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A NONLOCAL TWO PHASE STEFAN PROBLEM

We study a nonlocal version of the two-phase Stefan problem, which models a phase transition problem between two distinct phases evolving to distinct heat equations. Mathematically speaking, this consists in deriving a theory for sign-changing solutions of the equation, ut

. Then we focus on the study of the asymptotic behaviour for sign-changing solutions, which present challenging difficulties due to the non-monotone evolution of each phase.

Introduction

The aim of this paper is to study the following nonlocal version of the two-phase Stefan problem in R N

(1)

u t = J * v -v, where v = Γ(u), u(•, 0) = f,
where J is a smooth nonnegative convolution kernel, u is the enthalpy and Γ(u) = sign(u) |u|-1 + (see below more precise assumptions and explanations). We study this nonlocal equation in the spirit of [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF], but for sign-changing solutions, which presents very challenging difficulties concerning the asymptotic behaviour.

The two-phase Stefan problem -In general, the Stefan problem is a nonlinear and moving boundary problem which aims to describe the temperature and enthalpy distribution in a phase transition between several states. The history of the problem goes back to Lamé and Clapeyron [START_REF] Lamé | Mémoire sur la solidification par refroidissement d'un globe solid[END_REF], and afterwards [START_REF] Stefan | Über einige Probleme der Theorie der Wärmeleitung[END_REF]. For the local model can be seen e.g. the monographs [START_REF] Chalmers | Principles of solidification[END_REF] and [START_REF] Woodruff | The solid-liquid interface[END_REF] for the phenomenology and modeling; [START_REF] Crank | Free and moving boundary problems[END_REF], [START_REF] Meirmanov | The Stefan problem[END_REF], [START_REF] Rubinstein | The Stefan problem[END_REF] and [START_REF] Visintin | Two-scale model of phase transitions[END_REF] for the mathematical aspects of the model. † Laboratoire de Mathématiques et Physique Théorique, U. F. Rabelais, Parc de Grandmont, 37200 Tours, France email: emmanuel.chasseigne@lmpt.univ-tours.fr. ‡ Departamento de Matemática Aplicada, U. Complutense de Madrid. Partially supported by the FPU grant from the Spanish Ministerio de Educación and the projects MTM2009-07540, UCM-CAM, Grupo de Investigación CADEDIF. email: silviasastre@mat.ucm.es. 0 AMS subject classifications: 80A22, 35R09, 45K05, 45M05.
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The main model uses a local equation under the form u t = ∆v, v = Γ(u) but recently, a nonlocal version of the one-phase Stefan problem was introduced in [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF], which is equivalent to [START_REF] Baiocchi | Su un problema di frontiera libera conneso a questioni di idraulica[END_REF] in the case of nonnegative solutions. This new mathematical model turns out to be rather interesting from the physical point of view at an intermediate (mesoscopic) scale, since it explains for instance the formation and evolution of mushy regions (regions which are in an intermediate state between water and ice). We are not going to enter into more details here and refer the reader to [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF] for more information about the model and more bibliographical references.

Let us however mention some basic facts: the one-phase problem models for instance the transition between ice and water: the "usual" heat equation (whether local or nonlocal) governs the evolution in the water phase while the temperature does not evolve in the ice phase, maintained at 0 • . The free boundary separating water from ice evolves according to how the heat contained in water is used to break the ice.

In the two-phase Stefan problem, the temperature can also evolve in the second phase, modeled by a second heat equation with different parameters. In this model, the temperature v = Γ(u) is the quantity which identifies the different phases: the region {v > 0} is the first phase, {v < 0} represents the second phase and the intermediate region, {v = 0} is where the transition occurs, containing what is called a mushy region.

In all the paper, the function J in equation ( 1) is assumed to be continuous, non negative, compactly supported, radially symmetric, with R J = 1 . We denote by R J the radius of the support of J: supp(J) = B R J , where B R J is the ball centered in zero with radius R J . The graph v = Γ(u), is defined generally as follows

(2) Γ(u) =      c 1 (u -e 1 ), if u < e 1 0, if e 1 ≤ u ≤ e 2 c 2 (u -e 2 ), if u > e 2 .
with e 1 , e 2 , c 1 and c 2 real variables, that satisfy that e 1 < 0 < e 2 and c 1 , c 2 > 0 (see Figure 1 below). After a simple change of units, we arrive at the graph of equation (1): Γ(u) = sign(u) (|u| -1) + , where we denote by s + the quantity max(s, 0), as is standard and sign(s) equals -1, +1 or 0 according to s < 0, s > 0, or s = 0.

Asymptotic Behaviour -In [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF], the authors proved several qualitative properties for the nonlocal one-phase Stefan problem. Most of them are also valid in the twophase problem, but the asymptotic behaviour is far from being fully understood when solutions change sign. Going back to the one-phase Stefan problem, it can be shown that there exists a projection operator P which maps any nonnegative initial data f to Pf , which is the unique solution to a non-local obstacle problem at level one (see [2, p. 23]). Then the asymptotic behaviour of the solution u starting with f is given by Pf . Actually, this can be done exactly this way if, for example, f is compactly supported. Then P can be extended to all L 1 (the space of integrable functions), using a standard closure theory of monotone operators.

A key argument in the one-phase Stefan problem is the retention property, which means that once the solution becomes positive at some point, it remains positive for greater times. In this case, the interfaces are monotone: the positivity sets (of u and v) grow. With this particular property, the Baiocchi transform gives all necessary and sufficient information to derive the asymptotic obstacle problem (for information about the Baiocchi transform, see [START_REF] Baiocchi | Su un problema di frontiera libera conneso a questioni di idraulica[END_REF]).

In the case of the two-phase Stefan problem, the situation is far more delicate to handle, due to the fact that sign-changing solutions do not enjoy a similar retention property in general: a solution can be positive, but later on it can become negative due to the presence of a high negative mass nearby. This implies that the Baiocchi transform is not a relevant variable anymore in general and many arguments fail.

However, we shall study here some situations in which we can still apply, to some extent, the techniques using the Baiocchi transform and get the asymptotic behaviour for sign-changing solutions.

