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Dear Participants of the 4-Fourth International Conference “ND-KhPI-2013”, 

It is my honor and pleasure to welcome participants of the Fourth 
International Conference “Nonlinear Dynamic-2013” to be held on June, 19-22, 
2013 in Sevastopol, Ukraine.  

It can conclude that Nonlinear Dynamics is one of the most important and 
well-developed theory with an essential contribution in natural history, 
engineering, technologies and designs, biology, medicine, social sciences etc. An 
importance of Nonlinear Dynamics is also confirmed by numerous conferences, 
which are held last years in different countries.  

One of them is the Fourth International Conference on Nonlinear Dynamics, 
which continues a series of preceding First, Second and Third conferences on 
Nonlinear Dynamics which took place in Kharkov, at the National Technical 
University “Kharkov Polytechnic Institute” and gathered leading scientists 
working on Nonlinear Dynamics from around the world. I am pleased that 
scientists of our university actively continue and develop traditions of known 
scientists in Mechanics and Mathematics such as V.L.Kirpichov, A.M.Lyapunov, 
V.A.Steklov, L.D.Landau, I.M.Babakov, A.S.Voljmir, A.P.Filippov, V.L.Rvachov 
and many others who created a glory of our University, as one of the leading 
Universities of Ukraine.  

I wish to express my sincerely thanks to sponsors of this conference, Prof. 
Christophe Pierre from Illinois University and Prof. Mathias Legrand from McGill 
University for their financial support which is very important for the conference 
organization. I also thank to members of the Scientific and Organizing Committees 
and other people for their efforts in organization of the conference.  

I am sure in a friendly atmosphere for work and discussions, for 
establishment of new contacts and for exchange of new scientific ideas during the 
conference. I hope that this meeting will be long remembering, and the conference 
participants will save good memories on the conference and sights of Sevastopol. I 
greet you all and wish you a conference crowned by success!  

Rector of National Technical University  
"Kharkov Polytechnic Institute" 
Chairman of Organizing Committee, 
Professor                                                                                   L.L. Tovazhniansky 
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developments on the different problems of nonlinear dynamics. 
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Academician of the NAS of Ukraine, Prof. Kovalev A.M. (Donetsk, Ukraine) 

Prof. Kreuzer E. (Hamburg, Germany)  

Academician of the NAS of Ukraine, Prof. Kubenko V.D. (Kiev, Ukraine) – co-Chairman 

Prof. Kurpa L.V. (Kharkov, Ukraine)  

Prof. Lamarque C.-H. (Lyon, France)  

Prof. Lenci S. (Ancona, Italy)  

Prof. Manevich A.I. (Dnepropetrovsk, Ukraine)  

Prof. Manevitch L.I. (Moscow, Russia) 

Academician of the NAS of Ukraine, Prof. Martynyuk A.A. (Kiev, Ukraine) 

Prof. Mikhlin Yu.V. (Kharkov, Ukraine) – co-Chairman 

Prof. Morachkovsky O.K. (Kharkov, Ukraine) 
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Prof. Pellicano F. (Modena, Italy)  
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Prof. Vakakis A. (Urbana, USA; Athens, Greece) 
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Prof. Wiercigroch M. (Aberdeen, UK) – co-Chairman 

Prof. Zakrzhevsky M.V. (Riga, Latvia) 

Academician of the RAS, Prof. Zhuravlev V. Ph. (Moscow, Russia) 

Scientific Committee of the mini-symposium «Creep and plasticity at cyclyc loading» 

Prof. Altenbach H. (Halle, Germany) – Co-chairman 
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Prof. Breslavsky D. (Kharkov, Ukraine) – Co-chairman 

Prof. Kowalewski Z. (Warsaw, Poland) 
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Prof. Morachkovsky O. (Kharkov, Ukraine) – Co-chairman 
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Prof. Shukayev S. (Kiev, Ukraine)  

Prof. Spiliopoulos K. (Athens, Greece) 

Prof. Yasniy P. (Ternopil, Ukraine) 

Organizing Committee 
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Prof. Kravets V.A. – vice-Chairman  

Prof. Mikhlin Yu.V. – vice-Chairman 

Dr. Larin А.А. – Secretary  

Prof. Marchenko A.P.   

Prof. Morachkovsky O.K.  
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Finite Element Approach for Calculations of 
Nonlinear Forces of Fluid Film and its 
Application in Rotor Dynamics 
 

Konstantin V. Avramov1, Oleksii V. Borysiuk2   
 
Abstract 
The vibrations of asymmetric one disk rotor in arbitrary length journal bearing are simulated. Based 
on the finite element procedure, the approach for analysis of the journal bearings pressure is 
suggested. Using this approach, the power series of fluid film forces with respect to the general 
coordinates and the general velocities of journals are calculated. The harmonic balance method and 
the continuation technique are used to analyze the rotor vibrations. As a result of bifurcation analysis, 
it is obtained, that the self- sustained vibrations appear at the frequency of rotor rotation, which is 
lower, then the frequency of the Hopf bifurcation.   
  
Keywords 
Asymmetric rotor, journal bearings, finite element method, harmonic balance method, continuation 
technique  
 
1
 A.N. Podgorny Institute for Mechanical Engineering Problems, Kharkov, Ukraine 

2
 NTU KhPI, Kharkov, Ukraine 

 
* Corresponding author: kavramov@ipmach.kharkov.ua 
 

 
Introduction 

The journal bearings are widely used in stationary gas turbine plants. The forces acting on the 

journals are applied from fluid film. These forces lead to the self-sustained vibrations with significant 

amplitudes. These forces are nonlinear functions of journals velocities and displacements. Such self-

sustained vibrations lead to damage of several rotor systems [1]. At present, modern analytical and 

numerical methods of nonlinear dynamics [2] are used to study the rotor dynamics. Pozniak [3] is 

obtained analytical expressions for fluid film pressure in short length journal bearing. The asymptotic 

solution of the Reynolds’ equation, which describes the journal bearing fluid film presure, is reported 

in [4]. The variational approach is used to obtain this solution. The theoretical basis of the journal 

bearings calculations is treated in the book [5]. 

The mathematical model of the self-sustained vibrations of one disk rotors in arbitrary length 

journal bearings is treated. The finite element solutions of the Reynolds’ equation, which are obtained 

using power series by general coordinates and velocities of journals, are applied to calculate the fluid 

film nonlinear forces. The harmonic balance method and continuation technique are used to analyze 

the rotor vibrations.   

 

1. Equations of rotor motions 

The rotor, which consists of elastic shaft and rigid disk, in arbitrary length journal bearings is 

considered. This system is shown on Fig.1. The rotor is asymmetric � �21 ll � .  
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Figure 1. Rotor in arbitrary length journal bearings 

 
The rotor performs precessional rotation with respect to z  axis due to asymmetric disk 

arrangement. Due to the action of the gyroscopic torques, the disk performs compound motions in 

space. The angles of rotations about the axes yx,  are denoted by 21,�� , respectively. If the rotor 

vibrates, the journals А and В perform motions, which are described by the general coordinates 

� �11, yx  and � �22 , yx , respectively. The journals are hold up by the fluid film forces. The projections of 

these forces on the axes x  and y  are denoted by � � � � 2,1,,,, �iyxFyxF iiyiix , respectively. The rotor 

is moved with angular velocity �  about z  axis. The frequency of the disk rotation takes the 

following form: 

                                                   ,332211 eee ���� 		�                                                       (1) 

where ;sincoscos 323211 ������ �� 	�  ;sincoscos 321322 ������ �� 
�  .sin 2133 ���� �� 	�  Using the 

equation (1), the angular velocity of the rotor rotation is obtained in the following form: 

213 sin��� �� 	�� . Then the kinetic energy of the disk takes the following form: 

 

                                   � � � �,)cos(sin2 22
2

222
2

2

213 1
yxmIIT ep ������ 					� ������                                 (2) 

where m  is mass of the disk; pe II ,  are diametrical and polar moments of the disk inertia, 

respectively.  

The potential energy of the shaft takes the form: 

                             � � � � � � ,22 ,1,212
2
,1

2
,222

22
11 ffffffff yxccyxс ���� 
				��                            (3) 

where 221211 ,, ccc  are elements of the shaft stiffness matrix; ;2,1, �� il
li

i�  ;1221 xxxx f �� 

�  

;2112 yyyy f �� 

�  
l

yy
f

12
1,1



	��� ; 

l

xx
f

12
2,2




��� . 

 

The equations of the rotor motions consist of four equations of two journals equilibrium and 

four equations of disk motions. The equations of rotor motions are the following:  

 

                                               � �
� � ,0,

;0,
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;

21212,22212
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                                    (4) 

where � � ;2
2

1
, 221

2
22

2
21211 ��������� �����

epe III 
�

�  � � .
2

1
, 2

212
2

1212 ������ �� �	� pe II  

The equations of journals equilibrium can be presented in the following form:  
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The functions � � 2,1;, 21 � ii ��  are small and they do not affect on the system dynamics. 

Therefore, in future analysis these functions are not taken into account. Under the action of gravity, 

the rotor rotated with constant angular velocity takes up the equilibrium. This equilibrium describes 

by the following values of the general coordinates: � �221121 ,,,,,,, yxyxyx �� . The rotor motions with 

respect to this equilibrium are treated. The following change of the variables is used:  

 � � � �.,,,,,,,,,,,,,, 222211112211221121 yyxxyyxxyyxxyxyxyx 								� ������      (6) 

Finally, using the change of the variables (6), the equations of the system motions take the 

following form:  
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2. Finite element approach for pressure calculations 

The equations of the rotor motions contain the relations for the nonlinear forces of the fluid 

film. These forces are determined in the following way: 
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where BL  is length of the journal bearing; R  is radius of bearing; �  is an angle defined by the line of 

centers (Fig.1); �,1z  are longitudinal and angular coordinates of the journal bearings; � �� �bLz ,01 � ; 

),( 1 �zp  is pressure acting on the journals. It is assumed, that the fluid in bearing takes up the region 

� ��� ;0� . Bearing A  (Fig.1) is considered in order to simplify the future statement. Subscript 1 of 

the variables indicates that the bearing A  is analyzed. The analysis of the bearing B  is similar.  

The stream of lubrication in bearing is described by the Reynolds’ equation [4]: 
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where "  is the fluid viscosity. The value of the clearance between the journal and the bearing surface 

h  is determined as )sin()()cos()( 11 ���� 	
	
� tytxch , where c  is nominal value of clearance. 
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The boundary conditions for the Reynolds’ equation are considered. It is assumed, that on the ending 

of the bearing 01 �z  and bLz �1 , the pressure is equal to zero: � � � � 0,,0 �� �� bLpp . Maximum and 

minimum of the pressure are observed at the ends of the fluid film: 0��  and �� � . This describes 

by the following boundary conditions: � � � � 0,0, 11 �
�
�

�
�
�

�
��

zpzp . The following dimensionless 

variables are used in future analysis: 
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The Reynolds’ equation is rewritten with respect to the dimensionless variables: 
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 The combination of the finite element method and the Galerkin approach is used to solve the 

equations (11). The fluid film is split on M  rectangular finite elements with nodes in vertexes. It is 

considered the finite element E , which occupy the region: � �% &jijiE zzzRzS ���� ''''�� ;, 2 . 

The pressure on this finite element � ��,1zpE  takes the following form:  

                                                     ,),(),(
4

1
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iiE zupzp ��                                                    (12) 

where ),(...,),,( 1411 �� zuzu  are linearly independent trial functions, which satisfy the boundary 

conditions; 41 ...,, pp  are independent parameters.  

Following the Galerkin approach, the weak solution for (11) on the finite element E  is 

obtained. Using the integration by parts, the following equations are derived:  
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where ES  is the region of the fluid film on the finite element E . The value 3H  takes the form:  
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where % & % &223322
101 ,,,,,,,,,1,..., xyyxyxxyyxyxFF � , � ��� ,ia  are coefficients, which are functions 

of angles �� , . These functions are not published here. The equations (13) are transformed into the 

system of linear algebraic equations with respect to the unknown parameters � �Tpppp 4321 ,,, : 
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                                                           � � � � � �,~~,~~B~~,~~Ρ~~A 1111111111 y,xy,xy,xy,xy,x $$�$$)                                    (14) 

 

where the elements of the matrix A  and the vector B  are determined as:  
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The assemblage of all finite elements is carried out. As a result, the system of linear algebraic 

equations with respect to unknowns ip  for all M  finite elements is obtained. In general, this system 

can be presented in the following form:  

 

                                                          � �� � � � � �)~~,~~(~~
111111 y,xy,xBPy,xA GGG $$�) ,                                           (15) 

where � � � �,..., 21 PPPG �  is global vector of unknowns. We stress, that elements of the matrix and the 

vector of the right-hand parts of the system (15) are polynomials with respect to the general 

coordinates 11
~~ y,x  and the general velocities y,x $$~~

1  of the journals. In order to solve the system 

(15), the elements of the vector � �GP  are expanded into the truncated series with respect to the 

displacements and the velocities of the journals 1111
~~,~~ y,xy,x $$ : 
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where % & % &,...~~,~~,~~,~,~,~,~,~,1,..., 111111
2

1111121 yxxxyxxyxyxSS $$$$� . 

The equations (16) are substituted into the system of linear algebraic equations (15) and the 

coefficients with the same powers are equated. As a result, the set of linear algebraic equations with 

respect to coefficients of the expansion (16) jip ,  is derived. As a result, the global vector of the 

unknowns � �GP  is calculated in the form of truncated series with respect to the general coordinates 

and the general velocities of the journal 1111
~~,~~ y,xy,x $$ .  The obtained solution is substituted into the 

equations of the nonlinear forces of the fluid films (8) and it is obtained:  
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Performing integration (17), the projections of the forces yx FF ,  are obtained in the form of the power 

series with respect to the general coordinates and the general velocities of the journal 1111
~~,~~ y,xy,x $$ :  
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The obtained nonlinear forces (18) are substituted into the dynamical system (7). As a result, 

the nonlinear dynamical system describing the rotor vibrations is obtained:  

 

                                                                     � � ,),(
~

qqWqFq ���� �	                                                         (19) 

where � �Tyxq 21 ,,, ��� ; � �qqW �,
~

 is nonlinear vector-function.  

 

2. Numerical analysis of vibrations 

The harmonic balance method and continuation technique are used to analyze the rotor 

nonlinear dynamics. The direct numerical integration of the system (7) is carried out to validate the 

results of the harmonic balance method. Eigenvalues of the linearized system are calculated to 

estimate the stability of steady rotation. At srad /715�� , steady rotation loses stability and the 

Hopf bifurcation take place. Then unstable self- sustained vibrations appear. The saddle- node 

bifurcation takes place in the point nS  and the stable limit cycle appear. The frequency response of 

the rotor vibrations is shown on Fig.2. Stable and unstable vibrations are shown by solid and dotted 

lines, respectively.  

 

 
Figure 2. Frequency response 

 

 

Conclusions 

Mathematical model of one disk rotor vibrations in the journal bearings is suggested. The 

method based on the expansion of the pressure into Taylor series is suggested. The combination of the 

Galerkin approach and the finite element method is used to obtain the coefficients of this series. The 

influence of the rotor parameters on the self- sustained vibrations is analyzed. 
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Abstract

A system of Hamilton with singular perturbation at the origin, which has two corresponding limiting

problems, is considered. The generating solutions, obtained from the limiting problems, make it

possible to predict properties of corresponding family of periodic solutions of original system as type

of symmetry, approximation of initial conditions and period of the solution. An algorithm for studying

families of periodic solutions by its generating sequence is proposed. These approach is applied

for generalized Hill’s problem, and it is shown that all known families of periodic solutions form the

common network connecting to each other by both generating sequences and by sharing common

orbits with integer multiplicity.
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generating solution, Hamiltonian system, Hill’s problem
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Introduction

Consider a system of canonical equations

ż = J∂H/∂z, z = (x,y), (1)

where J is simplectic unit, x and y are m-dimensional vectors of canonical coordinates and momenta

correspondingly. Let system (1) is defined by Hamiltonian H(z) of the form

H(z) = H0(z)+R(x), (2)

where H0(z) is unperturbed integrable part, R(x) is perturbation function with singularity at the origin.

It is well known that periodic solutions of an autonomous system of ordinary differential equations are

not isolated and form families of periodic solutions. In general case these families are one-parametric due

to presence of the first integral H(z) = h of the system (1). Here and further families of periodic solutions

which are continuable up to h → ∞ are considered. At the limit h → ∞ the original system (1) can be

approximated by its limiting problem, which can be find by Power Geometry algorithms [1, Ch. IV].

1. Limiting Problems

Several assumptions concerning the structure of the Hamiltonian (2) are made. In many cases the Hamilto-

nian H0(z) can be written as a quadratic form H0(z) = 〈Gz,z〉 with symmetric matrix G. Let perturbation

function R(x) can be represented as a finite sum R(x) = ∑n
k=1Ck|x|−k, n ∈ N, and limx→∞ R(x) = 0.

For each term of the Hamiltonian (1) the 2D vector of power exponents is computed by the rule:

(Q,P) = (∑m
i=1 qi,∑

m
i=1 pi), where qi is power exponent of coordinate xi and pi is power exponent of

corresponding momentum yi. The set S(H) of all such vectors is called the support of the function H(z).
According to made above assumptions support S(H0) consists of three points (2,0), (1,1), (0,2) and

support of function S(R) consists of the finite number of points laying in the negative part of abscissa.

The convex hull of the support S(H) is called Newton polygon in this study it is a triangle Γ(H) with

three sides Γi, i = 1,2,3 (see Fig. 1).

One can compute the truncated Hamiltonian Ĥi corresponding to each side of the triangle. There are

only two non-trivial truncations. The first truncation corresponding to the side Γ1 with external normal
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Figure 1. The support S(H) and Newton polygon Γ(H) of the Hamiltonian H(z).

N1 = (1,1) is Hamiltonian Ĥ1(z) ≡ H0(z), which describes the motion for large values of the phase

coordinates z. The second truncation corresponding to the side Γ2 with external normal N2 = (−2,n) is

Hamiltonian Ĥ2 = ∑m
i=1 aiy

2
i +Cn|x|−n, which describes the motion near the origin.

The vectors of external normals give canonic transformations of phase coordinates after which the

original Hamiltonian (2) can be written in the form

H(Z) =˜ H̃1(Z)+ εH̃2(Z), (3)

where ε is a small parameter, H̃1 is Hamiltonian of the limit problem and sign ˜ denotes Hamiltonian in

new variables Z.

The vector N1 = (1,1) involves transformation, which shrinks the vicinity of infinite point:

z =
√

|h|Z, H̃(Z) = 〈GZ,Z〉+
n

∑
k=1

εk
1Ck|X|−k =±1, where ε1 = |h|−1/2. (4)

Thus, at the limit h →±∞ the initial Hamiltonian H(z) coincides with the Hamiltonian of first limiting

problem H̃1 = 〈GZ,Z〉, which is integrable.

The vector N2 = (−1,n/2) involves transformation, which blows up the vicinity of the origin in the

coordinate space and shrinks the vicinity of the origin in the momentum space:

x = |h|−1
X , y = |h|n/2

Y , t = |h|n/2+1s,

H̃ (X ,Y ) =Cn|X |−n +
m

∑
i=1

aiY
2

i +o(ε2), where ε2 = |h|−1.
(5)

The unperturbed part of the Hamiltonian H̃ (X ,Y ) gives Hamiltonian of the second limiting problem,

which describes the motion near the origin in the central field with potential Cn|X |−n. The last problem

is integrable, too.

2. Generating Solutions

The idea of generating solution, introduced by Poincare, is used in this study. It was very fruitful in

investigation of periodic solutions of restricted three-body problem (see [2, 3]).

Definition 1. Let canonical system defined by function (3) has periodic solution (x(t,ε),y(t,ε)) for

ε > 0, which is continuously extendable while ε → 0. Then its limit (if it exists) is called generating

solution. Generating solution is called regular if it does not pass through the singular points of the (3).

We assume that the system (1) has a periodic solution z(t,z0) with period T : z(T,z0) = z0 for definite

value of Hamiltonian H(z0) = h0. Let ρ ′
h and ρ ′′

h are the minimal and the maximal distance from the

origin to orbit x(t,z0). There are three possible ways of continuation of periodic solution z(t,z0) while

h → ∞:
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1. If lim
h→∞

ρ ′
h > 0 then we get generating solution of the first species; such solution is regular and can

be find by the normal form method [2, Ch. II, VII].

2. If lim
h→∞

ρ ′
h = 0 and lim

h→∞
ρ ′′

h > 0 then we get generating solution of the second species.

3. If lim
h→∞

ρ ′
h = lim

h→∞
ρ ′′

h = 0 then we get generating solution of the third species.

If generating solution is not regular then it may consist of solutions of special form called arc-solution.

The arc-solutions start and finish at the singular points of the function (3). In our case generating solutions

should be composed from arcs which start and finish at the origin – the only singular point of the

perturbation R(x).
According to assumptions made in section 1 the system (1) has two limiting problems with Hamilto-

nians given by unperturbed parts of (4) and (5) correspondingly.

To obtain the periodic solution of the perturbed system from the generating solution one has to provide

matching procedure of arc-solutions near the origin. The matching procedure of the first order matches

the velocities of solution of the first limiting problem and velocities of solutions of the second limiting

problem at the origin. If matching procedure is successful then we get a periodic solution of a certain

family and the whole family can be computed numerically by one of the continuation algorithm (see [4]).

We apply the described above approach to Hill’s problem.

3. Generalized Hill’s Problem and Its Limiting Cases

Planar Hill’s problem is a celestial mechanics model being a limit case of the well known restricted three

body problem. It has a lot of applications and originally was proposed by G. Hill for the Moon motion

theory [5]. A small modification of the original Hill’s problem called generalized Hill’s problem (GHP)

is considered in this study. The Hamiltonian of the GHP can be written in the form

H(z) = 〈Gz,z〉+ σ

|x| , where σ =±1, G =

⎛
⎜⎜⎜
⎝

−1 0 0 −1/2

0 1/2 1/2 0

0 1/2 1/2 0

−1/2 0 0 1/2

⎞
⎟⎟⎟
⎠ , (6)

where x = (x1,x2), y = (y1,y2), z = (x,y).
The canonical equations of Hamiltonian (6) has first integral called Jacobi integral

J = 3x2
1 −

2σ

|x| − ẋ2
1 − ẋ2

2 =C, C =−2H.

If σ =−1 we get the Newtonian potential of attraction and, therefore, we get the original Hill’s problem.

If σ =+1 we get the Newtonian potential of repulsion and we call this case anti-Hill’s problem.

The essential property of GHP is the presence of two symmetries of extended phase space given by

linear transformations

Σ1 : (t,x1,x2,y1,y2)→ (−t,x1,−x2,−y1,y2) Σ2 : (t,x1,x2,y1,y2)→ (−t,−x1,x2,y1,−y2) ,

´

which involves that all the periodic solutions of the GHP belong to one of the following group:

1. Asymmetric solutions, which change their form under any transformation Σ1,2.

2. Single symmetric solutions, which are invariant under only one transformation Σ1 or Σ2.

3. Double symmetric solutions, which are invariant under any transformation Σ1,2.

The presence of symmetry of equations considerably simplify the usage of generating solutions defined

by corresponding limiting problems.

The first limiting problem is called Henon problem [6] and is obtained by transformation (4). This

problem gives two sets of suitable solutions:
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1. one-parametric family of regular periodic solutions, which contains the only one generating solution

of the first species (see [6]);

2. the countable set of arc-solutions of two types, which are solutions of the second species.

The arc-solutions of the first type were denoted by M. Henon [7] by symbols {± j}, j ∈ N. The orbits

of the first type arc-solutions are epicycloid (see Fig. 2, left pictures for j =±1). The arc-solutions of the

second type were denoted by symbols {i} and {e} and its orbits are ellipses (see Fig. 2, right pictures).
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Figure 2. Arc-solutions of the first type {+1}, {−1} and second type {i} and {e}.

The second limiting problem is Kepler problem, which gives solutions in the form of hyperbola with

large semi axis equals to 1.

All arc-solutions pass through the origin and it is possible to compose the infinite number of sequences

from arc-solutions ± j, j ∈ N, i, e by matching these arcs with hyperbolas of two types (see [8]).

Hyperbolas of the first type have pericenters near OX axis and eccentricity e ≈ 1, hyperbolas of the

second type have pericenters near OY axis and eccentricity e ≫ 1.

The analysis of the structure of the phase space of the Hill’s problem depending on the value of Jacobi

integral C was given in [8], and it was shown there that suitable solutions of Henon problem and Kepler

problem can exist simultaneously only for C < 34/3 ≈ 4.34. Thus, generating solutions can generate only

those families of periodic orbits which are continuable up to C →−∞ (or h →+∞).

M. Henon stated that for the Newtonian potential of attraction there are two pairs of arc-solutions,

namely, ii and ee, which can not be matched to each other by hyperbolas described above.

4. Generating Sequences and Families of Periodic Solutions

´Statement 1 (M. Henon [3]). A sequence of arc-solutions which does not contain two identical arcs of

the second type in succession is a generating solution and it is called generating sequence for Hill’s

problem.

Numerical analysis of all known families of periodic solutions of Hill’s problem allows to state the

following

Statement 2. Each family of periodic solutions of Hill’s problem, which is continuable to solution of the

second species, is defined at the limit by generating sequence of Statement 1.

Moreover, numerical explorations of periodic solutions of anti-Hill’s problem show that there are no

limitations in the structure of generating sequences, i. e.
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Statement 3. The sequence composed from the arc-solutions j, j ∈ N, i, e in arbitrary order, except two

sequences consisting of arcs {i} and {e} only, is a generating solution for an anti-Hill’s problem family

of periodic solutions.

The generating sequence allows to determine the following properties of corresponding family:

• the type of symmetry of periodic orbits of the family;

• global multiplicity of periodic orbits of the family;

• asymptotics of initial conditions, period and stability index of periodic orbits of the family when

C →−∞.

An algorithm for studying symmetric periodic solutions defined by its corresponding generating

sequences was proposed by the author in [6, 9].

1. A generating sequence is composed in according with Statement 1 or Statement 3; the type of

symmetry and approximate initial conditions and period of solutions are computed.

2. An orbit of the corresponding family is computed iteratively.

3. The whole family is computed by one of the continuation method.

4. During the computation of the whole family stability of periodic solutions and its bifurcations are

detected as well.

More then 20 new families of periodic solutions were found out by this algorithm. Many of them

have periodic solutions useful for space flight design [9].

5. Common Network of Families of Generalized Hill’s Problem

´

Some peculiarities of anti-Hill’s problem make it easier for prediction the global properties of families

defined by generating sequences. Namely,

• the region of allowable motion called the Hill’s region is isolated from the origin, therefore, no

one family has periodic orbit with collision and global multiplicity of periodic solution is invariant

along the family;

• periodic solutions are possible for values C < 0 only, as long as configuration space is divided by

OY axis for C � 0.

It was shown above that Henon problem is the limiting problem both for Hill’s problem and anti-Hill’s

problem. Therefore, two families of periodic solutions – one for Hill’s problem and the other for anti-

Hill’s – are called linked if they both have the same generating sequence at the limit C →−∞. Comparing

Statement 1 with Statement 3 one can conclude that not every family of periodic solutions of anti-Hill’s

problem can be continued to a family of Hill’s problem. But, on the contrary, all known families defined

by generating sequences satisfying the condition of Statement 1 are continuable to families of anti-Hill’s

problem.

Figure 3 gives the result of computations in the form of schematic drawing of families of periodic

solutions of generalized Hill’s problem, which form the common network of periodic solutions in the

sense that starting from an arbitrary orbit of any family one can continue to any orbit of other family. All

families of Hill’s problem denoted on Figure 3 (left part of the figure) are described in [5].
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High Symmetry Discrete Breathers in a Three-
Dimensional Diatomic Crystal 

G.M. Chechin1* and P.P. Goncharov1 

Abstract 
We have found a discrete breather with point symmetry group m3m in the model of NaI crystal 
described by the Morse potential with the appropriate force constants. The Floquet stability analysis 
of this breather can be simplified by means of the specific group-theoretical method based on the 
apparatus of irreducible representations of the symmetry group. The method allows us to split the 
high-dimensional variational system corresponding to the breather into a number of subsystems of 
sufficiently small dimensions. With the aid of this technique, we have calculated Floquet exponents 
for each of these subsystems and, therefore, for the infinitesimal perturbations corresponding to the 
individual irreducible representations of the group m3m. 
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Discrete breathers, group-theoretical methods, stability analysis 
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According to the conventional definition, discrete breather represents spatially localized and 

time-periodic vibration in a nonlinear Hamiltonian lattice (see, e.g., [1], [2]).  

We study strong localized discrete breathers in crystal lattice of NaI. This is two-component 

face-centered cubic crystal with space symmetry group Fm3m. We use the mathematical model of this 

crystal which was considered in [3]. In this model, the atoms are represented by mass points vibrating 

near their equilibrium positions (thus, we don’t take into account the atomic electron structure of the 

crystal). It is assumed that atoms interact via the Morse potential. The constants of this potential are 

different for interactions Na-Na, Na-I and I-I atoms. We use the values of these constants from Ref. 

[3]. Strong localization of discrete breathers allows one to consider only finite fragment (cluster) of 

the NaI lattice which contains a sufficiently small number of atoms (N = 33, i.e., four shells around 

the atom representing the center of the breather).This cluster is shown in Figure 1.  

Figure 1.  A cluster of the NaI lattice (Na - small circles, I - large circles) 

In Ref. [3], the above model was used for constructing low-symmetry breathers which describe 

vibrations along [1, 1, 1], [1, 1, 0], and [1, 0, 0] directions. As to our understanding, the localized 

dynamical objects discussed in Ref. [3] are not strictly periodic, because they are generated by initial 

displacement of one atom in the selected direction. In contrast, we analyze the possibility of existence 

of discrete breathers with high-symmetry point groups (Oh, Td, etc.). Moreover, we construct discrete 
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breathers which turn out to be “numerically exact” dynamical objects (besides localization, they must 

be time-periodic).In Ref. [4], high symmetry discrete breathers in NaI lattice were constructed by the 

aid of an approximate method, which is a certain generalization of the conventional RWA method 

(only zero, first and second Fourier harmonics are taken into account). 

In Refs. [3, 4], there is no exact stability analysis of the constructed dynamical objects. In 

contrast to these references, we not only construct numerically exact discrete breathers, but also study 

their linear stability using the Floquet method. Moreover, we use a specific group-theoretical method 

for considerable simplification of the stability analysis. This method, based on the apparatus of 

irreducible representations of symmetry groups, was developed in [5]. It was adapted for studying 

stability of discrete breathers on square plane lattices in [6]. 

We have found a discrete breather with point symmetry group Oh in the above model of NaI 

crystal using the pair synchronization method [6] and steepest descent method in the space of all 

initial conditions. The time evolution of atom displacements from their equilibrium positions are 

shown in Figure 2. Light Na atoms are vibrating with greater amplitude than heavy I atoms. These 

amplitudes decrease from the center of the cluster at different rates for light and heavy atoms. 

 

 
Figure 2.  Discrete breather with symmetry point group Oh in NaI lattice  

 

For studying linear stability of this discrete breather we apply the group-theoretical method 

developed in Ref. [5]. It allows us to decompose the variational system, which is obtained by 

linearization of original nonlinear equations in a vicinity of the breather, into independent subsystems. 

As a result, this 99-dimensional variational system is split into 9 subsystems of 1,2,4,5,6, and 10 

dimensions. For each of these subsystems, we have applied the Floquet method for studying stability 

of their zero solutions. This method allows to detect the irreducible representation of the symmetry 

group Oh to which the generalized degrees of freedom responsible for the breather stability loss, 

corresponds. 
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monoatomic chains 
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Abstract 

At present, the problem of exact mobile breathers existence in Hamiltonian nonlinear 
lattices is not investigated thoroughly. We have found a mobile breather (MDB) in the Fermi-
Pasta-Ulam-β chain numerically with high accuracy by means of a descent method.
Detailed analysis of different MDB properties is presented. In particular, time evolution of 
displacement and velocity profiles of this dynamical object, as well as its partial energy in 
process of site-to-site motion are discussed. 
Keywords 
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Discrete breathers (DB) in nonlinear Hamiltonian lattices have captured the significant 

attention over last two decades. Stationary discrete breathers (SDB) in such systems have been 

investigated sufficiently well (see, e.g., [1, 2]). SDB is a spatially localized and time-periodic 

excitation. These dynamical objects were observed in many lattices of different physical nature [2]. 

In contrast to stationary DB, the mobile discrete breathers (MDB) are much less studied. Exact 

MDB represents a moving localized excitation which reproduces itself over a number of lattice sites 

(r) after a certain time interval (period) T:  

(0) ( ), (0) ( ), 1.. .i i r i i rx x T v v T i N	 	� � �

Here xi(t), vi(t) are displacement and velocity of i
th
 particle of the chain.  

Let us note that majority of papers, devoted to studying MDB, actually deal with approximate
moving objects. Only a few papers discuss exact mobile discrete breathers. For example, exact MDB 

for the Fermi-Pasta-Ulam-β (FPU-β) chain with N=3, N=4 particles have been obtained in [3] and [4], 

respectively. Nevertheless, the problem of existence of exact MDB in nonlinear Hamiltonian chains 

with arbitrary N is far from the complete solution [5]. In particular, the role of the small ‘tails’ which 

always accompany MDB [6], is not yet understood. 

In the present work, we discuss exact mobile discrete breathers existence in the FPU-β chain 

with N>4 particles. This chain is described by the following dynamical equations  

1 1( ) ( )i i i i ix f x x f x x	 
� 
 
 
x f (i (f ( ,  1..i N� , 
3( )f * * +*� 	

Periodical boundary conditions are assumed:  

0 1 1( ) ( ), ( ) ( )N Nx t x t x t x t	, ,
We apply certain variants of descent methods for constructing MDB, minimizing the following 

objective function 

2 21 1
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in the extended phase space of the system. Here, ξ = {xi(0), vi(0) | i=1..N} is the complete set of 

initial conditions for numerical integration of the dynamical equations. The function d(ξ,T) depends 

not only on ξ, but also on the unknown period T. The accuracy of MBD construction is determined by 

the minimal value of d(ξ,T). Exact mobile breather corresponds to the global minimum which must be 

equal to zero. It is known that the main difficulty of descent methods emerges from the trapping in 

local minima and, therefore, it needs an enough good initial conditions to reach the global minimum. 

With high accuracy, we have obtained exact mobile breathers in FPU-β chains with 

N=5,7,9,11,13 and β=4 (see Table1).  The exact MDB for N particles was used as the initial 

approximation for (N+2)-particle chain. The corresponding initial displacements and velocities for 

this breather (N=11) are depicted in Fig.1 and Fig.2, respectively.  

It can be seen from Table1 that increasing of N leads to the profile of mobile discrete breather 

which tends to that corresponding to the case N=∞. 

 
Table 1. Initial conditions corresponding to the numerically exact mobile breathers. The final 

value of the objective function d(ξ,T) ~ 10
-6

 . 

 N=5 N=7 N=9 N=11 

D
is

p
la

ce
m

en
ts

 

      0.001449474 

    0.002556741 0.002954408 

  -0.008441335 -0.008628172 -0.009417981 

0.048415026 0.077114204 0.077139962 0.07716158 

-0.355554263 -0.332520649 -0.332770085 -0.332794198 

0.470996927 0.479814409 0.480084191 0.48011942 

-0.27231175 -0.253657115 -0.254080245 -0.254284571 

0.019145236 0.050791384 0.052235036 0.050996252 

  -0.005295503 -0.005686286 -0.006421704 

    0.002741115 0.00257721 

      0.000526935 

V
el

o
ci

ti
es

 

      1.88E-09 

    0.001872348 0.003034375 

  -0.015358806 -0.017125342 -0.016170813 

0.082345648 0.080095961 0.081219722 0.081230856 

-0.266283498 -0.255813957 -0.255450654 -0.256018571 

0.267632162 0.254291813 0.2542605 0.254602348 

-0.063312622 -0.064366192 -0.065176544 -0.065242767 

-0.020380774 -0.003614211 -0.002912388 -0.002550606 

  0.004781249 0.003210914 0.001759737 

    0.000155807 -0.000641832 

      -6.44E-05 
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 T = 13.411911 T = 13.518354 T = 13.511061 T=13.509968 

 

 
Figure 1. Initial displacements corresponding to the exact MDB in FPU-β chain. N=11 

 
Figure 2. Initial velocities corresponding to the exact MDB in FPU-β chain. N=11 
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Existence and Stability of Symmetry 
Determined Nonlinear Normal Modes in 
Electrical Chains 

G.M. Chechin1*, S.A. Shcherbinin1   

Abstract 
We consider an electrical chain of N nonlinear capacitors coupled by linear inductors assuming that 
voltage dependence of capacitors represents an even function. We prove that only 5 symmetry 
determined nonlinear normal modes (NNMs) can exist in the considered system. The stability of all 
these dynamical regimes for different N is studied with the aid of the group-theoretical method, which 
allows to simplify radically the variational systems appearing in the stability Floquet analysis. The 
scaling of the voltage stability threshold in the thermodynamic limit  is determined for each 
NNM. 

Keywords 
nonlinear dynamics, lattice models, nonlinear normal modes, invariant manifolds, group-theoretical 
methods 
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Introduction 

In recent years, a studying of nonlinear vibrations in mesoscopic systems of various physical 

nature captured the attention (see, e.g., the review [1]). It is essential that in contrast to crystals, where 

only indirect experiments are possible, in mesoscopic systems one can often observe different 

dynamical objects directly. 

In Ref [2], the existence and linear stability of so-called π-mode in one-dimensional nonlinear 

electrical lattice was studied. This system constructed on a silicon substrate by CMOS technology, 

represents a chain of nonlinear (voltage-dependent) capacitors coupled by linear inductors. This chain 

is shown schematically in Fig.1. Using periodic boundary conditions, one can imagine that the 

considered circuit represents a ring of N cells. For the case N=4, such ring is depicted in Fig.1b. 

a)     b)

Figure 1. Chain of nonlinear capacitors coupled by linear inductors 

The dependence C(V) of the capacity C on the voltage V can be rather complex, but the authors 

of Ref. [2] used the following simple form of the function C(V): 

,                                                                       (1) 
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where  and b are positive constants. 

