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Introduction

The aim of this paper is to present a complete methodology to perform the segmentation of a stack of MRI images. More precisely, we deal with (3D) of MRI images of mice brain. Magnetic Resonance Imaging (MRI) is a non invasive imaging technique which can be used for diagnostic or longitudinal therapeutic purposes. Proton MRI is well adapted to study soft material such as cerebral tissue in animal models of human neuropathologies. However MRI studies on small rodents are challenging due to the small sizes of their brains. The recent use of high fields for MRI instruments enables the increase of the spatial resolution, the improvement of the sensitivity of the technique and to optimize the signal-to-noise ratio. Nevertheless, the increase in the magnetic field increases the sensitivity to the effects of magnetic susceptibility and reduces the natural contrast between different tissues. Thus, one of the research objectives in MRI today is to propose new methodological, technological and instrumental developments to improve the contrast, sharpness, speed and spatial resolution at high field. Manganese has paramagnetic properties leading to an enhancement of the MRI signal. In this work, MR experiments were performed using manganese as contrast agent in order to identify the consequences of the aneuploidy associated with human chromosome 21 in mouse models on the development of the central nervous system. Some mice are trisomic and some are healthy. The goal of the segmentation process is 1 INTRODUCTION 2 to estimate the volume of the cerebellum without killing the animal. A previous work has been done in [START_REF] Almhdie | Chan-Vese based method to segment mouse brain MRI images: Application to cerebral malformation analysis in trisomy 21[END_REF] but authors were concerned with the brain segmentation which is a different issue. Indeed, brain contours are sharper and usual segmentation techniques as a split and merge method for example are relevant. The conclusion of the quoted paper was that there is no difference between of the brain volumes of trisomic and non trisomic mice. Therefore, we focus on the cerebellum : the challenge is higher since the 3D cerebellum stack is about 76 ˆ50 ˆ48 (the original whole head size stack was 341 ˆ110 ˆ110. As often in MRI, images are awfully undersampled. In addition, contours are not sharp any longer so that we have to look for dedicated methods. The paper is organized as follows: we first describe an automatic procedure to extract the cerebellum area from the mouse head image : more precisely we define a 3D smaller region of interest. Then we present methods that do not work and the method we finally decided to use. Last section is devoted to the analysis of numerical results.

Preprocessing: automatic selection of the cerebellum area

We have many stacks to consider (here 14 mice) and we would like to perform an automatic selection of the cerebellum area. In what follows we describe the generic methodology.

We decide to perform the same analysis with respect to sagittal, coronal and axial views. We present the method on the axial (top) views. The goal is to create a 2D thumbnail that will contains all the 2D images of the stack.

• We first extract the wider slice which is here the number 70. We may allow close slices since we shall add some "security" pixels around the area.

• The (15) slices number 70 are contrasted and histograms are equalized.

• Then we perform a denoising process: we have used a variational filter based on the total variation that perform a good denoising while preserving contours: more precisely we have to compute the solution to min ÿ i,j pū i,j ´ui,j q 2 `λ ÿ i,j

|∇u i,j |, u P R N ˆRM ,
where ū is the noisy image ∇u i,j " p∇ 1 u i,j , ∇ 2 u i,j q is a discrete gradient and

|∇u i,j | " b p∇ 1 u i,j q 2 `p∇ 2 u i,j q 2 .
For more details, one can refer to [START_REF] Aubert | Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations[END_REF][START_REF] Osher | Nonlinear total variation based noise removal algorithms[END_REF][START_REF] Osher | Image denoising and decomposition with total variation minimization and oscillatory functions. Special issue on mathematics and image analysis[END_REF][START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF]. We have used it with λ " 50.

• Then we use an EM (Expectation-maximisation) algorithm to identify the gaussian parts of the histograms of filtered images. We recover two gaussian parts whose parameters are the mean value µ 1 ď µ 2 and the standard deviation σ i for i " 1, 2.

• We perform a thresholding with µ 1 `2σ 1 as a threshold.

• We count the white pixels line by line: the first line where this number rapidly change sis the beginning of the mouse muzzle.

Next figure illustrates the process We perform the same work for the two other views (with slice 53 for the sagittal view and slice 103 for the coronal view). We finally adjust the three 2D thumbnails we obtain to get a 3D-box that contains the cerebellum for any stack. Note that we have validated the results with manual selection of the box.

Segmentation

Once we have isolated the 3D region of interest we perform a segmentation to find the cerebellum contours. Once we get them, we may compute the volume by counting the voxels inside. We tried first 2D segmentation slice by slice and counted the pixels to recover the 3D volume. However, this method is slow and depends on the view we consider. There are many errors and the results are not very good.