Main Results -we first briefly derive a complete theory of existence, uniqueness and comparison for the nonlocal two-phase Stefan problem, which is based essentially on the same ideas in [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF]. Then we concentrate on the asymptotic behaviour of sign-changing solutions. Though we do not provide a complete picture of the question which appears to be rather difficult, we give some sufficient conditions which guarantee the identification of the limit.

Namely, we first give in Section 3 a criterium which ensures that the positive and negative phases will never interact. This implies that the asymptotic behaviour is given separately by each phase, considered as solutions of the one-phase Stefan problem.

Then we study the case when some interaction between the phases can occur, but only in the mushy zone, {|u| < 1}. In this case we prove that the asymptotic behaviour can be described by a bi-obstacle problem, the solution being cut at levels -1 and +1. We prove that this obstacle problem has a unique solution in a suitable class, and then we extend the operator which maps the initial data to the asymptotic limit to more general data by a standard approximation procedure. Notice that for the local model, such a result would be rather trivial since the mushy regions do not evolve. However, here those regions do evolve due to the nonlocal character of the equation.

Finally, we give an explicit example when the enthalpy becomes nonnegative in finite time even if the initial data is not, so that the asymptotic behaviour is driven by the one-phase Stefan regime.

Notations -Throughout the paper, we use the following notation: C(R N ; R), or in shorter form C(R N ) is the space of continuous functions from R N with values in R. Other spaces we consider:

• BC R N = {ϕ ∈ C R N : ϕ bounded in R N }; • C c R N = {ϕ ∈ C R N : ϕ compactly supported }; • C ∞ c R N = {ϕ ∈ C ∞ R N : ϕ compactly supported }; • C 0 R N = {ϕ ∈ C R N : ϕ → 0 as |x| → ∞}; • L 1 (R N ) = {ϕ : R N → R , measurable and integrable in R N }; • C [0, ∞); L 1 R N is the space of functions t → u(t) wich are continuous in time, with values in L 1 (R N ) for any t ≥ 0; • L 1 [0, T ]; L 1 R N is
the space of functions t → u(t) wich are integrable in time over [0, T ], with values in L 1 (R N ) for any t ≥ 0.

Recall that throughout the paper, J is nonnegative, radially symetric, compactly supported with J = 1 and supp(J) = B R J . Finally, we denote by s + = max(s, 0) and s -= max(-s, 0).

Basic theory of the model

In this section we will develop the basic theory for the solution of the twophase Stefan problem. Some results are already contained in [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF] after some obvious adaptation. This is due to the fact that for the one-phase Stefan model, Γ(u) = (u -1) + while here, we deal with a symetric function Γ(u) = sign(u)(u -1) + which is very close to the first one.

However, for the sake of completeness, we shall rewrite the proof when the adaptation may not be so straightforward, and give the precise reference otherwise.

2.1. L 1 theory. We start with the theory for integrable initial data. In this case the solution is regarded as a continuous curve in L 1 R N .

Definition 1. Let f ∈ L 1 R N . An L 1 -solution of (1) is a function u in C [0, ∞); L 1 R N such that (1)
holds in the sense of distributions, or equivalently, if for every t > 0,

u(t) ∈ L 1 R N and (3) u(t) = f + t 0 (J * Γ(u)(s) -Γ(u)(s)) ds, a.e. Remark 2.1. If u is an L 1 -solution, then u ∈ L 1 ([0, T ]; L 1 (R N ))
. for all T > 0.

Hence, (1) holds, not only in the sense of distributions, but also a.e., and u is said to be a strong solution. Moreover, since Γ(u) ∈ C [0, ∞); L 1 R N , we also have u ∈ C 1 [0, ∞); L 1 R N , and the equation holds a.e. in x for all t ≥ 0.

Theorem 2.2. For any f ∈ L 1 R N , there exists a unique L 1 -solution of (1).

Proof. Let B t0 be the Banach space consisting of the functions u ∈ C [0, t 0 ]; L 1 R N endowed with the norm,

|u | = max 0≤t≤t0 u(t) L 1 (R N ) .
For any given f ∈ L 1 (R N ), we define the operator

T f : B t0 → B t0 through (T f u) (t) = f + t 0 (J * Γ(u)(s) -Γ(u)(s)) ds.
Since Γ(u) is Lipschitz continuous, we have the estimate

|T f u -T f v | ≤ t0 0 R N J * Γ(u) -Γ(v) + |Γ(u) -Γ(v)| dx ds ≤ 2 t0 0 R N u -v dx ds ≤ 2t 0 |u -v | .
Hence if t 0 < 1/2, the operator T f turns out to be contractive.

Existence and uniqueness in the time interval [0, t 0 ] follow by using Banach's fixed point Theorem. The length of the existence and uniqueness time interval does not depend on the initial data, so, we can iterate the argument to extend the result to all positive times by a standard procedure, and we end up with a solution in C [0, ∞); L 1 R N .

Conservation of energy of the

L 1 -solutions. Theorem 2.3. Let f ∈ L 1 R N . The L 1 -solution u to (1) satisfies R N u(t) = R N f, for every t > 0.
Proof. Since u(t) ∈ L 1 R N for any t ≥ 0, we integrate equation ( 3) in space:

R N u(t) = R N f + t 0 R N J * u - R N u ds .
By Fubini's Theorem, J * u = J • u = u (where the integrals are taken over all R N ), which yields the result.

L 1 -contraction property for L 1 -solutions.

In order to obtain it, we need first to approximate the graph Γ(s) by a sequence of strictly monotone Γ n (s) such that:

(i) there is a constant L independent of n such that |Γ n (s) -Γ n (t)| ≤ L|s -t|, for all n ∈ N; (ii) for all n ∈ N, Γ n (0) = 0 and Γ n is strictly increasing on (-∞, ∞); (iii) |Γ n (s)| ≤ s, for all n ∈ N and s ≥ 0; (iv) Γ n → Γ as n → ∞ uniformly in (-∞, ∞). Take for instance Γ n (s) =        (s + 1), for s < -n-1 n s n + 1 , for -n-1 n ≤ s ≤ n+1 n (s -1), for s > n+1 n . Since Γ n is Lipschitz, for any f ∈ L 1 R N and any n ∈ N there exists a unique L 1 -solution u n ∈ C [0, ∞); L 1 R N of the approximate problem (4) ∂ t u n = J * Γ n (u n ) -Γ n (u n ) with initial data u n (0) = f . The proof is just like the one of Theorem 2.2. Moreover, Γ(u n ) ∈ C [0, ∞); L 1 R N , and, hence, u n ∈ C 1 ([0, ∞); L 1 R N ).
Conservation of energy also holds, the calculations are the same as for L 1 -solutions above.