Applying the Kirchhoff's law for quasi-stationary current to the circuit in Fig.1, one can obtain 

the following equations: 

 

 

Here  is a charge on j-th capacitor at instant t (the voltage on this capacitor is equal 

to ), while   represents current through the inductor . 

Taking into account relations  and , one can 

reduce the above first-order two equations to the system of differential equations of the second order 

with respect to voltages :  

 

                         (2) 
 

The appropriate scaling of variables in Eq. (2) allows one to suppose b=1 and . Taking 

into account periodic boundary conditions, we obtain the following dynamical model: 

 

          (3) 

 

The so-called -mode, which was investigated in [2], can be written in the form 

 

 

 

This means that voltages on every pair of neighboring capacitors are opposite in sign (such dynamical 

regime can exist only in chains with an even number of cells). 

Stability of -mode depends on the number of chain cells (N). Since this mode represents 

periodic regime, its stability can be investigated with the aid of the standard Floquet method. 

However, dimension of the variational system (the system of linearized equations in the vicinity of the 

considered dynamical regime) and corresponding monodromic matrix is equal to 2N. Because of this 

reason, studying of the linear stability of -mode can be very difficult in the case , especially 

when . A special method for studying this problem was developed in [2]. It allows one to 

decompose the variational Floquet system into independent scalar equations. However, this method is 

based essentially on the specific structure of the dynamical model of the electrical chain, and it seems 

to be rather difficult. 

On the other hand, a general group-theoretical method for splitting variational system into 

subsystems, whose dimensions can be considerably smaller than that of the original variational 

system, was developed for dynamical models with discrete symmetry in our paper [3]. This method is 

based only on symmetry-related arguments and uses the apparatus of irreducible representations of the 

symmetry group of the model under consideration. In Refs. [4,5], we used this method for analyzing 

stability of all possible symmetry-determined Rosenberg nonlinear normal modes in FPU-α and FPU-

β chains, while in Ref. [6], it was applied for studying stability of discrete breathers and quasi-

breathers in 2D scalar dynamical models on the plane square lattices. 

Below, we use this group-theoretical method for analyzing stability of the symmetry-

determined nonlinear normal modes in the electrical model (3). 

 

1.  Symmetry-Determined Nonlinear Normal Modes 

The concept of nonlinear normal modes was developed by Rosenberg in [7] (more information 

on these dynamical objects can be found in [8]). In the dynamical regime corresponding to a given 

NNM, vibrations of all dynamical variables are described by one and the same time-dependent 

function f(t). For the case of the electrical model (3), this means that all voltages  satisfy the 

relation: 

 
where  are constant coefficients. 



Chechin G.M., Shcherbinin S.A. 
 

30 

 

Rosenberg nonlinear normal modes can exist only in some very specific classes of systems, in 

particular, in systems whose potential energy is a homogeneous function of all its arguments. 

However, existence of NNMs in systems with general interactions can be ensured by the presence of 

some group of discrete symmetry [4, 5, 9, 10]. Hereafter, we call such modes symmetry-determined 

nonlinear normal modes, or simply NNMs. 

There exists only a small number of symmetry determined NNMs in any lattice model. We 

discussed the cause of such situation in [5]. The matter is that the attempt of construction NNM with 

large cell in vibrational state leads to appearance of quasiperiodic dynamical regimes which represent 

bushes of NNMs [11-13] (see also the review [14]). 

We have found that only five types of symmetry-determined NNMs can exist in the considered 

electrical chains (this result does not depend on the specific structure of Eqs. (3) – it is a consequence 

only of the symmetry group of the lattice model): 

 

  ( -mode)                               (4) 

                                                  (5) 

                                                         (6) 

                                                  (7) 

                                     (8) 

 

Substituting Eqs. (4)-(8) into dynamical equations (3), we obtain only one independent equation 

with respect to the variable V(t): 

 

,                                       (9) 

 

where the following values of the parameter μ correspond to the above NNMs: 

. 

 

2.  Stability of Nonlinear Normal Modes 

The stability of a given NNM can be studied with the aid of the Floquet method. Using this 

method, we linearize the original system of nonlinear differential equations near this NNM obtaining 

a variational system. This is the system of N second-order differential equations with time-periodic 

coefficients, whose period T is equal to that of the given NNM. Then we reduce this system to the 

system F of 2N first-order differential equations and construct for it the monodromic matrix. The 

successive columns of this matrix can be obtained by integrating 2N times the system F over period T 

using the columns of  identical matrix as the corresponding initial conditions. 

The above-mentioned Floquet procedure is very difficult for the case . We used a general 

group-theoretical method [3] for splitting variational systems into subsystems of considerably smaller 

dimensions than those of the original variational systems. The method is based only on symmetry-

related arguments and uses the apparatus of irreducible representations of the symmetry group of the 

studying dynamical regime. We show that for NNMs (4)-(8) the corresponding variational systems 

can be split into independent subsystems whose dimensions are equal to 1, 2, 2, 3, 3, respectively. 

All these subsystems we write in the matrix form: 

 

,                                                                    (10) 
 

where matrices  are constructed from the following elements: 

 

 

 

 

 

Here  is the solution of “governing” equation (9) for the corresponding nonlinear normal 

mode. Below we list the explicit matrix form (10) for each of NNMs (4)-(8). 

 

1) . 
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All subsystems (10) for this case are one-dimensional with the following  matrices: 

 

,                                         (11) 

where . 

For NNMs  and , subsystems (10) are two-dimensional: 

 

2)  

                           (12) 

3)  

                           (13) 

In Eqs. (12)-(13)  . 

4) For both NNMs  and  

 the three-dimensional subsystems (10) turn out to be 

identical with the following matrices: 

 

                                                      (14) 

where . 

Thus, stability of NNMs in the electrical chain (3) can be investigated by analyzing a set of 

one-, two- and three-dimensional systems of differential equations with time-periodic coefficients 

determined by the function V(t). 
Zero solutions of the systems (11)-(14) are stable for sufficiently small amplitudes A of the 

time-periodic function V(t), entering coefficients of these systems, that implies the stability of NNMs 

(4)-(8). Increasing of this amplitudes leads to appearing of parametric resonance in systems (11)-(14) 

and, as a result, to modulation instability of the corresponding NNM beyond a critical amplitude 

. 

In Fig.2, for every nonlinear normal mode we depict  as a function of the number (N) of 

chain cells. As can be seen from this figure, the critical amplitudes  represent decreasing 

functions which tend to zero when ∞. It is interesting to note that the stability plots for the 

modes  and  turn out to be identical, despite the different functions V(t), determining the 

coefficients c(t), g(t), f(t), correspond to these modes (  for the mode  and  for the mode 

). 

Figure 2. Stability of nonlinear normal modes (4)-(8) for electrical chains with different N. Solid 

line corresponds to the mode  (5), dashed line – to the mode  (6), dot-dashed line – to the π-

mode  (4), dotted line – to the modes  (7) and   (8). 
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Figure 3. Plots of  for nonlinear normal modes (4)-(8) in logarithmic scale. Solid line 

corresponds to the mode  (5), dashed line – to the mode  (6), dot-dashed line – to the π-mode 

 (4), dotted line – to the modes  (7) and   (8). 
 

The functions  have been obtained with the aid of the Floquet method applied to the 

systems (11)-(14) for all possible mode numbers  j. For , the function  for the modes  

and  can be also found in an analytical form. Indeed, in this case one can transform Eqs. (10)-(11) 

to the Mathieu equation, for which stability properties are well-known, while the two-dimensional 

system (10),(12) may be decomposed into independent Mathieu equations [actually, this is a 

consequence of commutation of matrices (12) that allows one to diagonalize them simultaneously]. 

The corresponding results read:  

 

 

 

From these formulae, one can deduce the asymptotic laws for  when : 

  for the mode  and for the mode . 

The similar asymptotic formulas for other NNMs (6)-(8) can be obtained numerically. Indeed, 

in Fig.3, we present functions  in logarithmic scale for large value N (N>100). From this figure, 

it is obvious that for all NNMs  are power functions since the dependence of  on lnN 

represents straight lines. The coefficient β in the formula  is determined by inclination 

of the corresponding straight line to the horizontal axis. 

For NNMs (4)-(8) we have obtained the following values of the constants β and C entering the 

law : 

                                      [Eq. (4)]: =0.99, . 

                                      [Eq. (5)]: =0.49, =2.89. 

                                      [Eq. (6)]: =0.99, =8.57. 

                                       and [Eqs. (7) and (8)]: =0.99, =7.54.                                (15) 

 

Relying on the above data, we can assert that for all NNMs, except the mode , the constant β 

determining the rate of decreasing of critical amplitude ,with increasing N, is equal to unity (β=1), 

while for  it is equal to 0.5. Note that we have obtained the values of the parameter β for modes  

and  analytically, as well as numerically, while for NNMs , ,  this parameter was found 

only numerically. We conjecture that it can be obtained also analytically by the specific asymptotic 

method developed in [15]. However, this was not done in the present paper, because numerical results 

(15) seem to be sufficient for hypothesis that the parameter β for NNMs ,  and  is equal to 

unity. 
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Conclusions 

In the present paper, we study periodic vibrations in the chain of nonlinear capacitors coupled 

by linear inductors, assuming that voltage-dependence of capacitors is described by the function 

, as was done in Ref. [2]. These dynamical regimes represent symmetry-

determined nonlinear normal modes and we prove that only five types of such modes can exist in the 

considered electrical chain. 

We have studied the stability properties of all these NNMs. For this purpose, we use group-

theoretical method that allows one to decompose corresponding variational systems into a number of 

independent subsystems of considerably less dimensions. This method can be applied not only for 

periodic dynamical regimes, but also for other regimes. In particular, this is true for bushes of 

nonlinear normal modes representing quasiperiodic vibrations [11-13]. 

We also found the asymptotic law of the critical amplitudes  beyond which NNMs loose 

their stability. 
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Abstract 
Exact solutions for symmetric on-site discrete breathers (DBs) are obtained in a forced–damped 
linear chain with on-site vibro-impact constraints. The damping in the system is caused by inelastic 
impacts; the forcing functions should satisfy conditions of periodicity and antisymmetry. Global
conditions for existence and stability of the DBs are established by combination of analytic and 
numeric methods. The DB can lose its stability either by pitchfork, or through Neimark – Sacker 
bifurcations. The pitchfork bifurcation is related to internal dynamics of each individual oscillator. It is 
revealed that the coupling can suppress this type of instability. To the contrary, the Neimark – Sacker 
bifurcation occurs for relatively large values of the coupling, presumably due to closeness of the 
excitation frequency to a boundary of propagation zone of the chain. Both bifurcation mechanisms 
seem to be generic for the considered type of forced–damped lattices. Some unusual phenomena, 
like non-monotonous dependence of the stability boundary on the forcing amplitude, are revealed 
analytically for the initial system and illustrated numerically for small periodic lattices. 
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Introduction 

Discrete breathers (DBs) or intrinsic localized modes (ILMs) are well–known in many 

nonlinear lattices [1,2]. Generally, they are exponentially localized (if a coupling between the 

neighbors in the lattice has a linear component) and can demonstrate remarkable stability also in two 

– and three – dimensional lattices [2]. Numerous systems which exhibit the DBs include chains of 

mechanical oscillators [3], superconducting Josephson junctions [4], nonlinear magnetic 

metamaterials [5], electrical lattices [6], michromechanical cantilever arrays [7], antiferromagnets [8] 

and many other physical systems [9]. 

In the majority of theoretical studies related to the DBs, Hamiltonian models are considered. 

Still, in many applications the damping cannot be neglected; in order to maintain the DB, one should 

compensate it by some kind of direct or parametric external forcing [2]. Experimentally, many of the 

DBs observed in the experiments were in fact created and maintained in the presence of damping and 

under homogeneous forcing from the external sources.  

It is more or less easy to “explain” the nonlinear localization in a chain of forced-damped 

oscillators on a qualitative level. It is well–known that single forced–damped nonlinear oscillator can 

exhibit stable steady–state responses with different amplitudes, depending on initial conditions [10]. If 

one or more oscillators in the lattice are excited at high amplitude, all the others – at low amplitude, 

and coupling between the oscillators is weak enough to preserve this structure, one obtains an 

example of strongly localized excitation in conditions of a homogeneous forcing. However, 

quantitative description of such breathers remains a major challenge. Lack of Hamiltonian structure 

changes the properties of the DBs. Instead of continuous family of localized solutions, one expects to 

obtain a discrete set of attractors. Consequently, many of the methods devised for computation and 

analysis of the Hamiltonian DBs are not applicable in forced-damped systems. Even more important, 

the DBs in the forced/damped systems can have some qualitative properties absent in their 
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Hamiltonian counterparts. For instance, one can observe stable moving DBs in forced/damped 

systems [11]. In Hamiltonian lattices, the existence of such moving stable DBs is generally denied [2], 

with known exception of the integrable Ablowitz – Ladik model [12]. Also, there exist some special 

non-integrable Hamiltonian discrete models where the DBs can be computed exactly [13]. To the best 

of the author’s knowledge, no such exact solutions are known in forced-damped discrete lattices. 

Even in continuous nonlinear models with forcing and damping, some exact solutions for the 

breathers were obtained only for a handful of special cases [14]. This paper is devoted exactly to this 

problem and suggests a model, which allows one to derive exact solutions for the forced – damped 

DBs and to study some of their properties.  

We are going to demonstrate that the exact solutions can be derived for the DBs in a vibro-

impact (VI) chain. Dynamical systems involving impacts have an important peculiarity – they exhibit 

extreme (actually, the strongest possible) nonlinearity, but the latter reveals itself only at the moments 

of impacts; between the impacts the system obeys linear equations of motion, if other sources of 

nonlinearity are absent. Consequently, the VI models can offer relatively simple description of 

complicated nonlinear phenomena. Celebrated examples of this sort are problems of bouncing ball 

[15] and kicked rotor [16], but many other tractable VI models are known and used for description of 

realistic physical systems, such as Bose – Einstein condensates [17]. One of the few exact solutions 

for DBs in Hamiltonian systems also uses the VI model [18]; in the current paper, we extend this 

result for the forced-damped case. 

 

1.  Description of the model and analytic solution 

 

The model used here is a homogeneous chain with linear nearest – neighbor interactions; in 

addition, each particle can move only between inelastic impacts constraints. Such model is 

topologically equivalent to smooth models with linear interaction and on-site potential, widely used in 

investigations devoted to the DBs [7].  Sketch of the model system is presented in Fig. 1. 

 

 
Figure 1. Sketch of the model system. 

 

Each particle is subject to the same external forcing. The forcing function is considered to be 

2π-periodic and antisymmetric, as specified below in the equations of motion. Between the impacts, 

displacement un of the nth
 particle is described as: 

-  

1 1(2 ) ( ),   ( ) ( 2 ),  ( ) ( )n n n nu u u u F t F t F t F t F t. � �
 		 
 
 � � 	 	 � 
(2nu (2n ((2(2(2(2   (1) 

 

Without affecting the generality, the clearance Δ and the particle mass are set to unity and the 

only parameter which characterizes the chain is a coupling coefficient γ. Equations (1) are valid 

between successive impacts. If the particle with number n impacts the constraint at time instance ti,n, 

the following conditions are satisfied: 

 

, , , ,;  ( ) 1;  ( 0) ( 0),  0 1i n n i n n i n n i nt t u t u t ku t k� � / 	 � 
 
 0 0, , 0), 0n, ,,( 0) (( 0) (, ,,, 0),  0( 0) (( 0) (( 0) (( 0) ( 0) 0( 0) ( 0),  0( 0) ((    (2) 

 

Here k is a restitution coefficient. Notation ±0 is used to denote the particle’s velocities 

immediately after (+) and before (-) the impact. Values of k<1 correspond to inelastic impacts; it is 

the only source of damping in the model. The model is not solvable in a general form. Therefore, we 

are going to look for partial solutions for the DBs. In this paper, the simplest on–site symmetric DB is 

considered. Our motivation for this choice is that namely the DBs of this type are the most explored 
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ones, both experimentally and numerically.   Hence, we adopt that responses of all particles are 

periodic and symmetric, and only particle with n=0 impacts each of its constraints symmetrically with 

period 2π: 

 

,0

0 0 0 0 0 0

( ) ( 2 ) ( (2 1));  .
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n n n iu t u t m u t m t m

u u ku u u ku

� � 1 �

1 1 1 1 � 1 � 1

� 	 � 
 	 	 � 	

� 	 � 
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0 0 0 0 0( ) ( );  ( ) 1, ( ) ( 0).( 0) ( 0) ( ) 1 ( 0)( 0) ( ) 1 ( 0 10 0 0 0 00 0 0 (0 0 0 0 00 0 00 0 00 0 0 00 00 0 00 0 (( 0) ( 0); ( ) 1 ( 0)( 0); ( ) 1 ( 00) ( 0); ( ) 1 ( (0( 0) ( 0); ( ) 1 ( 0)( 0) ( 0); ( ) 1 ( 00) ( 0); ( ) 1 (0) ( 0); ( ) 1 ( 00 0 0 00 00 0 00 00 0

  (3) 

 

Here φ is a “phase lag” of the impacts with respect to the external forcing. Effect of each 

impact is equivalent to transfer of certain amount of momentum to the impacting particle. For further 

analysis, the variables are changed as follows: 

 

( ), ( ) ( ).n nu v f t f t F t� 	 �f ( )( )( )(      (4) 

 

Due to the antisymmetry of F(t), it is always possible to find a unique function f(t) satisfying 

Eq. (5) and the antisymmetry condition. 

Then, the exact solution for the symmetric one – site DB is expressed as: 
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Parameters p and φ can be determined from Eq. (5) for each specific choice of F(t). 
In order to study the DB described by solution (5) in more depth, the case of a simple harmonic 

forcing is considered. In this case, one can solve Eqs. (5) explicitly: 
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           (6) 

 

Here a is the amplitude of the harmonic forcing. A stable response corresponds to a positive 

sign in expression (13) for p.  It is possible to determine the zone of existence of the DB in the space 

of parameters. This zone is illustrated in Fig. 2, together with the stability thresholds for the DBs. 

 

2. Stability analysis  

The DB solution (5) is 2π-periodic by construction, and thus its stability may be established by 

analysis of eigenvalues of a monodromy matrix computed on a single time period [19]. Such matrix 

cannot be computed for an infinite chain; therefore, it is commonly accepted to compute it for a finite 

chain and to check whether the stability properties depend on the number of particles [11]. In this 

paper we adopt the same approach and consider the system with N particles and periodic boundary 

conditions. For systems with smooth nonlinearity, such monodromy matrices are usually computed 

numerically, by solving complete set of N ODEs for 2N independent sets of initial conditions [11, 20]. 

However, for the vibro-impact chain considered here, in addition to availability of exact solutions, it 

allows computing the monodromy matrix in a much simpler manner. A state vector of the system is 

defined as: 
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We adopt ,  0,...,k kw u k N� �, ,ku k,  0,..kuk  . The periodic boundary conditions are imposed as: 

 

0 0, .N Nu u w w� �      (8) 

 

In the exact solution the impacts occur only at the site 0n � in time instances ,t 1 1 �� 	 . 

Consequently, between impacts, the time evolution of the state vector is described by linear equation. 

With account of (1) and (16), this equation is written as: 
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is the discrete Laplacian adjacency matrix accounting for the linear coupling. 

Due to linearity of Eq. (9), evolution of small perturbations of the state vector V between the 

impacts is described by the exponent of matrix A. At the moments of impact, the evolution of small 

perturbations of the state vector is described by so-called “saltation matrix” [21], which takes into 

account both the perturbation of the state vector at the point of discontinuity and the infinitesimal 

variation of the impact time instance. For the system under consideration, this matrix at time instance 

t 1�   in the lowest-order (linearized) approximation [21] may be written as: 
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where 0 ( 0)u� 1� 
0 ( 0)10 (u (u . Complete monodromy matrix at the period is thus expressed as: 

 

, exp( )�� �2
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Values of velocity and acceleration of the impacting particle in the moment of impact are taken 

from the exact solution (5). Expression (10) still requires the numeric computation of the exponent 

matrix and the multiplication of the matrices, but all of these tasks are much easier from a 

computational viewpoint than the solution of N second – order ODEs with 2N independent sets of the 

initial conditions. 

 The loss of stability has been recorded numerically in the space of parameters, when the 

eigenvalue of the monodromy matrix (or couple of the complex conjugate eigenvalues) with the 

largest absolute value crossed a threshold of 1.005. For all explored examples, it was found that for 

400N :  the critical parameter values do not depend on N within a relative margin of about  0.1%.  

Thus, it is possible to suggest that these results on stability of the DBs are also relevant for the infinite 

chain.  

 Two generic scenarios of the loss of stability were revealed. The first one corresponds to the 

transition of two complex conjugate eigenvalues through the unit circle and is related to the Neimark 

– Sacker bifurcation. The other scenario corresponds to the passage of a single eigenvalue through 

unity. This scenario corresponds to a pitchfork bifurcation; the latter results in appearance of a pair of 

stable asymmetric DBs.  

 Examples for zones of existence and stability for the DBs are presented in Fig. 2.  

 

a)       b) 

Figure 2. Zones of existence and stability for the symmetric DB on the (γ, a) parameter plane for two 

different values of the restitution coefficient, a) k=0.8; b) k=0.4. Crosses denote the pitchfork 

bifurcation line and diamonds denote the line of Neimark – Sacker bifurcation. 

 

One can see that for lower values of the restitution coefficient, the DB exists for a narrower 

range of amplitudes of the external forcing, but it is stable in a wider range of the coupling 

coefficients. The pitchfork bifurcation in the upper left corner is similar to the loss of symmetry 

observed in single vibro–impact oscillator [22]; naturally, this case is equivalent to zero coupling. A 

similar pitchfork bifurcation, related to a “loss of symmetry”, is also known in the regular forced–

damped Duffing oscillator [10]. Thus, this scenario of the loss of stability is caused by internal 

dynamics of each individual oscillator. Our computations reveal interesting and, it seems, previously 

unknown fact: the coupling between the oscillators can suppress this scenario of the loss of stability 

and stabilize the symmetric DBs. 

It is also possible to conjecture that the Neimark–Sacker bifurcation in the lower right corner is 

related to four–wave interaction with the boundary of the propagation zone [7]. One can also see that 

the size of interval of existence of the DBs shrinks and approaches zero as the frequency approaches 

the boundary of the propagation zone. This observation also correlates with numeric and experimental 

findings presented in Ref. [7], where the amplitude of the DB was seen to decrease as the forcing 

frequency gets closer to an optical band. These results allow us to conjecture that both bifurcation 

mechanisms described above are generic for forced lattices with nonlinear on-site potentials, and not 

only relevant for the VI chain studied here. 

  

Conclusions 

As it was demonstrated above, the vibro-impact model allows derivation of exact analytic 

solutions for discrete breathers in forced – damped essentially nonlinear chain, without any 

simplifications or approximations. The zone of existence and stability of the DB solution in the space 

of parameters has been computed. Two mechanisms of the loss of stability (pitchfork and Neimark–

Sacker bifurcations) were revealed. Existence of the asymmetric and quasiperiodic DBs was predicted 
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analytically and verified numerically. It is interesting to mention that the increase of the coupling can 

both stabilize and destabilize the symmetric DB in different zones on the plane of parameters and for 

different bifurcation mechanisms.  
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Abstract 
In this paper an effective asymptotic approach for actual dynamic problems of structures with 
significant nonlinearities and variable parameters is presented. Special attention is paid conceptually 
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Introduction 

Along with development of computer engineering, applications of asymptotic methods to the 

set of problems are developed too. A number of complex mechanical problems can be significantly 

simplified due to application of hybrid asymptotic approaches [1]. Such solutions can be used as an 

approximation for the further numerical calculations. 

A wide variety of deformable structures with variable geometry and time dependent 

parameters, reduced to singular differential equations with variable coefficients and boundary 

problems, can be solved analytically only in exceptional cases. Since the field of the most known 

asymptotic solutions application is limited, hybrid asymptotic methods [3] are in the stage of 

developing. There are a number of hybrid approaches which are based on approximate solution 

improvement. Phase integral – Galerkin (or WKB-G) technique proposed in 1993 [2] and widely 

published during the last 15 years has already shown its advantages in different branches of modern 

aerospace, machinery and structural mechanics, heat transfer [4, 5], and in systems with significant 

nonlinearities such as satellite vibrations in the plane of elliptical orbit [6] and etc. 

In this paper new results on the hybrid WKB-G method application for solution of non 

homogeneous differential equations with variable coefficients and significant nonlinearities, with 

respect to dynamic problems are discussed. The obtained solutions possess a high accuracy and can be 

useful in a wide variety of applications. 

1. Formulation of Problem 

To introduce the method we consider following non homogeneous nonlinear singular 

differential equation with variable coefficients 

)()(),()(),(),()(2 xTGxbxTxcTxaxT ;�
	$	$$ <+<<< (1) 
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=
where +< ,  – scalar parameters, ),(),,(),,( <<< xbxcxa  – some differentiable functions, )(TG  – 

nonlinear function, )(x;  – given function and initial or boundary conditions are given. 

In the first step a perturbation solution )(xT  is developed with +  [3] as an 

 

 ...2
10 			� TTTT ++  (2) 

 

Substituted (2) into the initial equation (1), the differentiation is distributed onto various terms 

[1], the left hand side is expressed in the form of a power series in +  and the coefficient of each 

power of +  is set zero: 
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The equation (3) we rewrite in form 

 

 )(),(),()( 000 xTxcTxaxT ;�	$	> <<  (5) 

 

where 

 

 a
a

�
2<

   b
b

�
2<

   ;�
;

2<
 (6) 

 

In order to simplify homogeneous differential equation (5) 
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Finally we obtain initial homogeneous equation in form 
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2. WKBJ Procedure 

In the second step using WKBJ (or phase-integral) method in standard procedure 
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WKB-approximation of initial linear homogeneous equation with using (15-16) for function 

0u  becomes 
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General solution of initial non homogeneous nonlinear equation is 

 

 � � � �� �xTxTxTxTT ppWKB
1

0

10

0

0 )()( 			� +  (19) 

 

Final result of calculations is 
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3. Hybrid Asymptotic Solution 

In the third step we will keep the perturbation functions but replaced the gauge functions by 

new amplitudes which depend on <  [1, 2]. In the Bubnov-Galerkin orthogonality principle one seeks 

an approximate solution in the form of a linear combination of specified (known) coordinate functions 

with unknown amplitudes 0? which are function of< : 
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For amplitudes 0?  we obtain following sequences: 
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The result of three-step hybrid asymptotic solution of initial non homogeneous nonlinear 

differential equation with variable coefficients for function � �xT H
 is given in form 
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where 
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4. Numerical Results 

To obtain an approximate analytical solution of nonlinear equation: 
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where <  and +  – are parameters. 

Using solution (20) with initial conditions 
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we obtain the result in form 
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at 1.0�<  and 1.0�+  solution (33) becomes 
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Comparison of numerical results using approximate analytical solution and direct numerical 

calculations of initial equation (31) are given in Figure 1. 
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Figure 1.Comparison of analytical and numerical solutions 

 

Conclusions 

In this study we have discussed three-term hybrid asymptotic method for an approximate 

analytical solution of dynamic problems of structures with significant nonlinearities and with variable 

parameters. A hybrid WKBJ-Galerkin method on the basis of obtained analytical solution will be 

effective for «small» values of scalar (perturbation) parameters and for «large» values as well.  

An example shows that in some type of nonlinear differential equations in the fixed initial 

interval of variable x proposed analytical solution is not sensitive to order of nonlinearities. 
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Introduction 

Satellite vibration problem in the plane of elliptical orbit was investigated in some publications 

[1-6]. Paper [1] is devoted to calculation of satellite periodic vibrations on the basis of the equation 

proposed in [2]. The local method of analysis of significant nonlinear dynamic problems is given in 

[3] and the usage of this method for the singular perturbations was discussed in [4]. 

An effective approximate analytical approach on the basis of hybrid asymptotic methods with 

respect to vibrations of systems with significant nonlinearities and variable parameters which is 

described by non homogeneous nonlinear differential equations with variable coefficients is discussed 

in [10]. This approach, as shown in [8, 9], gives a possibility to obtain more refined an approximate 

analytical solutions of a variety nonlinear problems. 

1. Formulation of problem 

In the spirit of [2] it is supposed that satellite moves in central gravitation field so that its mass 

center moves on elliptical orbit. It is investigated plane satellite movement with respect to its mass 

center. 

Differential equation of this problem proposed by V.V. Belecky [3] in the form: 
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where ?  – double angle between radius-vector of mass center and axis of inertia with respect in 

which inertia moment is equal C ; � � BCA
� 3" ; e  – orbit eccentricity ; @  – angle distance of 

radius-vector from orbit perigee (real anomaly); B  – moment of inertia with respect to main inertia 

axis of satellite which is perpendicular to plane of orbit; A  – inertia moment with respect to third 

main axis of inertia. 

 
Figure 1. Scheme of satellite on orbit [2] 

 

After some simplifications the initial equation (1.1) will be considered in the form: 
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For an approximate analytical solution of singular nonlinear differential equation with variable 

coefficients (1.2) is used a hybrid asymptotic method [8]. In step one the solution is determined by 

forming a perturbation expansion [11] in A . 
For an approximate analytical solution of singular nonlinear differential equation with variable 

coefficients (1.2) is used the hybrid asymptotic method [8]. 

In step one the solution of equation (1.2) is determined by forming a perturbation expansion 

inA  as a scalar parameter as the following:  
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for the equation 
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where 
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Introducing (1.4) into (1.5) and saving two first terms of expansion, we obtain the system of 

two linear differential equations 
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with resulting solution of initial equation (1.2) which is determined through WKB method [9]: 

 

� � � � � � � � � �
� � � �

� � � �
� � � �79

7
8
6


�
�

�
�
�

�

$
	

$
	� �� @

@@
@?@

A@
@@
@@

@@@? d
IE

Ib
d

IE

IF
aIE

coscos
sin

3
0

1  

 � � � � � �
� � � �

� � � �
� � � � 7B

7
C
D

�
�

�
�
�

�

$
	

$
	
 �� @

@@
@?@

A@
@@
@@

@ d
IE

Ib
d

IE

IF
aI

sinsin
cos

3
0

2  (1.9) 

 

where 1a , 2a  – are constants; � �@?0  – general solution of linear equation (first approximation) at 
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2. Hybrid WKB-Galerkin method in nonlinear satellite vibration problem in 
plane of elliptical orbit 

 

In correspondence with [7] solution of initial equation (1.2) is presented in form 
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leads to the expressions for 0E : 

 

 
� � � �

� �

� � � �

� �

2

23
2

23
0

4

1

4
2,1

�
�
�
�

�

�

�
�
�
�

�

�



		



/�E

��
b

a

b

a

dQ

aQbQ

dQ

aQbQ

@@<@@
 (2.4) 

 

For the case � � 0F@Q , the hybrid solution of nonlinear problem is given by 
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where 
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Results of numerical calculations and comparison of the analytical approach with direct 

numerical results using system «Mathematica» [13] at ;8,0�e  3�"  and initial conditions 
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with visualization of vibration processes are given in Fig. 2-4. 
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Figure 2. Analytical and numerical solutions for satellite nonlinear vibration problem in planes 

of circular and elliptical orbits 
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Figure 3. Satellite vibration in plane of circular (e = 0) and elliptical (е = 0.8) orbits 

 
Figure 4. Difference in angles of satellite axes in cases of circular and elliptical orbits 

 

Conclusion 
 

Nonlinear satellite vibration problem in plane of elliptical orbit leads to singular nonlinear non- 

homogeneous differential equation with variable coefficients. Proposed solution on the basis of three-

step hybrid asymptotic method valid as well for «small» as for «large» scalar parameters and it is 

more refined in comparison with known analytical approaches. 
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Introduction 

The study of the asymptotic behavior of solutions remains a challenging problem for general 

classes of nonlinear ordinary differential equations. For example, a power estimate for the solutions of 

systems defined by homogeneous vector fields was proved by N.N. Krasovskii [1] and V.I. Zubov [2]. 

K. Peiffer and A.Ya. Savchenko [3] considered a system in the critical case of a couple of purely 

imaginary eigenvalues. Estimates for the norm of solutions of the reduced system in the critical case 

of q pairs of purely imaginary roots were analyzed in [4]. 

In recent paper [5], we proposed an approach for the construction of such estimates for systems 

with neutral and critical components. 

Consider a system of differential equations: 

� �x Ax R x� 	x Ax RAxAx , (1) 

where � �1 2, ,...,
T n

nx x x x R� � is the phase vector, A is a real � �n n5 matrix with constant 

coefficients, and � �R x is a real function, analytic in some neighborhood of the origin,  such that its 

Maclaurin  series expansion starts with terms of at least second order. 

Assume that the characteristic equation of matrix A has q pairs of purely imaginary roots 

� �1,..., qi i� �/ / and 2p n q� 
 roots with negative real parts. Assume also that there are no multiple 

roots among the purely imaginary ones. 

Theorem 1 [5] Let the stability of the trivial solution of system (1) is ensured by terms of up to 

the third order. Then there exists an 0< F such that the estimate 
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holds for any solution ( )x t  of system (1) with initial conditions 0| |x <' , where 1 2,G G  are positive 

constants. 
In this paper, we apply Theorem 1 for studying the decay rate of oscillations of a pendulum 

system with partial dissipation. For this system, coefficients in (2) are computed in terms of 

mechanical parameters. As a part of the investigation, a Lyapunov function is constructed explicitly as 

the sum of Lyapunov functions for neutral and stable subsystems. The result obtained is illustrated by 

means of the numerical integration of equations of the perturbed motion for different values of 

damping coefficient. 

 

1.  Model description 

Consider a double pendulum consisting of two weightless rods of length l  suspended by 

hinges (Fig. 1). The rods can oscillate in the vertical plane. The friction in the hinges and the air 

resistance are neglected. We assume that the mass m  is suspended by a spring to the second rod and 

moves along the rod with damping. 

 

 
Figure 1. Double pendulum with partial dissipation 

 

Let H  be the stiffness coefficient of the spring, @  be the damping coefficient for the 

translational motion of the mass m  along the rod, 11  and 21  be angles formed by rods and the 

vertical line, and z  be the length of the spring. 

In our notation, the kinetic energy (T ) and the potential energy (V ) of the system are  
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where g  is the gravity constant. Then the Lagrange equations take the form: 
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It is easy to show that the considered system has four equilibria. We consider only the lower 

equilibrium: 1 2 00, 0, z z1 1� � � . From the third equation in (3), it follows that 0 /z mg H� . 
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Substituting /z z mg H� 	 /z mg H	z , we obtain equations of the perturbed motion. Let expand them into the 

Maclaurin series with respect to 11 , 21 , zz , 1111 , 2121 , zz  up to third order terms. Then substituting  
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The matrix of the linear approximation of system (4) has two eigenvalues with negative real 

parts and two pairs of purely imaginary eigenvalues: 
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2. The decay rate of oscillations 

By the reduction principle system (4) can be reduced to the following form [5,6]: 
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where � �(0) ,sY * J  are forms of third order with respect to variables z , z , sP  and jQ  are linear forms 

of I , sH  and jE  are equal to zero as 1 2 0I I� �  and do not contain linear terms of these variables. 

Consider then a pair of systems 
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and 
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Let � �1 ,V z z  be a positive definite Lyapunov function with negative definite derivative 
'

1V  

along the trajectories of system (6). Suppose that the sign of this derivative is independent of terms of 

higher than third order in the right-hand side of respective equations. A Lyapunov function � �2V I  for 

system (7) can be taken in the form 
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The derivative of function (8) along the trajectories of system (7) is: � �' 2 2
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A Lyapunov function for system (5) has the following form: 

 

� � � �1 2V V z V I� 	 . 

 

It is a positive definite function with respect to all its variables. Denote the derivatives of 

functions  1 2,V V  along the trajectories of systems (6), (7) by ' '
1 2,V V , respectively. Then the following 

estimate holds for sufficiently small ,s jz I  [5, 6]: 
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To find the function 1V , we simplify system (6) using normalization transformations described 

in [7, 8]. As a result, we obtain the system 
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 where 
4

s sR r0 E  with some constants sE . For the mechanical system considered, coefficients sja  

are given by the following expressions: 
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These coefficients correspond to the following choice of mechanical parameters: 
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 1, 1, 1, 10.l m gH� � � �  (10) 

Asymptotic stability of the trivial solution of system (9) is ensured by the third-order forms 

with all values of parameter @ . The Lyapunov function for system (9) can be taken in the 

form 2 2
1 1 2V r r� 	 . Then 
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For any positive 2? , there exists an 2 0< F  such that estimate (11) implies 
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Exploiting fact that V  is the sum of Lyapunov functions for systems (6), (7) and returning to 

variables sx , we obtain a Lyapunov function for system (4) corresponding to the choice of mechanical 

parameters (10): 
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It can be shown that 
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Moreover, since � �,Gx x  is positive definite quadratic form, we have the following estimate: 
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Combining inequalities (15) and (13), we get estimate (2) for solution ( )x t  of  system (4) in the 

some < -neighborhood of the origin with the following coefficients: 
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The result obtained is illustrated by means of the numerical integration of system (4) for 

different values of the damping coefficient ( 0.1@ � , 1@ � ) and the following initial conditions at 

0 0t � :  � �1 0 1x � , � � � � � � � � � �2 3 4 5 60 0 0 0 0 0x x x x x� � � � � . Simulation results confirm that 

theoretical estimate (2) holds for large values of t : 
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Conclusions 

In this paper, the double pendulum with partial dissipation has been studied. Using the center 

manifolds theory and normal form method we have obtained the rate of decay for oscillations of such 

system in terms of its mechanical parameters. An explicit construction of a Lyapunov function is also 

proposed. Estimate obtained are confirmed by simulation results. 
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Abstract 
In this paper, based on a non-linear wave model, the problem about generation of self-induced 
vibrations in waveguiding systems is stated. The techniques for solution of the formulated non-
linear differential equations are proposed. The cases of stationary and non-stationary variations 
of a perturbation parameter are considered. It is found that diapasons of its varying exist, where 
auto-oscillations of the system are generated. The stated problem is shown to be singularly 
perturbed, so, the auto-oscillations are of relaxation type with fast and slow motions, and nearly 
discontinuous velocities. It is found that the bifurcation states of the waveguiding system does 
not practically depend on its length but it is determined primarily by positions of extremum points 
in the diagram of friction function change. Typical regimes of non-stationary variations of the 
perturbation parameter are the possibility to obviate the states of self-induced vibrations by 
choosing special rates of its varying. 
In practice, such phenomena might appear, for example, in towing a transport facility on a water 
or solid surface. Similar processes also occur in the devices of deep drilling. 
These devices should be simulated by distributed systems transmitting longitudinal extension-
compression or torsion waves. 
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Introduction 

Self-excitation of periodic vibrations in dynamical systems is one of the most widespread self-

organization phenomena in nature. The simplest and clearest model, illustrating the process of 

mechanical autovibration generating, is the 1 DOF oscillator including a conveyor belt with a load on 

it and restrained by elastic weightless spring. Between the belt and load, the conditions of nonlinear 

frictional interaction are realized, which at certain constant values of the belt velocity v  cause self-

excitation of periodic reciprocating motions of the weight. But the considered model undergoes 

qualitative alterations if the spring is long (Fig. 1).  