So we decided to perform a 3D segmentation. We have tried may techniques during the 2D segmentation. We briefly report on techniques that are not satisfactory.

2D segmentation : methods that do not work

As the images are very poor sampled the classical techniques (gradient, Laplacian, high pass filter) do not work and we have to look for more sophisticated methods. We first tried the use of active contours (snake) methods as in [START_REF] Almhdie | Chan-Vese based method to segment mouse brain MRI images: Application to cerebral malformation analysis in trisomy 21[END_REF]. A basic Fast-Marching Method (FFM) to solve the eikonal equation is not satisfying and we have used a method by Forcadel et al [START_REF] Forcadel | Generalized Fast Marching Method: Applications to Image Segmentation[END_REF]. They have proposed a generalized FFM that deal with propagation speed with non constant sign. This method includes Chan-Vese [START_REF] Chan | Active Contours Without Edges[END_REF] model. Unfortunately, results were not satisfying : the method is too sensitive to the parameters and to the initial contour.

Therefore, we have tried to use a active contour method with Gradient Vector Flow as in [START_REF] Xu | Gradient Vector Flow: A new external force for snakes[END_REF][START_REF] Xu | Snakes, Shapes, and Gradient Vector Flow[END_REF][START_REF] Bergounioux | Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model[END_REF]. However, though the results seem corrects theye are quite dependent on the initial guess. Moreover, this method is quite sensitive to the choice of parameters and it is impossible to get a robust stopping criterion. The results we present where stopped manually. The itinial contour is chosen as many small circles. 

Second order denoising process

First we have to perform denoising.We have to choose a method that preserves the contours. So we decided to use a second order variational model that provides a filtered image whose contours are not degraded and no additional contour (staircasing effect) appears [START_REF] Bergounioux | A second order model for 3D texture extraction, Mathematical Image Processing[END_REF][START_REF] Bergounioux | A second-order model for image denoising and/or texture extraction[END_REF]. We briefly recall the method. We use a classical finite difference scheme to compute the gradient, the divergence and the second order derivative of images. In what follows the image size is N 1 ˆN2 ˆN3 . The generic component of u P X :" R N 1 ˆN2 ˆN3 is u i,j,k .

The formulas we used to compute these quantites are given in appendix. We consider the following functional F : X Ñ R `defined as

F pvq " 1 2 ÿ i,j,k pū i,j,k ´vi,j,k q 2 `λT V 2 pvq
where ū P Y is the image to be denoised, λ ą 0,

T V 2 pvq :" ÿ i,j,k }pHvq i,j,k } R 9 ,
and for every W " pW i q 1ďiď9 P R 9 }W } R 9 :"

g f f e 9 ÿ i"1 pW i q 2 .
We look for a solution to the optimization problem:

inf vPX F pvq (3.1)
We us the following algorithm as [START_REF] Bergounioux | A second order model for 3D texture extraction, Mathematical Image Processing[END_REF]: Choose τ ą 0 1. Let p 0 " 0, n " 0.

2. Suppose p n is known, we compute p n`1 as follows:

p n i,j,k " p n`1 i,j,k `τ " pH " H ˚p ´ū λ ı q i,j,k `› › ›pH " H ˚pn ´ū λ ı q i,j,k › › › R 9
p n`1 i,j,k ı which implies: 

p n`1 i,j,k " p n i,j,k ´τ pH " H ˚pn ´ū λ ı q i,j,k 1 `τ › › ›pH " H ˚pn ´ū λ ı q i,j,k › › › R 9 (a) Original 3D image (b) Filtered 3D image

Approximated Mumford Shah method

We mentionned above that we used the Mumford-Shah [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] method as a preprocessing treatment. In fact, it an alternative to snakes methods. We used an approximate version as in [START_REF] Ambrosio | Approximation of functionals via-convergence[END_REF]. This method is simple to use but it depends on many parameters that we have to tune. We first recall what the Ambrosio-Tortorelli approximation for the Mumford-Shah model is. We present the method in the general n-dimensional framework. We used it for 2D and 3D images.