Now we state the L 1 -contraction property for the approximate problem:

Lemma 2.4. Let u n,1 and u n,2 be two L 1 -solutions of (4) with initial data

f 1 , f 2 ∈ L 1 R N . Then, (5) 
(u n,1 -u n,2 )(t) L 1 (R N ) ≤ f 1 -f 2 L 1 (R N ) , ∀t ≥ 0.
Proof. The proof is done in [2, Lem 2.4]: we begin by proving a contraction property for the positive part (u n,1 -u n,2 ) + . To do so, we subtract the equations for u n,1 and u n,2 and multiply by

1 {un,1>un,2} . Since u n,1 -u n,2 ∈ C 1 ([0, ∞); L 1 (R N )), then ∂ t (u n,1 -u n,2 )1 {un,1>un,2} = ∂ t (u n,1 -u n,2 ) + .
On the other hand, since 0 ≤ 1 {un,1>un,2} ≤ 1, we have

J * (Γ n (u n,1 ) -Γ n (u n,2 ))1 {un,1>un,2} ≤ J * (Γ n (u n,1 ) -Γ n (u n,2 )) + .
Finally, since Γ n is strictly monotone, 1 {un,1>un,2} = 1 {Γn(un,1)>Γn(un,2)} . Thus,

(Γ n (u n,1 ) -Γ n (u n,2 ))1 {un,1>un,2} = (Γ n (u n,1 ) -Γ n (u n,2 )) + .
We end up with

∂ t (u n,1 -u n,2 ) + ≤ J * (Γ n (u n,1 ) -Γ n (u n,2 )) + -(Γ n (u n,1 ) -Γ n (u n,2 )) + .
Integrating in space, and using Fubini's Theorem, which can be applied, since

(Γ n (u n,1 (t)) -Γ n (u n,2 (t))) + ∈ L 1 (R N ), we get ∂ t R N (u n,1 -u n,2 ) + (t) ≤ 0 , which implies R N (u n,1 -u n,2 ) + dx ≤ R N (f 1 -f 2 ) + dx .
Then, a similar computation gives the contraction for the negative parts, so that the L 1 -contraction holds.

Then we deduce the L 1 -contraction property for the original problem after passing to the limit:

Corollary 2.5. Let u 1 and u 2 be two L 1 -solutions of (1) with initial data f 1 , f 2 ∈ L 1 R N . Then for every t ≥ 0, (6) (u 1 -u 2 )(t) L 1 (R N ) ≤ f 1 -f 2 L 1 (R N ) ,
and the same result holds for the positive/negative parts of (u 1 -u 2 ).

Proof. Passing to the limit in the approximated problems requires some compactness argument which is obtained through the Fréchet-Kolmogorov criterium. The details are in [2, Cor. 2.5], and do not depend on the specific form of the function Γ(•) so we skip the proof.

The following Lemma shows that the positive and negative parts of Γ(u) are subcaloric: Lemma 2.6. Let f ∈ L 1 R N and u the corresponding L 1 -solution. Then the functions Γ(u) -, Γ(u) + and |Γ(u)| all satisfy the inequality:

χ t ≤ J * χ -χ a.e. in R N × (0, ∞) .
Proof. We do the computation for χ = |Γ(u)|, with the proof being the same for the other functions. Since

u ∈ C 1 ([0, ∞); L 1 R N ), we have, |Γ(u)| t = (|u| -1) + t = sign(u) u t = sign(u) J * Γ(u) -sign(u)Γ(u) a.e.
On the set {|u| ≤ 1} we have |Γ(u)| = |Γ(u)| t = 0 while 0 ≤ J * |Γ(u)|, so that the following inequality necessarily holds:

|Γ(u)| t ≤ J * |Γ(u)| -|Γ(u)| .
On the set {|u| > 1}, using that | sign(u)| = 1 we get also

|Γ(u)| t = sign(u)J * Γ(u) -sign(u)Γ(u) ≤ J * |Γ(u)| -|Γ(u)| .
Hence in any case, we obtain the result.

This property allows to estimate the size of the solution in terms of the L ∞ -norm of the initial data.

Lemma 2.7. Let f ∈ L 1 R N ∩ L ∞ R N . Then the L 1 -solution u of (1) satisfies u(t) L ∞ (R N ) ≤ f L ∞ (R N ) for any t > 0. Moreover, lim sup t→∞ u(t) ≤ 1 and lim inf t→∞ u(t) ≥ -1 a.e. in R N .
Proof. The proof follows the same arguments as in [2, Lem 2.7]: first, the result

is obvious if f L ∞ (R N ) ≤ 1, since in this case u(t) = f for any t > 0. So let us assume that f L ∞ (R N ) > 1. Since χ = |Γ(u)| is subcaloric (by Lemma 2.6)
, we may compare it with the solution V of the following problem:

V t = J * V -V, V (0) = |Γ(f )| ∈ L 1 (R N ) ∩ L ∞ (R N ).
We first use the comparison principle in L ∞ (see [START_REF] Brändle | Unbounded solutions of the nonlocal heat equation[END_REF]Prop. 3.1]) with constants (which are solutions): 0 ≤ V (t) ≤ V (0) ∞ = Γ(f ) ∞ . Now, using again the comparison principle for bounded sub/super solutions, we obtain

0 ≤ χ(t) L ∞ (R N ) ≤ V (t) L ∞ (R N ) ≤ Γ(f ) L ∞ (R N ) = f L ∞ (R N ) -1. Therefore, u(t) L ∞ (R N ) ≤ 1 + χ(t) L ∞ (R N ) ≤ f L ∞ (R N )
. Moreover, using the results from [START_REF] Ignat | Refined asymptotic expansions for nonlocal diffusion equations[END_REF], we obtain that V , and hence the solution v, goes to zero asymptotically like ct -N/2 , so that Γ(u) → 0 almost everywhere, which implies the result.