 

 
Figure 1. Model of an elastic waveguiding system 

 

Then, its mass may be comparable or even larger than the body mass, it cases to be a simple 

elastic element, and becomes an elastic waveguide for transmitting longitudinal extension-

compression waves. Such device should be simulated by distributed systems with vibrations 

possessing modes arranged in an ordered (wave) fashion. In practice, such phenomena may appear, 

for example, in towing a transport facility on a water or solid surface. Similar processes also occur in 
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devices of deep drilling. At the drill string extraction from the bore-hole cavity, the drill bit grates 

with its surface and the string begins to play the role of a waveguide. However, apparently the most 

distinctive auto-oscillations wave processes are generated in drilling the deep vertical bore-holes [1 - 

6].  

Then, as a result of non-linear frictional interaction between the rotating bit and the near 

bottom surface of the well, the bit begins to commit torsional vibrations and torsional waves begin to 

propagate along the drill string (Fig. 2). Analysis of these vibrations was performed on the basis of the 

non-linear model of torsional wave pendulum in [7 - 9]. As established, the auto-oscillations 

constitute non-damping periodic motions of a non-linear dissipative system which are sustained by 

external non-vibrational source of energy [10]. The major factor adding complexity to the problem is 

tat the equation describing this process belongs to the singularly perturbed type [11, 12] and has 

relaxation solutions [13]. 

Figure 2. Model of a torsional waveguiding system 

It can be concluded that analogous effects take place also in other self-vibrating systems. So, 

in this paper, the questions of analysis of stationary and transient self-oscillating processes in 

homogeneous and heterogeneous waveguides are considered. It is established that owing to the 

absence of the wave dispersion in the considered dynamic models, the transfer from study of a wave 

equation throughout the whole length of the waveguide to analysis of one non-linear differential 

equation with a delay argument can be fulfilled. It is shown that the auto-oscillations include 

segments of fat and slow motions inside every period. The self-excited oscillations proceed in the 

manner of quantized time. 

The question of energy dissipation influence on the vibration modes is analyzed. 

1.  Equations of the Drill String Vibration 

For the purpose of theoretically simulating the phenomenon of self-excitation of a waveguide 

vibration, the wave model of a dragging device with elastic cable of length L (Fig. 1) is used. By 

treating the elastic cable as an elastic waveguide and neglecting dissipative effects, its axial vibrations 

can be described by the wave equation 
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where A is the cross-section area of the cable, M is its material density, and E is its elasticity 

modulus. Then the velocity of the longitudinal wave is equal to MG /E� . 

Eq. (1) has the d’Alembert solution 

� � � � � �txgtxftxu GG 		
�, (2) 

Here, � �txf G
 , � �txg G	 are the arbitrary continuous functions. 

Since the end Lx � is moving with constant velocity v , it can be considered as clamped one 

for the elastic displacement. Then  

� � 0, �tLu or � � � � 0�		
 tLgtLf GG (3) 

To deduce the boundary condition at the left end 0�x , consider the dynamic equilibrium of 

the forces applied to it. So, one has 

0�		 elfrin FFF ,     (4) 

where umF in ��
� is the inertia force acting on the body, � �uvFF frfr �	� is the friction force formed 

between the body and horizontal surface, it will be defined later. Here, the dot over a symbol denotes 

derivative with respect to time.  

After performing some substitutions and transformations, Eq. (4) will look like to the 

following non-linear relationship 

� � � �� � � � � �� � � � .022 �	
	


		


 uvFLtftf
EA

Ltftfm fr ������� GG
G

GG           (5) 

Here, � � � �tuutff ,0,,0 �� . 

A distinctive characteristic of this equation is the small value of coefficient J before the 

second derivative � �tf G
�� in comparison with the coefficients before the other unknown variables. 

Because of this, the formulated problem belongs to the class of singularly perturbed and that is why 

its periodic solutions are relaxation or have the shapes of saw tooth curves. 

The foregoing example of vibration self-excitation in the elongated system, permitting the 

passage of elastic longitudinal waves, is rather a multi-purpose formal problem which can be easily 

rearranged for analysis of similar processes in mechanical or electric (electronic) waveguiding 

systems. Indeed, inasmuch as only several parameters characterize the treated waveguide system, it 

does not present a real challenge to perform corresponding replacements of their values for other 

mechanical or electric system. Among them are the mass m , wave velocity G , elasticity modulus E , 

acoustic stiffness An GM� and friction function � �uvF fr �	 . So, one might expect that auto-

oscillations processes in different mechanical and physical waveguide systems exhibit the properties 

of similarity and the regularities of their manifestation, established for one of them, are typical for 

others. 

2.  Results of Computer Simulation 

If the problem on torsional auto-vibration of a waveguide represented by a drill string is 

considered, then longitudinal velocity G should be substituted by transversal velocity M+ /G�

and displacement � �txu , by torsion angle � �tx,1
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The analysis of the bit dynamics was performed by integrating appropriate equation by the 

Runge-Kutta method with the initial conditions � � 00 �1 , � � 00 �1� for different values of � . The 

integration step was selected to be st 610769.7 
)�E . 

Firstly, consider the homogeneous drill string 1000 m in length. The characteristic parameters 

used for its analysis are selected as follows: PaG 1010077.8 )� , 33 /108.7 mkg)�M . External and 

internal radii of the tube cross-section are mr 0841.01 � and mr 0741.02 � , so 451012.3 mI 
)� . 

One of the main features, influencing on the process of the bit torsion vibration, is the law of 

the friction moment frM dependence on the total velocity 1� �	 of its rotation. The shape of 

function � �1� �	frM is determined by many factors what is more, the values of their parameters vary 

during the drilling process. So, it is conceivable that no universal functions of this kind can be chosen 

for analysis of the system dynamics. The most commonly encountered relationships between frM
and 1� �	 are represented by the Coulomb friction law shown in [5,9]. It is used in our investigation 

for analysis of general regularities of auto-oscillations proceedings. 

The calculation results permit us to formulate some regularities. On the one hand, in the 

process of functioning, the drill string can be either in the states of stationary rotation or of torsional 

self-induced elastic oscillation, depending on the chosen regime of drilling. As this takes place, the 

value b� of the angular velocity � corresponding to the bifurcation state of the limit cycle birth 

equals the value srad /85.2�� , which conforms to the minimum point of the � �1� �	frM diagram. 

The regimes of motion with b�� ' are characterized by the stationary rotation without any 

oscillation when the system changes from its initial state  � � 00 �1 , � � 00 �1� to some quasi-static 

equilibrium state � � stt 11 � , � � 0�t1� and self-induced vibrations do not take place. But during the 

system transition from outside to inside this diapason through the value b�� � , the Hopf bifurcation 

occurs and limit cycles appear together with the unstable stationary solutions � � constt �1 , � � 0�t1� . 

Figs 3 and 4 present 1 and 1� as functions of t for the value mL 2000� at sradb /71.0��
in the time segment st 4000 00 . The motion process begins from the state � � 00 �1 , � � 00 �1� and 

steeply rearranges to periodic oscillations, which acquire relaxation character. 

Figure 3. The diagram of relaxation change of the � �t1 function at the torsion waveguide 
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Figure 4. The � �t1 � �t1 function diagram for the torsion waveguide 

The diagrams testify that use of the torsion waveguide model for investigation of drill string 

vibration self-excitation permitted not only to reflect general regularities of limit cycle birth 

bifurcations, but also to find radically new, subtler feature, unique only to wave systems. The feature 

derives from delay of the elastic moment action on the bit and it is associated with formation of the 

so-called quantized time with the resulting effect of constant angular velocity staying during time 

segment #E [8]. It is equal to the time duration of the torsion wave passing the path from the bit to 

the upper end and backward 

#E +/2L� .      (6) 

As a consequence of this the � �t1� function acquires additional small-sized quasi-

discontinuities with small steps in time +# /2L�E [7 - 9]. They are not distinguishable in the chosen 

scale. 

The phenomenon found is analogous to the phenomenon of space-time quantization in 

physics, where some fundamental (minimal) length l and time quantum cl /�E# are introduced. 

Here c is the relativistic velocity. In our case the “fundamental length” is Ll 2� and the “relativistic 

velocity c ” equals + . 

Figure 5. Auto-oscillations n of elastic torsion pendulum in dissipative medium 

It should be pointed out the established effects of auto-oscillations generation are typical for 

waveguide systems transmitting non-dispersive waves. They are described by equations of type (1). 

However, in practice, these equations are not met in pure form because in real systems there always is 

the energy dissipation at the expense of the friction forces existence. For example, in the bore-hole the 

drill string is immersed in washing liquid, so its torsion vibrations are described by equation 
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where k is the dissipation coefficient. 

The k coefficient depends on the viscosity of the washing liquid, its temperature and the 

clearance between the DS and bore-hole surfaces. 

In this event, the foregoing techniques are not valid and the constitutive equations should be 

numerically integrated by numerical methods. In Fig.5 the diagram of a bit vibration is shown for the 

value sNk )� 50 . 

As the calculations testify, in the cases of small k , the auto-oscillations properties of the 

system and modes of its torsions retain, though their quantized character is lost. But with the 

enlargement of k , the motion separation into slow and fast ones becomes more discernible. As this 

takes place, the amplitudes of the auto-oscillations become smaller. 
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Abstract 
Properties and phenomena in nonlinear dynamics of the rheonomic systems with no ideal constraints 
of the  Amontons-Coulomb’s friction type are considered. Starting from differential equation of a
known rheonomic system nonlinear dynamics with ideal constraints and trigger of coupled 
singularities, corresponding double differential equations of the corresponding rheonomic systems 
with no ideal constraints of the  Amontons-Coulomb’s friction type are derived.  For this no ideal 
rheonomic system nonlinear dynamics, triggers of coupled one side singularities  as well as double 
trigger of coupled singularities and coupled one side singularities in phase portraits   are 
identified.  By use linearization of double differential equation around one side singularities, 
properties of local dynamics of considered no ideal rheonomic system are investigated. 
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Introduction 

We start with one of possible definitions of a trigger of coupled singularities (see Ref. [5]), which 

contain coupled, two stable centre type and one unstable saddle type singularities. Also, in phase 

portrait which contain trigger of coupled singularities exists a homoclinic orbit in the form of number 

“eight”. These singularities can be corresponding to stable or unstable equilibrium positions or to 

relative, dynamic, equilibrium position on the system nonlinear dynamics with nonlinear properties 

different type. Also, change of a bifurcation parameter (see Ref. [2]), of the nonlinear system can be 

source for existence, or no, of a trigger of coupled singularities. In source is a bifurcation 

phenomenon. 

In the systems with the changes of some kinetic parameters of the system dynamics, especially 

oscillations, the process of losing stability of one static equilibrium position or relative dynamic 

equilibrium position is followed with appearance of two close stable statically or relative dynamical 

equilibrium positions (see Refs. [1-11] and [14]). Also, these two newly appeared singularities with 

the previous stable equilibrium position, which lost its stability, make a trigger of coupled 

singularities (see Refs. [5] and [7-8]). Also, a trigger of coupled singularities, with corresponding 

choice of kinetic parameters of system dynamics, can be degenerate into one threefold (triple) singular 

point, corresponds to stable equilibrium position or stable relative dynamic equilibrium position. 

Our attention, now is focused to the selected group of special type of triggers of coupled 

singularities caused by discontinuities of kinetic parameter properties and identified in the rheonomic 

system with no ideal constraints and contact with friction. These discontinuities are caused by 

Amontons-Coulomb’s type friction appearing between coupled elements of the mechanical system 

with relative motion in relation one to other. 

By using examples of the heavy mass particle motion along rotating rough curvilinear circle 

lines  about eccentrically positioned axis, corresponding differential double equation is derived and 

also, corresponding trigger of coupled  singularities of the phase portraits are considered. 
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1.  Description of the first rheonomic system nonlinear dynamics with friction 

Starting from basic and very known rheonomic system: A heavy mass particle moving with 

ideal contact along rotating circle about vertical central axis with constant angular velocity, presented 

in very known book [1], as well as corresponding models in Refs. [7, 9], a double differential equation 

of like sane rheonomic system, but with no ideal constraint of Amontons-Coulomb’s friction type 

(see Figure 1.a*) is derived in the following form: 
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22
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where 1  is generalized independent coordinate of relative position of mass particle on circle 

line,
2�

�
R

g
A , G" tg� coefficient of the friction between mass particle and cylindrical circle line 

surface in real constructions, 11 G" tg�  coefficient of the friction between mass particle and circle 

line surface in real constructions, 
R

e
�<  axis eccentricity, t��� , rheonomic coordinate of circle 

rotation,  �  angular velocity of  the vertical eccentrically positioned axis of circle rotation.  For 

detailed explanations of contacts rough surfaces between mass particle and circle line in real 

construction of considered model and corresponding friction forces see Refs. [12]. [13] and [11]. 
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Figure 1. Two models of the rheonmic system with no ideal constraint of Amontons-

Coulomb’s friction type: a* - vertical eccentrically positioned axis of circle rotation and  b* -
skew eccentrically positioned axis of circle rotation 

 

For the model presented in Figure 1.a* normal reactions NF
�

in radial direction on the circle and 

binorla reaction BF
�

in binormal direction orthogonal to the circle surface are: 

 

� �� � NmgRemRFN

�
��

�
111�1 cossinsin22 		

�      (2) 

� �� �jRemmRFB $		
�
�
����

�
�11�1 sincos2       (3) 

  

Amontons0Coulomb’s friction type friction force � � rBN vsignTFFF
���

1""" 

�  (see Figure 

1. a*) is  in the following form:  
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2.  Description of the second rheonomic system nonlinear dynamics with friction 

Second no ideal rheornomic system is presented in Figure 1.b*. This system is with rotating 

circle about eccentrically and skew positioned axis of rotation, for angle +  with respect to the vertical 

and contact between circle and heavy mass particle is no ideal, with Amontons-Coulomb’s friction 

type. For this model, presented in Figure 1.b*, normal reactions NF
�

in radial direction on the circle 

and binorla reaction BF
�

 in binormal direction orthogonal to the circle surface are in the form:  
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 Amontons-Coulomb’s friction type � � rBN vsignTFFF
���

1""" 

�  (see Figure 1. b*) is in 

the form  

� � � �� � � � � �� �

� � � � r

r

vsignTmgRemmR

vsignTmgmRF

��
����

��
��

�

+��+1+1�1"

+1+�+1++1<+1�1""

sinsinsincos2

sinsincoscoscossinsin

1

22


				



							


�
 (7) 

 

For this second rheonomic system dynamics, with skew positioned axis of circle rotation by 

angle +  to the vertical, presented in Figure 1.b*, and with no ideal constraint of Amontons-

Coulomb’s friction type, double differential equation is derived in the following form:  
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3.  One side singular points and trigger of coupled singularities  

For beginning, let introduce that G" tg�  and 01 �" , then previous double differential 

equations (1) and (8) is possible rewrite in the following forms:  
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suitable for analysis and comparing singularities and triggers of coupled singularities as well as 

triggers of coupled one side singularities.  
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3. 1. Singular points and trigger of coupled singularities in ideal system  

For first, let to made a list of singular points of corresponding ideal rheonomic system by 

introducing in previous systems, (9) and (10), that is 0�� G" tg  and central axis of circle rotation,  

0�< , which are known in listed Refs. [1], [11] and [7-8]. For 0�G  singylar points denoted by s01  

are � �0,0 �vs1  where: 

 

0sin 00 �
 sstg 1A1   4  0sin �1    4  �1 ss �0 , ,...4,3,2,1�s      (11) 

0cos1 0 �
 s1A       4  �A1 ss 2arccos0 /� , ,...4,3,2,1�s 4  for the case that 10A    (12) 

 

For the case that 10A  in the phase portrait of this ideal rheonomic system dynamics a trigged of 

coupled singularities with homoclinic orbit in the form of number “eight” exists.  

 If axis of the circle rotation is eccentrically positioned, 0�< , then singular points 

� �0,0 �vs<1  of ideal rheonomic system nonlinear dynamics are defined as roots of  the following 

characteristic nonlinear transcendent equation:  

 

0sin,0 00 �		
� sstgv << 1<1A        (13) 

 

For this model presented in Figyre 1.a*, corresponding phase portrait of nonlinear dynamics is 

presented in Figure 2. a*. From this phase portrait singular points and trigger of coupled singularities 

are presented. Also, homoclinic orbits in the form of number “eight” are visible.  
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Figure 2. a* Phase portrait of a model of the rheonmic system dynamics with ideal 
constraints and vertical eccentrically positioned axis of circle rotation and   b* Graphical 
presentation of roots of characteristic equation for obtaining singular point of nonlinear 

dynamics of no ideal system correspond to ideal system with phase portrait in a*. 
 

3. 2. One side singular points and trigger of coupled singularities in rheonomic 
system with vertical axis of circle rotation and Amontons-Coulomb’s friction  

For the rheonomic system with no ideal constraint of Amontons-Coulomb’s friction type 

(see Figure 1. a*)  and vertical axis of circle rotation, conditions for obtaining singular points are: 
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For the case that eccentricity of the axis of circle rotation is 0�< , previous conditions are: 
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sstg .  Roots of this characteristic equation are one side singular points of 

nonlinear dynamics of no ideal system correspond to ideal system with phase portraits in Figure 2.a* 
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for 0�<  graphically is presented in Figure 2. b*. From this figure it is visible that exists two sections 

between curves � � � �
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ss tgf and � � ssf 11 sin�  depending on direction of velocity of 

mass particle motion.  

Taking into account that angle of the friction G  is small, and that form Figure 2.b* it is visible 

that there are small distance between cross sections of previous listed functions for ideal and no ideal 

cases of the system nonlinear dynamics, we can use the following approximation: By use 

development of the previous functions in Taylor series around s0<1  and kipping only linear parts, 

taking denotation sss 	L 0<11   
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and taking into account condition (13) previous characteristic equation rewritten in linear 

approximation give a double relation-expression of difference-distance between position of singular 

point of ideal and two one side singular points of no ideal system dynamics in the following form: 
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For one side syngular points of rheonomic system dynamics with friction and vertical 

eccentric axis of  circle  rotation, around singular point s0<1  of system nonlinear dynamics with ideal 

contact of mass particle and circle, for s0

3cos <1A F  difference between singular points in the first 

approximation of considered ideal and no ideal system dynamics is 
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For one side syngular points of rheonomic system dynamics with friction, around zero 

singular point of system nonlinear dynamics with ideal contact of mass particle nad circle for 

1FA difference between singular points in the first approximation of considered ideal and no ideal 

system dynamics is   
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Then it is visible, that singular points presented be expression in first approximation:  
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Existence of one side singular point depending of direction of mass particle velocity during 

the motion and also existence of “half singular points” – “one side “ singular points around singular 

point of corresponding system with ideal contact between mass particle and circle is identified. Then, 

these two “stable or unstable one side singular points” of the rheonomic system with Amontons-

Coulomb’s type friction around corresponding singular point of corresponding rheonomic system 

dynamics with ideal contacts  present a trigger of coupled singularities. This trigger of coupled “stable 

or unstable one side singular points” is caused by Amontons-Coulomb’s type friction in the system 

dynamics. 
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 In the case that singular point of the ideal system is unstable saddle type singular point, then 

this trigger of the coupled “one side singularities” is unstable.  In the case that singular point of the 

ideal system is stable centre type singular point, then this trigger of the coupled “one side 

singularities” is stable.   In the case that a trigger of coupled singularities exists in nonliner dynamics 

of ideal system, then around each of the singular points of this trigger exists corresponding number of 

stable or unstable trigger of the coupled “one side singularities”.    

 

Conclusions 

For this no ideal rheonomic system nonlinear dynamics, trigger of coupled “one side 

singularities”  as well as double trigger of coupled singularities and coupled “one side 

singularities” in phase portraits   are identified  and conditions for their existence or appearance are 

investigated. By use linearization of double differential equation around one side singularities, 

properties of local dynamics of considered no ideal rheonomic system are investigated, but no pages 

to present these results.  Next step of investigation was focused to the motion of a heavy mass particle 

moving, with no ideal contact, along rotating rough circle, with constant angular velocity, about axis 

skew positioned to the vertical for the case of the central axis as well as eccentric axis. Double 

nonlinear noautonomous differential equations are obtained for describing rheononlinear dynamics of 

this defined rheonomic system, but no pages to present these results. 

Influence of the no ideal constraint of Amontons-Coulomb’s friction type to the nonlinear 

dynamics of the rheonomic system and corresponding three geometric-parametric analysis of the 

existence of double triggers of coupled “one side singularities” are investigated, but no pages to 

present these results.  
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Abstract 
Dynamics of the 2-DOF system containing the pendulum absorber and the 3-DOF non-ideal system with the 

pendulum absorber is considered by using the nonlinear normal modes theory and the asymptotic-numerical 

procedures.  The localized and non-localized vibration modes are constructed. The vibration modes stability is 

analyzed by different methods. The nonlinear normal modes approach and the modified Rausсher method are 

used to construct forced vibration modes in the 2-DOF system with the pendulum absorber. 
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Introduction 

Pendulum systems are classical models on nonlinear dynamics. Numerous applications of such 

systems are known in engineering, in particular, in vibro-absorption problems [1,2]. Here the 

Kauderer-Rosenberg concept of nonlinear normal modes (NNMs)[3-7] is used to construct the NNMs 

and analyze their stability for two-DOF system containing the pendulum absorber. The NNMs 

approach and the modified Rauscher method [5-7,8] are used too to construct forced vibrations modes 

of this system under external periodic excitation.   

The dynamics of a structure excited by a non-ideal excitation device with limited power 

capacity is considered. In such system the influence of the structure to the excitation device must be 

taken into account. In the non-ideal systems a jump to large amplitude vibrations in the resonance 

domain, that is the Sommerfeld effect [9], can be observed. Analytical description of this effect was 

first made by V.O.Kononenko[10]. Then investigations of the non-ideal systems where continued by 

A.Aliphov, J.Balthazar et al. Here NNMs in the non-ideal system with the pendulum absorber are 

considered. Both a construction of the NNMs and analysis of the regimes stability are made. It is 

selected the most appropriate for absorption localized vibration mode, when large vibrations of the 

absorber combine with small vibration of the main elastic structure.  

 

1.  Nonlinear Normal Modes In Mechanical System Having the Pendulum Absorber 

One considers free vibrations of the two-DOF system which is shown in Fig. 1. It is necessary 

to reduce vibrations of the linear subsystem with the point mass 1m ; the anchor spring is linear. The 

linear oscillator is connected with a pendulum absorber, having the mass 2m . The system motions are 

determined by two generalized coordinates x and � . Equations of motion are the following:
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Figure 1.The mechanical system having the pendulum absorber. 

The Maclaurin series are introduced for the functions cos� and sin� . The terms up to the third 

order are saved in these series. It is assumed that the absorber mass is essentially smaller than one of 

the linear subsystem. One uses the following transformation,  2 2m m<� , where < is the small 

parameter. Two nonlinear vibration modes can be selected in this system: а) the coupled vibrations 

mode (non-localized mode), � �x x t� , � �t� �� , when amplitudes of two generalized coordinates have 

the same order; b) the localized vibration mode, when amplitudes of � �t� �� are essentially larger 

than ones of � �x x t� , this mode is the most appropriate for absorption of linear subsystem vibrations. 

The Kauderer-Rosenberg concept of nonlinear normal modes is based on construction of the 

NNM trajectories (modal lines) in the system configuration space. The NNM modal line for the n-

DOF system in the system configuration space can be presented as 

( ); ( 2,3,..., )i ix p x i n� � .     (2) 

In general, the NNM modal lines in a configuration space are curvilinear. For the conservative 

system having the energy integral of the form  

2

1 2

1

1
Π( , ,..., )

2

n

k n
k

x x x x h
�

	 �( 2

k 1( 1x2 Π(k Π( 1Π(Π( ,1 ,     (3) 

whereh is a value of the system energy, equations to obtain trajectories in configuration space are the 

following:  
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ii x i xn

k
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x x
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$$ $
 � 


$	(
( 2,3,..., )i n� ,    (4) 

where prime means a derivation by the new independent variable 1x x, .  

An analytical continuation of these trajectories to the maximum equipotential surface 

� �1,..., nx x h� � is possible if the following boundary conditions are satisfied [3-5]: 

2 2( )[ ( , ( )..., ( ))] ( , ( )..., ( ))
ii x n x nx X X x X x X X x X x X$ 
� � 
� ; ( 2,3,..., )i n� , (5) 
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where X is the vibration amplitude. The modal line (2) can be obtained from the equations (4) and the 

boundary conditions (5) in the form of power series [4,5]. One has here the next equation to obtain the 

trajectory � �x� �� of the coupled vibration mode for the system (1): 

� �

� �
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Analytical continuation of the solution to the maximal equipotential surface 0h V
 � , where all 

velocities vanish, is possible under the following boundary conditions at the surface: 

2 3 2

1 2 21 1 0
2 6 2

K kx l g m m m l
� � �

� � < < �
! �! �! � ! � ! �
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 �� �� �� � � � � �� �� � �  �  � � �
K

!
� k
!! !

kx l
!!
ll� kxkx llll���� �� .  (7) 

The NNM is presented in the form of the power series by the small parameter,  

0 1( ) ...x� � � <�� � 	 	 , where 
0� , 1� , …, are presented as power series by x . Substituting the series to 

the equations (6) and (7), then selecting terms of the different order by < and x , one obtains algebraic 

equations to determine coefficients of these series. Trajectory of the NNM in two approximations by 

< is shown in Fig. 2. Here the next values of the system parameters and initial values, corresponding 

to obtained analytical solution, are chosen: 1 1m � (kg), 2 0.1m � (kg), 1l � (m), 5k � ( 2/kg s ), 

0.1< � ; � �0 0.1x � , � �0 0x �� �0 0�x , � �0 1.3� � 
 , � �0 0� �� �0 0�� .  

Trajectory of the localized vibration mode is determined of the form: � �x x �� . This trajectory 

is presented of the form of the power series by the small parameter, 2

1 2( ) ...x x x x� < <� � 	 	 , where 

1x and 2x , are also presented as power series by � . By analogy with a construction of the non-

localized vibration mode one determines coefficients of these series. The near rectilinear trajectory of 

the localized mode is presented in Fig. 3. Here � �1 21, 1, 0.1, 3, 0.1, 0 0.5l m m k < �� � � � � � .Checking 

numerical simulation shows a very good exactness of both analytical solutions.   

Figure 2.Trajectory of coupled vibration mode in   Figure 3. Trajectory of localized vibration mode in 
configuration space                                              configuration space 
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A trajectory of the non-localized vibration mode is near rectilinear. Stability of the mode will be 

determined by variations, which are orthogonal to the trajectory. So, only a single variation equation 

can be analyzed in the stability problem. Using a harmonic approximation of the solution, it is possible 

to rewrite the variation equation as the well-known Mathieu equation. The more exact method of the 

stability analysis is based on the Hill equation. Results of the stability analysis are shown in Fig. 4. 

The next values of the system parameters are used: 1 21, 1, 0.1, 3, 0.1l m m k <� � � � � . Here the 

Mathieu equation gives us boundaries of narrow region, and the Hill equation gives us more exact 

results with large region of instability. In the inner region there is a transfer from the unstable coupled 

NNM to other non-localized NNMs as a result of bifurcation.  

Figure 4.Boundaries of the stability/instability regions    Figure 5. Boundaries of the stability/instability 
for the non-localized vibration mode.                           regions for the localized vibration mode. 

Stability of the localized NNM is analyzed by using the Hill equation too. Boundaries of the 

stability/ instability of the localized NNM, are shown in Fig. 5. In the Figs. 4 and 5 
1 2/� � �� , where 

1 1 2/ , /k m g l� �� � . Note that the region of instability is very narrow. So, the localized vibration 

mode is very effective for absorption of elastic vibrations.  

2.  Forced Nonlinear Normal Modes in Mechanical System Having the Pendulum 

Absorber 

Forced vibration modes can be obtained by the NNMs approach, and by the Rausсher method, 

modified for n-DOF systems. The Rausсher method is first proposed for the single-DOF system [11]. 

Generalization of the method to general n-DOF non-autonomous systems to construct NNMs in such 

systems is proposed in [8, 5]. One considers the system presented earlier under the external periodical 

excitation which stresses to the linear subsystem. The steady-state resonance vibration mode is 

analyzed. First of all, the corresponding autonomous system is considered. One uses a representation 

of generalized coordinates in regime of the NNM of autonomous system as Fourier series, namely,   

1 2 3

1 2 3

cos( ) cos(2 ) cos(3 ) ...,

cos( ) cos(2 ) cos(3 ) ...

x A t A t A t

B t B t B t�

� � 	 � 	 � 	

� � 	 � 	 � 	
(8)        

One has from here, using some trigonometric transformations, that      

2 2

1 2 3 4cos( ) ...t x xG G � G G �� � 	 	 	 	 (9)           

When coefficients of the expansions (9) are determined from corresponding algebraic equations, 

then the two-DOF “pseudo-autonomous” system is obtained, namely,   
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It corresponds to principal idea of the Rausсher method. In the autonomous system (10) the 

NNMs are constructed by using the procedure presented in preceding Section. Then two generalized

position coordinates can be obtained as new Fourier series which are more precise than series (8). So, 

the recurrent process is constructed, and the pointed out series of operations can be repeated several 

times to reach a necessary exactness. As a result, the steady-state resonance regime is constructed. 

Numerical simulation confirms a good exactness of the proposed approach. The non-localized forced 

vibration mode and the localized forced mode are shown in Fig.6 and 7, respectively; here the variable 

� and x are presented on vertical and horizontal axes, respectively. 

Here 1 21, 0.1, 1, 5, 0.1, 0.1m m l k f<� � � � � � .  

Figure 6. Trajectory of the non-localized forced  Figure 7. Trajectory of the localizedforced 
vibration mode.                                                         vibration mode. 

Frequency response for the non-localized mode is shown in Fig. 8 while the frequency response 

for the localized mode is shown in Fig. 9. Calculations are made for the following values of the system 

parameters: 1 2 1, 0.01, 0.5, 3m m l F<� � � � � . One can see that in the regime of the localized forced 

mode amplitudes of the linear oscillator are essentially smaller than ones of the pendulum. So, the 

localized forced mode is effective for absorption of vibrations of the linear subsystem.      
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Figure 8a.     Figure 8b. 
Figure 8.The frequency response of the non-localized forced vibration mode. Figure 8a. Frequency 

response of the variable x . Figure 8b. Frequency response of the variable � . 
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Figure 9.The frequency response of the localized forced mode. Figure 9a. Frequency response of the 

variable x . Figure 9b. Frequency response of the variable � .  
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3.  Nonlinear Normal Modes in the Non-ideal System with the Pendulum Absorber 

One considers the non-ideal system, containing the elastic linear substructure under the engine 

D excitation. Simultaneously this substructure influences to the engine. The system contains too the 

pendulum absorber having the mass 2m . The model under consideration is presented in Fig. 10.   

Figure 10.The non-ideal system with the pendulum absorber. 

Equations of motion of the system are the following: 
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Here < is a small parameter.  

Two nonlinear vibration modes can be selected in this non-ideal system: а) the coupled non-

localized vibrations mode, when vibration amplitudes of all generalized coordinates are of the same 

order; b) the localized vibration mode, when amplitudes of � are essentially larger than ones of linear 

elastic subsystem; this mode is the most appropriate for absorption. 

Trajectories of the NNMs by Kauderer-Rosenberg are determined as � �x x 1� , � �� � 1� . The 

solution is obtained in series by the small parameter < , and by the new independent variable 1 by 

analogy with the procedure described in the Section 1.  

Trajectory of the mode of coupled vibrations for the parameters 10M � , 2 0.1m � , 0.1< � , 

0 50c � , 1 50c � , 1a � , 1b � , 0.1r � , 1I � and 1l � , are presented in Fig. 11;  

             
Figure 11а.    Figure 11b. 

Figure 11.Trajectory of the coupled vibrations in the non-ideal system configuration space. In the 
Figure 11а the trajectory is shown on the place of variables x and 1 ; in the Figure 11b – on the place 

of the variables �   and 1 .  

Trajectory of the localized vibration mode is determined by the functions � �x x 1� , � �� � 1� too. 
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A method of power series is used. A trajectory, which was constructed for the parameters 1M � , 

2 0.1m � , 0.1< � , 
0 5c � , 

1 5c � , 1a � , 1b � , 0.1r � , 1I � и 0.1l � , are presented in Fig. 12.  

Figure 12а.     Figure 12b.   
Figure 12.Trajectory of the localized vibrations in the non-ideal system configuration space. In Figure 
12a this trajectory is shown on the place of the variables x and 1 ; in Figure 12b  - on the place of the 

variables � and 1 . 

Analysis of the obtained NNMs stability is made, and the stability/ instability regions for both 

modes are obtained. It is resulted that a region of instability of the localized mode is very narrow.   

Conclusions 

Nonlinear normal vibration modes (NNMs) of the mechanical systems containing the pendulum 

absorbers are considered. The NNMs approach permits to construct coupled and localized vibration 

modes of the systems. The localized vibration mode is the most appropriate for absorption of the 

elastic substructure vibrations. Forced resonance vibration modes are constructed by using a 

composition of the nonlinear normal modes approach and the modified Rausсher method. The same 

approach allows to analyze NNMs in the non-ideal system containing a pendulum absorber.   
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Abstract 
We have shown earlier that the strongly modulated vibrations with complete energy 

exchange between two weakly coupled active oscillators (generators) can exist under certain 

conditions revealed by a symmetry analysis. These vibrations are adequately described by Limiting 

Phase Trajectories (LPTs) which were initially introduced for conservative systems. From 

mathematical viewpoint, their existence in active systems means that LPT can be attractor. On the 

other side, it was also shown that it is possible to extent the LPT concept to the conservative system 

with many degrees of freedom. Then, the LPT describes the complete energy exchange between 

different parts of the system. In terms of LPT the transition to energy localization on excited initially 

part of the system is also predicted. Therefore, the natural question arises: whether the LPT can be 

attractor in the systems with many degrees of freedom? Such extension of our previous results to this 

case turns out to be very complicated problem. We used the mentioned results related to 

conservative system with many degrees of freedom and two weakly coupled generators as a starting 

point. It is meant the concept of the effective particles alongside with introducing the LPTs as well as 

with the symmetry analysis revealing the conditions for existence of the integral of motion. It is shown 

that under these conditions the principally new  types of the non-conventional synchronization in the 

multi- particle system of weakly coupled generators can be realized.  

Keywords 
active oscillator, chain of weakly coupled  generators, synchronisation, limiting phase trajectory, 
effective particle, symmetry. 
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Introduction 

The problem of synchronization is a fundamental problem which is being discussed by the 

generations of scientists. In our previous paper we have revealed the new aspect of the phenomenon: 

it was shown for the first time that synchronization with almost complete periodical energy exchange 

between two generators can exist. This new regime manifests as highly modulated oscillations whose 

period is that of the energy exchange [1]. Here we faced the question: whether some similar regime 

can be observed in n-DoF system with n>2?  Because even the study of 2-DoF system turned out to 

be a very complicated problem, its extension to the chain of active oscillators (generators) seemed 

very unlikely to be achieved.  

The adequate technique for our research was developed in a series of papers [2]. There is a new 

concept of effective particles and limiting phase trajectories which was used to describe the energy 
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exchange and localization in the chains of nonlinear conservative oscillators. It is very important that 

the main asymptotic approximation in the framework of multiple scale procedure admits the 

“occupation number” integral. This is a consequence of the symmetry which can be revealed by group 
theory analysis. Such symmetry was also found under certain conditions in the system of two weakly 

coupled dissipative oscillators.  We have noted that in the whole class of the active systems with n>2 

one can also distinguish a sub-class with the symmetry providing the existence of the “occupation 

number” integral.  However, contrary to the system of two weakly coupled auto-generators, the 

existence of a single integral in the case n>2 is insufficient for prediction of non-conventional 

synchronization. It becomes sufficient only in the framework of the concept of the effective particles 

and limiting phase trajectories,  

 

1.  Initial System and Its Reduction 

We consider the chain of nonlinear generators with periodic boundary conditions. Omitting the 

symmetry analysis revealing the conditions which provide the existence of the “occupation number” 

integral, let us present the final equations describing the dynamics of such system: 

� �� �� � � �� �� �� � 02

)2(28

2

1

2

1

2

1

2

1

222

1

2

1

2

1

2

1

22

11

3

12

2

�		
	
		
		

	

			

	
		





	


jjjjjjjjjjjjj

jjjj
j

vvuvuvuvuvuvu

uuuuu
dt

ud

.

+G

    (1) 

where   
j

j
v

dt

du
� , + is coupling parameter.  

The occupation number integral takes a conventional view after transition to complex 

variables: 
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where  jjj iuv 	�1  

By a direct check one can prove that the system (2) has integral: 

(
�

�
n

j
jN

1

2

1  ,    (3) 

n – number of oscillators. 

System (1) in the particular case 0�G  was presented in [3] as a phenomenological model of 

dissipative system, at that the existence of the integral has been discussed for the case n=2 only.  

The linearized system corresponding to (1) has the normal modes which can be conserved also 

if the nonlinearity is taken into account (then they are Nonlinear Normal Modes, NNMs).  

We consider further the case n=4 for concreteness.  Then the four NNMs are defined by 

vectors:(1,1,1,1)-in-phase mode, (1,-1,-1,1) – out-of-phase mode , (-1,-1,1,1 and (1,-1,1,-1) – two 
modes corresponding to formation of the  synchronous pairs. The frequency spectrum of the linear 

normal vibrations looks as follows: 

N

k�
OO 2

0 sin�       (4) 

and contains two equal frequencies. They correspond to the modes with synchronous pairs as the 

frequency does not depend on the choice of the pairs.  