Let Ω be a bounded open domain of R n , n " 2, 3 and a function u o : Ω Ñ r0, 1s that represents the normalized image to segment. We look for the contours as the compact set of jumps of u 0 and a smooth approximation to u 0 outside Γ that we call u. We look for a pair pΓ, uq that minimizes the Mumford-Shah functional

J M S pK, uq " ż ΩzΓ |∇u| 2 dx `α ż ΩzΓ |u ´uo | 2 dx `β pΓq , (3.2) 
where pΓq is the perimeter of Γ, α and β are scaling and contrast parameters. From the practical point of view the Munford-Shah functional has to be approximated. We have chosen the Ambrosio-Tortorelli approach [START_REF] Ambrosio | Approximation of functionals via-convergence[END_REF] which is easy to implement. We introduce an auxiliary function v that is a approximate function to the characteristic function 1 ´χΓ of ΩzΓ ( equal to 0 on Γ and 1 outside). For every ε ą 0 set

F ε pu, Γ " α ż Ω pu ´uo q 2 dx `β ż Ω v 2 |∇u| 2 dx `żΩ ˆε|∇v| 2 `1 4ε pv ´1q 2 ˙dx .
The minimum of F ε is computed by solving the system:

$ ' & ' % Bu Bt " ´2αpu ´uo q `2β div pv 2 ∇uq in Ω , Bv Bt " 2ε∆v ´1 2ε pv ´1q ´2β|∇u| 2 v in Ω ,
with usual homogeneous Neuman boundary conditions (normal derivative equal to 0 on the boudary). We have used a time explicit Euler scheme and a classical finite difference spatial discretization. This part can be improved of course.

4 Numerical results

2D approach

We first have performed 2D segmentation of every slice of 3D stack using the coronal, sagittal and axial views respectively. We have computed the 3D volume by counting the pixels inside the obtained contours for each slice. A short statistical study is finally carried out on (average) estimated cerebellum volumes. On our sample, healthy mouses seem to have a greater estimated cerebellum volume than trisomic ones (for instance in terms of median, first and third quartiles, see Figure 16). This difference is proved to be significant from a Mann-Whitney test (whose p-value=0.02997). This is enough to conclude healthy mouses tend (stochastically) to have a greater cerebellum volume than trisomic ones (with a risk of 0.03 of being wrong).

3D approach

We have noticed that the best choice was ε " 0.1 and that α " 1 and β " 0.1. Once we have obtained the contours, we perform a thresholding and count the voxels from the center of the box to the contours in order to get the volume estimate. We compute the 3D volume by counting the voxels inside the obtained contours.

Conclusion

The complete process gives promising results. In particular, the hypothesis that trisomic mice have a smaller cerebellum than healthy ones can be validated. Therefore, the methodology can be used for other pathologies: the use of MRI imaging implies that mice are not sacrified.

However, the method is not robust enough since the segmentation is not completely satisfactory. We actually develop (statistical) region methods that should be more precise even in the case where images are not of high quality. This will be adressed in a future work.

Appendix Gradient

The discrete gradient of an image u P Y is computed with a forward finite difference scheme: p∇u i,j,k q " p∇u 1 i,j,k , ∇u 2 i,j,k , ∇u 3 i,j,k q where ∇u 1 i,j,k "

" u i`1,j,k ´ui,j,k , i ă N 1 0, i " N 1 ∇u 2 i,j,k " " u i,j`1,k ´ui,j,k , j ă N 2 0, j " N 2 ∇u 3 i,j,k " " u i,j,k`1 ´ui,j,k , k ă N 3 0, k " N 3

Second order derivative

The second order derivative of v P Y is computed as : pHvq i,j,k "pHv 11 i,j,k , Hv 12 i,j,k , Hv 13 i,j,k , Hv 21, i,j,k

Hv 22 i,j,k , Hv 23 i,j,k , Hv 31 i,j,k , Hv 32 i,j,k , Hv 33 i,j,k q.

For every i " 1, ..., N 1 , j " 1, ..., N 2 and k " 1, ..., N 3 ,

pHvq 11 i,j,k " $ & % v i`1,j,k ´vi,j,k `vi´1,j,k 1 ă i ă N 1 v i`1,j,k ´vi,j,k , i " 1 v i,j,k ´vi´1,j,k , i " N 1 pHvq 12 i,j,k " $ ' ' & ' ' % v i,j`1,k ´vi,j,k ´vi´1,j`1,k `vi´1,j,k , 1 ă i ď N 1 , 1 ď j ă N 2 0, j " N 2 0, i " 1 pHvq 22 i,j,k " $ & % v i,j`1,k ´vi,j,k `vi,j´1,k , 1 ă j ă N 2
v i,j`1,k ´vi,j,k , j " 1 v i,j,k ´vi,j´1,k , j " N 2 pHvq 23 i,j,k " $ ' ' & ' ' % v i,j,k`1 ´vi,j,k ´vi,j´1,k`1 `vi,j´1,k , 1 ă j ď N 2 , 1 ď k ă N 3 0, j " 1 0, k " N 3 pHvq 31 i,j,k " $ ' ' & ' ' % v i`1,j,k ´vi,j,k ´vi`1,j,k´1 `vi,j,k´1 , 1 ă k ď N 3 , 1 ď i ă N 1 0, k " 1 0, i " N 1 pHvq 32 i,j,k " $ ' ' & ' ' % v i,j`1,k ´vi,j,k ´vi`,j`1,k´1 `vi,j,k´1 , 1 ď j ă N, 1 ă k ď N 3 0, j " N 2 0, k " 1 pHvq 33 i,j,k "