2.2. BC theory. We now develop a theory in the class BC R N of continuous and bounded functions whenever the initial data f belongs to that class.

Definition 2. Let f ∈ BC R N . The function u is a BC-solution of (1) if u ∈ BC R N × [0, T ] for all T ∈ (0, ∞) and u(x, t) = f (x) + t 0 (J * Γ(u)(x, s) -Γ(u)(x, s)) ds, for all x ∈ R N and t ∈ [0, ∞).
In particular, a BC-solution u is continuous in [0, ∞) × R N and u t is also continuous in (0, ∞) × R N . Hence equation ( 1) is satisfied for all x and t, and u is a classical solution.

Theorem 2.8. For any f ∈ BC R N there exists a unique BC-solution of (1).

Proof. The proof is obtained through a fixed-point argument exactly as for L 1solutions, except that we consider the operator T f as acting from BC([0, t 0 ] × R N ) into BC([0, t 0 ]×R N ). The estimates are done using the sup norm in space and time instead of the sup of the L 1 -norm but the result is the same: if t 0 is small enough, then we have a contractive operator which allows to construct a unique solution on [0, t 0 ]. The we iterate the process to get a bounded and continuous solution on [0, T ] × R N for any T > 0.

Notice that BC-solutions depend continuously on the initial data, on any finite time interval: Lemma 2.9. Let u 1 and u 2 be the BC-solutions with initial data respectively

f 1 , f 2 ∈ BC R N . Then, for all T ∈ (0, ∞) there exists a constant C = C(T ) such that max x∈R N |u 1 -u 2 |(x, t) ≤ C(T ) max x∈R N |f 1 -f 2 |(x), t ∈ [0, T ]. Proof. See [2, Lem 2.10].
2.3. Free boundaries. In the sequel, unless we say explicitly something different, we will be dealing with L 1 -solutions. Since the functions we are handling are in general not continuous in the space variable, their support has to be considered in the distributional sense. To be precise, for any locally integrable and nonnegative function g in R N , we can consider the distribution T g associated to the function g. Then the distributional support of g, supp D (g) is defined as the support of T g :

supp D (g) := R N \O, where O ⊂ R N is the biggest open set such that T g | O = 0.
In the case of nonnegative functions g, this means that x ∈ supp D (g) if and only if

∀ϕ ∈ C ∞ c (R N ), ϕ ≥ 0 and ϕ(x) > 0, happens that R N g(y)ϕ(y)dy > 0.
If g is continuous, then the support of g is nothing but the usual closure of the positivity set, supp D (g) = {g > 0}.

We first prove that the solution does not move far away from the support of Γ(u).

Lemma 2.10. Let f ∈ L 1 R N . Then, supp D (u t (t)) ⊂ supp D (Γ(u)(t)) + B R J for any t > 0.
Proof. Recall first that the equation holds down to t = 0 so that we may consider here t ≥ 0 (and not only t

> 0). Let ϕ ∈ C ∞ c (A c ), where A = supp D (Γ(u)(t)) + B R J . Notice that the support of J * Γ(u) (which is a continuous function) lies inside A, so that R N (J * Γ(u))ϕ = 0.
Similarly, the supports of Γ(u) and ϕ do not intersect, so that

R N u t ϕ = R N (J * Γ(u))ϕ - R N Γ(u)ϕ = 0,
which means that the support of u t is contained in A.

The following Theorem gives a control of the support of the solution u(t) and the corresponding temperature Γ(u)(t).

Theorem 2.11. Let f ∈ L 1 (R N ) be compactly supported. Then, for any t > 0, the solution u(t) and the corresponding temperature Γ(u)(t) are compactly supported.

Proof. Estimate of the support of Γ(u). Since |Γ(u)| is subcaloric, we have that Γ(u) L 1 (Ω) ≤ Γ(f ) L 1 (Ω) , then (J * Γ(u))(x, t) ≤ J L ∞ (R N ) Γ(u) L 1 (R N ) ≤ J L ∞ (R N ) Γ(f ) L 1 (R N ) . We denote c 0 = J L ∞ (R N ) Γ(f ) L 1 (R N ) . Multiplying (3) by a nonnegative test function ϕ ∈ C ∞ c ((supp D f ) c
) and integrating in space and time we have

R N |u(t)|ϕ ≤ t 0 R N (J * Γ(u))ϕ ≤ c 0 t R N ϕ.
Taking t 0 = 1/c 0 , we get Estimate of the support of u. Thanks to Lemma 2.10 we know that supp

D (u t (t)) ⊂ supp D (Γ(u)(t)) + B R J ⊂ supp D (f ) + B R J , for all t ∈ [0, t 0 ]. This means that for any ϕ ∈ C ∞ c ((supp D (f ) + B R J ) c ), we have, R N uϕ = t 0 R N u t ϕ = 0, for all t ∈ [0, t 0 ] that is, (8) supp 
D (u(t)) ⊂ supp D (f ) + B R J , for all t ∈ [0, t 0 ].
Iteration. Consider now the initial data u 0 = u(t 0 ), whose support satisfies that, supp

D (u(t 0 )) ⊂ supp D (f ) + B R J ,
then, thanks to ( 7) and ( 8), supp

D (u(t)) ⊂ supp D (f ) + 2 B R J , for all t ∈ [0, 2 t 0 ].
Iterating this process we arrive to, The last results have counterparts for BC-solutions:

Theorem 2.12. Let f ∈ BC(R N ), and let u be the corresponding BC-solution.

Then, noting v = Γ(u) we have:

(i) u t (x, t) = 0 for any x / ∈ (supp(v(•, t)) + B R J ), t ≥ 0. (ii) If sup |x|≥R |f (x)| < 1 for some R > 0, then v(•, t) is compactly supported for all t > 0. If moreover f ∈ C c (R N ), then u(•, t
) is also compactly supported for all t > 0.

Proof. (i) The proof is similar (though even easier, since the supports are understood in the classical sense) to the one for L 1 -solutions.

(ii) Since χ = |Γ(u)| is subcaloric, we get

J * Γ(u) (x, t) ≤ J L 1 (R N ) Γ(u)(t) L ∞ (R N ) ≤ Γ(f ) L ∞ (R N ) .