A significant point for application of the effective particles concept to  the n-DoF systems is the 

frequency spectrum densification with the growth of n or decrease the coupling parameter.  The high 

frequencies of the NNMs become closest, and the resonant NNMs can interact strongly. We consider 

only the interaction of three upper by frequency modes.  
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To take into account a collective character of the process under consideration we deal further 

with a projection of the equations of motion on the modal basis ( jj *1 � ). Then we perform a 

transition to effective particles which are formed by a combination of the resonant NNMs, (I,II and 

III). The corresponding variables represent the groups (clusters) of the generators [2] which move as 

wholes:  
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We suppose that the modes with same frequency have similar amplitudes, and using the N-

integral, transform the variables and the system as follows: 
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2.  Phase Plane Analysis 

This system was studied in both conservative ( 0�. ) and dissipative cases. The phase planes 

for different parameters are presented in Fig. 1. Initially, we can see two stationary points 

( 0,4/ �E��� ) and ( ��� �E� ,4/ ). In the 2-DOF system they correspond to in-phase and 

out-of-phase NNMs correspondingly. If (
2

1

0k ), the in-phase mode is unstable; if ( � �2641

2

1
A	:k

or � �2641
2

1
A	
0k ) the out-of-phase mode loses its stability. For some range of dissipation 

parameter a stable limiting cycle attracts phase trajectories from a wide range of initial conditions. 

The attractor of this type corresponds to the stationary energy exchange between the two parts of the 

initial system, i.e., – the clusters of oscillators (effective particles). This limiting cycle can be 

described by the LPT. 

When the limiting cycle loses its stability, two stable focuses become global attractors. They 

correspond to the situation when almost all energy is concentrated on one effective particle (cluster of 

oscillators) which is a bright example of energy localization. 

Conclusions 

We have studied a system of coupled nonlinear active oscillators and have found for the first 

time the principally new types of synchronization in a chain of nonlinear generators. In certain range 

of the parameters an intensive energy exchange between two parts of the chain corresponds to 

attracting phase trajectories for a wide range of initial conditions. When the motion of this type loses 
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its stability another significant phenomenon can be observed: synchronization of the chain of identical 

generators in which almost all energy is concentrated only on one part of the chain. 

 

a  b  

c  d  

e  f  



M. Kovaleva, L. Manevitch. 
 

81 

 

g  
h  

i  
j  

Figure 1. Phase planes for system ( E,� ) with different parameters: (a) 0,2.0 �� Ak : 

conservative system, stationary points )4/,0( �  and )4/,( �� ; (b) 01.0,2.0 �� Ak ;  due to 

dissipation stationary points become focuses: )4/,0( �  - unstable focus, )4/,( ��  - stable focus; (c) 

0,4.0 �� Ak : the point )4/,0( �  transforms into a knot; (d)  1.0,4.0 �� Ak : two new unstable 

focuses appear; (e) 0,6.0 �� Ak : the stable point )4/,( ��  loses stability; two new stable points 

appear;(f) 05.0,6.0 �� Ak :unstable focuses become stable, two new stable focuses appear; (g) 

0,8.0 �� Ak ; (h) 0185.0,8.0 �� Ak  the focuses loose stability and an unusual stable limiting 

cycle encircling 3 stationary  points) attracts phase trajectories from a wide range of initial 

conditions;(j) 02.0,8.0 �� Ak  limiting cycle loses stability, two stable focuses become global 

attractors;(i) , 0,1 �� Ak ,at  the high nonlinearity level the phase plane of new symmetry appears 
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Figure 2. (a),(b) -  Temporal evolution of variables ,� E , correspondingly 

 

 

References 

[1]    Manevitch L.I., Kovaleva M.A., Pilipchuk V.V. Non-conventional synchronization of weakly 

coupled active oscillators Europh. Lett., Vol. 101, 50002, 2013.  

[2]    Manevitch L.I., Smirnov V.V. Limiting phase trajectories and the origin of energy localization 

in nonlinear oscillatory chains Phys. Rev. E 82, 036602.  

[3]    Pilipchuk V. N., in Problems of Nonlinear Mechanics and Physics of Materials, edited by 

Manevitch A. I. ,RIK NGA, Dnepropetrovsk, 1999 ISBN: 966-7476-10-3. 

 

� E



83 

Proceedings of the 4th  International Conference on Nonlinear Dynamics 
ND-KhPI2013 

June 19-22, 2013, Sevastopol, Ukraine 

Subharmonic Modes in Vibroimpact Systems 

Yuri Kostenko1*, Mykola M.Tkachuk1, 2*, Andrey Grabovsky1*,  
Mykola A.Tkachuk1*

. 
Abstract 
The investigation of subharmonic modes in vibroimpact systems is presented in the paper. New 
approach with sets of phase variables is proposed. Results for variation of phase variables were 
obtained. Functional that describes the character of oscillation process was built. 

Keywords 
Subharmonic modes, phase variables, character of oscillation process 

1
 NTU “KhPI”, Kharkiv, Ukraine. 

2
 Stanford University, Stanford, California, U.S. 

* Corresponding author: kostenko.yuriy@gmail.com 

Introduction 

In papers [1-7] it was found that in the large heavily loaded vibroimpact machines subharmonic

modes can be established. In this case the period of steady-state vibrations for one of the bodies 2T
(due to periodic colliding of bodies) can be a multiple with respect to the period of oscillation for 

another body 1T caused, first of all, by influence of periodic disturbing force. 

The purpose of this paper is to study the steady movement modes in vibroimpact system with 

two degrees of freedom (Figure. 1). 

1.  Description of the problem 

The sustained modes of motion in vibroimpact system with two degrees of freedom are 

researched. The equations of motion is presented below. 

Figure 1. Two-mass vibroimpact system 

Equations of motion:  
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Here 1w and 2w are displacements of the bodies 1 and 2 that have masses 21, mm ; 11, HC are 

coefficients of stiffness and damping for the body 1; �,A are the amplitude and frequency of the 

harmonic excitation force; g is an acceleration of gravity[1]. 
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1.1. Proposed approach. 

The main idea is the new representation of nonnegative force of impact interaction F as the 

relative approach function � �21 ww 
�I of displacements of the mass 1 and 2 and their velocity: 

9
8
6

'�

::
�

.0,0^

;0,0^
^

I
I

F

F
F (2) 

In this case in the first quadrant )0,0( FF II � the function F coincides with its

representation in form of power series or other functional series, for example, Taylor series: 

...),( 321

^ 			� IIGIGIGII ���F (3) 

The task is to identify sustained modes in this system with coefficients iG . Let’s use the 

following designation: % &TzzzztZ 4321 ,,,)( � - set of phases variables 2211 ,,, wwww �� ; operator of 

numerical integration ))(()(: tZLtZL �	## . Operator #L does the conversion of the initial phase 

state to the state after specified time interval # . It can be done by the using of numerical integration 

method. If denote 1Z - values of phases variables in some time � , then )( 12 ZLZ kT� , where 

��2�T - period of the stir up force, ...2,1�k - integer. Equations 012 �
 ZZ are nonlinear 

equations with respect to 1Z . Solution that obtained with different values of k gives a possibility to 

determine different periodical modes. If 1Fk , they are subharmonic ones 

2.  The implementation of introduced approach to specific example. 

For a test example it was used 2-mass system that has parameters: kgm 159601 � , 

12 5,0 mm � , mkNC /5280� , msNH /127680 )� , kNA 293� , Hz16�@ . 

The integration is performed by the Runge-Kutta method. Time period 1/16 s, which 

corresponds to the period of one complete oscillation of the system is considered. This time interval in 

case of the numerical integration is equal to 5000 iteration steps. 

To assess the changes in the character of the oscillatory process in the system is carried out 

varying the phase variables % &TzzzztZ 4321 ,,,)( � within the limits of maxmax 1.0 ii A�E , where 

maxiA is the maximum value of the variable in the steady state. Four parameters were taken as varied 

ones: the displacements of the 1st and 2nd bodies, as well as their velocities. The range of variation is 

equal to five steps to reduce variable and 5 ones in the direction of increasing. Thus, the base point 

corresponds to zero increment 0,0,0,0 4321 �E�E�E�E is central point of this range. 

According to the results of calculations for a set of variables Z it were obtained their values 

)( 12 ZLZ kT� , when 1�k , sT 16/1� . These values correspond to the values of state variables for 

the considered two-mass system, which has made one complete oscillation. As stated earlier, the 

condition 012 �
 ZZ should be accomplished for periodical solution. It is necessary to consider the 

fact that search of 2Z is performed by numerical integration, which in due of its implementation on 

the PC has some inaccuracy. A consequence of this seems appropriate conversion from 012 �
 ZZ

to expression 012 �
 ZZ . Thus, the solution will be periodic in the minimum of the functional I , 

that is represented in form  

2

max

2

21 )(

A

ZZ
I



� (4) 
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Accordingly, having the values 1Z and 2Z for every set of E , is proposed to build a 

functional I , that describes the changes in the oscillation process due the variation of phase variables 

% &TzzzztZ 4321 ,,,)( � , allows to assess visually its character.  

Figure 2-5 shows sections of the functional (4) with the variation of different state variables. 
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Figure 2. Functional I at varying displacement and velocity of the 1-st body 
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Figure 5. Functional I at varying displacements of the 1-st and 2-nd bodies 

Conclusions 

We can conclude by using the presented results that the minimum of the functional I in 

different sections locates near the base point ( 0,0,0,0 4321 �E�E�E�E ), that correspond to a 

steady state in a real system when condition 012 �
 ZZ is true. It corresponds to the previously 

presented assumptions when 012 �
 ZZ that was done for the numerical search of functional I . 
This allows to conclude that this approach could be applied to search of the harmonic and 

subharmonic modes in vibro-impact systems. Analysis and studying of modes at 1Fk will be an 

object of further studies.  
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Introduction 

Geysers are rare natural phenomena and several conditions must meet together for the geyser 

recharge. These are a water supply, a heat source and a reservoir connected with a plumbing system 

[1]–[7]. There are known about six basic types of geysers classified in general by the physical 

portraits and the individual geometry of their reservoirs [6]. Geysers are essentially hot springs that 

exhibit unstable thermodynamical and hydrodynamic patterns. Though, there can be many other 

contributing factors supporting the dynamical activity. An adequate geyser modeling presents a 

permanent challenge for theoretical and experimental researchers. The multiphase flows of more than 

one phase are natural when modeling geysers. These flows are extremely complex because of large 

deformations and fast transformations in temporally evolving interfaces between the vapor and liquid 

phases. A complication of these flows is that the phases can be dispersed unevenly both in cross-

sections of the plumbing system, with some unknown geometry, and axially. Nowadays the 

theoretical investigations, based on the complete set of hydrodynamic equations including that of 

mass conservation, momentum, angular momentum and the energy, provided by appropriate 

constitutive equations, seem to be not so fruitful, as desirable, from the physical viewpoint and 

because of a high computational complexity [8], [9]. In order to understand anything and overcome 

pragmatically such complexities, the different empirical distributions of flows are usually gathered 

into groups called flow pattern. This approach is useful for modeling when identifying the occurrence 

of individual flow patterns provided by simplified models related to various flow patterns. In 

particular, the correlations between the pressure drop and flow rates of the phases relationships which 

are central for in practice. There are many flow patterns intensively investigated for vertical up- and 

down-flow, horizontal flow and flow at other inclinations, though namely the vertical flow patterns 

seem to be of key interest in the context of geyser activity. They include a bubble flow within the 

liquid; a slug or plug flow of larger bubbles approaching diameters of the plumbing system; a churn
flow characterized by chaotic vibrations; an annular flow, where the liquid flows on the wall 

downwards as a film together with the upward gas flow in the core; wispy annular flow with a great 

concentration of droplets in the gas core [10].  

The first section of the present paper proposes, based on the analysis of the enhancement and 

suppression factors, an ad hoc discrete dynamical model describing the geyser activity in accordance 

with some popular empirical maps related to various vertical flow patterns [11]–[18]. This simplest 

model is motivated by discrete nature features in the evolution of slugs, and has no contradictions 
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with known experimental data [19]. A competition between the resonance and the energy dissipation 

in the vertical slug flow is considered as a feasible initial stage in the geyser activation, since the flow 

development of co-current gas-liquid vertical slug flow showed that void fraction, Taylor bubble and 

liquid slug lengths, and slug frequency are parameters essential to any description of the dynamical 

instability [20], [21]. From a physical viewpoint, it is obvious that the activity of geyser always causes 

a decrease in the viscosity of the subsoil fluid filling the plumbing system and because of the increase 

in dynamical lengths of vapor slugs. Hence, the amplitude of thermo-mechanical oscillations may 

rapidly increase with a rise of the temperature. It is assumed that the rate of energy dissipation 

depends upon the ambient temperature, and a simple temperature dependence of the energy 

dissipation versus the temperature may be selected as a linear function with a small slope, which 

should enter both into the heat balance equation and that describing mechanical vibrations [22]. A 

physical picture of dynamic processes in almost active geysers seams to be quite simple. A drop in the 

viscosity leads to some increase in the amplitude, which contributes to some additional heat portion. 

This heat causes some decrease in the viscosity, so that the heat injection should be reduced. It is clear 

that such processes should be saturated and would approach some stationary state. However, the 

system under consideration, being nonlinear one, can possess hysteretic steady-state regimes of 

motion, which can lead to dangerous oscillation regimes even being far from the resonant frequency.  

 

1.  ENHANCEMENT AND SUPPRESSION FACTORS ACCOMPANYING THE 
GEYSER ACTIVITY 

Display equations should be set apart from the body of the text and centered. Use 1 line spaces 

to separate equations from text. Numbered consecutively, using Arabic numerals enclosed in 

parentheses and positioned flush right along the final baseline of the equation. Although systems 

under consideration are highly complex and exhibit unique patterns for every given geyser, 

nonetheless, we can trace some their common features using simple tools of the nonlinear dynamics. 

Mathematical modeling of the geyser activity is ranged from simplest physical descriptions based on 

the Bernoulli principle for ideal fluids, through the analytical studies over the theory of nonlinear 

dynamical systems [23], up to numerous numerical simulations of multiphase fluid and heat transport, 

predominantly through the porous media [24]. Experimental studies are focused on the monitoring of 

natural geysers [3] together with laboratory investigations [19].  

Multiphase flows frequently occur in space technologies. To predict the local flow pattern, a 

flow pattern map is used that displays the transition boundaries between the flow patterns, typically 

plotted on logarithmic scales, using representative parameters describing the liquid and gas phases 

[11]–[17]. Figures 1 and 2 illustrate widely quoted flow pattern maps for vertical flow proposed by 

Fair [11] and then by Hewitt and Roberts [12]. Arrows show a typical geyser activity cycle.  

For instance, let the internal diameter of a vertical pipe be ][102.54 -2 m5 . Let the concrete fluid 

properties be the liquid density and vapor density: ]/[961 3mkgl �M , ]/[32 3mkgl �M , correspondingly, 

and the liquid viscosity and vapor viscosity, ][4.0 11 

� smkgl" , ][01.0 11 

� smkgg" , as well. Suppose 

that the vapor quality is 56.0�x  and let the total flow rate of liquid and vapor be ]/[454.0 skg . The 

mass velocity is defined a ratio between the mass flow rate and the internal cross-sectional area of the 

tube: ]/[2.895 2smkgm �� . The parameter on the horizontal axis to the Fair map is calculated as follows: 

� �� � � � 07.11/
5.0119.0 �
 



lgglxx "M"M . Thus, the pair of values, 895.2 and 1.07, on the Fair map identifies the 

flow regime to be annular flow (marked by the diamond symbol in Fig. 1). To use the map for vertical 

up flow shown, for example in Fig. 2, where gsv  denotes the superficial gas velocity; lsv is that of a 

liquid; gM  and lM  stand for the gas and liquid densities, correspondingly. The momentum flux of the 

liquid and gas are calculated using the local vapor quality. Then the values of the vertical and 

horizontal coordinates are determined and the intersection of these two values on the map identifies 

the flow pattern predicted to exist at these flow conditions. Transition curves on these maps marks 

approximately transition zones analogous to that between laminar and turbulent flows. For a more 

comprehensive and fundamental treatment of two-phase flow transitions, refer to the paper [15]. The 

most widely quoted flow pattern maps for predicting the transition between two-phase regimes for 

adiabatic motion in horizontal tubes are proposed by Baker [16]. Then Taitel and Dukler [17], based 

on the analytical and empirical analysis of the flow transition mechanisms, have constructed the 
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unified map determined by the dimensionless characteristic numbers, namely the Martinelli 

parameter, the gas Froude number, the liquid-phase and vapor-phase Reynolds numbers and one more 

parameter, as a ratio between the gravity force and the related gradient. Point out that vertical patterns 

seem to be more complicated compared with the horizontal ones, since their description in terms of 

characteristic numbers is absent.  

 

a b 

 
Figure 2.  a – Two-phase flow pattern map of Fair [11] for vertical tubes; b – Gas momentum 

flux versus liquid momentum flux for vertical two-phase co-current upwards flow in a vertical tube [12] 

 

Basic patterns of the flow boiling in vertical pipes can be the following: bubbles appear at the 

heated surface and then are lifted in a saturated liquid upward turning into larger bubbles, approaching 

widths of standpipe diameters. Then bubbles grow and create a slug flow at a high vapor 

concentration. These Stokes bubbles break down in wide tubes to produce turbulent churn flow, since 

the liquid travels to and fro in a chaotic oscillatory motion while the vapor flows upwards. In narrow 

tubes an annular flow may occur. The vapor flows in the core of the plumbing system with a high 

pressure, while the liquid falls downward on the walls as a liquid film under the gravity. At high 

vapor quality, this film can dry out and the remaining liquid, as small droplets, is flowing jointly with 

the vapor phase. Finally all droplets are vaporized and the gas phase is superheated [25], [26]. Then 

the thermal system experiences an adiabatic cooling and the recharge process can be repeated again. 

The onset of churn flow, illustrated in Fig. 3, is accompanied by a sharp increase in pressure gradient 

[13], [27] at the fixed fluid pressure and the fixed fluid rate flow. This may be associated with a 

coherent interaction between the upward gas and downward flows. This cooperative effect can turn 

into the resonant excitation, if consider a vapor instead the air. As the gas velocity is increased after  
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Figure 3. Dimensionless data for pressure gradient in fully developed air-water flux in a vertical 
tube [13] 

the churn flow regime has been entered, the pressure gradient initially decreases and the passes 

through a minimum.  

Then again the pressure gradient increases as the gas flow rate increases up to that of the 

annular flow. In a saturated flow, the boiling heat is usually transferred by two different mechanisms, 

convective evaporation and nucleate boiling. Experimental correlations are usually evaluated by 

combining the contribution of these two mechanisms, including the so-called enhancement factor of 

the convective boiling, E , associated with the presence of bubbles, and also, the suppression factor of 

the nucleate boiling, S , since the liquid flow might suppress bubble nucleation [27]. Let us introduce 

an operator T  defined by the mapping [28]: � �nn xEx �	1
 as cn xx 0 , otherwise � �nn xSx �	1

 at cn xx F . 

Here E  and S  are continuous functions defined by the present state of the dynamical system, nx , 

which is developed up to the new state 
1	nx , accordingly to the so-called Poincaré mappingT . A jump 

at the critical point cx  describes the shock phenomenon associated with the collapse of long Taylor 

bubbles because of condensation at upper parts of the standpipe. The distance between two 

neighborhood points n  and 1	n  can be defined, in the context of geyser dynamics, as a characteristic 

lifetime of an individual slug in the standpipe, while the variable nx  may be interpreted as any 

measured physical parameter, for instance, as the dimensionless energy. The enhancement factor E  

dominates as the value of nx  exceeds no the critical point cx . Otherwise, the suppression factor S  

takes place. Due to the simplicity, we assume the branches � � nn xaaxE
1211

	�  and � � nn xaaxS
2221

	�  to 

be linear functions. In spite of simplicity, the study of this dynamical system is also complicated 

enough. Although, one would declare a priory that the parameters 
11

a , 
12

a  and 
21

a  should be non-

negative constants, moreover 1
12

:a  and 0
21

0a , if we consider the geyser dynamics (Fig. 4). A 

piecewise-linear Poincaré mapping characterized by the critical threshold 3/2�cx  at the parameters: 

2/3
11

�a ; 0
12

�a ; 2
21

�a ; 2
22


�a , is depicted in Fig. 4a, starting from the initial point 10/1
0
�x . The 

explicit mapping which exhibits a typical chaotic behavior is shown in Fig. 4b.  

Point out that the analogous piecewise linear Poincaré maps can generate, at small values of the 

parameter 
21

a , almost periodic time series, close to the real-time data represented in the work [19]. 

Similar structures are also inherent in air bubble formation [29]. As one may conclude the geyser 

dynamics can by extremely sensitive to small changes in the system parameters and the initial 

conditions. So that, no one contributing factor can be neglected when developing an adequate 

mathematical model in the ideal case.  

 

a b 

Figure 4. Competition between the enhancement and suppression factors: a –Lamerey 
diagram; b – symbolic mapping 

 

Conclusions 
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A discrete dynamical model describing the geyser activity cycle is proposes, based on the 

analysis of the relevant enhancement and suppression factors, and in accordance with some popular 

empirical maps related to various vertical two-phase flow patterns [11]–[18], as well. This simplest 

model is motivated by discrete features in the evolution of slug flow, and has no essential 

contradictions with known experimental data [19]. Possibly, this can help to confirm or refute some 

hypotheses in geyser activity observed in the nature [30], [31]. 
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1. Necessary facts from Differential Geometry 

To derive equations of motion of the rod on the surface we need some facts from Differential 

Geometry. Below we briefly discuss these facts. 

We shall assume that the coordinate grid on the surface 

� �1 2,q q�r r (1) 

consists on the lines of curvature and directions of these lines are defined at every point of the surface 

by unit vectors 

� �1 2

1 1 2 2

1 1
, , i j ijh q h q

?
� �

� � ) �
� �

r r
u u u u (2) 

Here 1h and 2h are the Lame’s coefficients 

� �1 2, , 1,2i
i

h q q i
q

�
� �

�
r

The vector 

� � � �1 2 1 2,q q � 5e u u

is the normal vector to the surface (1) at the point � �1 2,q q . 

Let us denote by � �1 2, , 1,2ik q q i � the principal curvatures of the surface (1), then we get  

1 1 1 2 2 2

1 2

,h k h k
q q

� �
� 
 � 


� �
e e

u u (3) 

Equations (3) follow from the Rodrigues's theorem [1]. Furthermore, using (2) and (3) it is pos-

sible to derive the following equations 
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 (4) 

 

2. Kinematic equations 

Let the rigid infinitely thin rod moves without sliding on the convex surface defined by the 

equation (1). Suppose that the rod touches the surface at a single point P. Let us introduce the moving 

coordinate system 1 2 3Px x x  that is rigidly connected with the rod. We denote by 1e , 2e  and e  the unit 

vectors of this system. The unit vector 1e  is directed such that the radius-vector PGPG of the center of 

mass G  of the rod has a form: 1PG s� ePG se . The unit vector e  is a normal vector to the supporting sur-

face at the point P . The unit vector 2e  is chosen such that the vectors 1e , 2e  and e  form the right 

handed set of vectors. 

We shall define the position of the rod on the surface by the previously introduced variable s  

and by the angle 1  defined as follows: 

 1 1 2 2 1 2cos sin , sin cos1 1 1 1� 	 � 
 	e u u e u u  (5) 

 

Since the rod moves on the surface without sliding the velocity of the point P  of the rod equals 

to zero. This condition can be described by two nonholonomic constraints:  

 

 1 1 2 2cos 0, sin 0h q s h q s1 1	 � 	 �1 2 2cos 0, sin 0q s11 0 12 2 sin2 22 22 sinscos 0 sin0,0, 2 22  

 

If we denote s u�s u  the corresponding nonholonomic constraints can be rewritten as follows: 

 

 1 2

1 2

cos , sin
u u

q q
h h

1 1� 
 � 
1 cos sin
u u

q1 cos
h h2 1, sin2 h22cos 2  (6) 

 

Using (5) and taking into account (3), (4) and (6) we get 
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Let us define the vector 1 1 2 2� � �� 	 	ω e e e  such that � �1 1� 5e ω e�1 �� 5��e e5 , � �� 5e ω e� �� 5�e ω e5 . Then the vec-

tor ω  is the absolute angular velocity vector of the system 1 2 3Px x x . Its components on the axes of the 

system 1 2 3Px x x  have the following form: 
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 (7) 

 

3. Dynamical equations 

In order to derive equations of motion of the rod on the surface we shall use the Gibbs –Appell 

method. First of all let us find the expression for the energy of accelerations of the system. We shall 
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use the variables u  and �  as quasivelocities in this problem. The energy of accelerations can be 

found using the formula: 

 � � � �� �2 1

2 2
G G G

M
S � 	 ) 	 5 )a ε ε ω ω ε  (8) 

 

Here M  is the mass of the rod, Ga  is the acceleration of the rod's center of mass, �ε ωω  is the 

angular acceleration of the rod, G  is the central inertia tensor of the rod. We shall assume that the 

vectors 1e , 2e  and e  are directed along the principal axes of inertia of the rod. Then G  has the fol-

lowing form: 

 

0 0 0
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G J

J

! �
� � � � �
� �
 �

 

 

In the explicit form expression (8) can be written as follows: 
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Here 2
PJ J Ms� 	 are the moments of inertia of the rod about the axes 2Px  and 3Px  and 

2 2
1 2cos sink k k1 1 1� 	  is the normal section in the direction 1e . 

If the rod moves under the action of the forces with the potential � �1 2, , ,V q q s 1 then its equa-

tions of motion written in the form of the Gibbs – Appell equations have the form 
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Equations (9) together with the (6) and with the equations 
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��
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,s u 1� ,u  (10) 

 

form the complete system of equations of motion of the rod on the surface. 

 

4. Motion of the Rod on the Surface of Revolution 

Suppose that the supporting surface is the surface of revolution. It is defined with respect to the 

fixed cartesian frame by the equation 

 

� �
� �
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1 2

1 2

1

cos
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q q

q q

q

M
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I
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r  (11) 

 

In this case the Lame's coefficients 1h  and 2h  take the form: 
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and the principal curvatures 1k and 2k may be written as follows: 
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(13) 

We shall assume that the rod moves on the surface under the action of gravity. Suppose that the 

direction of gravity is defined with respect to the fixed cartesian frame by the following formula: 

� �cos sinx zMg G G� 
 	F e e

i.e. the direction of gravity forms the angle 2� G
 with the axis of symmetry of the surface. Then 

the potential energy of the rod has the following form 

2
2 2

1 1 1 1

coscos cos
cos sin sin cos sin

s q d s d
V Mg q s q

h dq h dq

M 1 I
M 1 G I G

� �! � ! �
� 	 
 	 	� �� � � �

� � �  �� �
(14) 

Equations of motion of the rod on the surface of revolution have the form (6), (9) and (10) where we 

should substitute 1h and 2h by the corresponding expressions (12) and 1k and 2k by the corresponding 

expressions (13). We should use also the expression (14) for the potential energy of the system.  

5. Equilibria of the Rod on the Supporting Surface 

Equations of motion of the rod on the supporting surface have a particular solution 0s s� , 

01 1� , 1 10q q� , 2 20q q� where 0s , 01 , 10q , 20q are constants. This solution corresponds to the 

equilibrium of the rod on the supporting surface. Conditions of existence of equilibria have the form: 

2 2
1 2

1 1

cos sin
, 0

V V V V

s q qd d

dq dq

1 1
M 1M I

� � � �
� 	 �

� � � �! � ! �
	� � � �

 �  �

(15) 

In order to clarify the physical meaning of these conditions we represent the potential energy of 

the rod in the form: 

� � � �� �1 2 1, , ,V q q s M s1 � ) 	g r e

Substituting this expression to the conditions (15) and taking into account (2)-(5) we can re-

write the conditions (15) as follows: 

� � � �� �2 0, 0M s M k s1) � ) 
 �g e g e (16) 

Let us discuss the possible solutions of the system (16). Obviously the system has a solution 

0s � . In this case the rod touches the surface by its center of mass and it will be in equilibrium inde-

pendently on the values of the other coordinates 1 , 1q and 2q . Therefore equilibria of this type form 
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the manifold � �% &1 2 0
, , ,

s
q q s 1

�
and they are not isolated. The investigation of stability of these equi-

libria is a sufficiently difficult problem [2]. We shall not study this problem here. 

When 0s � equations (16) take the form: 

� � � �2 0, 0M k M1) � ) �g e g e

These conditions are valid when the rod is directed along the gravitational vertical. The center 

of mass G of the rod will be below (stable equilibrium) or above (unstable equilibrium) of the point 

P . These conditions are valid also when the normal section curvature 0k1 � . In this case the normal 

section of the supporting surface through the direction of the rod is a straight line. In equilibrium posi-

tion the rod touches the surface along this straight line. In this case we have the multipoint contact of 

the rod with the surface. 

6. Existence of an invariant measure 

Equations of motion of the rod on the surface of revolution resolved with respect to the deriva-

tive have a form: 
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It is known (see e.g. [3]) that the smooth function � �" x is a density of the invariant measure for 

the equation � ��x v x� �x v x�� if and only if � �div 0" �v , where 

� � � �
div

k

k k

v

x

"
"

�
�

�
(v (17) 

Equation (17) can be represented in the form 

� �ln k

k k

vd

dt x
"

�

 �

�
(

Applying the corresponding formula to the equations of motion of the rod we found that these 

equations possess the invariant measure when the condition 

21 2
2 1 1 2 1

1 1 1 1

2 2 0
dk dk d d

k k k k k
dq dq dq dq

M M
M M
 	 
 � (18) 

is valid. The corresponding density of the invariant measure has the form 

� �
3

2
1 1PJ k h k1" M�

(for 1 0k � ) or the form 
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 � �
3

2 22
2 1sinPJ k h" 1�  

 

(for 1 0k � ). The existence of the invariant measure facilitates the process of integration of equations 

of motion of the rod on the surface of revolution. Moreover the existence of an integral invariant with 

a positive density is interesting also for the possible application of ergodic theory to this problem. 

Note that the condition (18) is valid for many convex surfaces. Indeed it is valid in the case 

when the supporting surface is a cylinder, a cone, a paraboloid, a sphere, an ellipsoid etc. 

Equations of motion of the rod on the surface of revolution form the system of six first-order 

autonomous differential equations. We shall continue the study of this problem by various methods. 
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Introduction 

The Damping Devices (DD) and the Tuned Mass Dampers (TMD) are widespread in mechanical 

engineering. However, in the second half of the XX century they also find very wide application in 

modern construction. And, such devices are used not only in buildings under construction, but also at 

reconstruction of the already existing. More than 10 thousand structures worldwide (more than 30 

countries) are protected by Seismic Isolation devices, Energy Dissipation systems, devices of protection 

against dynamics loads (Japan, China, Russia, the USA, Iran, Italy, etc.). 

It is connected with growth of heights and spans of buildings and structures. Therefore, dynamic 

loadings and the levels of vibration of such objects grow. It is dangerous for durability of constructions (it 

is necessary to supervise in them dynamic tension), for vibration resistance work of the equipment (a sad 

example – accident on Fukushima-2011) and for comfortable stay and activity of people (therefore speeds 

and accelerations of crossovers are studied). 

Dynamic impacts in structural models are considered as force loads (a wind, a tsunami, operation 

of a machine and the equipment), and kinematic loads (seismicity, transport) – see works of authors at the 

previous ND conferences. Generally in building science there are four groups of nonlinearities [1, 2]: 

a) geometrical nonlinearity: a work of torsion fibers and some constructions of ultimate flexural 

rigidity;  

b) physical: nonlinear internal friction in materials of constructions, forces (constant on the module, 

position, etc.) dry friction in knots, joints, DD, TMD; 

c) constructional: change of the design scheme of a construction in the course of loading and 

vibrations, work of adaptive systems (gaps, "switching off" or "inclusion" of elements, connections), 

work of semi-rigid joints in seismic constructions, etc.; 

d) genetic: the accounting of all history of loading with accumulation of residual tension in use, etc. 

Authors conclude that for stabilization of building constructions by means of DD and TMD the 

most perspective is a use of groups of nonlinearities b and c.
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Designs of linear and nonlinear DD (TMD, absorbers, dampers with viscous friction and with dry 

friction, energy dissipators etc.) are known. Application and selection of parameters of such devices were 

considered in works of Den Gartog (linear TMD), B. G. Korenev, L.M.Reznikov (nonlinear TMD), 

A.L.Zakora and M.I.Kazakevich (anti-hunting of guys and bridge designs). It is a lot of interesting 

constructive decisions and analytical calculations on anti-hunting it is published by KhPI works (Y.V. 

Mikhlin’s and K.V.Avramov’s schools). 

In many cases object of protection is simulated as a single-mass system without friction. 

Sometimes nonlinear systems were investigated with application of linearization of characteristics. 

Problem is that the modern domestic bundled software (BS) on the basis of FEM yet don't allow to model 

complex challenges of nonlinear dynamics of branched constructions. Therefore designers of dynamic 

protection of constructions needs in available engineering techniques: from creation of individual 

dynamic models of interaction of a construction from DD and drawing up rational systems of the 

nonlinear differential equations and their decision – before design receptions (it is desirable, - patented 

and proved) and trial tests. 

Main material 

Let's divide discussed construction tasks and their models of nonlinear damping of complexity 

level into four types (are discussed: task, constructive decisions, extent of specification of static-dynamic 

models, type of systems of the differential equations of the linear and nonlinear, free and forced 

oscillations). 

The first type of tasks. It is the simplest type on complexity. Here it is possible to mean, for 

example, ways of vibrations decrease of the object given to model of an oscillator well described in works 

[3,4] with additional elements (if TMD, as though the second oscillator) join. If to consider classical 

TMD, in the works stated above the bigger attention was paid to option with linear forces of viscous 

resistance. 

Unfortunately, in literature of researches on (more convenient in exploitation) dampers of dry 

friction have much less. The reason of such phenomenon – not only in complexity of settlement 

justifications (bundled software don't solve this nonlinear problem), but also in some advantages (besides 

"settlement character") on the party of dampers of viscous friction. However application, for example, 

easy-to-work frictional dampers on railway transport by their quantity exceeds much dampers of viscous 

friction. It allows to predict the same broad use of powers of dry friction for stabilization and protection 

of building objects. 

Some comparison of ways of anti-hunting of the construction modeled by an oscillator, is carried 

out in work [5] where results of calculation of dynamic coefficients for TMD, absorbers, dampers with 

viscous and dry friction are shown. It is shown that it is under certain conditions better indicators at 

dampers and TMD, is worse – at absorbers.  

The second type of tasks. Separate rod bent designs, subsystems of flat rather simple frames are 

considered. They are accepted in the form of discrete and continual models with finite number of degrees 

of freedom and the concentrated masses (fig. 1, a,c) between which there can be generally 

communications, DD, TMD, etc. with nonlinear power characteristics (fig. 1, b). Designs of a 

construction and additional elements can be modeled as in the form of absolutely rigid, and bent 

elements. 

Separate characteristics of a set (see explanations to fig. 1, b) linear and nonlinear bearing elements 

of construction designs, vibration insulation, guy systems, the guy lines and switching off communication 

in anti-seismic construction, interaction between subsystems, internal friction in a material of elements of 

a design (it can have linear or nonlinear and sedate dependence) can be modeled. 

a) 
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b) 

c) 
Figure 1. Examples of objects (а,c) and set of modeling of linear k, β and nonlinear characteristics 

(b): k
n
 - a conic spring; k

∆
 - a spring with a gap; H, H

∆
 - dry constant and variable friction on the module 

Combinations composed this set with parallel and consecutive schemes it is possible to model 

elements with nonlinear and elastic elements (like rubber, rubber-metal vibro-insulators, etc.), difficult 

nonlinear properties of elements of construction designs (gaps, jumps, chaos, and also other nonlinear 

dependences of deformation on the applied force, entry conditions, plasticity, etc.). 

On a fragment (fig. 1, b) subsystems are connected through the described set. Let's accept, for 

example, that nonlinear elastic and dissipative forces in elements of a set work all six (from left to right) 

devices. Then the part of system of the differential equations, describing movement of a fragment of 

model, will assume the following air: 
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The purposes of studying of tasks and frames of the second  type – the following. At first it is 

necessary to find regularities of a range of own frequencies, and then - places of possible demonstration 

of the main antinode in the most important for object stabilization own forms. At this stage linear models 

and calculations by means of the bundled software can be used. It is necessary for decrease further 

amplitudes of the compelled fluctuations on resonant forms by means of concrete DD and TMD with 

significantly nonlinear characteristics in the specified models. 

Let's analyze, generally flexural forms of flat regular frames for check of demonstration of original 

properties of own oscillations  like zones of a condensation of frequencies. On this analogy of properties 

of "not movable" frames to properties of very widespread not cutting beams (bridges, pipelines, 

platforms, crane beams) great Ukrainian the mechanic S. P. Tymoshenko paid attention still. 

Let's try to find zones of a condensation of own frequencies on ranges, for example, a two-story 

frame with immovable knots (Fig. 2, a). Profile of cores of a frame is the double-T-iron №45 (a wall of 

the double-T-iron – in the frame plane). Span and heights of floors are equal 8 m. 

Let's accept the following numbering of models: 

- model №1 is according to the settlement scheme №1 (to Fig. 2, b) the size of evenly distributed 

loading (weight) of all elements of a frame of 2.5 kN/m; 

- model №2 is similar to the model №1, but load of 5 kN/m; 

- model №3 is according to the settlement scheme №2 (to Fig. 2, c), load of 5 kN/m and the size of 

rigidity of horizontal communications are equal to the doubled longitudinal rigidity of elements of a 

frame; 

- model №4 is similar to the model №3, but rigidity of horizontal communications are equal to zero 

("free across a frame"); 

- model №5 is similar to the model №4, but rigidity of horizontal and vertical connection on marks 

of bridgings are equal to zero ("free across and verticals frame"). 
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a) the frame scheme 
with not movable junctions 

b) the design scheme 
№1 (all junctions - not 

movable) 

c) the design scheme № 
2 (overlapping with elastic 

horizontal junctions) 
Figure 2. Schemes of a two-storied frame  

In the design scheme №1 horizontal and vertical external junctions in level of crossbars of over-

lapping are accepted absolutely rigid, and in the design scheme №2 horizontal basic cores – elastic, 

ultimate rigidity. Types and frequencies of the first six forms of natural modes of a frame only for model 

№1 and frequency ranges for all five models are given in table 1. 

