, j “ 1, 1 ă i ă N1

´p21
i,j,k, j “ N2, i “ 1

p21
i´1,j,k, j “ N2, i “ N1

p21
i´1,j,k ´ p

21
i,j,k, j “ N2, 1 ă i ă N1

p21
i,j`1,k ´ p

21
i,j,k, 1 ă j ă N2, i “ 1

p21
i´1,j,k ´ p

21
i´1,j`1,k, 1 ă j ă N2, i “ N1

p21
i´1,j,k ´ p

21
i,j,k ´ p

21
i´1,j`1,k ` p

21
i,j`1,k,

1 ă j ă N2, 1 ă i ă N1

σ23
i,j,k “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

p23
i,j`1,k, j “ 1, k “ 1

´p23
i,j`1,k´1, j “ 1, k “ N3

p23
i,j`1,k ´ p

23
i,j`1,k´1, j “ 1, 1 ă k ă N3

´p23
i,j,k, j “ N2, k “ 1

p23
i,j,k´1, j “ N2, k “ N3

p23
i,j,k´1 ´ p

23
i,j,k, j “ N2, 1 ă k ă N3

p23
i,j`1,k ´ p

23
i,j,k, 1 ă j ă N2 , k “ 1

p23
i,j,k´1 ´ p

23
i,j`1,k´1, 1 ă j ă N2, k “ N3

p23
i,j,k´1 ´ p

23
i,j,k ´ p

23
i,j`1,k´1 ` p

23
i,j`1,k,

1 ă j ă N2, 1 ă k ă N3

σ31
i,j,k “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

p31
i,j,k`1, k “ 1, i “ 1

´p31
i´1,j,k`1, k “ 1, i “ N1

p31
i,j,k`1 ´ p

31
i´1,j,k`1, k “ 1, 1 ă i ă N1

´p31
i,j,k, k “ N3, i “ 1

p31
i´1,j,k, k “ N3, i “ N1

p31
i´1,j,k ´ p

31
i,j,k, k “ N3, 1 ă i ă N1

p31
i,j,k`1 ´ p

31
i,j,k, 1 ă k ă N3, i “ 1

p31
i´1,j,k ´ p

31
i´1,j,k`1, 1 ă k ă N3, i “ N1

p31
i´1,j,k ´ p

31
i,j,k ´ p

31
i´1,j,k`1 ` p

31,
i,j,k`1,

1 ă k ă N3, 1 ă i ă N1
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σ32
i,j,k “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

p32
i,j,k`1, k “ 1, 1 “ 1

´p32
i,j´1,k`1, k “ 1, j “ N2

p32
i,j,k`1 ´ p

32
i,j´1,k`1, k “ 1, 1 ă j ă N2

´p32
i,j,k, k “ N3, j “ 1

p32
i,j´1,k, k “ N3, j “ N2

p32
i,j´1,k ´ p

32
i,j,k, k “ N3, 1 ă j ă N2

p32
i,j,k`1 ´ p

32
i,j,k, 1 ă k ă N3, j “ 1

p32
i,j´1,k ´ p

32
i,j´1,k`1, 1 ă k ă N3, j “ N2

p32
i,j´1,k ´ p

32
i,j,k ´ p

32
i,j´1,k`1 ` p

32
i,j,k`1,

1 ă k ă N3, 1 ă j ă N2

Divergence

Finally the 3D divergence is computed with a backward scheme: for every pp1, p2, p3q P Y

pdiv pqi,j,k “

$

&

%

p1
i,j,k ´ p

1
i´1,j,k if 1 ă i ă N1

p1
i,j,k if i “ 1

´p1
i´1,j,k if i “ N1

`

$

&

%

p2
i,j,k ´ p

2
i,j´1,k if 1 ă j ă N2

p2
i,j,k if j “ 1

´p2
i,j´1,k if j “ N2

`

$

&

%

p3
i,j,k ´ p

3
i,j,k´1 if 1 ă jk ă N3

p3
i,j,k if k “ 1

´p3
i,j,k´1 if k “ N3
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