First results concerning the asymptotic behaviour

In the following three sections we study the asymptotic behaviour of the solutions of the two-phase Stefan problem, with different sign-changing initial data chosen in such a way that the solutions, u(t), satisfy either: (i) the positive and negative part not interact, in any time t > 0; (ii) the positive and negative temperature v = Γ(u) do not interact, in any time t > 0; (iii) the positive and negative part of u interact but the solution is driven by the one-phase Stefan regime after some time.

In order to describe the asymptotic behaviour, we write the initial data as

f = f + -f -,
separating the positive and negative parts where we recall the notations f + = max(f, 0) and f -= max(-f, 0).

Let us first introduce the following solutions: the solution U + , corresponding to the initial data U + (0) = f + and the solution U -, corresponding to the initial data

U -(0) = f -.
Lemma 3.1. The functions U + and U -are solutions of the one-phase Stefan problem:

∂ t u = J * (u -1) + -(u -1) + .
Proof. By comparison in L 1 for the two-phase Stefan problem, we know that U + and U -are nonnegative because their respective initial data are nonnegative. Hence, for any (x, t) we have in fact Γ(U + (x, t)) = (U(x, t) -1) + . Thus, the equation for U + reduces to the one-phase Stefan problem. The same happens for U -.

Remark 3.2. Since U + is a solution of the one-phase Stefan problem, the supports of U + and Γ (U + ) are nondecreasing

(10) supp D (U + (s)) ⊂ supp D (U + (t)), 0 ≤ s ≤ t supp D (Γ (U + ) (s)) ⊂ supp D (Γ (U + ) (t)), 0 ≤ s ≤ t.
We denote this property as retention. It is satisfied also for U -and Γ (U -).

Using the results concerning the asymptotic behaviour studied in [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF], we know that in particular if f satisfies the hypothesis of [2, Lem. 3.9.], U + and U -have limits as t → ∞ which are obtained by means of the projection operator P. We recall that this operator maps any nonnegative initial data f to Pf , which is the unique solution to a non-local obstacle problem at level one (see [2, p. 23]). For U + , the limit is Pf + and for U -, the limit is Pf -. Now the link with our problem is the following:

Lemma 3.3. For any t > 0, -U -(t) ≤ -u -(t) ≤ u(t) ≤ u + (t) ≤ U + (t) .
Proof. This result follows from a simple comparison result in L 1 : since initially we have U + (0) = f + ≥ u(0), it is clear that for any t > 0, U + (t) ≥ u(t). On the other hand, since U + (0) = f + ≥ 0, we have also for any t > 0, U + (t) ≥ 0. Hence for any t > 0, U + (t) ≥ u + (t).

The other inequalities are obtained the same way.

This comparison allows us to prove that the asymptotic limit is well-defined:

Proposition 3.4. Let us assume that f ∈ L 1 (R N ) if N ≥ 3, for low dimensions, if N = 1 or N 2, J is non increasing in the radial variable, and f + ≤ g 1 , f -≤ g 2 for some g 1 , g 2 ∈ L 1 R N ∩ C 0 (R N )
, radial and strictly decreasing in the radial variable. Then the following limit is defined in L 1 (R N ):

u ∞ (x) := lim t→∞ u(x, t) .
Proof. Integrating the equation ( 1) in time we get

u(t) = f + t 0 J * Γ(u)(s) ds - t 0 Γ(u)(s) ds .
Then we recall that under the hypotheses of this proposition, the integrals t 0 (U + (s) -1) + ds and t 0 (U -(s) -1) + ds converge in L 1 as t → ∞ (see [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF]Cor. 3.10,3.11]). Using the estimate

|Γ(u)| ≤ max (U + -1) + ; (U --1) + ,
we deduce that the right-hand side of the integrated equation has a limit as t → ∞. Hence we deduce that u(t) has a limit in L 1 (R N ) which can be written as:

lim t→∞ u(t) = f + ∞ 0 J * Γ(u)(s) ds - ∞ 0 Γ(u)(s) ds := u ∞ (x) .
The question is now to identify this limit u ∞ and we begin with a simple case when the positive and negative parts never interact: Lemma 3.5. Let us assume that J and f satisfy the hypothesis of Proposition 3.4, and that dist supp(Pf + ), supp(Pf -) ≥ r > 0 .

Then for any t > 0, dist supp(u -(t)), supp(u + (t)) ≥ r .

Proof. By the retention property [START_REF] Stefan | Über einige Probleme der Theorie der Wärmeleitung[END_REF] for U + and U -, we first know that for any t > 0, dist supp(U + (t)), supp(U -(t)) ≥ r . Then, since 0 ≤ u + (t) ≤ U + (t), the support of u + (t) is contained inside the one of U + (t). The same holds for u -(t) and U -(t) so that finally, the supports of u -(t) and u + (t) are necessarily at distance at least r. Theorem 3.6. Let us assume that J and f satisfy the hypothesis of Proposition 3.4 and that

dist supp(Pf + ), supp(Pf -) > 2R J .
Then the solution with initial data f is given by u(t) = U + (t) -U -(t), and the asymptotic behaviour is given by

u ∞ (x) = Pf + (x) -Pf -(x) .
Proof. Let us define U := U + -U -. Since the supports of U + (t) and U -(t) are always at distance greater that 2R J , we can write U(t) = U + (t) -U -(t). Moreover, the convolution J * Γ(U(t)) is either equal to J * Γ(U + (t)), or to -J * Γ(U -(t)), and those last convolutions have disjoint supports. Hence we can also write

J * Γ(U(t)) = J * Γ(U + (t)) -J * Γ(U -(t)) .
This implies that U is actually a solution of the equation:

∂ t U = ∂ t U + -∂ t U - = J * Γ(U + (t)) -Γ(U + (t)) -J * Γ(U -(t)) + Γ(U -(t)) = J * Γ(U(t)) -Γ(U(t)) .
But since U(0) = f + -f -= f , we conclude by uniqueness in L 1 that u ≡ U is the solution we are looking for.