It appeared that in case of a frame with not movable knots the quantity of forms of natural modes is 

equal in each zone of a condensation to quantity of elements of a frame (it is strictly similar to continuous 

beams). In these zones frequencies of all forms of natural modes of a frame with conditionally linearly - 

not movable knots of crossing of columns and crossbars lie. And, with a small mass of cores some forms 

(in connection with symmetry of a frame) "are as though duplicated", having and identical frequencies. At 

increase of weight of cores there is their small "bifurcation" on a frequency axis. The rigidity of 

horizontal communications there is less, the similar " separation " are more noticeable. 

In the absence of horizontal communications in level of crossbars to the first place with the lowest 

frequencies there are the forms connected with general and flexural fluctuations of a frame as a two-

storied console core (for model №4 it is the 1st and 2nd forms). These forms have lower frequencies, than 

all forms from a condensation zone. In the absence of all communications in level of crossbars are shown 

gradually and other type of forms, - the cores connected with longitudinal fluctuations (the 9th and 10th 

forms for model №5). 

The third type of tasks. In this type we will bring certain «installation+TMD» systems with 

complications, for example, the damper. Constructive decisions and calculations of TMD with two 

inertial elements are provided, for example in [6]. In [7] the device and the principle of work of a 

polyfrequency vibro-extinguish by means of work of system of automatic control changes of rigid and 

dissipative characteristics of various circles of the cascade of the quencher depending on frequency and 

intensity of dynamic impact on object of clearing of vibrations are possible is described. 

Table 1. Forms and frequency spectrum of a frame with stationary knots 

№ form 1 2 3 4 5 6 

Type of a 
form 

Frequency 
Hz 

9 12.8 12.8 17.4 18.6 18.6 

Frequency ranges of frames on different models 
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Model №1 

Model №2 

Model №3 

Model №4 

Model №5 

The fourth type of tasks. At last, the most difficult systems are collected in the fourth type of tasks. 

Here we will carry spatial one - or multy-storied frames with irregular constructive solutions of branched 

designs. For example,  an office building of the former Ministry of highways Georgian the Soviet 

Socialist Republic (today belongs to Bank of Georgia) in Tbilisi (fig. 3, a), complex skyscrapers the 

Moscow City (fig. 3, b - the «City of the Capitals» complex). 

    
а) b)  

Figure 3. Modern branched spatial frames 

Conclusions 

In summary we will notice that many unresolved problems of increase of safety, durability and 

comfort of buildings and constructions can be investigated and solved by adequate modeling of static-

dynamic interaction of construction designs with damping devices. It is for this purpose expedient to 

develop, synthesize and in every possible way to check, compare and test the device with straight-line and 

nonlinear characteristics. In work the way of modeling of systems with gaps and dry friction which are 

the main components of semi-fixed knots with rather mobile elements, seismic-isolating belts and other 

means of damping and protection of buildings and constructions from external vibrations, blows and other 

dynamic influences is shown. 

Besides, the way of search of the most effective arrangement of damping devices in difficult 

regular and irregular frames – taking into account the analysis of the main forms of natural vibrations 

from zones of a condensation of frequencies is recommended. 
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Localization of the Vibratory Energy of a System

With Time-Dependant Mass Into a Nonsmooth

Energy Sink
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Abstract
Vibratory energy transfer from a main system with deterministic and constant mass to a nonlinear

energy sink (NES) with smooth or nonsmooth potential has been already developed. Here, we will

deal with the energy transfer problem of a main linear system but with time-dependant mass to a

nonsmooth NES at different time scales. Invariant manifold of the system at fast time scale will

be detected and then reduced system at first slow time scale by tracing its fixed points and fold

singularities will be studied. This study will let us predict different scenarios and behaviors of the

system. The system can finally present periodic responses with low or high energy levels and/or

strongly modulated responses by repeatedly bifurcations between its stable zones. This study will let

us design a NES system according to the aim of its usage (passive control and/or energy harvesting).
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Introduction

Efficiency of NES systems in passively controlling structures has been proved theoretically and

experimentally [1–3]. Most of the past studies dealt with the passive control process of a linear system

with "constant mass" by a NES with "essential cubic nonlinearity". In this paper we would like to

study the energy exchange process between a main linear system with "time-dependant" mass by a NES

with piece-wise linear potential. Organization of the paper is as it follows: Mathematical model of the

system and its analytical treatments at different scales of time are presented in Section 1. A numerical

example by showing detailed dynamics of the system during the energy exchange is given in Section 2.

Application of the developed techniques in the passive control of time-dependant systems is discussed

in Section 3 by giving an example. Finally conclusions are collected in Section 4.

1. Mathematical Representation of the System and Its Analytical Treatments

Let us consider a 2dof system that is consists of a main structure with time-dependant mass, damp-

ing and elastic stiffness as M̃(t), C and k1 which is coupled to a non-smooth NES with the mass m. The

mass m can move freely in a distance equal to 2δ until it reaches to elastic springs, k2, at two sides.

The overall damping of the NES system is supposed to be λ̃ . Governing equations of the system can be

summarized as:

⎧
⎨
⎩

M̃(t)ẍ1 +Cẋ1 + k1x1 + F̃(x1 − x2)+ λ̃ (ẋ1 − ẋ2) = Γsin(Ωt)

mẍ2 + F̃(x2 − x1)+ λ̃ (ẋ2 − ẋ1) = 0

(1)

where M̃(t) = M0(1+ εM(t)) and the non-smooth potential F̃ of the NES is defined as:
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F̃(z) =−∂V (z)

∂ z
=−F̃(−z) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

0 −δ ≤ z ≤ δ

k2(z−δ ) z ≥ δ

k2(z+δ ) z ≤−δ

(2)

ε is a small parameter which corresponds to ratio of the mass of NES and initial mass of the main

system, i.e. 0 < ε =
m

M0

<< 1. We assume that (1+ εM(t))≥ 0 for a time long enough.

We would like to re-scale the system on the basis of the new time domain T where T = t

√
k1

M0

= tϑ .

Equation (1) reads (xi(t)→ yi(T )):

⎧
⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪
⎪⎪⎪⎩

¨

¨

y1 +(1+ εM(T ))−1εζ ẏ1 +(1+ εM(T ))−1y1 +(1+ εM(T ))−1εF̂(y1 − y2)

+(1+ εM(T ))−1ελ (ẏ1 − ẏ2) = (1+ εM(T ))−1ε f0 sin(ωT )

εy2 + ελ (ẏ2 − ẏ1)+ εF̂(y2 − y1) = 0

(3)

Considering that (1+ εM(T ))−1 ≃ (1− εM(T ))+o(ε2), we will have:

⎧
⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪
⎪⎪⎪⎩

¨

¨

y1 +(1− εM(T ))εζ ẏ1 +(1− εM(T ))y1 +(1− εM(T ))εF̂(y1 − y2)

+(1− εM(T ))ελ (ẏ1 − ẏ2) = (1− εM(T ))ε f0 sin(ωT )

εy2 + ελ (ẏ2 − ẏ1)+ εF̂(y2 − y1) = 0

(4)

where
C√

M0k1

= εζ ,
1

k1

F̃ = εF̂ , k =
1

ε

k2

k1

,
λ̃√

M0k1

= ελ ,
1

k1

Γ = ε f0 and
Ω

ϑ
= ω . We assume that

k = o(ε0) and scaled potential of the NES reads as:

F̂(z) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

0 −δ ≤ z ≤ δ

k(z−δ ) z ≥ δ

k(z+δ ) z ≤−δ

(5)

First, we transfer the system to v = y1 + εy2 and w = y1 − y2. Then we apply complex variables of

Manevitch [4] to the system i.e. (ϕ1eiωT = v̇+ iωv and ϕ2eiωT = ẇ+ iωw with i =
√
−1). We can

present the functions F̂(w) and M(T ) in the form of Fourier series:

F̂(w) = F̂
(
− i

2ω
(ϕ2eiωT −ϕ∗

2 e−iωT )
)
=

+∞

∑
j=−∞

f j(ϕ2,ϕ
∗
2 )e

iω jT
(6)
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M(T ) =
+∞

∑
j=−∞

m je
iω jT

(7)

where the .∗ represents the complex conjugate of the function under consideration and
+∞

∑
j=−∞

|m j|<+∞.

We would like to analyze the averaged form of equation (4) around the 1 : 1 resonance, i.e. ω = 1+σε

by studying its detailed components at different scales of the ε . By ignoring some obvious higher order

terms of ε in system (4) we will have:

⎧
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎩

ϕ̇1 +
i

2
(1+σε)ϕ1 +

ε

2(1+ ε)
ζϕ1 −

i

2(1+ ε)(1+σε)
(ϕ1 + εϕ2)+

i

2(1+ ε)(1+σε)
(εm0ϕ1 − εm2ϕ∗

1 ) =− iε f0

2

ϕ̇2 +
i

2
(1+σε)ϕ2 +

ε

2(1+ ε)
ζϕ1 −

i

2(1+ ε)(1+σε)
(ϕ1 + εϕ2)+

i

2(1+ ε)(1+σε)
(εm0ϕ1 − εm2ϕ∗

1 )−
i

2
(1+ ε)ϕ2G(|ϕ2|2)+

1+ ε

2
λϕ2 =

− iε f0

2

(8)

where the function G(χ) is defined as [5]:

G
(
χ) =

⎧
⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪
⎪⎪⎪⎩

0 if

√
χ

ω
< δ

k

πω

(
− 2δω

χ

√
χ − (δω)2 +2arccos

( δω√
χ

)
)

if

√
χ

ω
≥ δ

(9)

We introduce fast (T = τ0) and slow (τ1 = ετ0, ...) time scales to the system and then we will con-

sider its behavior at different scales of ε [6].

1.1 ε0 and ε1 orders

ε0 order of the (8) is equivalent to:

⎧
⎪⎪⎪
⎪⎪⎪
⎨
⎪⎪⎪
⎪⎪⎪
⎩

∂ϕ1

∂τ0

= 0 ⇒ ϕ1 = ϕ1(τ1)

∂ϕ2

∂τ0

+
i
(

1−G
(
|ϕ2|2

))
+λ

2
ϕ2 =

i

2
ϕ1

(10)
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fixed points of the system i.e. Φ(τ1) (τ0 → ∞,
∂ϕ2

∂τ0

= 0) can be defined as:

i
(

1−G
(
|Φ|2

))
+λ

2
Φ =

i

2
ϕ1

(11)

By considering ϕ1 = N1eiδ1 and Φ = N2eiδ2 following invariant manifold of the system at τ0 time scale

can be obtained:

N1 = N2 λ2 +

√ (
1−G(N2

2 )
)2 (12)

The stability borders of the invariant manifold is defined as (H(N2
2 ) = 2N2G′(N2

2 )) [5]:

λ2 +
(
1−G(N2

2 )
)(

1−H(N2
2 )N2 −G(N2

2 )
)
> 0 (13)

Let us study the system at the ε1 order; the first equation of the system (8) reads:

∂ϕ1

∂τ1

+
i

2
(2σ +1+m0 − iζ )ϕ1 −

i

2
m2ϕ∗

1 −
i

2
ϕ2 =− i

2
f0 (14)

We would like to analyze the behavior at the slow time scale τ1 around its invariant manifold in τ0

time scale. This means that we should consider obtained relationship in (11) in the equation (14):

∂

∂τ1

(
Φ− iλΦ−ΦG(|Φ|2)

)

=− i

2
f0 −

i

2
(2σ +1+m0 − iζ )

(
Φ− iλΦ−ΦG(|Φ|2)

)
+

i

2
m2

(
Φ− iλΦ−ΦG(|Φ|2)

)∗
+

i

2
Φ

(15)

Let us assume that m2 = m2r + im2i, where m2r and m2i are real and imaginary parts of the m2, re-

spectively. After some mathematical manipulation, the reduced form of system in the compact form can

be summarized as: ⎧
⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪
⎪⎪⎪⎩

∂N2

∂τ1

=
Σ1(N2,δ2)

E(N2)

∂δ2

∂τ1

=
Σ2(N2,δ2)

E(N2)

(16)

Ordinary fixed points of the system are those who satisfy E(N2) �= 0 and Σ1(N2,δ2) = Σ2(N2,δ2) =
0. In addition to ordinary fixed point, the system may posses fold singularities that satisfy E(N2) =
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Σ1(N2,δ2) = Σ2(N2,δ2) = 0. It is worthwhile to mention that the criterion E(N2) = 0 which provides

some lines namely "fold lines" of the system is the same as the stability border which already defined in

equation (13).

2. A Numerical Example

We choose a special profile for periodically change of the mass and we will analyze the behavior

of the forced system taking into account the chosen pattern of time-dependant mass. The general view

of the mass profile is depicted in Figure 1. Let us assume a general definition for the periodically change

of mass as it follows:

M(T ) = α +βT T ∈ [0,
2π

ω
] (17)

Fourier coefficients of the function M(T ) are obtained as:

cn =
ω

2π

∫ 2π

ω
0

M(T )e−iωnT dT (18)

It can be proved that for the mass protocol of Figure 1 (α = 0) we have c0 = m0 =
βπ

ω
, cn =

−β

inω
;

so m2r = 0 and m2i =
β

2ω
. If in analytical developments one chooses m0 and M2, then the function of

M(T ) is defined as:

M(T ) =
∞

∑
n=−∞

cneinωT ≈ c0 + c2e2iωT + c2e−2iωT = c0︸︷︷︸
m0

+2ℜ( c2︸︷︷︸
m2

e2iωT )

= m0 −2m2i sin(2ωT )

(19)

where ℜ(...) stands for the real part of a complex variable.

0 Period 1 Period 2 Period 3 Period 4 Period 5

T (Period)

M
 (

m
a

s
s
)

M(T)=βT

Figure 1. The profile of the periodically varying mass of the main system.

2.1 β = 0.5, f0 = 3.624

Here we would like to analyze system behavior under forcing term f0 = 3.624. The full dynamics

of system at τ1 time scales are depicted in Figure 2a. Since points no. 1, 2 and 3 are very close to each
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other, we also plotted a zoomed area which covers mentioned points at the same figure. The invariant

manifold of the system and obtained numerical results (assumed initial conditions: y1(0) = 1.5 and

y2(0)= y′1(0)= y′2(0)= 0) are illustrated in Figure 2b. This figure shows that the system repeatedly faces

bifurcations between its stable zones. This behavior is named strongly modulated response and is the

result of existence of fold singularities (E(N2) = Σ1(N2,δ2) = Σ2(N2,δ2) = 0). The overall time histories

of system amplitudes until T = 104 and also during a narrow time window 9.2×104 ≤ T ≤ 9.6×104 are

depicted in Figure 3 showing a beating response due to the strongly modulated behavior of the system

at the given time span during the τ1 time scale. As an example, phase portraits of the reduced system

of (16) around fold singular point (E(N2) = Σ1(N2,δ2) = Σ2(N2,δ2) = 0) no. 1 (see Figure 2a) which is

saddle/unstable and around fixed point no. 2 (see Figure 2a) which is stable are presented in Figure 4.

Other points namely, no. 3 and 4 are unstable and finally no. 5 which is slightly above the second fold

line is unstable as well. It can be seen that flows of the system change their directions by aiming at the

first line when the system reaches to its singular point i.e. point no. 1 in Figure 2a (see Figure 4a). This

means that the system is ready to experience a reverse jump from the first fold line to the second fold

via bifurcation. This repeatedly bifurcations of the system and energy exchange between two oscillators

will continue until the system get attracted by other stable/unstable fixed points of the system after very

long time.

0 1 2 3 4 5 6
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1
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5
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2

N
2
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3.5 3.52 3.54 3.56
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2

3
5

4
3

2
1

0 1 2 3 4 5 6 7
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1

1.5

2

N
2

N
1

(b)

k=1.5

δ=1

λ=0.2

ξ=0.1

σ=1

β=0.5
f
0
=3.624

Figure 2. Dynamics of the system with β = 0.5, f0 = 3.624: a) fold singularities and fixed points-Σ1 = 0

(—), Σ2 = 0 (− − −), E = 0(−·−·−); b) Invariant manifold (− − −), stability borders (−·−·−) and

numerical results (—).

3. Application to the Passive Control: an Example

¨

In order to show the capability of the proposed NES in controlling systems with time-dependant

mass under external periodic excitations, we first show numerical results for following single dof sys-

tem:

y1 +(1+ εM(T ))−1εζ ẏ1 +(1+ εM(T ))−1y1 = (1+ εM(T ))−1ε f0 sin(ωT ) (20)

which is Eq. 3 without coupled NES. We suppose that M(T ) = γ cos(2ωT ) which makes the linear

system to be similar to the Mathieu Equation [6]. We consider the same initial conditions as in Section

2 for the system with γ = 0.2 and σ = 0. Displacement history of the linear single dof system (Eq. (20))

and linear system with coupled NES (Eq. (3)) are depicted in Figure 5 showing capability of the NES

not only in preventing the diverging response of the system but also in decreasing its amplitude in a

considerable amount.
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Conclusions

Developed techniques in the paper will let us design a nonlinear passive control system for struc-

tures where their masses are time dependant, e.g. in cables due to different weights of ice during day

and night or in vehicles due to the change of the weight of fuel in their tanks. The system can present

strongly modulated response and/or periodic one according to existence of fixed and fold singularities.
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Abstract 
Molecular chain with rotational degrees of freedom and quadrupolar interaction between linear 
molecules is investigated theoretically. Rotation of the molecules is placed in the plane of an 
adsorbing surface only. The envelope waves in molecular chains are considered. On the base of the 
linear solutions for the waves, the continual nonlinear equations are derived for slow evolution of the 
wave amplitudes. Hamilton dynamics for the envelope amplitudes is considered in the phase space. It 
describes the energy transfer between the degrees of freedom.  
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Introduction 

Molecular crystals are investigated extensively; it is caused by their structural properties, 

unusual electric and thermal conductivity [1, 2]. Molecular cryocrystals [2] are interesting due to 

applications in low temperature technique. They also have the simplest molecules with well known 

interactions. A considerable simplification of description with keeping of the basic physical features is 

an application of chain models to the linear lattice dynamics and thermodynamics of molecular 

cryocrystals. Low dimensional systems are very important either as models or as objects for 

applications. Chain models are necessary stage of investigation of dynamics and thermodynamics of 

more complex systems: crystals [3], nonlinear dynamics of atomic and molecular lattices [4], and 

their thermal conductivity [5]. 

In the present paper we investigate the rotational nonlinear envelope waves of the ordered 

molecular chain. It was naturally to begin the investigation of this complex problem starting from 

more simple cases as the linear rotational oscillations [6, 7] or long-wave limit for arbitrary 

amplitudes and nonlinearity [8,9]. 

The soliton dynamics of nonlinear systems have been investigated essentially in the framework 

of simple models of the homogeneous medium [10].The propagation of a nonlinear wave in a periodic 

medium initiates a gap or gaps in the dispersion law of linear excitations. When the width of the gap 

is small, the excitations from these two branches interact with each other strongly. Solitons exist with 

the parameters lying near the gap. The examples are nonlinear optical medium with the modulation of 

the refractive index [11] and the one-dimensional anharmonic diatomic chain [12]. 

Here we use the same model approximations as in works [2, 6-9]: one degree of freedom for 

each molecule, and very hard translational potential. Thus the translational modes are frozen and can 

be neglected. The molecular chain consists of the linear molecules with quadrupolar interaction [2] 

between the nearest neighbors. 

The molecular chain energy was found to have minimum value for the molecules' alternating 

ordering: 2 2 1 2 2 1( / 2 ; )    ( ; / 2 )n n n nj j or j j� � � � � � � � � �� �� � � � � � . Here , , 0, 1, 2,.i j n � � � , 

an angle i� is between the principal axis of a molecule and direction of radius-vector which connects 

centers of inertia of the i-th and ( 1)i � -th molecules. Therefore, the molecular system splits onto 
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two sublattices, index 2  ( 2 1)i n i n� � � defines even (odd) site. 

The Lagrangian of the system is L K U� � . Here U and 
21

2
i iK J �� � 2

i�
2

i are potential and 

kinetic energies of the chain, the i-th molecule has moment of inertia 0iJ J� and angle velocity i�i� . 

Then the Lagrangian variation yields system of equations for the chain motion in even ( 2m� ) and odd 

( 2 1m	 � ) sites [6-8]. Previously we found integral of motion and the effective potential. We show that 

the rotational excitations demonstrate a strong anisotropy in the angle space: directions of easy 

excitation or "valleys" on the effective potential exist. 

Discrete equation of linear waves 

In the limit case of small oscillations of molecules around the equilibrium positions [6, 7] are 

brand new and more convenient variables. They are introduced by relations: 

2 2 2 1 2 1;  ./ 2m m m mv u� � �� �� � � Here 2 2 1,m mv u � are small deviations of the angles from the 

equilibrium positions. After expansion of terms as power series in small perturbations, the set of 

equations of the motion can be transformed into the linear system. For harmonic wave excitations the 

substitution of coordinates in sites x jR� where 0, 1, 2,...j � � � transforms into 

( , ) ( ) ( ), ( , ) ( ) ( )j jv v jR t v t exp ikjR u u jR t u t exp ikjR� � � � � � . The set of equations of the motion 

can be transformed into a linear system of differential-difference equations for the small oscillations 

[6, 7]: 

2 2 2 1 2 1

2 1 2 1 2 2 2

( );  

( ).

m v m m m

m u m m m

v b v d u u

u b u d v u
� �

� � �

� � � �

�
� � � ��

2m vv2 bv b v2

2m uu2 111 bu b2 11

(1) 

Here the basic parameters are 4( ) 14, 4( ) 24, 2( ) 8v ub a b c b a b c d c b� � � � � � � � � � � � , the 

parameters of quadrupolar-quadrupolar interaction are 5 / 4; 3 / 8; 35 / 8a b c� � � . The 

dimensionless time is introduced: 0t t �� � where 
2

0 0/ J� � � is characteristic frequency. The 

interaction parameters is 
2 5

03 / 4Q R� � , a quadrupolar moment of a molecule Q, the distance 

between the centers of inertia of the molecules 0R . 

The system of equations for amplitudes of Fourier presentation has solution if its main 

determinant is equal to zero. That leads to dispersion relations [6, 7]. The dispersion relations are 

transformed near the edges of the band gap: 

2 2 2 20
12

2 2

2 0 1 0

[ ( ) 16    ];
2

;   ;   0;

 u v u v

u v

b b b b d

b b

�
� �

� � � � �

� � � �

�

[
2

u

�0 [ 

2

0 ;   u v1 01 0b
22�0 ;   1 01b ;   2

1 011 01

(2) 

where / 2kR� �� � is introduced. Indexes 2 and 1 correspond to above and below branches of 

dispersion relation correspondingly. They describe the gap in the spectrum. At / 2k R�� � the 

group velocity of the linear waves equals zero: / 0k�� � � . In this case the real solutions of the 

linearized system (1) can be written as standing waves: 

0

0

( ) cos( )sin( );   2 ;
2

( ) sin( )sin( );   2 1.
2

n

n

n
v t v t n m

n
u t u t n m

�
�

�
�


 � ���
�
� � � �
��

(3) 

Here n ,m are integer and n is the lattice site number. Now we account the cubic contributions in this 

expansion. 
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Envelope nonlinear waves 

Let us find expansion of the variables v and u around values in i-th and i+1-th sites. Then we 

introduce dimensionless space coordinate: 0/ .x R� � Note that deviations are 02x R� � and 

2�� � . Then expansions can be written as 2 1 1 1 1
2 2 ; 2 2i i i i i i i i

v v v v u u u u� ��� ��� � � � �
� � � � � � . Here 

derivations are /v v �� � � � and 
2 2/v v ��� � � � , the same formulae we have for , ,u u u� �� . After 

substitution of expansions in the system equations [6-8] we obtain system of continual dynamical 

nonlinear differential equations for the variables 2mv v� and 2 1mu u �� . We use expansion to cubic 

terms and account inequalities v v v� ���� �� and u u u� ���� �� . In nonlinear terms space 

derivations can be neglected. 

For investigation of the envelope waves, amplitude and phase are supposed to be varied as 

functions of coordinate and time [10]. However, we can built simpler solution (3) following to [12]. 

These solutions do not contain , k � . The nonlinear equations take the following form for the waves' 

amplitudes: 
2 2 3 3 3

1

2 2 3 3 3

2

2 2 8[ ( ) ( ) ] 0;

2 2 8[ ( ) ( ) ] 0.

v v du du av b v u c v u

u u dv dv au b u v c u v

� �
� �

�
� � � � � � � � � � �
�

�� � � � � � � � � � ��
(4) 

Here for shortening we denote 0 0;v v u u� � . Let us introduce small parameter of the problem. In 

[12] for a diatomic chains the parameter has the meaning of the relative atomic mass difference: 

2 M m

M m

�
�

�
2 M m

M m
� and can be made very small by isotopes choose. In our problem the parameter has the 

meaning of relative difference of the frequencies squares 
2 2

2 2 1

2 2

2 1

.
� �
� �

�
�

�

2
2 2

2

� �2

2

� �2
� (5) 

Then the continual dynamic equations for the envelope short length waves are  

2 2 2 3 3 31
2 1

2 1

2 2 2 3 3 32
2 1

2 1

( )
( ) 2 8[ ( ) ( ) ] 2 ;

( )

( )
( ) 2 8[ ( ) ( ) ] 2 .

( )

v du av b v u c v u du

u dv au b u v c u v dv

� �
� �

� �

� �
� �

� �

�
 �� � � � � � � � �� ��
�

�� �� � � � � � � � � �
� ��

2 2 2

2 1( 2 2

2 1

2

2

2

1

2

2 2 2

2 1( 2 2

2 1

2

2

2

1

2

(6) 

Hamiltonian can be presented with small parameter. 

The Hamilton equations for envelope waves 

A comparison with canonical equations / ; /i i i iq H p p H q� � � � �� �i i i iq H p p H qi i ii ;;;� � � �/ /H p p H qH p p H q/ ; /;;i ii ii i/ ; /; ; ; [13] gives analogy 

; ; .i it q u p v� � �� � � .i iq u p v; ; i i;;;� �; ; ; ;   ;

Then for the system under investigation we obtain the canonical system of equations 

( , )
;

( , )
;

H u v
u

v
H u v

v
u

�
 � ��� �
�

�� � � �
� ��

(7) 

where Hamiltonian in the variables u v� is 
2

2 2 2 2 2 2

1 2

4 4 4 4

1 1
( , ) {[ ( ) ( )]

2 2 2

2 2[ ( ) ( ) ( ) ]}.

H u v v u v u
d

duv a u v b v u c v u

�
� �� � � � �

� � � � � � �
(8) 

Then the Hamiltonian can be presented with a small parameter for the envelope short length waves as: 
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2 2
2 2 22 1

1 2

2 1

4 4 4 4

( )1
( , ) { [( ) ( ) ]

2 2( )

2 2[ ( ) ( ) ( ) ]};

H u v v u
d

duv a u v b v u c v u

� �
� � � �

� �
�

� � � �
�

� � � � � � �

1[( 1[( 11

222[(2 )1
(9) 

The solutions describe the system evolution along a level curve of the Hamiltonian. For the graphic 

presentation let us introduce new more convenient variables ; v u v u� �� � � � . The level curves 

are shown in the phase plane � �� in fig.1. 

Figure 1. Change of topology of the potential relief of the Hamiltonian (8, 9) on the phase plane 

of the angles � �� . a) 1� �� ; b) 1 2� � �� � ; c) 2� �� . In the case b the system has infinite 

solutions only. Horizontal axis shows � in ranges [-1.51;1.51], vertical axis shows � in ranges [-

0.3;0.3]. 

If 1� �� , then two saddle points exist and one focus (minimum) is between them. The system 

has finite and infinite solutions; they are divided by the soliton solutions (separatrixes). The finite 

solutions have oscillating behavior; they are shown by closed curves in fig.1a and oscillating curves in 

fig.2a. The soliton solutions are shown in fig.2b. 

Figure 2. The space change of variables � (large amplitude curves) and � (small amplitude 

curves) in the envelope waves follow the Hamiltonian (8, 9). Images are normalized on the maximum 
value. Left panel: finite small amplitude solutions. Right panel: soliton solution. 

If 1 2� � �� � , then one saddle point exists. The system has infinite solutions only, fig.1b. 
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If 2� �� , then one unstable focus exists. The system has finite solutions only (see fig.1c). 

Conclusions 

The following results were obtained for the diatomic molecular chain with quadrupole 

interaction. The discrete and continuous dynamic nonlinear equations were derived. The linear 

solutions that correspond to the short wave limit give rise to the envelop waves and solitons in the 

nonlinear case. The small parameter is introduced to describe the chain dynamics near the gap. The 

small parameter of the problem has the meaning of the relative difference of the proper frequencies. 

The system of equations is transformed to the Hamilton's equations. The Hamiltonian of the system is 

found. Qualitative analysis of the solutions is done in the phase plane. Changing of topology is shown 

in dependence on the wave frequencies. 
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Abstract 

An analytical and numerical investigation of steady-state regimes in an oscillator - rotator system (in 

vertical plane) under harmonic excitation is presented. Periodic motions with synchronous oscillation

and rotation are studied. It is shown that such motions exist and are stable in certain domain of the 

system parameters. Bounds of this domain are determined analytically. All theoretical results are 

confirmed by numerical simulation. 
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Introduction 

Mechanical systems displaying interaction of oscillating and rotating elements were 

investigated in connection with various technical applications in numerous works, see, e. g., [1], [2]. 

In these works various problems related to synchronous oscillation – rotation regimes were 

considered, but the task of detailed analytical description of the non-uniform rotation and its 

reciprocal influence on the body oscillation, apparently, was not posed.  

In the presented report the stationary dynamics of a basic oscillator – rotator system under 

external harmonic excitation is studied. In distinction on papers [3, 4] we consider here the case of 

oscillation and rotation in vertical plane, i. e. in the gravity field. We constrict ourselves by 

description of synchronous oscillation-rotation regimes (when the average angular velocity is equal to 

the cyclic frequency of the oscillation). It is shown that an adequate solution for these regimes can be 

obtained by a straightforward analytical procedure. The additional parameter connected with the 

gravity results in essential complication of the system dynamics. All theoretical results are verified in 

comprehensive numerical simulation. 

1.  The Model and Governing Equations 

The considered system consists of an oscillator (“primary 

mass”, or “object”) of mass M with a spring k , and connected with 

it rotator (point mass т, or ball) which is mounted on the vertical 

plane of the oscillating body and may move along a circle of radius 

R . The primary body is excited by the harmonic force 

0( ) cosF t F t� � and can move along the vertical axis y (Fig. 1).  

Equations of motion of the system with respect to generalized 

coordinates – vertical deflection of the object y and the rotation 

angle θ – which take into account the viscous damping in both 

degrees of freedom through dissipative Rayleigh functions 
2

1 10.5 y�� � 2y ,  2 2

2 20.5R � �� � 2� 2 , in dimensionless form are as 

follows: 
Figure 1. The oscillator-rotator system 
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                                   2 sin sin 0p u� � � � �� � � � � �2� � �2 p sini� �� �2 inp sin� � i� � sip si sin�sinisin                                                                 (2) 
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y
u

R
� ,  t �� ,   

0�
�

� � ,  0

k

M m
� �

�
,  

m

m M
� �

�
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2
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2
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p
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1
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�
� �

� �
�
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�
� �

�
2�

� �

(upper dots denote differentiation with respect to dimensional time ).  

2.  Rotation of the Mass at Harmonic Oscillation of the Object 

2.1.  An analytical solution  

At the first stage we seek stationary synchronic rotation regimes at harmonic oscillation of the 

primary body with certain amplitude (which is specified on the second stage), i. e. only the equation 

for angle � (2) is solved for given kinematical excitation of the body cosu a � . Equation (2) takes 

the form: 

2 ( cos )sin 0a p� � �  �� � � �2� � �2 ( cos� �� �2 ( coscos� � (� � ( coco                                                 (4) 

Synchronous rotational regimes are sought as a superposition of the uniform rotation and a 

periodic perturbation: 

( )j�  � 	 � � �       ( 0;1j � )                                                 (5) 

where ( )	  is a periodic function (of period 2 / m� , m is an integer) which further assumed to be 

small comparing to 1. Value 0j � relates to rotation close to in-phase with the body oscillation, 

1j � - to rotation close to anti-phase one with the body. Then equation (4) after some algebra is 

reduced to the following equation with respect to ( )	  : 

2 2( 1) sin( ) ( 1) sin ( 1) sin(2 )
2 2

j j ja a
p	 � 	  	 	 �  	� � � � � � � � � � �sin(2 )j a aj sin(2 )i ( ) ( 1) i ( 1)i ( 1)i ( 1)sin( ) ( 1) sin ( 1) sin(2) ( 1) sin ( 1) sin(2) ( 1) sin ( 1) sin(2sin( ) ( 1) sin ( 1)sin ( 1)) ( 1) sin) ( 1) sin2	 �2� 	�2 ( 1) j� ( 1)� 	 ( 1)       ( 0;1j � )    (6) 

Replacement of 0j � by 1j � is equivalent to simultaneous change of sign for a and p . 

Further we drop ( 1) j� , but admit both positive and negative a and p values. Along with equation (6) 

we consider the linearized equation obtained in assumption of smallness of 	 compared to 1: 

2 2cos (1 cos2 ) sin 2 sin
2 2

a a
p p	 � 	   	 �   !� � � � � � � �" #

$ %

a
sin 2 sin

 !a
(1 2 ) sin 2sin 2sin 2(1 2 )(1 2 )s (1 cos2 )(1 cos2(1s (1 cos2 )(1 2 )(12	 �2� 	�2 pco

$
""�  � 	 copco                    (7) 

We seek solution of this non-homogeneous equation with periodic coefficients by expanding 

	 in Fourier series 

(1) (2)

0

[ cos sin ]n n
n

n n	 	  	 
&

�

� ��                                              (8) 

After some algebra we come to an infinite set of equations with respect to (1)

n	 , (2)

n	 .  The 

numerical analysis showed that it is sufficient to take into account only the first five equations with 

respect to (1)

0	 , (1)

1	 , (2)

1	 , (1)

2	 , (2)

2	 (neglecting with (1)

3	 , (2)

3	 , (1)

4	 , (2)

4	 ). Thus the approximate 

solution for the synchronous regimes includes the zero-, first and second harmonics: 

(0) (1) (2) (1) (2)

1 1 1 2 2cos sin cos2 sin2j�  � 	 	  	  	  	 � � � � � � �   ( 0;1j � )            (9) 
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In the limit case of undamped system without gravity ( 2 0� � 0� �  and 0p � ) the roots of 

determinant �  of the set of equations for ( )s
k	  ( 0 2k � � , 1,2s � ) are equal to 0; 4/3, 4; 8; -16. The 

first  nonzero root 4/3a �  corresponds to the lower bound of the first instability zone on the Ince-

Strutt diagram for the Hill equation (the homogeneous equation corresponding to equation (7)).  

It is apparent that values of amplitude a  in the interval from 0 till the first positive root are of 

main interest (in case of rotation close to in-phase with oscillation). For damped systems with gravity 

the first root depends upon values of parameters p  and 2�� .  

 
2.2. Domain of existence and stability of the synchronous oscillation-rotation regimes 

The obtained in the paper analytical solution exists and is stable in certain domain E  in plane 

(p, a) (for a given damping parameter 2�� ). Boundaries of this domain are determined by following 

conditions.  

' The loss of energy for a cycle due to dissipation can be compensated by input of energy from 

the object to the rotator (this condition specifies the lower bound for the amplitude a ). 

'  Condition of vanishing determinant �   determines the upper bound for a . 

' Condition of smallness of coefficients ( )s
k	  ( 0 2k � � , 1,2s � ) comparing to 1 determines the 

right (upper) bound for parameter p  (at given a ).  

In the work equations and formulas for these boundaries are obtained. The lower bound for 

oscillation amplitudes a(  (for given p  and 2�� ) in the first approximation is specified by formula 

 

2 2

2 2(2 ) (2 3 ) 4a p� �( � � � � �2 2) (2 3 ) 42 p4) (2 3) (2 3) (2 3 )2)) (2 3) (2 3) (2 3) (2 3(2                                           (10) 

In particular case 0p �  expression (10) is reduced to 22a �( � � , which was obtained earlier (in 

another notations) in works [1, 3].  The upper bound of the domain E  (by a ) is approximately 

determined by expression for the zero point of determinant  � : 

2 2
2

4
2 ...

3
a p �( � � � �22222                                                       (11) 

The right bound (by p ) is obtained from equation  

3 2 2 2

2 2 max

3 3
2 (1 ) (1 ) (1 )(1 )

4 4 4 4

a a a a
p a p p a a� � 	 ! ) *� � � � � � � � �" # + ,$ % - .

	! ) *2 2 23 32 a a322 22 2222222 (1 )2 (1 )(12 � 		2a 22 (1 ) (1 )(1 )2 (1 ) (1 )(1 )(1 )) (1 )(12              (12) 

where max	  is the maximal admitted value of the coefficients ( )s
k	  (a value less than 1)).  In Fig. 2, а, 

b, domains of existence of synchronous regimes are constructed at 2 0.2� � 0 2� � , for max 0.5	 �  and 

max 0.75	 � , respectively.  Here curves 1, 2 and 3 are the lower, upper and right bounds of the 

domain, respectively. 

 

   
а                                                               b 

Figure. 2. Domain of existence of synchronous regimes ( 2 0.2� � 0 2� � ); а) max 0.5	 � ; б) max 0.75	 �  
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The synchronous oscillation-rotation regimes do not exist at sufficiently large p  values, 

approximately greater than  0.4 – 0.6.   

 
3.  Results of Numerical Simulation. Comparison with the Analytical Solution 

Numerical experiments were conducted for nonlinear and linear equations (2), (7) and (6)  with 

initial conditions yielding from the analytical solution (9): (1) (1) (1)

0 1 2(0) j� � 	 	 	� � � � , 
(2) (2)

1 2(0) 1 2� 	 	� � �� 	(0) 111 . There were changed amplitude of the body oscillation a  and parameter p  

(for given 2�� ). Values of  p  and a  were chosen in the central part of the domain E  and in vicinity 

of its boundaries.  