$ & % v i,j,k`1 ´vi,j,k `vi,j,k´1 , 1 ă k ă N 3 v i,j,k`1 ´vi,j,k , k " 1 v i,j,k ´vi,j,k´1 , k " N 3

Adjoint of the second order derivative

The adjoint of H ˚: X 9 Ñ X is defined for every p " pp 11 , p 12 , p 13 , p 21 , p 22 , p 23 , p 31 , p 32 , p 33 q P X 9 , as pH ˚pq i,j,k " σ i,j,k , k " N 3
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 1 Figure 1: 3D stack different views[START_REF] Houdé | Cerveau et psychologie: Introduction à l'imagerie cérébrale anatomique et fonctionnelle[END_REF] 
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 67 Figure 6: Axial slice number 70
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 9 Figure 9: Cerebellum area for slices close to 70
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 10 Figure 10: GVF contours for different parameters
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 11 Figure 11: Preprocessing with Mumford-Shah method
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 12 Figure 12: Denoising with second-order variational model -λ " 20
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 1415 Figure 14: Denoised slices -λ " 10
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 117 Figure 17: 3D Segmentation with approximate Mumford-Shah model
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 18 Figure 18: 3D Segmentation with α " 1, β " 0.01, ε " 0.1 -λ " 20
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 19 Figure 19: 3D Segmentation with α " 1, β " 0.1, ε " 0.1 -λ " 10
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 20 Figure 20: 3D Segmentation with α " 1, β " 0.1, ε " 0.1 -λ " 20
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Table 1 :

 1 ´1, 10 ´2, 10 ´3u , a maximal number of iterations set to N max " 10000 and a time step δt " 10 ´4. Then we chose the median volume among the results. We report the results below: Volume of cerebellum for healthy (H) and trisomic (T) mice

	Mouse	H/T	Axial	Sagittal Coronal	Mean :Axial	Mean : Sagittal	Mean : Coronal	Mean
						Sagittal	Coronal	Axial	3 views
	CN2	H	28560 31040	27710	29800	29375	28135	29103
	CW3	H	40560 43160	39590	41860	41375	40075	41103
	CX2	H	35270 274200 34650	36345	36035	34960	35780
	CY1	H	41980 40150	39540	41065	39845	40760	40557
	CZ3	H	32100 33450	31350	32775	32400	31725	32300
	s79092	H	57130 60160	56680	58645	58420	56905	57990
	s79103	H	45220 46060	45450	45640	45755	45335	45577
	s79220	H	30820 35400	29210	33110	32305	30015	31810
	s79224	H	34160 36240	33500	35200	34870	33830	34633
	s79102	T	23060 27510	23650	25285	25580	23355	24740
	s79105	T	32220 36060	32670	34140	34365	32445	33650
	s79106	T	34040 41890	36040	37965	38965	35040	37323
	s79219	T	25470 30200	26580	27835	28390	26025	27417
	s79225	T	25660 30460	26120	28060	28290	25890	27413

  ,j,k

	where	σ 11 i,j,k "	$ &	p 11 i`1,j,k ´2p 11 i,j,k p 11 i`1,j,k ´p11 i,j,k , i " 1 `p11 i´1,j,k , 1 ă i ă N 1
			%	p 11 i´1,j,k	´p11 i,j,k , i " N 1
		σ 22 i,j,k "	$ &	p 22 i,j`1,k ´2p 22 i,j,k p 22 i,j`1,k ´p22 i,j,k , j " 1 `p22 i,j´1,k , 1 ă j ă N 2
			%	p 22 i,j´1,k	´p22 i,j,k , j " N 2
		σ 33 i,j,k "	$ &	p 33 i,j,k`1 ´2p 33 i,j,k p 33 i,j,k`1 ´p33 i,j,k , k " 1 `p33 i,j,k´1 , 1 ă k ă N 3
			%	p 33 i,j,k´1

Divergence

Finally the 3D divergence is computed with a backward scheme: for every pp 1 , p 2 , p 3 q P Y pdiv pq i,j,k "