Asymptotic behaviour when the positive and the negative part of the temperature do not interact

The aim of this section is to identify the limit u ∞ (limit of the solution u when time goes to infinity) in the case when the positive and negative part of the temperature, Γ(u), never interact, this is, [START_REF] Visintin | Two-scale model of phase transitions[END_REF] dist supp

D Γ(Pf + ) , supp D (Γ Pf -) ≥ R J .
We know that there exists the retention property for U + and U -, i.e., the supports of U + and U -are nondecreasing (which holds since these are solutions of the one-phase Stefan problem). Then we can use the same arguments that have been used in [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF], with the Baiocchi transform, to describe the asymptotic behaviour of the solution to [START_REF] Baiocchi | Su un problema di frontiera libera conneso a questioni di idraulica[END_REF]. For more information about the Baiocchi transform, (see [START_REF] Baiocchi | Su un problema di frontiera libera conneso a questioni di idraulica[END_REF]).

On the other hand, we can not say that the solution is u(t) = U + (t) -U -(t), like in the example we have studied in the previous section, because the supports of U + and U -have an intersection not empty. 4.1. Formulation in terms of the Baiocchi variable. Our next aim is to describe the large time behavior of the solutions of the two-phase Stefan problem satisfying hypothesis [START_REF] Visintin | Two-scale model of phase transitions[END_REF]. We want to make a formulation of the Stefan problem as a parabolic nonlocal biobstacle problem. To identify the asymptotic limit for u, we define the Baiocchi variable, like in [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF],

w(t) = t 0 Γ(u)(s) ds.
The enthalpy and the temperature can be recovered from w through the formulas

(12) u = f + J * w -w, Γ(u) = w t ,
where the time derivative has to be understood in the sense of distributions.

Lemma 4.1. Under assumption [START_REF] Visintin | Two-scale model of phase transitions[END_REF], the function Γ(u) satisfies the following retention property: for any 0 < s < t,

Γ(u(s)) + ⊂ supp D Γ(u(t)) + , supp D Γ(u(s)) -⊂ supp D Γ(u(t)) -. (13) supp D 
As a consequence, we have for any t > 0:

supp D Γ(u(t)) + = supp D w(t) + , supp D Γ(u(t)) -= supp D w(t) -.
Proof. We use the same ideas as in the previous section. By Lemma 3.3 and the retention property 10 for Γ(U + ) and Γ(U -), we know that for any t > 0, there holds:

dist supp D Γ(u(t)) + ; supp D Γ(u(t)) -≥ dist supp D Γ(Pf + ) ; supp D (Γ Pf -) ,
and this distance is at least R J under assumption [START_REF] Visintin | Two-scale model of phase transitions[END_REF]. Take now a nonnegative test function φ ∈ C ∞ (R N ) (not identically zero) with compact support in supp D Γ(u(s)) + and consider t > s. Using that

∂ t Γ(u) + = 1 {u>0} ∂ t u, in the sense of distributions, we get d dt R N Γ(u(t)) + φ = R N J * Γ(u(t)) φ1 {u>0} - R N Γ(u(t))φ1 {u>0} .
Since for any t > 0, the support of Γ(u(t)) + is at least at distance R J from the support of Γ(u(t)) -, we have J * Γ(u(t))

1 {u>0} = J * Γ(u(t)) + ≥ 0 for any t > s. Hence d dt R N Γ(u(t)) + φ ≥ - R N Γ(u(t)) + φ ,
which can be written as h (t) ≥ -h(t) where h(t) := R N Γ(u)(t) + φ. Hence h(t) ≥ h(s)e -(t-s) > 0 which proves the retention property for Γ(u) + . The property for Γ(u) -is proved the same way. Now, take a nonnegative test function φ, not identically zero, with compact support in supp D (Γ(u(t)) + ). We know from the first part that for 0 < s < t, the support of φ never intersects the support of the negative part of Γ(u(s)), hence

R N w(t)φ = t 0 R N Γ(u(s))φ dx ds = t 0 R N Γ(u(s)) + φ dx ds ≥ 0 .
Moreover, since the space integrals are continuous in time, we know that the integral R N Γ(u(s)) + φ dx is not only positive at time t, but also in an open time interval around t. So, we get R N w(t)φ > 0 which proves that supp D Γ(u(t)) + ⊂ supp D w(t) + . On the other hand, if φ is a nonnegative test function such that R N Γ(u(t)) + φ dx = 0, the retention property, (13), implies that this integral is also zero for all times 0 < s < t, which yields R N w + (t)φ dx = 0. We conclude that the distributional support of w + (t) coincides with that of Γ(u(t)) + . The proof is similar for the negative part.

The Baiocchi variable satisfies a complementary problem, that will be useful to introduce the nonlocal biobstacle problem. Proof. The graph condition Γ(u) = sign(u)(|u| -1) + can be written as

0 ≤ sign(u) u -Γ(u) ≤ 1, sign(u) u -Γ(u) -1 Γ(u) = 0 ,
almost everywhere in R N × (0, ∞) . In order to translate this condition in the w variable, we first notice that that if sign Γ(u) > 0 then sign(u) > 0 and similarly, sign Γ(u) < 0 implies sign(u) < 0 (only the condition Γ(u) = 0 does not imply a sign condition on u). Hence we can also write

0 ≤ sign Γ(u) u -Γ(u) ≤ 1, sign Γ(u) u -Γ(u) -1 Γ(u) = 0 .
Now we use the retention property of Γ(u), Lemma 4.1, which implies that the distributional supports of Γ(u) and w coincide for all times. Then replacing everything in terms of w, in (12), we have

   0 ≤ sign(w) (f + J * w -w -w t ) ≤ 1 , (sign(w) (f + J * w -w -w t ) -1) w = 0.
Therefore, we obtain that w solves a.e. the complementary problem (14).

4.2.

A non-local elliptic biobstacle problem.