In Fig. 3, а - с, results for 0.2p � , 1.0a �  are presented (it was assumed 
2 0.2� � 0 2� � , and  this 

point is close to the center of E ). Fig. 3, а, b, show the times series for ( )	   and angle ( )�  , 

obtained in the analytical solution (9), and results of numerical simulation of linear equation (7) and 

nonlinear equation (6). The analytical and numerical solutions for the linear equation nearly coincide 

(curves in Fig. 3, а, b) and are very close to numerical solution of the nonlinear equation. 

Fig. 3, b, shows that the rotation is close to the uniform one. The last plot (Fig. 3, c) presents 

the phase curve in coordinates ( cosu a � , cos� ), obtained in the numerical simulation. 

 

 

Figure 3. Comparison of the analytical and numerical solutions for 0.2p � , 1.0a �  ( 2 0.2� � 0 2� � );  

 (a) - (b) �  times series for ( )	   and ( )�  ; (c) –phase curve ( cosa  , cos� ) 

 

Phase curves enable us to separate visually synchronous rotational regimes from asynchronous 

ones. At synchronous oscillation - rotation the phase curve is a closed loop which superimposes on 

itself on each new cycle. Here the phase curve testifies synchronous rotation and oscillation. 

When the parameters were chosen in a vicinity of the boundary of domain E , then the 

synchronous rotation became unstable. Near the right bound of the domain E  the angular 

perturbation 	  begins to oscillate with increasing amplitude due to parametrical resonance, which 

leads to the loss of stability of synchronous regimes (Fig. 4 for 0.38p � , 1.0a � , 2 0.2� � 0 2� � ). 

 

 
Figure 4. Comparison of the analytical solution and numerical simulation for system  0.38p � , 

1.0a �  ( 2 0.2� � 0 2� � );  (a) �  times series for ( )	  , (c) – phase curve ( cosa  , cos� ) 
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Similar behavior was observed near the upper bound of domain E . Near the lower bound (e.g., 

at 0.2p � , 0.36a � , 2 0.2� � 0 2� � ) in the numerical simulation of nonlinear equation (6) value of 	  

increases monotonously by modulus, and rotation terminates after several cycles of oscillation. 

Summarizing we can conclude that the obtained analytical solution well correlate with the results 

of numerical simulation for values p  and amplitude a  lying inside the domain E  and in a vicinity of 

its boundaries.  

4.  Synchronous Oscillation-Rotation Regimes in the 2DoF System  

At the second stage equation (1) has been solved with using the obtained solution for non-

uniform  rotation of the ball (9) in order to account for reciprocal effect of the rotator on the body 

oscillation. This solution can be also obtained in the straightforward analytical approach. As the 

solution (9) has been derived under zero initial phase for the body oscillation cosu a �  and in view 

of a possible phase shift between the oscillation and the external force we assume a certain initial 

phase 0�  for the force. For synchronous oscillation-rotation regimes the following solution has been 

obtained: 

2 2 3 3cos cos2 sin2 cos3 sin3u a b c b c    � � � � �                             (13) 

Expressions for a , sb , sc  ( s =2, 3) and phase 0�  depend upon coefficients (1)

s	 , (2)

s	 , which in 

turn depend upon oscillation amplitude a . Finally we come to equation with respect to a  of form 

( ) 0F a � , where 

22
2 2 (2) 2 2 (1) (1) 2

2 1 2 0( ) (1 ) ( 1) (1 0.5 ) ( 1) (0.5 )j jF a a a f� 	 � � 	 	) *) *� �� � � � � � � � � � � �- . - .
22222 ((22    (14) 

Equation ( ) 0F a �  determines frequency response curves (FRCs). With account of the set (9) 

it is an algebraic equation with respect to a . Each root specifies a synchronic oscillation-rotation 

regime (if a  falls within the domain E ). Computations showed that, as a rule, only one real root for 

in-phase rotation exists which falls into this domain.  

In Fig. 5 there are presented FRCs  for in-phase rotation ( 0j � ) computed for parameters 

0.2p � , mass ratio 0.1� � , damping factors 1 2 0.2� �� � 0 2� � ��  at two amplitudes of the external excitation 

( 0.6f �  and 0.3, plots a, b, respectively, black lines 1). Lower and upper bounds for the oscillation 

amplitude a  at given p  are shown by horizontal lines. The FRCs for the oscillator without the 

attached rotator are depicted by red lines 2. 

The lower and upper bounds cut a certain portions of the FRCs; they can relate to separate parts 

of the pre-resonance ( 1� � ) and post-resonance ( 1� � ) ranges in cases of “strong” excitation (plot 

a), or to one interval including the resonance peak at “moderate” excitation (plot b). For very weak  

 

 

Figure 5. Frequency-response curves for synchronous in-phase oscillation-rotation regimes 

( 0.1� � , 1 2 0.2� �� � 0 2� � �� , 0j � ) at different amplitudes of external excitation; a) 0.6f � ;  b)  0.3f � . 

Curves 1 and 2 relate to the oscillator with and without rotator, respectively
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excitation the FRCs lie beneath the lower bound, so synchronous regimes are absent.  Post-resonance 

parts of ranges of the synchronous regimes, as a rule, correspond to rather narrow intervals of � - 

values; so  synchronous regimes do not exist at sufficiently large �  (the amplitudes a are too small).  

Comparing the FRCs for the oscillator-rotator systems (curves 1) with those for  individual 

oscillators (curves 2)  we see that distinctions are relatively small (at assumed here mass ratio 

0.1� � ); the differences are noticeable only in  narrow resonance and post-resonance ranges. 

The obtained analytical solution of the set (1), (2) has been compared with results of numerical 

simulations of this set. We took the system with parameters: 0.1� � , 
1 2 0.2� �� � 0 2� � �� , 0.6f � . Putting 

0j �  we singled out the regime close to in-phase rotation with respect to the body oscillation (not 

necessarily with respect to the external force).  

We considered the entire � -range allotted by the lower and upper bounds, and a vicinity of 

this range. Some results of comparison for 0.5��  are presented in Fig. 6, where analytical and 

numerical times series are given for the body oscillation u  and angular velocity �  (plots a, b, 

respectively).  

Two curves for the body oscillation u  practically coincide, discrepancies between analytical 

and numerical curves are larger for the angular velocity � , but synchronism persists. In this case 

coefficients sb  and sc  in analytical solution (14) are rather small (of order 0.01), and the higher 

harmonics do not affect noticeably the main harmonics.  

Similar results were obtained for another �  values when amplitudes of oscillation were got into 

the domain E . Numerical simulation with various initial conditions showed also that  the 

synchronous regime (close to sin-phase one) is an attractor in rather wide region of initial conditions. 
 

  

Figure 6. Comparison of the analytical and numerical solutions of set (1),(2) for in-phase rotation 

( 0.1� � , 1 2 0.2� �� � 0 2� � �� , 0.5f � , 0j � ) at 0.5� � ; (a) body oscillation u , (b) angular velocity �   

Conclusions 

An analytical description for synchronous rotation-oscillation regimes in the oscillator –rotator 

system in the vertical plane under the harmonic excitation is obtained. These regimes exist and are 

stable in certain field of parameters ( p , f , � ) (3) when the point ( p , a ) ( a  is the oscillation 

amplitude) falls into the domain E  found above. Non-uniformity of rotation is periodical with 

prevailing second harmonics (of period � in dimensionless time), along with a constant phase shift 

(with respect to oscillation). In certain vicinity of the bound non-uniform component of rotation 

includes the first harmonics with period 2� (gradually increasing parametric oscillation of the angle 

component) which results in instability of the synchronous rotational regime outside of the domain 

E . 

The analytical solutions are confirmed by the numerical simulation with high accuracy. The 

obtained results can be used for the choice of parameters of various mechanical systems, in particular, 

of ball- and bowl absorbers of oscillations, and estimation of their efficiency. 
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Abstract 
We present a new concept of limiting phase trajectories (LPTs) which allows to understand and 
describe adequately a wide class of highly non-stationary processes in both classical and quantum 
mechanics. Such processes are characterized by strong modulation and intense energy exchange 
between different parts of the system. The LPT-concept turns out to be alternative to the concept of 
nonlinear normal modes (NNMs) which describe naturally the stationary and weakly modulated 
processes.. While the latter deals with instabilities and bifurcations leading to appearance of 
additional NNMs, the former allows to predict a transition from intense energy exchange to energy 
localization  and formation of breather-like excitations.. Besides, it predicts existence of qualitatively  
new type of synchronization in the system of weakly coupled generators which can be attributed   as 
LPT-synchronization in contrast to conventional NNM-synchronization.  

The specific mathematical techniques for description of LPTs deals with non-smooth temporal 
transformations that leads to simple presentation of strongly modulated vibrations. A series of 
applications to the significant vibration problems are presented.  

We present a recently developed concept of limiting phase trajectories (LPTs) providing a 
unified description of highly non-stationary processes which are rather ubiquitous in a wide class of 
dynamical systems  of classical and quantum mechanics. Such processes are characterized by 
strong modulation and intense energy transfer between different parts of the system. In fact, this new 
concept paves a way for a systematic study and classification of highly non-stationary as well as 
transient regimes and their local and global bifurcations. Such processes occurring in a variety of 
physical models are actually quite off the well-studied paradigm based on the concept of nonlinear 
normal modes (NNMs) which can be efficient only for description of nearly stationary processes. 
Thus, when the latter deals with instabilities and bifurcations leading to appearance of additional 
NNMs, the LPT concept allows to predict a transition from intense energy exchange to complete 
energy transport and formation of strongly localized (e.g.. breather-like) excitations. Moreover, the 
same concept of limiting phase trajectories can predict the formation of the all new type of 
synchronization in the system of weakly coupled generators, named as LPT-synchronization, and this 
in contrast to conventional NNM-synchronization.  

Alongside with well-known asymptotic method we use some special mathematical technique
based on non-smooth temporal transformations that leads to an efficient description of strongly 
modulated as well as transient regimes. Several applications of the aforementioned methodology to 
some significant problems of nonlinear dynamics  as well as quantum mechanics are presented.  

Keywords 
Nonlinear Normal Modes, Limiting Phase Trajectory, effective particles, synchronization, energy 
exchange and  localization 
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Introduction 

The linear and nonlinear normal vibrations are synchronous single frequency motions of the 

linear and nonlinear Hamiltonian systems. The corresponding spatial distributions of the 

displacements are described by linear or nonlinear normal modes (LNMs or NNMs) [1,2]. They 

describe also the stationary forced and self-sustained oscillations in non-conservative systems. It was 

shown recently that in the systems of weakly coupled oscillators the alternative class of regular 
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solutions can be introduced which includes the strongly modulated and non-stationary processes [3-

6]. These solutions were denoted as limiting phase trajectories (LPTs), and a special technique 

applicable for their study is based on non-smooth temporal transformations [7].Contrary to LNMs and 

NNMs, they describe the maximum possible energy exchange between the clusters of the oscillators 

(effective particles). The conditions of the transition from intensive energy exchange to energy 
localization can be also formulated in terms of LPTs [4-6].  

 

1.  LPTs vs NNMs  

The concept of LPT is valid in the case when the resonance conditions between different 

NNMs arise, and therefore the phenomenon of a coherence takes place. Because of this phenomenon, 

the resonant NNMs cease to be appropriate tool for dynamical analysis, and transition to effective 
particles (in 2DoF systems – to real particles) has to be performed. Then, from physical viewpoint 

one can observe the beats between effective particles each of which is a cluster of the real particles. 

The beats are described adequately in slow time scale by LPTs, and corresponding temporal behavior 

– by non-smooth functions in appropriate variables. From mathematical viewpoint, the principal 

difference between NNM and LPT manifests in the different basic number systems which are the 

most suitable in these cases. They are well-known complex (elliptic) numbers and less known 

hyperbolic numbers, respectively. 

When the excitation intensity grows both NNMs and LPTs undergo a series of transformations. 

For NNMs, they are bifurcations of stationary points in slow timescale that means the 

instability of NNM and formation of new stationary points ( NNMs) and corresponding  separatrix. 

As for LPT, its coincidence with separatrix leads to impossibility of complete energy exchange 

between the effective particles and, as consequence, to the energy localization on the initially excited 

effective particle.   

The applications of LPT concept involve a number of important problems   of both mechanics 

and physics. In particular, they are: 

1) Transient vibrations of the forced nonlinear oscillator (in this case LPT 

describes the most intense process in which the oscillator takes periodically the 

maximum possible energy from its source). If a damping is taken into account, 

the LPT concept predicts also the existence of a limit cycle  when the excitation 

includes two harmonic forces with closely situated  frequencies. 

2) Nonlinear beats in conservative 2DoF systems corresponding to complete 

energy exchange in a slow time scale between two weakly coupled oscillators 

while NNMs are the stationary states. In terms of the LPTs one can predict the 

transition from complete energy exchange to energy localization on the excited 

oscillator. In these terms the conditions of efficient targeted energy transfer in 

the presence of damping are also formulated. 

3) Intensive energy exchange between effective particles and transition to energy 

localization on excited effective particle in the oscillatory chains with many 

degrees of freedom. 

4) Self-sustained oscillations of new type  providing synchronization  

                 on the LPT contrary to conventional synchronization on NNM.            . 

5) Energy exchange and localization in carbon nanotubes. 

We discuss briefly these problems, opposing in all cases the LPTs and NNMs concepts. 

 

Conclusions 

Due to its importance, the notion of effective particle should be clarified once more. The 

discussion of the mechanism of the intensive energy exchange and the transition to the energy 

localization requires first of all identifying the elementary excitations in the considered system. In the 
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gaseous media they are almost free motions of weakly interacting particles (atoms or molecules), 

which are involved in the almost free motion. In the oscillatory chain, as in all crystalline solids, the 

particles interact strongly. In this case the weakly interacting NNMs of the oscillatory chain as a 
whole can be considered as elementary excitations. However, with an increase in the number of the 

particles the resonance relations between the certain frequencies arise. Under strongly asymmetric 

initial conditions, corresponding to a combination of the resonating normal modes, this leads to the 

appearance of the coherence that entails (in the nonlinear case) essential intermodal interaction. As a 

result, the resonating normal modes cannot be considered as the elementary excitations. In a system of 

two weakly coupled oscillators with strongly asymmetric initial conditions the elementary excitations 

are the motions of the particles themselves, similarly to the case of the gaseous medium. Their bias 

can be represented as the sum and the difference of the modal variables; corresponding motion is 

beating. When the number of the particles increases, in the presence of resonant modes a motion of 
the effective particle, which includes a certain number of the real particles, can be considered as the 

elementary excitation. Its bias (similar to that for two weakly coupled oscillators) is constructed as 

combination of modal variables. The coupling between the introduced effective particles is weak, 

although the original equations of motion may not contain a small parameter. Thus, the concept of the 

beats can be extended to multidimensional systems. In addition, the introduction of the effective 

particles and LPTs allows an adequate description of the transition from the intense energy exchange 

to the energy localization with increasing the excitation intensity. Thus, it is possible to trace a 

connection of discrete models with continuous systems, having localized, soliton-like solutions 

(breathers). We note that an increase in the number of the resonant modes means that the spatial 

extent of effective particle is reduced, and it approaches to the profile, typical for the breather in the 

infinite chain. An increase in the number of such particles occurs when the resonant mode nearest to 

the boundary of the spectrum is "uninhabited."  Of course, outside the intermodal resonance and the 

coherence manifestation, the wave language is quite adequate.  

In the terms of the effective particles and LPTs, a simple analytic description of the intense 

energy exchange with the use of non-smooth functions can be obtained.  
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Abstract

A quasi-time-optimal control design problem for planar motion of a mobile robot with constrained

control is considered. The control objective is to place a target point on robot’s platform to a given

curvilinear path and to stabilize motion along this path. The path is assumed to be feasible, i.e. is

smooth and has bounded curvature. In the mathematical model under consideration, the current

curvature of the trajectory of the target point is taken as control. Because time-optimal controllers are

sensitive to disturbances, parameter variations and unmodeled dynamics truly time-optimal control

systems are not practical. Proximate time-optimal controllers or quasi-time-optimal controllers are

more robust and give near time-optimal responses. In this paper two quasi-time-optimal controls are

proposed. The first control is an extension of an earlier derived quasi-time-optimal control designed

for a straight target path to the case of general curvilinear path. The second control is designed

specifically for the curvilinear path following problem. Both are signum controls but use different

switching curves. In addition, the second control uses current curvature of the target path, whereas

the first control does not rely on this information. For the proposed control laws, attraction domains in

the space ”distance to the trajectory - angle deviation” are constructed. If an initial point belongs to the

attraction domain, the control goal is attained in a finite time. The discussion is illustrated by numerical

examples demonstrating advantages of the proposed control laws.
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Introduction

The kinetic model of a mobile robot is very popular model for demonstration of various controllers. There

are many different control laws that place a target point on robot’s platform to a given curvilinear path and

stabilize motion along this path. Usually, authors propose controls without restrictions. Unfortunately,

those controls cannot be used to solve our problem. At the end of the last century Pao [1] synthesized

proximate time-optimal controllers for the mechanical systems. The main feature of her approach is to

use the functions of saturation in the control law with small adjustable parameters. It is known that the

function of saturation has linear part and it is not smooth. It is often approximated by smooth functions

and usually, the accuracy of the approximation depends on a single parameter. The fewer this parameter

the better approximation. In this paper we will use the signum functions in control. This function will be

defined later. We will not approximate signum function, but we will approximate switching curve, which

is used in our control laws. Both our controls have only one adjustable parameter. We use the idea, which

is similar an idea from [2]. Balluchi et al. proposed variable structure control, which can be use only

in an open neighborhood of the path in the reduced state space. Constructed attraction domain is small

and the control is not A quasi-time-optimal control. These problems are related to a failed the change of

coordinates. In this paper we use the change of coordinates from [3]. A quasi-time-optimal control design

problem is a problem of finding of the control law, which is time-optimal control if a custom parameter is

zero. The solution of time-optimal problem is very hard for the arbitrary nonlinear system, but sometimes

you can find a proximate solution of this problem, that arbitrarily close to the optimal solution.
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1. Problem Statement

Consider a planar motion of a mobile robot. The kinematics of mobile robot can be described as

ẋ = y, ẏ = ψ(y)u+φ(y)2c(ξ )/(1− c(ξ )x)),ψ(y) = φ(y)3, φ(y) = (1+ y2)
1
2 , (1)

where dot denotes derivation with respect to the independent variable ξ , x ∈ R is a distance to the given

curvilinear path, y ∈ R is a angle deviation from the given path, c(ξ )<C is a curvature of the given path,

u denotes a control.

Problem 1 The goal of this paper is to determine control inputs u(x,y,C) subject to |u(x,y,C)|<U for a

mobile robot to place a target point on robot’s platform to a given curvilinear path in finite-time and to

stabilize motion along this path.

1.1 Quasi-time-optimal control designed for a straight target path

Suppose that the curvature of the given path is negligible, i.e. C << 1. In this assumption, we will

consider δc(y,x) = φ(y)2c(ξ )/(1− c(ξ )x)) as a parametric perturbation.

To solve Problem 1, we apply quasi-time-optimal control designed for a straight target path (see, e.g.,

[4])

u =−Usign(S),S =Uλ x+
(

1−φ(y)−1
)

sign(y),Uλ =
U

1+λ
(2)

where

λ >
δc

U −δc

> 0, δc <U (3)

where δc a boundary of the parametric perturbation. Here and below,

sign(s) =

⎧
⎨
⎩

1 , s > 0

−1 , s < 0

[−1 1] , s = 0.
(4)

We have stable sliding mode along curve S(x,y) = 0 if the parameter λ satisfies the inequality λ > λ ∗

where

λ ∗ = δ/(U −δ ), δ = max
y

(δc(y)) = δc(0),δc(y) =C/(1−Cx∗)/φ(y), (5)

or

λ ∗ =
C

U −C−UCx∗
, (6)

where x∗ is a given boundary of variable x.

Let us choose the δc(y,x) as −Csign(u)/(1−C|x|)ψ(y). Substituting δc(y,x) into (1), we have

ẋ = y, ẏ = ψ(y)(u−Csign(u)/(1−C|x|)), (7)

Let us find the critical points of the system (7) is closed by (2). It is easy to prove that x±c =±( 1
C
− 1

U
)

are unstable saddles of the system (7). Than (8) can be rewrite as

x∗ = x+c − 1

Uλ ∗ , λ ∗ >
C

U −C
+ ε, ε > 0. (8)

Lemma 1 Let the system (7) be closed by (2) and the enquality (8) be hold, than system (7) is

local stabilized in finite time by the state-feedback control (2) and there is sliding mode [5] along curve

s(x,y) = {(x,y)T

: S(x,y) = 0, |x| ≤ x∗}.

Unfortunately, the attraction domain of the system (7), (2) is smaller the attraction domain of system

of system (1), (2). To construct the attraction domain for the system (7), (2) we build a separatrix passing

through the saddle points, integrating the system (7), (2) forward and backward in time [6].

So, we have the separatrix

S > 0 : Ux+ ln(|1− c|x||)sign(x) = +φ(y)−1 + s0+,
S < 0 : Ux+ ln(|1− c|x||)sign(x) =−φ(y)−1 + s0−,

(9)
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where s0±(x±c ,0) =±(2−u/c− ln(u/c)). We find four points (in spesial case 2) of intersection of the

separatrix (9) and the swiching curve (2), solving following systems

⎧
⎨
⎩

x =−1/Uλ

(
1−φ(y)−1

)
sign(y), S > 0,

xU + ln(|1− c|x||)sign(x) = +φ(y)−1 +2−u/c− ln(u/c),
(10)

⎧
⎨
⎩

x =−1/Uλ

(
1−φ(y)−1

)
sign(y), S < 0,

xU + ln(|1− c|x||)sign(x) =−φ(y)−1 −2+u/c+ ln(u/c).
(11)

Let us the point x∗0 be calculated as x∗0 = argx<0(U |x|+ ln(|1− c|x||)sign(x)− 1− s0+ = 0). Now,

we can construct the attraction domain, which contains sliding mode’s curve segment. Example of the

attraction domain is shown on Figure 1.

S(x,y)=0
F+

F-

S>0

S<0

Figure 1. Attraction domain,switching curve and phase pathes by c =U/2, U = 0.2

The the attraction domain, which assures the attraction sliding mode, is the darkest domain on

Figure 1. It’s boundary consists of four curves: two parallel lines and the upper curve touches the right

edge of the domain and crosses the left border, the lower curve touches the left edge of the area and

crosses the right boundary. It is worth noting that the separatrices of the saddles does not touch the

boundary area, they create the bondary of the attraction domain for the system (7). It can be seen that all

trajectories that began outside the domain of attraction go to infinity. It can be shown that the increase

in the value of the parameter causes the expansion of the domain of attraction. Unfortunately the linear

dimension of the region of attraction for the x-coordinate is limited, i.e. lim
λ→∞

x∗ = x+c . On the other hand,

the domain of attraction can be increased by decreasing the value of the parameter c. This is due to

the fact that the saddle points go to infinity in decreasing the value of the parameter c. In the limiting

case when c = 0 the system (7) has no saddle points. This means that the parameter c is the bifurcation

parameter of the system (7), because the topology of the phase portrait changes.
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1.2 Quasi-time-optimal control designed for a curvilinear target path

Using separatrix (9) we construct new switching curve and control

⎧
⎨
⎩

SC = xUλ + ln(|1−C|x||)sign(x)+
(

1−φ(y)−1
)

sign(y),

u =−sign(SC(x,y))
(12)

Let us the parameter λ ∗ be calculated as λ ∗ = argx<0{SC(−xc,0) = 0}=Uxc/ ln(1−Cxc)−1.

it can be shown, that the system (7) be closed by (12) with λ >= 1 is unstable.

Compare the attraction domain for he system (7) is closed by (12) with the attraction domain for

the system (7) is closed by (2), if in controls are set λ = λ ∗(for example, if U = 0.2, C = 0.1 then

λ ∗ ≃ 0.0438). Unfortunally, both domains do not contain sliding mode’s curve segment with this

parameter λ , but there is limit unstable cycle in the closed system (7), (2). This cycle vanish from the

system if λ = 1.

Note, the limit unstable cycle has unsmooth boundary and the switching curve passes through those

points. There is likely flowing solutions through these points, which was not investigated.

Figure 2. Attraction domains and switching curves

The cases when 0 < λ < λ ∗, λ ∗ < λ < 1 is more complicate.

2. Results and Discussion

In this work we considered two quasi-time-optimal controls (12), (2) for the system (7) and constructed

attraction domain’s for case when C = 0.5U . In case small λ sliding mode doesn’t exist in our system and

phase paths pierce the switching curves (see Figure 2). We can get sliding mode if we take a sufficiently

large value λ (see Figure 1), but for the control (12) it cannot be large than λ ∗. Unfortunally, because of

a space of a paper is limited, a large part of the computation and the statement are omitted.

In spite of the attraction domain for the closed system (7), (2) (the boundary of this domain is shown

arrows on Figure 1) is bigger then the attraction domain for the control (2), but the control (2) is better

then the control (12), because of it is more robust.
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Abstract

Studies have revealed that Insect like flapping flight can serve as a benchmark in designing Micro

Aero Vehicles owing to its power efficiency and high maneuverability. The development of these next

generation vehicles demands careful considerations of various factors of which aerodynamic wing

design, stability and control have central importance. Because of their small size and speed, the

flight control of these vehicles in gusty environments poses tremendous challenges on their design.

The wing structure of FMAV in general is flexible in nature after being inspired by insects, which

are known to flex their wing quite significantly. However detailed analytical studies on aero-elastic

response of a wing structure, aimed at designing these vehicles are rare. In this article we take

up the study of the response of a flapping wing structure modeled as a flexible beam under gust

loading with a revised quasi-steady aerodynamic model. The details of the coupled structural and

aerodynamic modeling are reported and the responses of the system are outlined.
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Introduction

In the past decade, the study of Micro Air Vehicle (MAV) and its design has emerged as one of the

major thrust areas of research in Aerospace Engineering. A MAV essentially is a flight vehicle with

a small wing span envisioned of performing military operations such as reconnaissance, surveillance

or even operations like fire rescue [1]. They can also be deployed for missions like aerial surveys for

agriculture, traffic monitoring and pollution control, meteorological data collection and a whole host of

other applications.

This miniaturization of flight vehicle having similar size and weight as that of natural fliers has

motivated researchers to study of the mechanism of flying in insects and birds. In nature there exists two

different forms of flight namely bird and insect flight [2]. While both these forms are based on flapping

wings, there are important differences in wing kinematics among them. Insect flight, the more efficient

of the two modes of flight is capable of hover as insects flap their wings in a nearly horizontal plane

by large changes in wing pitch angle to produce lift even in the absence of any forward velocity. The

class of MAV, whose design is influenced by the flapping flight of insect, is variously known as Flapping

Wing Micro Air Vehicles (FMAV) or entomopter. The drive for the design and development of such

a vehicle has triggered interests among researchers to take up the detailed study of the mechanism of

flying in insects in recent times though it has received considerable attention from bio-fluid dynamics

community since long owing to the challenges it offers.

The aerodynamics and mechanisms of insect flight have posed formidable challenge to the research

community, which until recent times were unresolved. Initially researchers adopted quasi-steady models

to explain the mechanism of insect flight. Early efforts came from Osborne [3], Weigh Fog [4] and later

by Pringle [5]. The premise of quasi steady modeling in general is based on the assumption that the

instantaneous forces on the flapping wing motion are equivalent to force generated for steady motion by

a fixed wing at the same instantaneous velocity and angle of attack. However Ellington in his seminal

work [6] demonstrated that the quasi steady modeling approach under predicts the lift generated by in-
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sects, especially in hover. In fact it has been shown that insects cannot sustain their weight by adopting

this lift generating mechanism alone. Ellington concluded that the underlying mechanisms of insect

flight are essentially unsteady in nature; however the nature of unsteadiness was not clear. This has been

possible to address only recently due to the developments in experimental studies and computational

tools. Different mechanisms have been reported in literature, which can explain the enhanced lift gener-

ation by insects to keep them afloat. These are namely, rotational circulation or Kramer effect, delayed

stall phenomenon associated with leading-edge vortices, and wake-capturing for aerodynamics enhance-

ment. Succinct accounts on the historical perspectives of insect flight can be found in reviews [2, 7].

Owing to the flexible nature of insect wings, studies on the aero-elastic coupling in flapping flight

have also been carried out. Singh and Chopra [8] examined the aero-elastic response of insect-based,

biomimetic, flapping wings in hover. Banerjee and Patil [9] investigated three dimensional aeroelastic

analysis of membrane wings and concluded that the flexibility of the wing has a significant effect on

the thrust. In spite of the existing volume of work in aero elasticity of insect flight, the requirement for

a multi parameter analytical model describing the aeroelastic interaction involved to aid the designer

during the preliminary design stage of entomopter cannot be ignored. Such models would immensely

help the designers to explore the feasible design space of FMAV. Since FMAVs will be deployed for a

diverse nature of operations ranging from military missions to urban civil applications, it is imperative

that in order to successfully engage them in these missions, their design should be robust with stable

hover capability. However owing to the miniaturization, and low speed of operation, FMAV would be

highly sensitive to ambient conditions like gust loading. The aerodynamic response of FMAV would

severely be affected by the unsteadiness of gust load which in turn would significantly influence the

controllability of the vehicles. As a result our ability in successfully controlling the flight performances

of these vehicles in gusty environment would in turn dictate the viability of FMAV as a potential can-

didate for the above mentioned applications. The need for mitigating adverse effects of gust loading is

of primal importance. Golubev aptly underscores the importance of the study of gust load in [10]. He

gives a thorough review of unsteady gusty urban environment and proposes three canonical forms of

flow disturbances. He then goes on to obtain high accuracy 2D-Navier stokes simulations of SD 7003

airfoil interacting with the canonical form of proposed flow disturbances however. The work though very

much relevant with our present concern, does not address the issue of gust-vehicle interaction where the

vehicle’s wing surface is flexible and hence ignores the complex aero elastic interaction. As FMAV hav-

ing flexible wing is a plausible design option, importance of such studies cannot be undermined. Such

requirements trigger the need for the development of a comprehensive analytical model which can serve

as a ready-to-use framework for obtaining flight performance of FMAV under different operating flight

conditions. The model should be adequate to account for the complex interaction of the flexible wing

structure with the surrounding fluid motion generated by the flapping of wings. In the next section we

enumerate the essential modeling details considered by us for the present study.

1. Problem Formulation

In this section the structural and aerodynamic methods adopted for modeling the aero elastic behavior

of flapping flight are presented. In the present study we only consider the interaction of a single wing

with the surrounding flow structure thereby neglecting the effect induced by one wing on the other. In

the present study the wing structure of FMAV is considered to be flexible and we model the wing from

first principle using Euler Bernoulli beam theory with inertially coupled bending and twisting motions.

We prescribe rigid translation and rotations to the wing structure such that the kinematics of the wing is

properly represented. The structural model is coupled with a revised quasi steady aerodynamic model

of insect flight in hover. Although such methods have their limitations in accuracy, they offer insights

and can aid the designers due to their conciseness. The model used here is proposed by Dickinson

and Sane [11] is widely used for its modularity and usability. We begin our study by representing the

essential details of the kinematics of flapping flight in hover, which we outline in the next section.
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Figure 1. Schematics of idealized wing rotation [?]

.

ycm

yf

c = 2b
b

θ + ϕ

U

Figure 2. Schematic of a typical cross section of the wing structure

1.1 Wing Kinematics

An accurate quantitative description of wing kinematics holds the key for aerodynamics and hence aeroe-

lastic analysis of insect flight. Insects fly [2, 12] by oscillating (plunging) and rotating (pitching) their

wings through large angles while sweeping them forward and backward. The wing beat cycle has a

typical frequency range of 5-200 Hz. The wing stroke of an insect is divided into two phases namely

the translational phase and rotational phase. The wing motion of an insect is approximately confined to

a plane known as the stroke plane which passes through their wing bases. The stroke plane could be

inclined at an angle called the stroke plane angle with respect to the horizontal. The wings flap back and

forth about the stoke plane. For the present study we focus our attention only on the hover, for which

we idealize the wing tip trajectory as a straight line with stroke plane being parallel to the horizontal

reference. Figure 1 gives a schematic representation of different phases of the wing movement. The

translational velocity and the pitch angle constitute the parameters for the wing kinematics and can be

represented as

U =U0sin(ωt)

θ = θ0 +θ1 sin(ωt)
(1)

where U is the translation, θ is the rigid rotation of the wing, ω is frequency of the pitching motion,

U0, θ0 and θ1 are constants. Once the kinematics of the prescribed motion is specified we focus on

addressing issues related to structural and aerodynamic modeling of the insect flight which are addressed

in the subsequent sections.

1.2 Structural Modeling

The wing is modeled as a cantilevered Euler Bernoulli beam with the cross section being a symmetric

aerofoil, i.e. without having any camber. The elastic and centroidal axes of the beam are not coincident

and hence the bending and twisting motions of the beam get coupled. We recall that for a structural

member with non-circular cross section, torsion is associated with warping action which is essentially

an axial displacement of the cross section of the member. However for the present problem the effect

of warping is ignored. The derivation is not produced here, refer [13] for further details. The governing

equation of motion without the aerodynamic loading are given by

ρAẅ−ρAycmφ̈ −ρA ˙

¨

θ2w+ρAycm θ̇2φ +
∂2

∂x2
(EIyyw′′)

= ρAUsin(θ)−ρAycmθ̈

(2)
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ρJφ̈ −ρJθ̇2φ −ρAycmẅ+ρAycm θ̇2w−
∂

∂x
(GJφ′)

= ρJ ¨ ¨θ −ρAycmUsin(θ)
(3)

where w, φ are the transverse displacement and twist of the wing structure. ρ is the material density, A

is the cross-section area of the wing structure. Iyy, J are the 2nd moment and polar moment of area. E,

G are elastic and shear modulii of the wing structure respectively.

1.3 Aerodynamic modeling

Aerodynamic model provides a mathematical framework capable of describing the main flow phenom-

ena by capturing the essential flow physics and avoiding details which are intractably complex. The flow

associated with insect flapping flight is incompressible, laminar, unsteady and occurs at low Reynolds

numbers. While representing any aerodynamic phenomenon quasi steady approach of modeling turns

out to be the natural choice as initial candidate for consideration because of its modularity and ready

to use frame work that it offers. It has been proved to be highly useful in the aero-elastic pre-design

calculations aiding the designer with the insights on the nature of loads. However it has been observed

quasi steady approach of modeling insect flight turns out to be inaccurate as they fail to predict the aero-

dynamic loads and moments generated by the wings during an flapping cycle correctly [6]. A possible

remedy is to introduce some form of empirical ’correction’ to improve the accuracy of predictions of

forces from quasi steady models. These are described as semi empirical methods. Such ’corrections’

are incorporated based on experimental data generated. The semi empirical approach has a great appeal

owing to its simple representation, usability and the fact that allows the user. However on the down-

side the semi empirical approach does not reflect properly the relevant flow physics involved and relies

instead on data points for its derivation. Walker and Westneat [14] introduced a semi empirical model

for insect-like flapping which they described as unsteady due to the inclusion of Wagner’s function and

apparent mass effect. For the present study we adopt a quasi steady framework which is influenced by

the quasi-steady model introduced by Dickinson et al. [11]. The revised quasi steady model proposed by

Dickinson et al. happens to be one of the most widely used models and forms the basis of studies like

that of by I. Faruque et al. [15]. The model was developed to account for the forces and moments data

obtained from their earlier experiments on Robofly. The lift force predicted by the aerodynamic model

has different components as shown below

Lqs = Lt +Lr +La (4)

where Lt ,Lr and La are components of lift due to translational, rotational and added mass effects re-

spectively. The model does not provide any functional relation of wake capture in terms of kinematic

variables of flapping and hence will also not be considered for the present study. For details refer [13].

The expression of the lift force becomes

Lqs =
1

6
ρaU̇2lc

(

0.225+1.58sin(
2.13π

180
(θ +φ)−7.2)

)

1

4
πρalc2

(

ẅ− (y f −
c

2
)(θ̈ + φ̈)

)

+
1

4
πρalc2 d

dt

(

U̇sin(θ +φ)
)

+πρalc2(
3c

4
− y f )U̇(θ̇ + φ̇)

(5)

The expression for moment becomes

Mqs =
1

6
ρaU̇2lc(

c

4
+ y f )

(

0.225+1.58sin(
2.13π

180
(θ +φ)−7.2)

)

+
1

4
πρalc2y f

(

ẅ− (y f −
c

2
)(θ̈ + φ̈)

)

−
1

4
πρalc2(

3c

4
− y f )

d

dt

(

U̇sin(θ +φ)
)

+πρaU̇lc2(
c

4
+ y f )(

3c

4
− y f )(θ̇ + φ̇)−

1

128
πρalc4(θ̈ + φ̈),

(6)

where ρa is the density of air, U is the wing translation, S is the wing planform area, r̂(S) is the non-

dimensional second moment of area. The second moment of area is defined [16] in terms of the nor-

malized chord ĉ and normalized radius r̂. For the present problem the wing is modeled as a thin Euler
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Figure 3. Gust velocity distributions

Bernoulli beam having rectangular planform. The beam has a span length of l and width or chord length

of c = 2b. So the expression for the second moment of area can be evaluated accordingly. The pitch axis

of the wing coincides with its elastic center. Here in this problem, it is located at a distance of y f from

the center of the cross-section, refer figure 2.

1.4 Gust Loads

The response of FMAV due to gust is one of the critical factors, the design of FMAV would depend on.

As a result gust needs to be accurately modeled to get the wing response such that it is acceptable within

the limitations of modeling. For obtaining the wing response due to gust load, the gust is first specified

in terms of gust velocity having a suitable distribution and the lift force generated due to the penetration

of wing into the velocity profile is obtained thereafter. For the present problem we assume that the gust

is unaffected by the penetration of the wing and the magnitude of gust velocity remains same along the

wing span. Some of the standard gust signatures are as follows:

(a) Sharp Edged Gust:

wG(τ) = w0(H(τ)−H(τ − τG)) (7)

(b) 1-Cosine Gust:

wG(τ) =
1

2
w0(H(τ)−H(τ −2τG))(1− cos(

πτ

τG

)) (8)

(c) Triangular Gust:

wG(τ) = w0

(

2(
τ

τG

)H(τ)+2(1−2(
τ

τG

))H(τ −
τG

2
)

−2(1−
τ

τG

)H(τ − τG)
) (9)

(d) Graded Gust:

wG(τ) = w0H(τ)(1− e−0.75τ ) (10)

Here τ is the dimensionless time defined as

τ =
1

b

∫ t

0
U̇dt, (11)

where b is the semi-chord length of the wing and U is the displacement of the wing as stated before.