If ∞ 0 Γ(u)(t) L 1 R N dt < ∞, the function w(t) converges monotonically in L 1 R N as t → ∞ to w ∞ = ∞ 0 Γ(u)(s) ds ∈ L 1 R N .
Thus, thanks to [START_REF] Woodruff | The solid-liquid interface[END_REF], u(•, t) converges point-wisely and in

L 1 R N to f = f + J * w ∞ -w ∞ .
Passing to the limit as t → ∞ in (14), we get that w ∞ is a solution with data f to the nonlocal biobstacle problem:

(BOP)        Given a data f ∈ L 1 R N , find a function w ∈ L 1 R N such that 0 ≤ sign(w) (f + J * w -w) ≤ 1 , f + J * w -w -sign(w) |w| = 0.
This problem is called "biobstacle" since the values of the solution are cut at both levels +1 and -1. Under some conditions we have existence:

Lemma 4.3. Let f ∈ L 1 (R N
) satisfy the hypothesis [START_REF] Visintin | Two-scale model of phase transitions[END_REF]. If N = 1 or N = 2, assume moreover that J is non increasing in the radial variable, and

f + ≤ g 1 , f -≤ g 2 for some g 1 , g 2 ∈ L 1 R N ∩ C 0 (R N )
, radial and strictly decreasing in the radial variable. Then, problem (BOP) has at least a solution w ∞ ∈ L 1 (R N ).

Proof. Given the assumptions, we construct the solution u of (1) associated to the initial data f . Then we use the estimate

|Γ(u)| ≤ max (U + -1) + ; (U --1) + .
If N ≥ 3, we use [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF]Cor. 3.11] to get Γ(u(t)) L 1 (R N ) = O(t -N/2 ). For dimensions N = 1, 2, we use the extra assumption and [2, Cor. 3.10] which implies Γ(u(t)) L 1 (R N ) ≤ Ce -κt for some C, κ > 0. In both cases, we obtain that ∞ 0 Γ(u(s)) ds converges in L 1 (R N ) to some function w ∞ , and passing to the limit in (14) we see that w ∞ is a solution of (BOP).

We now have a more general uniqueness result (without extra assumptions in lower dimensions). Proof. The proof follows the same arguments as in [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF]Thm 5.3]. For the sake of completeness we reproduce here the argument: the solutions of (BOP) satisfy, f = f + J * w -w , f ∈ β(w) a.e. , where β(•) is the graph of the sign function: β(w) = sign(w) if w = 0, and β({0}) = [-1, 1]. We take two solutions w i , i = 1, 2 of (BOP) associated with the data f and let fi be the associated projections. Since fi ∈ β(w i ) we have 0

≤ ( f1 -f2 )1 {w1>w2} = J * (w 1 -w 2 ) -(w 1 -w 2 ) 1 {w1>w2} a.e. .
We then use a nonlocal version of Kato's inequality, valid for locally integrable functions:

(J * w -w)1 {w>0} ≤ J * w + -w + a.e., which implies (w 1 -w 2 ) + ≤ J * (w 1 -w 2 ) + .
We end by using [2, Lem 6.2], from which we infer that (w 1 -w 2 ) + = 0. Reversing the roles of w 1 and w 2 we get uniqueness.

Combining the results above, we can now give our main theorem concerning the asymptotic behaviour for solutions of (1). 

u(t) → f := f + J * w ∞ -w ∞ in L 1 R N as t → ∞ .

4.3.

Asymptotic limit for general data. Up to now we have been able to prove the existence of a solution of (BOP) for any f ∈ L 1 R N only if N ≥ 3. For low dimensions, N = 1, 2, we have needed to add the hypotheses of Lemma 4.3. Hence, for lower dimensions the projection operator P which maps f to f is in principle only defined under these extra assumptions.

However, P is continuous, in the L 1 -norm, in the subset of L 1 R N of functions satisfying the hypotheses of Lemma 4.3. Since the class of functions satisfying those hypotheses is dense in L 1 R N , we can extend the operator to all L 1 by a standard procedure.

Theorem 4.6. Let f ∈ L 1 R N and u the corresponding solution to problem (1). Let Pf be the projection of f onto f . Then u(•, t) → Pf in L 1 R N as t → ∞.

Proof. Given f , let {f n } ⊂ L 1 R N be a sequence of functions satisfying the hypotheses of Lemma 4.3 which approximate f in L 1 R N . Take for instance a sequence of compactly supported functions. Let u n be the corresponding solutions to the non-local Stefan problem. We have,

u(t)-Pf L 1 (R N ) ≤ u(t)-u n (t) L 1 (R N ) + u n (t)-Pf n L 1 (R N ) + Pf n -Pf L 1 (R N ) .
Using Corollary 2.5, which gives the contraction property for the non-local Stefan problem, and Theorem 4.5, that states the large time behavior for bounded and compactly supported initial data, we obtain lim sup

t→∞ u(t) -Pf L 1 (R N ) ≤ f -f n L 1 (R N ) + Pf n -Pf L 1 (R N ) .
Letting n → ∞ we get the result.

Remark 4.7. A similar result would be valid for the local Stefan problem, assuming that the distance between Pf + and Pf -is strictly positive. Notice that the projected data f is a non-local mesa, see [START_REF] Brändle | Phase transition with mid-range interactions: a nonlocal one-phase Stefan model[END_REF].

5. Solutions losing one phase in finite time.

In this section we we give some partial results on the asymptotic behaviour of solutions for which either u or Γ(u) becomes nonnegative (or nonpositive) in finite time.

In this case, we can prove that the asymptotic behaviour is driven by the onephase Stefan regime, however we cannot identify the limit exactly. Assume that for some t 0 ≥ 0, there holds f * := u(t 0 ) ≥ -1 in R N . then the asymptotic behaviour is given by: u(t) → Pf * .

Proof. We just have to consider u * (t) := u(t-t 0 ) for t ≥ t 0 . Then u * is the solution associated to the initial data f * which satisfies [START_REF] Visintin | Two-scale model of phase transitions[END_REF]. Hence we know that as t → ∞, u * (t) → Pf * . Therefore, the same happens for u(t).

Of course a similar result holds if Γ(u) becomes nonpositive in finite time. However, the problem remains open as to identify Pf * since we do not know what is exactly f * .