H(τ) denotes the Heaviside function, w0 is the magnitude of gust velocity and τG is the gust intensity.

The different gust profiles are plotted in fig 3. For the present study, we will focus only on the response

of the wing structure in the presence of sharp edged gust. The lift force generated by a wing due to the

penetration into a gust can be expressed as

LG(τ) =CLbr̂2
2(S)ρU̇

(

wG(0)ψ(τ)+
∫ τ

0

∂wG(τ0)

∂τ0

ψ(τ − τ0)dτ0

)

(12)

=CLbr̂2
2(S)ρU̇

∫ τ

0
wG(τ0)

∂ψ(τ − τ0)

∂τ
dτ0
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where LG(τ) is the gust load ψ(τ) is the Kussner’s function which is, in general, expressed in terms

of Bessel’s functions. However, for practical purposes the approximate expression as obtained by Von

Karman and Sears [17] for elliptic wings in an incompressible flow is used. This form can be expressed

as

ψ(τ) = 1−A3e−b3τ −A4e−b4τ (13)

The constants are A3 = A4 = 0.5, b3 = 0.130 and b4 = 1. In their seminal work, Von Karman and Sears

[17] had proved that gust load always acts at quarter chords point, even when the nature of the load is

not completely circulatory. As a result, the aerodynamic moment about the flapping axis due to gust is

given by

MG(τ) =
1

2
bLG(τ) (14)

2. Aeroelastic Responses of Bending-Torsion based wing model

The governing equations of motion describing the aero-elastic interactions of the flapping wing structure

in hover are given by

ρAẅ−ρAycmφ̈ −ρA ˙

¨

θ2w+ρAycm θ̇2φ +
∂2

∂x2
(EIyyw′′)

= ρAUsin(θ)−ρAycmθ̈ +Lcos(2θ +φ)

(15)

ρJφ̈ −ρJθ̇2φ −ρAycmẅ+ρAycm θ̇2w−
∂

∂x
(GJφ′)

= ρJ ¨ ¨θ −ρAycmUsin(θ)+Mcos(2θ +φ)
(16)

where L and M denote the total Lift and Moment due to various forces acting on the wing. In the

presence of the gust L and M takes the form

L = Lqs +LG

M = Mqs +MG,
(17)

where Lqs and LG are expressions for quasi steady aerodynamic loading and Gust loading respectively.

Similarly Mqs and MG respectively are moment due to quasi steady and gust loading. It can be seen that

in the absence of gust load the expressions L and M become L = Lqs and M = Mqs respectively.

The given system is a set of coupled partial differential equations in w(x, t) and φ(x, t) having time

varying co-efficients and does not have closed form solutions. The system of equations obtained are first

non-dimensionalized. Galerkin projection based method is then invoked which reduces the system into

a set of coupled non-linear ordinary differential equations. The resulting system can be written as

a(w, ẇ, ẅ,φ , φ̇ , φ̈ , t)+b(w, ẇ,φ , φ̇ , ẅ, φ̈ , t) = 0 (18)

The entries of the vector a and b are long expressions and not shown here. The presence of strongly

nonlinear terms involving multiplicative coupling does not make the system amenable for analytical

techniques like perturbation methods. Rearranging the entries of a and b and defining state vector

X = {x1,x2,x3,x4} such that x1 = w, x2 = ẇ, x3 = φ and x4 = φ̇ , we arrive at the system of nonlinear

dynamical equation.

F(X, Ẋ, t) = 0 (19)

We resort to a suitable numerical scheme to find the response of the system. For a typical wing data

set, refer Table (1), the system responses i.e., the wing twist and plunge are obtained. The results are

plotted in Figure 4. It is noted that the wing twist is the dominant of the two responses. However the

wing plunge is more sensitive to the gust as compared to the twist i.e., the percentage change in plunge

is more of the two responses. This is mainly owing to the fact that the gust velocity, the way its modeled

here, is along the direction of the wing plunge.
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Figure 4. Typical Aeroelastic responses, with and without gust for (a) Wing plunge; and (b) Wing twist.

Table 1. Wing Data

l = .08m c = .01m ρ = 1300kg/m3 µ = 0.33 A = 0.12

EIyy = 10e4 GJ = 3e4 y f = 0.005m ycm = 0.3

3. Summary and Conclusions

The present article outlines the development of a quasi steady aeroelastic model for a flexible wing

structure, executing insect like flapping motion. For this purpose a structural model is developed from

the first principle by idealizing the wing structure as a bending torsion coupled Euler Bernoulli beam.

A revised quasi-steady aerodynamic model with features of capturing the necessary aerodynamic forces

that an insect wing experiences is then invoked. The coupling between the wing-structure with the

fluid medium is established and pitching and plunging responses of the wing-structure are obtained to

demonstrate the utility of the present model for studies related to obtaining aero elastic responses and

stability of flapping wing. The model developed can also be readily used in obtaining wing responses

under gust load and thus can serve as an essential tool in the preliminary design of Flapping wing based

Micro Air Vehicles.
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Abstract 
In this paper, a nonlinear deterministic mathematical model for the problem is proposed and analyzed 
qualitatively using stability theory of differential equation. In writing the model we have divided the 
population under consideration into three subclasses i.e. susceptible, infective and that of AIDS 
patients. The result shows that the disease free equilibrium is locally stable at threshold parameter 
less than unity and unstable at threshold parameter greater than unity. It  is shown that the positive 
non-trivial equilibrium is always locally stable under certain condition showing that the disease 
becomes endemic due to constant migration of the population into the community.  
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Introduction 

Vertical transmission is a factor in many important diseases, including AIDS, Chagas’s disease, 

Hepatitis B and Rinderpest in Cattle. However, the mathematical Modeling of vertical transmission is 

of very recent origin having begun with the model of Fine and LcDuc (1978) for keystone virus. HIV, 

the human immunodeficiency virus is the etiological agent for AIDS (Acquired Immune-deficiency 

Syndrome) .It is a fatal disease, which breaks down the body's immune system, leaving the victim 

vulnerable to a host of life threatening opportunistic infections, neurological disorders or unusual 

malignancies. It causes mortality of millions of people and expenditure of enormous amount of money 

in healthcare and disease control. Thus, the most urgent public health problem today is to device 

effective strategies to minimize the destruction caused by the AIDS epidemic.  

In view of the above, in this paper we propose a model with AIDS in a population with variable 

size structure including demographic and epidemiological considerations. The total population is 

divided into three subclasses of susceptible, infectives and that of AIDS patients. It is assumed that a 

fraction of infectives moves to join AIDS class. In this consideration, a model is formulated using 

nonlinear interaction of standard mass action type, migration, natural mortality process and AIDS 

related deaths. 
 

1. Mathematical Model 

We consider the total human population of size N (t) at time t with constant immigration of 

susceptible at a rate Q0. An individual in the population may be in one of the distinct epidemiological 

subclasses; Susceptible S (t), Infective I (t) (also assumed to be infectious) and AIDS population A (t) 

with natural mortality rate d in all the classes. It is assumed that the susceptible become infected via 

sexual contact with infective and then some of babies born are also infected at birth and hence directly 

recruited into infective class with a rate θ .The interaction of susceptible and infective is of standard 

mass action type with a contact rate β1.It is also assumed that infective move to AIDS class with a rate 

δ. 

With these assumptions and considerations, the spread of disease is assumed to be governed by 

the following system of nonlinear ordinary differential equations:  
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where Q0 is the constant immigration rate to the class of susceptibles, d is natural mortality rate 

constant, δ is the rate of movement from infectious class, so that (1/δ) denotes the average incubation 

period, α is the disease-induced death rate constant and β1 is the transmission coefficient. 

To simplify the model, It is reasonable to assumed that the AIDS patients are isolated and 

sexually inactive and hence they are not capable of producing children, i.e. θA =0 and they also do not 

contribute to viral transmission horizontally i.e. 
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negligible. In view of the above assumptions, 

the system reduces to model (1) modified as- 
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From the model, it is noted that in the absence of infection, the population size approaches the 

steady state value Q0/d. It may be assumed that usually θ is quite small as there have been very few 

HIV positive babies born. We shall also assumed that θ<d<α .During the early stages of the epidemic, 

if it is assumed that S 3 N 3 Q0/d then the growth of infectious people I(t) can be approximately 

governed by the following equation 
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Thus, as before, if R0>1, the infection triggers an epidemic otherwise for R 0<1, the 

epidemic prevalence is zero. 

2. Stability Analysis 

Now we analyze the model given by equations (7-9). The model has two non-negative 

equilibria namely E0 (Q0/d, 0, 0), the disease free, and E*(N*, I*, A*) the endemic 

equilibrium, where (N*, I*, A*) are positive solutions of the equations and are obtained as  
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It is found that equilibrium level of infectives I* increases as Q 0 increases or γ

decreases leading to increases A*. Further the equilibrium level of AIDS patients A* 

decreases as α increases. It is also noted that when the disease remain endemic, the disease 

induced deaths reduce the equilibrium population size from Q 0/d to N*. 

To determine the local stability of E0 and E*, the following variational matrices are computed 

around E0 and E*, 
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From M (E0), it can be seen that E0 is locally asymptotically stable (LAS) provided  

                                                                (β1+ θ) < (δ+d)     (7) 

i.e. for R0<1 and under this condition the equilibrium E* does not exist. However, if R0>1 the 

equilibrium E0 is a saddle point which is stable in N-P-A manifold and unstable in I-direction. In such 

a case E* exists and the infection is maintained in the population. 

The characteristic equation corresponding to M (E*) is given by 
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Thus by Routh-Hurwitz criteria, E* is locally asymptotically stable as it can be seen for  

                                                a1>0, a2>0, a3>0, and a1a2-a3>0 

Now to show that E* is globally asymptotically stable, we first establish a lemma. 
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Proof: Consider the following positive definite function about E*, 
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where the constants k1 and k2 can be chosen suitably. 

The derivative of V along the solution of the system (3) can be written as  
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Hence V is a Liapunov function with respect to E* whose domain contains �, proving the 

theorem. 

                                                                       Conclusions 

In this paper, a mathematical model is proposed and analyzed to study the effect of vertical 

transmission in a population of variable size with constant recruitment into susceptible population 

under the assumption that due to sexual interaction of susceptibles with infectives, the infected babies 

are born to increase the growth of infective population directly. It is also assumed that persons in 

AIDS class are isolated and incapable of producing children. It is shown that for the system (2), as 

usual, there exists a threshold parameter R0. If R0<1 the disease dies out and when R0>1 the disease 

becomes endemic. The model has two non-negative equilibria namely E0 (Q0/d, 0, 0), the disease free 

equilibrium and E*(N*, I*, A*), the endemic equilibrium for R0>1. It is found that the equilibrium 

state E0, corresponding to the disappearance of disease, is locally asymptotically stable if R0<1 and 

for R0>1 it is unstable and the infection is maintained in the population. Further the endemic 

equilibrium E* which exists only when R0>1 and is always locally asymptotically stable. For this 

endemic equilibrium we have found a Liapunov function and shown that this equilibrium is globally 

asymptotically stable, if the conditions (9) are satisfied. It is noted that when disease remain endemic, 

the disease induced deaths reduce the equilibrium population size from Q0/d to N*. It is shown that I* 

increases as Q0 or β1 increases or as δ decreases leading to  A*.It is further noted that increase in the 

rate of infected babies born, leads to increase in the population of infectives and that of AIDS patients. 

The above analysis also suggests that if unsafe sexual interaction is restricted, the spread of the 

disease could be slowed down. Also the infected people may be educated and advised not to indulge 

in sexual activities, even at the early stage of infection to avoid the birth of infected offspring.  
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Abstract 
A new modified cardiorespiratory model based on the well-known DeBoer beat-to-beat model and the 
Zaslavsky map, which describes dynamics of the respiratory system as a generator of central type, is 
studied in details. The respiratory tract was firstly modeled by the self-oscillating system under the 
impulsive influence of heartbeats. The steady-state regimes of the modified model are investigated 
by methods of the dynamical system theory. The regular (periodic and quasi-periodic) and chaotic 
regimes typical for functioning of the cardio system, are found and studied. 
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Introduction 

The human cardiovascular system closely interacts with different organs and systems of 

organism. Realized self-oscillations in a cardiovascular system are under an activity of practically 

entire organism (see [2-5, 9-11]). Physiological rhythms are not isolated processes. There are 

numerous interactions of rhythms between itself and with an internal and external environment. 

Cardiac and respiratory rhythms form up during embryo development, and even the brief break of 

these rhythms after a birth results in death. 

Existence of breathing and heart rhythm synchronization effect, found experimentally in the 

cardiovascular system both for healthy people and with pathologies, is well-proven in work Toledo 

[10] in 2002. It is well known, the dynamic process of mutual synchronization can be realized only in 

a case of presence of a subsystem mechanical interaction. Therefore, the indicated effect display 

testifies the presence of both direct and feedback interactions between the cardiovascular and 

respiratory systems. 

A heart system and organism of man in general have one of major descriptions of activity, such 

as a blood pressure dynamics. His time-history, along with electrocardiogram (ECG), is an important 

information generator for research and diagnostics of laws and pathologies of the cardiovascular 

system. The task of mathematical model construction, describing the dynamics of arterial blood 

pressure, is far from completion. Complications of such design are related to the necessity of taking 

into account of influence on the cardiac rhythms not only the cardiovascular system but also other 

organs and systems of organism, in particular a respiratory system. 

1.  The Mathematical Model of a Direct and Reverse Interactions   

The DeBoer model describes the cardiovascular system which is under direct action of 

respiratory systems (it corresponds to the experimental data) [3]. This model was substantially 

developed later. The sinus node responsiveness (and other detailed factors) is taking into account in 

the work of Seidel and Herzel [9] (the so-called SH-model). In this model chaotic dynamics was 

found in dynamics of the cardiosystem. 

Both DeBoer and SH models consider only direct respiratory influence on heartbeats. The SH-

model was further developed in [5], where an effect of heartbeat and the resultant changes in the 

baroreceptor afferent activity to the SH-model are added and the cardiorespiratory synchronization 
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found due to this modification. Interaction of blood pressure and amplitudes of breathing oscillations 

revealed in accordance with principles of optimum control in the DeBoer model is investigated in the 

Grinchenko-Rudnitsky model [2]. This model explains, in particular, an appearance of a peak on the 

Meyer frequency in the spectrums of pressure oscillations and synchronization of cardiac and 

respirator rhythms. 

However, this model does not consider the reverse mechanical influence effect of the heartbeat 

changes on a breathing phase (frequency). In the present study, we add to the DeBoer model the self-

oscillating system describing dynamics of the respiratory system as a generator of central type [4], 

which is under impulsive influence of heartbeat. 

 

 
Figure 1. Characteristics of  the heartbeat in DeBoer model 

 

The DeBoer model describes the followings main characteristics of  the heartbeat (see Figure 1) 

system: systolic pressure S , diastolic pressure D, R-R interval I and arterial time constant T (in a state 

of rest for a healthy man S=120 mmHg, D=80 mmHg, I=800 ms, T=1500 ms).  This mathematical 

model is a system of five discrete nonlinear maps. This model contains only a direct mechanical 

influence of the respirator system on the cardiosystem and can be written in the form: 
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0.0166 �  mmHg,  18G2 �  ms/mmHg, 9G� �  ms/mmHg, 9G? �  ms/mmHg, 4,2 � � �  0,v �  

is equal to 0 if frequency of heartbeat is less then 75  beat/min, and v  is equal to 1, if frequency is 

more then 75 beat/min. 

 
Figure 2. Largest Lyapunov exponent of the modified system 

 

We suppose that a healthy man at rest breathes periodically with a permanent frequency and an 

amplitude of motions of thorax. In that case a breathing process can be described as the self-

oscillating system [4], which has a steady limit cicle. Thus for the mathematical modeling of a such 

system equations of the Zaslavskiy map could be used. Famous Zaslavsky map is the system of 

equations [8, 12] which describes the dynamics of an amplitude nr  and a phase n@  of the system (in 

which periodic self-oscillations with a frequency �  are realized) which is under T-periodic impulsive 

action of constant intensity A . Te system has the following form: 
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/ 01

1 exp{ }
sinn n n n

T
T r

�
@ @ � ? A @

��
� �

� � � �    (3) 

 

where ,� ?  are constant parameters. 

In our approach these equations are used to describe changes of an amplitude and phase of a 

respiratory system effect for every R-R interval with intensity, which is proportional to systolic 

pressure: 0( ) :nS SA A� � �( n(A A(AA  

 

/ 01 0( )sin exp{ }n n n n nr r S S IA @ �� � � � �     (4) 

/ 01 0

1 exp{ }
2 ( )sin n

n n n n n n

I
fI r S S

�
@ @ � ? A @

��

� �
� � � � �   (5) 

 

where I   is R-R interval, 0,A � ,� ?  are constant parameters of interaction. 

Thus, we study the dynamics of the modified model of cardiorespiratory system, which 

consists of the DeBoer model with direct respiratory influence ( )sin ,i iA r @�  and with reverse 

influence modeled by the Zaslavskiy map system. 

 

2.  Numerical Simulations Results   

In accordance with physiology of healthy man, the followings values of variables and constants 

are used in our numerical simulations: [0] 0.53,I � �  [ ] 1.08,S j� � �  0,...,6,j �  [0] 0,r� �  [0] 0,@ � �  

0.001� �  1/ms, 0.001? �  1/msmmHg. In order to study steady-state regimes first of all the largest 
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Lyapunov exponent [1, 6, 7] was found. The dependence of the largest Lyapunov exponent of the 

modified system  on values of the bifurcation parameter A  is shown in Figure 2. The dynamics of the 

system changes with increasing of this parameter. There is the region where Lyapunov exponent 

positive ( 0.245A � ) that means transition to chaos occurs. We emphasize that A  describes intensity 

of heart influence on a respiratory system. The next Figure 3 illustrates a behavior of systolic pressure 

data in the modified model. Power spectra computed from these data are shown in Figure 4. The 

spectrum in Figure 4.a and in Figure 4.b has discrete peaks which are situated equidistantly with a 

frequency difference. So that, graphs indicate that there are regular regimes in the modified system. 

 

 
a) 0.22A �  

 
b) 0.23A �  

 
c) 0.24A �  

 
d) 0.25A �  

Figure 3. Simulated systolic pressure data (cases a, b, c and d) 

 

Finally, for the steady-state regimes, when the largest Lyapunov exponent is positive and the 

chaotic regime is realized, the power spectrum is continuous (Figure 4.c). 

Phase portrait projections on the plane of the simulated systolic pressure and R-R interval data 

are presented in Figure 5. The phase portrait in the Figure 5.a represents a singular solid curve and 

corresponds to quasiperiodic regime. There are only several points in the phase portrait in Figure 5.b 

which means that at 0.24A �  the modified system has regular periodic regime. And in Figure 5.c 

when 0.25A �  the phase portrait has numerous lines (the number of which increases in time) and 

corresponds to chaotic steady-state regime.  So we have found such steady-state basic regimes as: 

1. at 0.22A � , periodic regime (Figure 3.a); 

2. at 0.23A � , quasiperiodic regime (Figure 3.b, Figure 4.a, Figure 5.a); 

3. at 0.24A � , periodic regime (Figure 3.c, Figure 4.b, Figure 5.b); 

4. at 0.25A � , chaotic regime (Figure 3.d, Figure 4.c, Figure 5.c). 
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a) 0.23A �  

 
b) 0.24A �  

 

 
c) 0.25A �  

Figure 4. Power spectra computed from systolic pressure data  (cases a, b and c) 
 

 
a) 0.23A �  

 
b) 0.24A �  

 
c) 0.25A �  

Figure 5. The parts of phase portraits simulated systolic pressure and R-R interval data (cases a, b 
and c) 
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Conclusions 

On the basis of the DeBoer model an interaction of the heartbeat and the respiratory system as 

dissipative Zaslavskiy map is studied and the modified model of cardiosystem is constructed. In this 

model both direct and reverse influence of subsystems – cardiovascular and respiratory ones, are 

taken into account.  

The methods of modern theory of the dynamical systems are used to study laws of the steady-

state regimes of the modified model. Firstly the chaotic regimes were found out. Analysis of 

bifurcation curves of the largest Lyapunov exponent, projections of phase portraits, temporal 

realizations and power spectrums allowed to investigate the basic laws of dynamics of the model. The 

dynamics of heartbeat and respiratory systems are in good correspondence with experimental 

information of healthy man. It is found irregularities of phase trajectories of the modified model 

depending on intensity of heart rhythm influence on breathing, what is well known characteristic for 

the dynamics of the cardiovascular system of healthy man. 
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Introduction 

Nonlinear normal vibrations modes (NNMs) are a generalization of the normal vibrations in 

linear systems. The Kauderer-Rosenberg concept of NNMs [1-3] is based on determination of 

trajectories in the configuration space of the dynamical system. Shaw and Pierre reformulated the 

concept of NNMs for nonlinear dissipative systems [4, 5]. Their analysis is based on computation of 

invariant manifolds of motion on which the NNMs take place. One chooses a couple of independent 

phase variables (u, v) of the nonlinear dynamical system, so-called “master coordinates” (or active 

coordinates), where u is some dominant generalized coordinate, and v is the corresponding 

generalized velocity. By the Shaw-Pierre approach, the NNM is such regime when all generalized 

coordinates and velocities are univalent functions of the selected couple of master variables. The 

master coordinates can be chosen as new independent ones instead of time. In a case of internal 

resonance it can observe that four phase coordinates are active, and all of them must be chosen as 

new independent variables. In this case all other phase coordinates are determined as univalent 

functions of the selected four master coordinates.  

The Rauscher method is first proposed for the single-DOF system [6]. General procedures of 

the Rauscher method utilization to construct NNMs in n-DOF non-autonomous systems are described 

in [7,8]. If we have both external and internal resonances, the Shaw-Pierre approach in combination 

with the modified Rauscher method permits to reduce the n-DOF non-autonomous dynamical system 

to two-DOF nonlinear system for each nonlinear normal mode of forced vibrations.  

It is well known that rotor systems display a complicated nonlinear behavior. Moreover, 

internal resonances in the rotor systems must be taken into account. Asymptotic method to analyze the 

nonlinear dynamics of rotating shaft is first suggested in [9]. Bolotin [10] took into account a 

nonlinear inertia in a model of the one disk rotor. Different nonlinear effects in the rotor dynamics are 
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discussed in [11]. Dynamic behavior of a rigid rotor with nonlinear elastic restoring forces is analyzed 

in [12]. It is shown that, in addition to synchronous solutions, relatively small damping forces made 

possible the onset of the rotor precession motions which are periodic or quasi-periodic. An 

experimental confirmation of the theoretical data is sought. Different problems of the rotor dynamics 

are considered in [13]. Numerical simulation is used to analyze the symmetrical single-disc flexible 

rotor–bearing system in [14]. The 4-DOF nonlinear model of the rotor dynamics is considered in [15] 

by using the multiple scales method. In many publications mostly the simplest models, such as the 

Jeffcott rotor, are considered due to a complexity of the rotor system dynamics. It seems that the 

NNMs approach is appropriate to analyze the rotor steady-state dynamics. The NNMs are constructed 

here for the rotor system with internal resonance which is realized in the rotor dynamics with the 

isotropic-elastic shaft and supports. Gyroscopic effects, asymmetrical disposition of the disk in the 

shaft, nonlinear restoring forces and inertial forces in supports are taken into account. The NNM 

approach and the modified Rauscher method is used in analysis of the rotor forced vibration modes. 

 

1. Iterative procedure to construct forced nonlinear normal vibration modes in a 
case of internal resonance 

One considers the nonlinear dynamical system under an external periodical excitation, reduced 

to principal coordinates and written in the following canonical form:    

 

                            

/ 0 / 0

/ 0 / 0

/ 0 / 0

/ 0

1 1

2
1 1 1 1 1

2 2

2
2 2 2 2 2

2

, cos

, cos

...

, cos

... 3,

k k

k k k k k

q s

s q f F t

q s

s q f F t

q s

s q f F t

k N

�

�

� � � � ��
� �
�
� � � � � ��
�
�

��
�

� � � � ��
�

���

1 1q s1

2
1 1 1s q2
1 1 1q2

1 1

2 2q s2

2
2 2 2s q2
2 2 2q2

2 2

k kq sk

k k k
2s 2

k k kq2
k k

?

?

?

q s

q s

q s

                                    (1) 

 

Here 8 91 2, ,...,
T

Nq q q�q  and 8 91 2, ,...,
T

Ns s s�s  are general coordinates and corresponding 

velocities. It is assumed that two eigenfrequencies, 1?  and 2? , are close to the excitation  frequency, 

� , that is 1 2�B? B ? . In this case two master (active) coordinates, 1,2q , and two corresponding 

velocities, 1,2s , may be taken as independent ones to construct forced NNMs. It is presupposed that 

there is some approximate representation of the master coordinates in the form of the Fourier series: 
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   (2) 

 

After some transformations relations (2) can be inverted in the following form:        

 

           / 0 2 2
1 1 2 1 2 2 3 2 5 1 6 1cos ...t q s q s q s� � � � � � � �2 2 2 2 2 2       (3) 
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A similar relation can be obtained for the function sin( )t�  too. By using the relation (3), the 

next N-DOF “pseudo-autonomous” system is obtained instead of the system (1):  

     
/ 0

/ 0 / 02 2 2
1 1 2 1 2 2 3 2 5 1 6 1

1,

, ...

k k

k k k k k

q s k N

s q f F q s q s q s


 � ��
�
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k kq sk ksk

2
k k ks 2
k k kq2

k k? 2 2 2 2 2 2q s

       (4) 

 

Transformations above correspond to principal idea of the Rauscher method. In the obtained 

autonomous system the NNMs can be constructed as functions of four new independent variables, 

1 1 2 2, , ,q s q s , as / 01 1 2 2 1 1 2 2( , , , ), ( , , , ), 3,4,...,i i i iq q q s q s s s q s q s i N� � � . 

Passing on to the new independent variables, one presents the differentiation in time t  of the 

form of the linear differential operator in partial derivatives: 
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After applying the operator  L to (4) one obtains,   
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After eliminating the time t  by using the first four equations of the system (5), the partial 

differential equations are obtained from the other 2N-4 equations. Then the relations (6) can be 

determined as solutions of this system of PDEs, for example, in power series: 

/ 0 / 0 / 0 / 0 / 0
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1 1 2 1 3 2 4 2 5 1

2

1 1 2 1 3 2 4 2 5 1

...,

...; 3, .

n n n n n
n

n n n n n
n
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    (6) 

Substituting the series (6) to the PDEs system and equating terms of the same powers on 

1 1 2 2, , ,q s q s , one obtains algebraic equations with respect to unknown coefficients of these series. The 

relations (6) determine the Shaw-Pierre NNMs of the autonomous system (4) in a case of the internal 

resonance. They allow reducing the n-DOF system (1) to the two-DOF one for each resonance NNM. 

Four master phase coordinates can be obtained from this reduced system in a form of the more precise 

Fourier series instead of the representation (2). So, the iterative process can be constructed, and the 

pointed out series of operations can be repeated some times to reach a necessary exactness. Numerical 

simulation confirms a good exactness of the proposed approach. 

 

2. Forced vibration modes of the one-disk rotor 

A model of the rotor dynamics with an asymmetrical disposition of the disk on the shaft is 

considered (Fig. 1). Gyroscopic effects, nonlinearity and inertial forces in supports are taken into 

account.  The fixed and moving coordinate systems and positional angles of the disk are shown in the 

Fig. 2.  Mathematical model of the rotor has the following parameters: l  is the shaft length; 1 2,l l  are 

distances of the disk up to left and right supports, respectively; 1 1 2 2/ ; /h l l h l l� � ;  
/ 0 / 01 1

,x yc c  are 

coefficients characterizing linear terms in the left support restoring force; 
/ 0 / 01 1

,x yk k  are similar ones 

for the right support; (2) (2),x yс c  are coefficients characterizing cubic terms in the left support restoring 
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force; 
/ 0 / 02 2

,x yk k  are ones for the right support; 
11 12 22, ,c c c  are the stiffness coefficients of the shaft ;�  

is a coefficient of damping in supports;  
1 2,C C are coefficients of damping during the disk motion; 

m is the disk mass; D is an eccentricity of the disk mass center. 

 

                          
Fig.1. Principal model of the rotor system with        Fig. 2. Fixed and moving coordinate systems. 

massive bearings.                                                     Disk positional angles. 

 

Equations of the rotor motion are the following:   
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     (7) 

 

  Note that the cubic nonlinearity can be considered as an acceptable approximation for different types 

of the support restoring forces [9,12-15]. 

 

3. Construction of the forced vibration modes in the one-disk rotor model 

One considers the 8-DOF model (7). The generalized coordinates 1 1 2 2, , ,q s q s  are chosen as 

master coordinates in regime of the resonance NNM. The proposed previously procedure which joints 

the NNMs approach and the modified Rauscher method are used [16,17]. Results of numerical 

calculation presented below are obtained for the next system parameters:  
2 2

1 2 118kg, 1.8kg, 0.36kg m , 0.195kg m , 1m, 0.3m,p em m m I I l l� � � � � � �
1 20.3, 0.7,h h� �  

/ 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 31 1 1 1 2 2 2 25 107 10 N m, 8 10 N m ,x y x y x y x yc c k k c c k k� � � � � � � � � � 1
1 210 Ns m , 5N s,�� �C C  

1 560N s m , 5 10 m� �� � �� D , Young modulus, E = 2.1·1011 Pa, and a radius of the shaft cross-

section is equal to 0.015 m. The first fundamental dimensionless frequency is equal here to 144.27. 

Frequency responses of principal coordinates near the first resonance are presented in Fig.3. 

Trajectories of the resonance vibrations in the system configuration space are presented in Fig. 4. 

Here points and circles denote results obtained analytically (by using the HBM and NNM approach 
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respectively), and lines correspond to numerical simulation. A ratio of the external excitation 

frequency to the first fundamental frequency is equal to 
1 1.0298v�� �� .  

 First harmonic  Third harmonic  

q1 

  

q3 

  
Fig. 3.  Frequency responses near the first resonance. Bold curves correspond to the NNM 

approach, and thin curves correspond to calculations by the HBM. Frequencies on the horizontal axis 

are dimensionless; all amplitudes are multiplied by the scaling coefficient 1000. 

 

       
Fig.4, a            Fig.4, b 

Fig. 4. Trajectories of the forced resonance nonlinear normal mode in the system configuration 

space:  4,a – trajectory on 1 2,x x  plane,  4,b – trajectory on 3 4,x x  plane. Here displacement values are 

multiplied by the scaling coefficient 1000. 

 

4. Stability and bifurcations of the forced vibration modes 

Analysis of the forced NNMs stability shows [17] that in some frequency range the obtained 

before forced NNMs may become unstable at certain values of system’s parameters. In this region a 

pair of new solutions bifurcates. The results below are obtained for the next parameters of the system:  



N.V.Perepelkin et al. 
 

157 

 

1
1 25 Ns m , 5N s,�� �C C 2 2

1 212kg, 2kg, 0.24kg m , 0.1225kg m , 0.8m,p em m m I I l� � � � � �

1 0.24m,l � 0.00003m�D ,
/ 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 31 1 1 1 2 2 2 25 107 10 N m, 8 10 N mx y x y x y x yc c k k c c k k� � � � � � � � � � ,

1 1160N s m , 2.1 10 PaE�� � �� , 8 43.976 10 mJ �� � . 

The frequency response for the first harmonic of the disk displacement x is shown in Fig. 5a. 

The new solutions stability is shown in Fig. 5b. One chooses some value of the frequencies ratio, 

namely, 1/ 1.02�� �� ? . Regimes, denoted as A, B and С (Fig. 5,b), correspond to the chosen 

frequency value. Space representation of the rotor precession, corresponding to the regimes A and B, 

are shown in Fig. 6. Trajectories, which describe a motion of the disk center (the point marked with 

number 1) and motion of the left and right supports (points 2 and 3 respectively), are cyclic symmetric 

lines in the regime A (Fig. 6a). But for the chosen rotation frequency the regime A is unstable. 

 

                           
                             (a)                           (b) 

Fig. 5. Frequency response for the first harmonic of the disk displacement x . Fig.5а represents 

solutions obtained by the HBM (bold) and by the NNMs method (thin lines); Fig.5b represents results 

of the stability analysis (points correspond to stable solutions and circles correspond to unstable ones). 

 

 
    (a)                          (b) 

Fig.6. Space representation of the rotor precession (regime A - Fig.6a, regime B - Fig.6b,). 

Trajectories describe a motion of the disk center, left and right supports (points 1,2,3 respectively). 

Points correspond to the analytical solution; lines correspond to checking numerical calculations. All 

displacements are measured in mm. 

 

Trajectories corresponding to regimes B and C are center symmetric. Space representation of 

trajectories B is trajectories describing a motion of the disk center, left and right supports (points 1, 2, 

3 respectively presented in Fig. 6b, where) are shown. The disk center circumscribes a trajectory close 

to the ellipse. In the regime В the vibration amplitudes on direction of the axis ОХ are essentially 
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more than amplitudes of motion on direction OY; for the regime С everything is inverse. These 

regimes are stable.  

Conclusions 

The approach which combines both the nonlinear normal modes and the modified iteration 

Rauscher methods is proposed and used to construct forced resonance vibrations in non-autonomous 

systems having the internal resonance. The NNMs method permits to reduce the n-DOF non-

autonomous problem to the 2-DOF nonlinear system for each NNM. Forced vibrations of the 8-DOF 

system describing a dynamics of the one-disk unbalanced rotor with the linearly isotropic elastic shaft 

and nonlinear elastic bearings are considered. Gyroscopic effects, inertial forces in supports, an 

asymmetrical disposition of the disk in the shaft and internal resonance are taken into account. The 

forced NNMs of the system are obtained and frequency responses of the system are constructed. A 

stability analysis gives regions where regimes of synchronous rotor precession with cyclic symmetric 

trajectories are unstable, and regimes with center symmetric trajectories appear.  
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Abstract 
Non-stationary effects of the resonance energy exchange between two nonlinear oscillators of 
different physical nature are analyzed in terms of new descriptive variables namely energy partition 
and coherency (phase shift) indexes. In particular, it is shown that such a couple represents 
conjugate variables of an effective Hamiltonian system whose phase plane captures all major
specifics of the modal interaction. Furthermore, the presence of damping still preserves the 
Hamiltonian structure of equations affecting however their temporal scales and parameters. 
Formulated in general terms of coupled oscillators, the approach seems to have a wide area of 
applicability dealing with non-stationary resonance interactions and beating effects in physics and 
classical mechanics.  Nonlinear liquid sloshing in square base tank and the dynamics of two coupled 
elastic oscillators are considered for illustrating purposes.  Some analogies with interactions of 
quantum states in macroscopic quantum dynamics are discussed.   
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Resonance interaction, nonlinear oscillator, effective Hamiltonian 
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Introduction 

Resonance interactions of oscillators are responsible for fundamental effects in different areas 

of physics and classical mechanics. The resonance between any two oscillators/modes destroys their 

individuality by generating a new effective oscillator of energy flow between the two parent 

oscillators, which is known as beating. In particular, the fundamental character of such energy 

exchange oscillators is revealed by the fact of their exact integrability in many physically reasonable 

cases. The present work illustrates such a standpoint, first of all, on a liquid sloshing model [1], which 

includes all the typical phases of continual dynamic analyses. It is shown that 1:1 resonance 

interactions of two nonlinear oscillators are described by a specific one-degree-of freedom 

Hamiltonian system whose conjugate coordinates are the energy partitioning and phase difference of 

oscillations. Besides, it is shown that such approach bridges the gap between the notion of Nonlinear 

Normal Modes [2] of elastic vibrating systems and the Liquid Sloshing Modes. In the case of elastic 

oscillations, a strongly nonlinear conservative oscillator describing the dynamics of energy partition 

between two identical linearly coupled oscillators with polynomial restoring force characteristics is 

introduced and analyzed.  Temporal shapes of such oscillator are close to harmonic when the initial 

energy disbalance between the interacting oscillators is relatively small.  However, the effective 

oscillator becomes strongly nonlinear as the amplitude of energy exchange increases.  It is shown 

nevertheless that the oscillator is exactly solvable for the entire range of energy swing and, as a result, 

the original first-order averaging system, describing the dynamics of coupled oscillators, admits exact 

analytical solution.  Despite of very different physical contents and analytical approaches to system’ 

reduction, the final form of effective Hamiltonian appears to have surprisingly similar mathematical 

structure, which is known as Boson Josephson Junction in macroscopic quantum dynamics [3]. Such 
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observation allows us to track interesting physical analogies while revealing a common geometrical 

nature of resonance modal interactions.  

 

 

 

1. Describing States of Two Identical Oscillators, 1:1 resonance 

Let us consider an assembly of two identical harmonic oscillators as shown in Fig. 1.  Further, 

different types of physical coupling are introduced.  The present section, however, does not require 

any details on the nature of coupling.  Moreover, no coupling at all can be assumed. 

     

 
 

Figure 1. Two identical unit-mass oscillators of the same frequency Ω. 

 

The dynamic states of such assembly are characterized by new descriptive variables whose 

definitions and physical meaning are discussed below. 

 
1.1 Descriptive variables 

 

Let assume no damping for a while and consider the quantities, all of which are measured in 

energy units, 
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Since the fast phase of oscillations is associated with a single frequency Ω, the dynamic states 

of the assembly can be fully characterized by the following three types of variables [4]:  

Total energy excluding coupling: 
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Energy distribution (partition): 
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Figure 2. Interpretation for the coherency index in case P = 0.  

 

The number 0�P  indicates equipartition of the energy, 21 EE � , whereas at 1�P or 

1��P all the energy belongs to the first or to the second oscillator, respectively.  The coherency 

index Q is interpreted as follows 
 

    

�
�
�
�
�

�

��
�
�
�

�




#
%

!
"
$

 
�
�

�

�
�

�
�

�

#
%

!
"
$

 
�
�

���

�

phase-inq
P

P
q

mode elliptic
E

P

q

P

q

phase-of-outq
P

P
q

Q

,
1

1
:1

,
11

:0

,
1

1
:1

1

2/1

2

2

0

2

2

2

1

1

2/1

2

  (6) 

 

These relationships, as well as definitions (3) through (5) are obtained by using the 

transformation of state variables as introduced below.  Generally speaking, there is an alternative of 

using either the indexes )}(),({ tQtP  or the angles )}(),({ tt �� .  We show, however, that the mixed 

combination )}(),({ ttP �  represents a set of conjugate Hamiltonian variables.  