In the rest of the section, we give two examples where such a phenomenon occurs. One for which v = Γ(u) becomes positive in finite time, and the other for which u becomes positive in finite time. 5.2. Sufficient conditions to lie above level -1 in finite time. In this subsection we assume for simplicity that the initial data f is continuous and compactly supported, and that J is nonincreasing in the radial variable. We assume f + ≤ g 1 and f -≤ g 2 , for some g 1 , g 2 ∈ L 1 R N ∩ C 0 (R N ) radial and strictly decreasing in the radial variable. Moreover, Thanks to [2, Lem 3.9], there exists R = R(g 1 , g 2 ) such that supp v(u)(t) ⊂ B R for any t ≥ 0 (recall that we denote by v = Γ(u)). Notice that R does not depend on J, only on the L 1 -norm of g 1 and g 2 .

We make first the following important assumption: Then we shall also assume that the negative part of v 0 := v(0) is "small" compared to the positive part in the following sense:

(16) v -(0) L 1 (R N ) < α(v 0 , J) β(J) .

In such a situation, we first define η := α(v 0 , J) -β(J) v -(0) L 1 (R N ) > 0 .

Then, for η ∈ (0, η) we introduce the following function

ϕ(η) := η ln α(v 0 , J) η + β(J) v -(0) L 1 (R N )
> 0 and set κ := max ϕ(η) : η ∈ (0, η) > 0.

Since actually, κ depends only on J and the mass of the positive and negative parts of v(0), we denote it by κ(v 0 , J).

We are then ready to formulate our result: Proposition 5.2. Assume (16) and moreover that the negative part of f is controlled in the sup norm as follows

f -∞ ≤ 1 + κ(v 0 , J) .
Then in a finite time t 1 = t 1 (f ), the solution satisfies u(x, t 1 ) ≥ -1 for all x ∈ R N .

Proof. By our assumptions, for all x we have f (x) ≥ -1 -κ(v 0 , J). Then for any x ∈ B R , J * v(x, 0) = {v>0} J(x -y)v(y, 0)dy + {v<0} J(x -y)v(y, 0)dy ≥ α(v 0 , J) -β(J) v -(0) L 1 (R N ) > 0.

Remember that for the points x / ∈ B R , we have v 0 (x) = 0 and also v(x, t) = 0 for any time t ≥ 0 (though we may -and will-have mushy regions, {|v| < 1}, outside B R of course).
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 1 A theoretical result. Theorem 5.1. Let f ∈ L 1 (R N ) satisfy (11) and let u be the corresponding solution.

  0 , J) := inf x∈B R J(x -y)v + (y, 0)dy > 0 (see in the Remark 5.3 below some comments on this assumption). Let us also denote β(J) := sup x∈B 2R J(x).

This estimate comes from comparison in L ∞ with constants, exactly as in Lemma 2.7 Therefore, from the integral equation, [START_REF] Brändle | Unbounded solutions of the nonlocal heat equation[END_REF] for |x| ≥ R we have ( 9)

Thus, for all |x| ≥ R and t ≤ (1 -sup |x|≥R |f (x)|)/(2 Γ(f ) L ∞ (R N ) ) we have -1 < u(x, t) < 1. Hence, for such x, t, we have v(x, t) = 0. Then, by (i

). We finally proceed by iteration to get the result for all times.

2.4. L 1 -solutions that are continuous. As a corollary of the control of the supports, we will prove that if the initial data is in

solution is in fact continuous. We start by considering the case where f is continuous and compactly supported, i.e. in C c (R N ).

Proof. Since a BC-solution with a continuous and compactly supported initial data remains compactly supported in space for all times (see Theorem 2.12), it is also integrable in space for all times. Moreover, u ∈ C([0, T ]; L 1 (R N )). Hence, by uniqueness it coincides with the L 1 -solution with the same initial data. In other terms, the L 1 -solution is continuous.

We now turn to the general case.

Proof. Let f n be a sequence of continuous and compactly supported functions such that

Let u 1 n , u 1 be the L 1 -solutions with initial data respectively f n and f , and u c n , u c the corresponding BC-solutions. We know by Lemma 2.13 that u 1 n = u c n . Then, using the L 1 -contraction property for L 1 -solutions, we have that

→ 0. Hence we have in the limit u 1 = u c which proves the result.

Thanks to the continuity of u (and v), the following time is well-defined:

This implies that

Hence, in B R × (0, t 0 ), v + enjoys the following retention property:

This implies in particular that if v(x, 0) is positive at some point, v(x, t) remains positive at this point at least until t 0 . Now, let us estimate t 0 . For any x ∈ B R and t ∈ (0, t 0 ), we have

where we have used Corollary 2.5, which gives the L 1 -contraction property for v -, deriving from the fact that it is subcaloric. So, if we take η reaching the max of ϕ(η) = κ and set

then for any t ∈ (0, t 1 ), we have α(v 0 , J)e -t -β(J) v -(0) L 1 (R N ) > η > 0. This proves that t 0 ≥ t 1 .

Since v + has the retention property in (0, t 0 ), the points in

remain in this set at least until t 0 .

Then, for any

If t(x) = 0, this means that v(x, t) becomes positive immediately and will remain as such at least until t 1 so we do not need to consider such points. We are left with assuming t(x) > 0 (or infinite).

Then in this last case, we shall prove that t(x) ≤ t 1 by contradiction: let us assume that t(x) > t 1 and let us come back to the previous estimate. We then have, for any t ∈ (0, t 1 ):

Thus, integrating the equation in time at x yields

By our choice we have precisely κ(v 0 , J) = ϕ(η) = η • t 1 (η). Therefore, at least for t = t 1 , we have

which is a contradiction with the fact that t(x) > t 1 . Hence t(x) ≤ t 1 , which means that at such points, the solution becomes equal to or above level -1 before t 1 .

So, combining everything, we have finally obtained that for any point x ∈ R N , u(x, t) becomes greater than or equal to -1 before the time t 1 , which ends the proof.

Remark 5.3. Hypothesis (15) expresses that for any x ∈ B R , there is some positive contribution in the convolution with the positive part of v 0 . So, this implies that at least the following condition on the intersection of the supports should hold:

Actually, if the radius R J is big enough to contain all the support of v 0 this is satisfied. But even if it is not so big, it there are positive values of v 0 which spread in many directions, this condition can be satisfied.

Then, (16) is a condition on the negative part, which should not be too big so that all the possible points such that v(x, 0) < 0 will enter into the positive set for v in finite time. The exact control is a mix between the mass and the infinite norm of the various quantities.

Bibliography