 

1.2 Transformation of states 
 

These relationships, as well as definitions (3) through (5) are obtained by using the 

transformation of state variables [4], )}(),(),(),({},,,{ 02211 tttPtEqqqq 1���� : 
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In particular, the variables )}(),(),({ 0 ttPtE � in (7) and (3) through (5) are the same as can be 

verified by the direct substitution of (7) in (3) through (5).  

 

2. Illustrating Models and Analogies 

Transformation (7) is applied now to a coupled set of two free oscillators  
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where 1H  and 2H  are polynomials,E  is a damping ratio. 
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 Expressions (7) are substituted in (8) under compatibility conditions dtdqq kk /�� , then the 

new equations are solved with respect to the first derivatives of new variables. Finally, the standard 

one-step averaging with respect to that fast phase1 is applied.  The following two subsections 

illustrates the outcome by specifying the polynomials 1H and 2H .   

 

2.1 Liquid sloshing model 
 

It was shown in [1] that equations (8) describe a two-mode model for liquid sloshing in a 

square tank, when the polynomials are given by  
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where the constant coefficients kS depend upon the fluid level h. 

Following the suggested methodology and introducing a variable temporal scale s associated 

with the energy decay, gives the effective Hamiltonian system in terms of the new variables 

 

   
P

H

ds

dH

ds

dP

�
�

�
�

��
�

�� ,        (10) 

   ������ 2cos)1(
2

1

2

1
),( 22 PPPHH �  

where  

  F�
���

�
t

dttE
SSS

s
0

03

954

2

)(
4

)(
,   )2exp()0()( 00 tEtE ��� E ,  (11) 

 

and
)2tanh()tanh(226

)2(sech4)(coth17
4

2

hh

hh

��
��

�
�

��
���  is the only parameter of Hamiltonian system (10). 

System (10) is exactly solvable in terms of the elliptic functions, however, drawing the level 

lines .),( constPH ��  allows for a complete characterization of possible sloshing modes as well as 

non-stationary dynamics near them. 

 

2.2 Coupled elastic oscillators with polynomial restoring force characteristics 
 

Consider the case of linearly coupled elastic oscillators, for which 
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Following the same procedure and introducing the new constant temporal scale associated with 

the strength of coupling, �� /ts � , leads to the Hamiltonian  
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 The conservative case, 0�E , is exactly solvable in terms of the elliptic functions.  For small 

nonzero damping ratios, different types of asymptotic and qualitative analyses of the Hamiltonian are 

still applicable; see also Conclusion.   
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2.3 Boson Josephson Junction 

 

Bose-Einstein condensate in a double well symmetric potential is characterized by the effective 

classical Hamiltonian [3] �cos12/ 22 zzHeff ��G� , which can be obtained from (13) by 

replacing the variables as G����� ��� ,, zP , and �/2Kts � .  Here 12 ��� �� is the 

phase difference of time dependent amplitudes of the wave function that obeys the so-called nonlinear 

Schrődinger equation, )/()( 2121 NNNNz ��� is the population disbalance in terms of the 

numbers of particles associated with each of the two traps.  Therefore, kk EN H . 

 

Conclusions 

Resonance interactions of two identical nonlinear oscillators are described by the effective 

Hamiltonian system whose conjugate coordinates are the energy partitioning and phase difference of 

oscillations.  Furthermore, using the angular coordinate �  instead of P in (4), gives a single 

conservative oscillator, which is close to that solvable exactly in terms of elementary functions [4,5]. 

Classification of nonlinear sloshing modes in a square tank is given in terms of phase plane diagrams.  

It is shown that, above some critical fluid level, both in-phase and out-of-phase (diagonal) sloshing 

modes disappear. Instead either a running phase oscillation or two, clock-wise and counter-clock-

wise, sloshing modes may occur.  Moreover, the effective Hamiltonian does exist in this case even 

under the presence of damping. The influence of damping is captured by appropriate re-scaling the 

time variable.  Section 2.3 points to a complete analogy between the interaction of classical oscillators 

and interaction of quantum states of Bose-Einstein condensates in terms of macro- and micro-level 

physical parameters.  Although transformation (7) can always be applied to (8), the resultant system 

may generally appear to be non-Hamiltonian.  In such cases, local analyses near stationary points 

complemented by the idea of limiting phase trajectories (LPT) [6] can be used for asymptotic 

integration of the resultant equations.  For that reason, the mathematical tools of non-smooth temporal 

transformations [5] can be effectively applied; see [7] for a recent example and references.      
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Abstract 
A behavior of nonlinear dissipative systems in vicinity of internal resonance is considered. Two-DOF 
mechanical systems, namely, the spring-mass system and the spring-mall-pendulum system, are 
considered. A reduced system with respect to the system energy, an arctangent of the vibration 
amplitudes ratio, and the phase difference, is analyzed. A concept of nonlinear normal modes is used 
in this analysis. 
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Introduction 

Investigation of behavior of nonlinear systems near internal resonance is an important step to 

solve some theoretical and applied problems. It means, in particular, problems of transfer and 

localization of the vibration energy [1-4]. The internal resonance can lead to a loss of stability of 

vibration modes, and to appearance of new vibration regimes as a result of bifurcation [1-4]. 

Dissipation in nonlinear system and corresponding variation of vibration frequencies can lead the 

system under consideration to the internal resonance, or to output the system from the resonance 

region.  

In this paper two 2-DOF nonlinear dissipative elastic systems (Figs. 1 and 2) are considered in 

a vicinity of  internal resonance. An analysis is made by using so-called reduced system [5] which is 

written with respect to the system total energy, an arctangent of the ratio of amplitudes and a 

difference of phases. Simultaneously an investigation of stability and bifurcation of vibration modes 

similar to nonlinear normal modes by Kauderer and Rosenberg [1,2,6] is made. In dissipative systems 

such regimes will contain an exponential decrease of the vibration amplitudes. Analytical results are 

compared with numerical and numerical-analytical simulation by using programs on С++ and the 

MATLAB package.  

Figure. 1. The spring-mass system  Figure. 2. The spring-mass-pendulum system 
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1.  Resonance behavior of the nonlinear spring-mass system  

Equations of motion of the spring-mass system (Fig.1) can be written of the following form: 
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where the small parameter D   is introduced in assumption that some parameters of the system are 

small. 

There are two nonlinear normal modes in system (1) without dissipation: the non-localized 

mode of the coupled vibrations, when amplitudes of both masses are compared, and the localized 

mode, when amplitude of the small mass vibrations is essentially larger than ones of the big mass.  

The multiple scales method [7] is applied to the system (1). Introducing a detuning parameter, 

��� D�� 22
yx  and the next asymptotic series, ...10 ��� xxx D , ...10 ��� yyy D , ......10 ������ ttTTT D  one 

has a systems of partial differential equations in the first and second approximations by the small 

parameter, respectively: 
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A solution of system (3) can be presented as: 
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One substitutes the relations (5) to the system of the second approximation (4) and eliminates 

then secular terms. The following change of variables, yib
yeaA �0 , xib

xeaB �0  leads to a system of 

the equations concerning amplitudes and phases of the solution: 
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where xy bb ��@ , NR y�2� , )(2 1 yxyyy kNL �A6�A �� , ))(( 2
1 NkS xy ���� DA6 , 

2222 4)( yxxN �ADA ���� , WNF x
22�� , NWqQ 2

16 6� , )( 2
1

2 WkNP xy ��� A6 , 2
12 NkD yxy 6A�� , 

)4)((3 22222
1 yxxWqI �ADA6 ���� , )(12 22

1 ��� DA�A6 xyxWqE , 224 4 xyxW A�A �� . 

The reduced system [5] with respect to the system total energy, an arctangent of the ratio of 

amplitudes and a difference of phases, can be obtained from the system (6) of the next form: 
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where NkD yxx 12 6A�� , WCqQ ay
22

16 6� , ))(( 2
1 NkkS yxy ��� �6 , )( 222

1 yxxy NkP ��A6 ��� , 

NR y�2� , NWF x�2� , )(2 1 yxyyy kNL �A6�A �� , )4)((3 22222
1 yxxWqI �ADA6 ���� . 

Analysis of the reduced system (8) equilibrium points shows that the coupled vibration mode 

loses stability in a vicinity of resonance, and the localized mode remains stable irrespectively to a 

choice of initial conditions and the system parameters. It is obtained that in a vicinity of resonance 

there is a transition from the non-localized mode to localized one at &�t . New vibration modes do 

not appear. 

In Figure 3 the dependence )(	@ is represented. The straight line 0�	  corresponds to the 

non-localized  mode of connected vibrations, and the straight line 2/�	 �  corresponds to the mode 

when the vibration energy is localized on coordinate x . 

 

 
Figure. 3. Dependence )(	@   

 

 In Figures 4 trajectories of non-localized and localized motions are shown. Note that the non-

localized mode of the coupled vibrations is unstable, and the localized mode is stable in a vicinity of 

internal resonance. 
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a) trajectory of connected motions b) trajectory of localized motions 

Figure.4. Trajectories in the system (1) configuration space   
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2. Resonance behavior of the spring-mass-pendulum system 

Equations of the spring-mass-pendulum system motion are the following: 
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There are two nonlinear normal modes in system (2) without dissipation: the x -mode of 

vertical vibrations ( )(txx � , 0�� ) which is localized, and the non-localized pendulum mode 

( )(txx � , )(t�� � ) when both vibration amplitudes are of the same order.  

Application to the system (2) of the multiple scales method together with the following scaling 

of coordinates xx D� , D�� �  and the decomposition of coordinates and time in asymptotic series 

as 1
2

0 xxx DDD �� , 1
2

0 �DD�D� ��  and DD 2
210 ������ TTTT , leads to systems of the 

equations for the first and second approximation by the small parameter: 
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The solution of system (9) is presented of the form: 
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The solution (11) is substituted to the system of the second approximation (10), and secular terms 

are eliminated. The next change of variables xi
xx eaA �� , ��

��
ieaA �   leads to a system of the 

equations concerning amplitudes and phases of solutions: 
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where ���@ 2�� x . 

Transfer to the reduced system, proposed in [5], is used here. The reduced system is written 

with respect to the next new variables: total energy R, an arctangent of the ratio of amplitudes ψ and 

difference of phases φ. This transfer leads to the following system: 
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Analysis of the reduced system (13) on equilibrium points shows that depending on energy 

level of the system it can obtain a region where vertical vibrations lose stability as a result of 

bifurcation. A transition to two modes of the coupled vibrations is realized. Then, when the energy 

decreases, there is an outcome from this region, the bifurcation disappears, and the vertical vibration 

mode again becomes stable. 

In Figures 6,7 a dependence )(	@  for a case when the system is in region of existence of 

bifurcation, and for a case when the system is not in this region, respectively, are presented. The 

straight line 0�	  corresponds to the localized vibrations. 
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Figure. 6. Dependence )(	@ . The bifurcation of 

the vertical vibrations exist 

Figure. 7. Dependence )(	@ . The bifurcation 

of the vertical vibrations does not exist 

 

In Figures 8,9 trajectories in the system configuration space for the localized mode in a case of 

existence of bifurcation and in a case when bifurcation doesn't happen, respectively, are presented. 

Obviously, we can see that if the bifurcation exists, vertical vibrations lose stability (Fig. 8), 

otherwise, vertical vibrations remain stable (Fig. 9). 
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Figure. 8. Dependence )(�x  Figure. 9. Dependence )(�x  

 

For the system (2) additional analysis of stability of vertical vibrations on the basis of the 

linearized equations in variations ( uxx �� ~ , v����
~

) 
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and next reduction of the equations (14) to the Mathieu's equation is conducted. One has after some 

simplification the following equations:    
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Equation (16) is the well-known Mathieu's equation. 

It is obtained that the vertical vibrations stability depends on time that confirms results of 

previous analysis of the reduced system. 

In Figures 10, 11 boundaries of regions of stability/instability for vertical vibrations of the 

system (2) are shown for two values of time. We can see that a region of instability located in the 

middle of the boundary lines, are narrowed over time, that is, vertical vibrations which are unstable at 

the beginning of the process become eventually stable. 

 

  
Figure. 10. Boundaries of the instability region at 

50�  

Figure. 11. Boundaries of the instability region 

at 100�  

 

The presented above approach can be applied in analysis of dynamics of the dissipative system 

with limited power supply (so-called non-ideal system) which contains the nonlinear absorber. 

Resonance dynamics of this 3-DOF system is investigated.  

   

 
Figure.12. The non-ideal system which contains the nonlinear absorber  

 

Conclusions 

Behavior of two nonlinear dissipative systems in vicinity of the internal resonance is 

investigated. So-called reduced system is used in the corresponding analysis. The reduced system is 
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written with respect to the system total energy, an arctangent of the vibration amplitudes ratio, and the 

phase difference. In 2-DOF mass-spring and mass-spring-pendulum systems an analysis of stability 

and bifurcation of the localized and coupled vibrations is made. It is obtained new results on existence 

nonlinear vibration modes in the resonance region, and on evolution of equilibrium points under 

dissipation. Reliability of obtain analytical results is confirmed by numerical and numerical-analytical 

simulation. 
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Abstract 
In this paper the action of high-speed impact on the target, which could rotate, is discussed. Target is 
designed for using as conduct-of-fire trainer; its screen is fired by light bullet from pistol. Target 
material is high-strength steel, material of bullets –lead and steel. Target is mounted on the shaft by 
means of sleeve-type journal bearing in such way that it is in equilibrium in the vertical position. 
When the bullet is colliding with target, last rotates at some angle depending on a friction in bearing 
and impact force. The purpose of this work is target parts designing in respect to the strength and 
rigidity under impact action of bullet. Estimation of the dynamic deflection of axial rod was carried out 
with Plaxis 2D-v8 dynamic modules program (Delft, the Netherlands). The field test of designed
target – measurement of shaft deflection - confirmed the absence of the permanent residual 

deformation. 
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high-speed impact, Hertz contact, functional equation of Timoshenko, dynamics reaction 
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Introduction 

Problem of definition of elements dimensions subject to action of impacts often arise in 

designing of machine or engineering constructions. In spite of great importance of problem, until now 

there is no universal approach to the calculation of impulsive reaction and impact duration definition, 

since the amplitude of impact force and impact duration depend on the large number of factors. In 

practice the range of impact duration is 10
-3

 – 10
-12

 s and forces in the contact points reach very large 

values. In view of this impact can lead to large deformation or even to destruction of bodies, to the 

appearance of impact wave, elements vibrations, heating of bodies etc. [2], [6], [8 ].  

Many problems of collision with small velocities (less than 250m/s) fall into the interests of 

structural dynamics. Formation of dents and penetrations is closely related to the overall deformation

of structure, and characteristic time of loading and reaction is milliseconds. With the impact velocity 

increasing to 500-2000 m/s general deformation of structure becomes secondary, and a primary value

acquires the behavior of material in a small zone (2-3 diameters of projectile) near-by the place of 

collision; time of loading and reaction is microseconds. At the velocity up to 2000 -3000 m/s local

pressure becomes by an order of magnitude greater than ultimate strength and material behaves as a

liquid. At ultra-high speeds (more than 12000 m/s) a material undergo to explosive evaporation. The 

boundary of speed rate is relative and depends on a set of parameters: velocity of impact, geometrical 

and strength characteristics of a target and a projectile, the angle of impact. 

The problem of collision of bullet moving with velocity 430 m/s and mobile target, considered 

in given work, belongs to the class of intermediate problems in which it is necessary to consider both 

local deformations in the point of collision, and the overall deformation of a structure. For it solving 

the contact theory of Hertz in a combination with a dynamic problem of impact of bodies taking into 

account flexibility of a target is used. For the elements strength examination the dynamic module of 

program Plaxis-8v (Delft, the Netherlands) is applied. 
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1.  Statement of Problem 

 The design model of trainer target is presented in Fig.1; target consists of screen, mounted 

shaft. The screen of a target with dimensions: length 400 mm, height 140 mm and a thickness 10mm 

from a high-strength steel librates vertically. The screen fastens on two posts with cross-section 

section 15 х60 mm and height 50 сm and 28 cm, posts are kept on a shaft of 16 mm diameter due to 

the friction in bearings. When the bullet hit to the screen, screen rotates round fixed axis, then it is 

return to starting position. The shot at a target is made from a pistol with calibre of 9.0 mm; speed of a 

bullet at the face of gun is equal 430 m/s, distance – 20m. The mass of a bullet m1=6.1g, diameter  

d=9 mm, a bullet is shell-type lead with steel core, a thickness of a cover-1mm, cylindrical part of 

bullet is of length 9 mm, a head part (point of bullet is round headed) is hemispherical in radius 4.5 

mm, a tail end is flat. Specific energy of a bullet (indicator of penetrative action) е = 4.2 J/mm
2
, an 

impulse  S = 2.2 Ns. Mass of rotation part of target m2=9.844 kg, geometrical characteristics: centre of 

gravity position regarding to the axes passing through the middle of an axis of rotation: Xc=5mm, 

Yc=52mm, Zc=30mm, moment of inertia Jz=0.18kgm
2
, Jzx=0, Jyz = - 0.062 kgm

2
. 

                                                                                          

 
 

Figure 1. Design model of the shooting training device: b=100mм, a=400 mm 
 

 
 

Figure 2. The scheme of bullet impact: a) the first stage of impact,  b) the second stage 

 

 In Fig. 2 the scheme of impact is presented. The impact direction is considered perpendicular 

to the screen. A purpose of this study is target parts strength and rigidity examination under impact of 

bullet action. Target screen is considered as simply supported beam, posts are considered as cantilever 

beam. 

 

2.  Analytical Models and Numerical Solutions 

 In solving the formulated problem impact parameters - contact force and duration of the 

contact interaction - are determined in accordance with existing impact theory, the duration of contact 

1-bullet  

2- target screen 

a) b) 

S– bullet impule 

A, B – cylindrical 

rotable bearings, 

E, D – cylindrical 

fixed hings, 

SAX, SAY,…SDZ   – 

dynamic reactions 

of suports 
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interaction is compared to the natural period of the target, strength of items is checked for the most 

disadvantageous option for the design. 

 
2.1 Parametrs of impact in accordance with quasistatic Hertz’s model 
 Contact force expressed through the approach of mass centres in accordance with quasistatic 

Hertz’s model is n
e kF 2� , where n- index of power, for the spherical body 23�n ;

 
α – relative 

approach or indentation between the surfaces of sphere and plane plate; �k  proportionality factor, 

depending on curvature of surfaces in the point of contact and properties of materials.
 

 Duration of contact interaction t, maximal contact force Fmax and maximal approach amax , 

expressed through the pre-impact velocity [1], [2], [5], [8], are equals: 
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For the collision a sphere with plane plate taking into account properties of colliding bodies (for 

lead and steel respectively elasticity modulus E1=16000 MPa, E2=200000 MPa, Poisson ratio 

μ1=0.42, μ2=0.3,  density ρ1= 11340 кг/м
3, ρ2=7800 кг/м

3
), factor k=1.596 910�  N/m

3/2. Pre-impact 

velosity v0=0.9·430=387 m/s, (velocity before target 10% less than velocity in shot), then maximal 

force Fmax=327 kN, maximal approach αmax=3.482 mm and duration of impact t=2.65 � 10
-5

 s.  

 

2.2 Parameters of impact in accordance with small arms designing rules 
Contact force in accordance with small arms designing rules is taken as resistance force in [3]:  

 

 
)Bv(ad.F 22 1250 �� 7� ,                    (2) 

 

where d – bullet gage, λ – the factor taking into account the influence of bullet form, a and  B – 

factors, characterized the properties of medium: a – factor, taking into account strength of medium 

and effecting on resistance regardless of velocity, B–factor, taking into account density and viscosity 

of the medium, which influence on resistance depending on velocity.  

,ms.B 2271055 ���
   

,mN.a 29104263 ��
 

for light bullet λ=1.0, then : 

 

)v.(.F 275 10551101792 �����  

 

under v0=387 m/s   F= 236 kN,  for v0=0   F= 218 kN. 
Having written down the equations of motion and separating the variables, having integrated it 

within velocities from v0 to 0 and ways from 0 to s, we find the depth of bullet penetration s. 
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where for the steel (hard and soft mild) with HB 444 422960 mNsC � ; if λ=1, s=2.145mm.  

Duration of impact action is 

    

,vst av�
 

where vav is the average bullet velocity,  vav=0.9v0 ;  for λ=1  

t=1.109 � 10
-5 s. 

 

2.3 Parameters of impact in accordance with Timoshenko theory of the impact on 
beam 

First, the possibility of using Timoshenko theory of the impact on beam is examined [7], [8]. 

Velocity of the longitudinal waves propagation in media Cv (compression stress waves) and natural 

period of the bullet τ are:
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where l – bullet length, l = 13, 5 mm, for lead Cv = 1188 m/s, τ=2.273 � 10
-5 

s. 

 Let present the target screen by the beam model. Natural frequency of the first mode of the  

simply supported beam ω1, excluding transversal shear and rotational effect. and period T, 

respectively, are: 
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Because the duration of impact in accordance with Hertz’s theory is less than natural frequency 

of beam and comparable with bullet period we can conditionally use Timoshenko theory of impact on 

beam which take into account the vibration of flexible beam. Functional equation Timoshenko theory 

of impact: 
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where: α - local deformation, s- full displacement of the bullet from the beginning of impact, х - beam 

deflection under impact force P(t) action in the middle of beam.  

 The solution of Eq. (6) was fulfilled by means of small increment method where the contact 

force is regarded as constant during any time increment Δτ. For approximate solution of this equation 

we divided natural period of beam into 3600 intervals 3600TnT ���  and received impact force  

F=F(t), s, x=x(t), α=α(t) and time of impact t=14.5nΔτ=2.50 � 10
-5s.  

 Solution was fulfilled in MathCAD program and graphical results are presented in Fig. 3-6.  

 

      
  Figure 3. Plot of deformation during impact             Figure 4. Plot of impact force 

 
 

     
Figure 5. Plot of beam deflection during impact             Figure 6. Plot of bullet velocity 

 
2.4 Strength analysis of target elements  
 Accepting the duration of impact t =2.5 � 10

-5 
s, we received that deformation wave can spread 

on 0.125 m, which is less than distance to the supports. In the view of this, boundary conditions are 

not influence on the beam vibration and beam may be considered as infinite beam on the elastic base. 

This solution was executed with help of dynamic module of program Plaxis-8v (Delft, the 

Netherlands) [4]. Elastic base was taken with vanishingly small spring factor, sinusoidal form of 

impact impulse is assumed, and then the maximum value of impact force is equal 148 kN.  

(6) 
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 Some results are presented bellow. In Fig. 7, 8 beam deflection and bending moment in by the 

end of impact are given; maximal bending moment and stress Mmax =0. 59 kNm, σmax=252 MPa. In 

Fig. 9 the vibration motion of the points in the middle and in the end of screen are presented.  

Maximal bending moment in the post Mmax=1.27 kNm, σmax=132 MPa is observed when 

bullet hits its upper end. 

  Shaft receive maximal loading when bullet hits the lower corner of screen and post. Maximal 

bending moment in shaft Mmax=0.06 kNm, σmax=146 MPa, maximal share force in post which create 

bending moment in shaft Qmax= 7.0 kN. In Fig. 10 the vibration motion of the points in the middle of 

the shaft and under the bearing are presented. 

 Designed size of elements is enough for dynamical load acceptance.  

 Using principle of moment of angular momentum for the system as rigid body we can 

calculated the post-impact angular velocity 
 

Zf J)MLS( ���� , 

 

 where Mf is friction moment in bearing, it may be neglected during impact. The target receive 

maximal angular velosity when bullet hits the upper screen edge – ω0max=2.86 s
-1

, minimal angular 

velosity when  the lower edge ω0min=1.05 s
-1

. Further motion of target screen with this initial 

condition is shown in Fig.11-12.  

 

 
Figure 7. Beam defection after impact 

 

 
Figure 8. Bending moment in beam after impact 

 

     

Figure 9. Point A (middle of target beam) and point D (end of beam) motion 
 

 
         Figure 10. Vibration of shaft: point C- middle of shaft, point B-under bearing 
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Figure 11. Target screen rotation angle dependence on time φ=φ(t) 

 

 
Figure 12. Target screen angular velocity dependence on time ω=ω(t) 

 

Conclusions 

Above cited research shows that the duration of impact is very important for all design 

calculations. In order to allow free rotation of the target screen on shaft, its deflections and residual 

deformations under action of the dynamic impulses are inadmissibles.  

Executed tests field test of designed target confirmed the correctness of details dimensions: 

measurements of shaft deflection confirmed the absence of the permanent residual deformation, 

appearance test showed the absence of damage. Local deformations in a place of bullet impact on the 

screen is also not find out.  
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Abstract 
Quasi-satellite orbits (QS-orbits) are studied in the framework of restricted spatial circular three-body 
problem. By use of double numerical averaging evolutionary equations the long-term behavior of 
asteroid's orbital elements is described. Special attention is paid to possible transitions between the 
motion in QS-orbit and another types of orbits existing at 1:1 resonance. As an example of the motion 
in QS-orbit the dynamics of near-Earth asteroid 2004GU9 is considered. 
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Introduction 

The investigations on long-term evolution of asteroid's orbits are crucial to understanding the 

route through which the present configuration of the Solar System came to be. In this connection the 

so-called co-orbiting asteroids (which share their orbits with major planets) attract the special 

attention: are they the primordial remnants of the building blocks of the corresponding major planet or 

migrants from the other parts of the Solar System? 

The most well known examples of co-orbits in natural objects are provided by Trojan groups of 

asteroids and by asteroids moving in horseshoe orbits. These asteroids are precluded from having 

relatively close encounters with their host planets. However, there exists another class of co-orbiting 

objects in which the opposite is true: they remain very near to the host planet eternally or, at least, for 

long enough time. Since typically they never enter the planet's Hill sphere, they cannot be considered 

as satellites in the usual sense of the word. In order to emphasize this specific they are called quasi-

satellites (QS). The motion of asteroid in QS-regime corresponds to 1:1 mean motion resonance with 

resonance argument @ 7 7�� � librating around 0 (7 and 7� are the mean longitudes of the asteroid 

and the planet respectively).  

For the first time the existence of QS-orbits was discussed probably by J.Jackson at the 

beginning of twentieth century [2]. The recent increase of interest to QS-orbits is inspired by the 

discovery of the real Earth's quasi-satellites (e.g., [1]).  

Since outside the Hill sphere the gravity field of the planet is weak enough, the QS orbit can be 

treated as a slightly perturbed heliocentric Keplerian orbit. This offers great opportunities for 

analytical consideration of the motion in QS orbit. Different examples of perturbation technique 

application can be found in [4],[5],[6].  

1. Double Averaged Equations Describing the Dynamics 
at 1:1 Mean-Motion Resonance 

In the case of mean-motion resonance three dynamical processes can be distinguished: "fast" 

process corresponds to planet and asteroid motions in orbit, "semi-fast" process is a variation of the 

resonance argument (which describes the relative position of the planet and the asteroid in their orbital 
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motions), and, finally, "slow" process is the secular evolution of the orbit shape (characterized by the 

eccentricity) and orientation (it depends on the ascending node longitude, inclination and argument of 

pericenter).  

To study the "slow" process we constructed the evolutionary equations by means of numerical 

averaging over the "fast" and "semi-fast" motions. As a specific feature of these evolutionary 

equations we should mention that their right hand sides are not uniquely defined by values of the 

"slow" variables in some domains of these variables. The ambiguity appears since the averaging can 

be done over "semi-fast" processes with different qualitative properties - in other words, it can be 

done over QS-orbit, HS(horseshoe)-orbit, etc. The consideration of this ambiguity provides us an 

opportunity to predict whether  the motions in QS- or HS-orbits are permanent or not; for non-

permanent motions in QS-orbits the conditions of capture into this regime and escape from it can be 

established. More details can be found in our forthcoming paper [7]. 

 

2. Example: Dynamics Of Near-Earth Asteroid 2004GU9 
 

Asteroid 2004GU9 moves currently in a QS-orbit  (Fig. 1); its osculating elements are 

presented in Table 1. We chose this asteroid among the other quasi-satellites of the Earth due to the 

absence of close encounters with Venus and Mars - it justifies to some extent the consideration of the 

secular effects in its motion on the base of evolutionary equations obtained under the scope of RC3BP 

(we realize that this model is insufficient for investigation of real asteroid dynamics; we want only to 

provide better understanding of the time scales and to illustrate some other quantitative characteristics 

of QS-mode of orbital motion).    

 
Table 1. Osculating orbital elements of asteroid 2004GU9.  

Epoch: March 14, 2012 (JD2456000.5) 

Element Value 

a (AU) 1.001056350821795 

e .1362904920360489 

i ( ) 13.64944749947083 

Ω ( ) 38.74489028357296 

ω( ) 280.625598836612 

M( ) 217.2153150061352 

Note. Orbital elements were taken from JPL Small-Body Database 

 

Figure 1. The projection of the asteroid 2004GU9 trajectory (from March 14, 2012 to March 14, 2112) 
on the plane of the Earth (E) osculating orbit in the reference frame corotating with the Earth.   

Fig. 2 demonstrates the behavior of the resonance phase @  according to the results of direct 

numerical integration of the equations of motion corresponding to RC3BP with the initial values 
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provided by the elements in Table 1 and the mass parameter 
63.04 10� �� �  (we added the mass of 

the Moon to the mass of the Earth). As one can see, the motion in a QS-orbit will last for 

approximately 500 years, with a subsequent transition to an HS-orbit. 

 

 
Figure 2. The behavior of the resonance phase @  of 2004GU9 

 

The graphs in Fig. 3 demonstrate that our evolutionary equations provide an accurate 

description of secular evolution. 

 

 
Figure 3. Evolution of 2004GU9 orbital elements. The stair-step lines correspond to the result of the 

direct integration of the motion equations, smooth lines characterize the secular behavior according to 

evolutionary equations 
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Keywords
Coupled systems, Oscillations, Stabilization

1Trapeznikov Institute of Control Sciences, Moscow, Russia
2Trapeznikov Institute of Control Sciences, Moscow, Russia and Lomonosov Moscow State University, Moscow,

Russia

*Corresponding author: ivbar@ipu.ru

Introduction

Considered is a model containing coupled systems (MCCS) described by the system of ordinary differen-

tial equations (ODE) which contains autonomous subsystems. The subsystems in the systems are coupled,

the intensity of coupling being determined by a real parameter ε: the coupling vanishes as ε = 0 such

that subsystemes become independent. Parameter ε can be either scalar or vector; it represents in the

vector case the hierarchical structure of subsystems constituting the system. The subsystems, either linear

or nonlinear, can be of any order. When ε is small we have a model with weakly coupled subsystems

(MWCS).

The Solar system can serve as a natural example of the MWCS. Its mathematical description

represents an N-planet problem, which considers the motion of N + 1 gravitating bodies with one of

them largely superior in mass (the “Sun” and the “planets”). When the interaction between planets is

neglected the problem decomposes to N independent sun-planet problems, and the influense of other

planets in a particular sun-planet problem can be described in the frame of theory of perturbations. The

sun-planets-satellites system is an example of a two-level MWCS.

Another example of the MWCS is the translational-rotational motion of the artificial earth satellite.

Since the size of the satellite is much less than the distance to Earth, translational and rotational motions

weakly influence each other. Here the ratio between the size of the satellite and the satellite-earth distance

can be taken as parameter ε . Some other examples of MWCS: a system of interacting moving objects

(such as robots, aircrafts, etc.), chains of oscillators, Sommerfeld’s sympathetic pendulum, spring systems,

resonance shaker screen, and so on.

A natural approach to investigate dynamics of the MWCS was proposed in [1]. This paper is devoted

to the problems of oscillations existance and bifurcations, of stability and stabilization for the main

oscillations mode.

1. An Approach to Study the MWCS Dynamics

It is clear that the dynamics of a subsystem affects the dynamics of the whole system. When the behaviour

of all but one subsystems is completely described, we need to describe the dynamics of a subsystem under

a given influence. However, forces not taken into account can result in qualitative dynamic effects. For
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example, the restricted 3-body problem (introduced in 1764 by L. Euler) does not regard the influence of

the small mass point onto the other points, and therfore, does not comply with Newton’s 3rd law [2]. The

nonrestricted problem statement yields [2] the abrupt instability when the parameters tend to resonance

ones. Thus, it is logically justified to decouple the subsystems of the whole system, to study them

separately and then to transfer obtained results to the initial system. This approach is widely used in

stability theory and control [3–8]. In the vector Lyapunov function method, which was implemented

to obtain conditions of asymptotic stabilty by Matrosov and his disciples [3–5], absolute values of

interactions between subsustems were estimated. Merkin and Zubov [6, 7] used decoupling in order to

split up precession and nutation systems in the gyroscopic system. Pyatnitsky, Chernousko, as well as

their disciples, obtained decoupling through control [8, 9].

An MWCS splits up as ε = 0, in other words, subsystems, which constitute an MWCS, decouple

naturally. As for interactions between subsystems, they are taken into account according to Newton’s 3rd

law, i.e. to an action there is an equal reaction. The last approach, compared to that of [3–8], allows to

study dynamical properties in greater details.

Examples above illustrate that MWCSs really exist, regardless of which way to study them we choose.

Paper [1] proposes a natural approach that reflects the essence of the MWCS: subsystems are categorized

according to their dynamical properties, and different links of categories are analyzed. Let us clarify this

by using an example of the simple stability problem.

Suppose that an MWCS contains subsystems categorized according to stability by linearization. Then,

in order to analyse stability of the whole MWCS we need to consider only two links: 1) all subsystems

are stable; 2) at least one subsystem is unstable.

2. Oscillations, Bifurcation, Stability, Stabilization, and Resonance in MWCS

Let us implement our approach to study oscillations, bifurcation, stability, stabilization, and resonance.

We consider single-frequency oscillations of subsystems. Subsystems are supposed to be autonomous.

While a linear subsystem admits isochronous single-frequency oscillations, for a nonlinear system we

have either a cycle, or a family of oscillations with the period T depending on a single parameter [10, 11].

Definition 1. [12, 13]. A point of the family of single-frequency oscillations is called ordinary point

(o-point) if dT �= 0 for this point; otherwise (dT = 0) it is called critical point (c-point).

Remark. A c-point can degenerate into an equiliprium (e-point).

Note that the period behaviour in the case of symmetrical periodic motions was studied in [14] for

initial points in the interior and on the boundary of a connected domain.

Interactions between subsystems of MWCS are cosidered in the frame of theory of perturbations.

When connections don’t depend explicitely on time, we have an autonomous MWCS. Otherwise, we

have a special type of quasiautonomous system.

Oscillations, stability, bifurcations, and stabilizations in quasiautonomous periodic systems of general

form
dx

dt
= X(x)+µX1(µ,x, t), x ∈ Rn

(µ is a small parameter) were studied in [12, 13, 15–18]. It was established that the oscillation of the

generating autonomous system in an o-point differ from those of perturbed quasiautonomous system by

O(µ) [12]. As for c-point, resonant oscillations can occur [17]. The same holds for equilibrium [16].

Definition 2. Oscillations mode in the perturbed quasiautonomous system is called o-mode, c-mode,

and e-mode, according to the type of the point of oscillations family in the generating autonomous system

(definition 1).

We will later omit the term “mode” when it does not result in misunderstanding.

Consider a periodic MWCS that is supposed to contain m subsystems that become independent as

ε = 0. Each subsystem has its own mode, according to definition 2. Then the oscillations mode in the

whole system depends on the modes in the subsystems. Hence, we have the following qualitatively

different combinations of modes: o-o, o-c, o-e, c-c, c-e, e-e, o-o-c, o-c-c, o-e-e, c-c-e, c-e-e. Several

modes of the same type may occur in each combination.
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The genral statement of the problem of oscillations, bifurcations, stability, and stabilization for

MWCS is as follows: to find existence conditions for oscillations, describe bifurcation scenario, obtain

stability conditions for oscillations in NWCS and stabilization conditions in terms of linking controls,

analyze resonance effects.

Each autonomous subsystem may contain its own small parameter, the coupling of subsystems in the

MWCS being described by the parameter ε . This approach allows a subsystem to be quasiautonomous.

However combinations of modes are numerous, there are only two or three main ones. This is due to

the fact that, o-point is a rule for an autonomous system (see Law in [10,11]). Hence, the combination of

o-modes is worth being studied first. We call this combination the main mode of oscillations in MWCS.

3. Main Oscillations Mode

Let’s outline the approach to study the main MWCS oscillations mode. We need to solve the following

problems: a) describe an MWCS containing two subsystems of the second order; b) find necessary and

sufficient conditions for the oscillations of that system; c) describe bifurcation scenario; d) construct

oscillations of the system; e) find stability conditions for the oscillations; f) find conditions of the

stabilization by small controls; g) generalize the results to the case of arbitrary number of subsystems of

any order.

Cinsider a sufficiently smooth 2π-periodic MWCS in state space R4 containing two nonlinear

subsystems of the second order (ε is a small parameter).

dx∗s
dt

= X∗
0s(x

∗
s ,y

∗
s )+ εX∗

1s(ε,x
∗
1,y

∗
1,x

∗
2,y

∗
2, t),

dy∗s
dt

= Y ∗
0s(x

∗
s ,y

∗
s )+ εY ∗

1s(ε,x
∗
1,y

∗
1,x

∗
2,y

∗
2, t)

s = 1,2

(1)

Both subsystems are supposed to allow 2π-periodic motions as ε = 0. An autonomous system have

an alternative: a periodic motion is either a cycle or a member of a family. We consider the second case.

Denote Ts(hs), s = 1,2 the period of a subsystem, which depend on its own parameter hs, members of

oscillations family being divided into two sets of o-points and c-points [12, 13]. Since dTs(hs) = 0 for

a c-point, we can conclude that almost all members of the oscillations family are o-points. Note that

isochronous oscillations are realized in linear subsystems.

Each subsystem (1) permits a family of periodic motions as ε = 0 (γs is the shift along the trajectory).

x∗s = ϕ0
s (hs, t + γs), y∗s = ψ0

s (hs, t + γs), s = 1,2 (2)

Functions (2) represent a conditionaly periodic solution of MWCS. They include 2π-periodic solutions

as h = h∗,h∗ = (h∗1,h
∗
2). We find a 2π-periodic solution of MWCS at ε �= 0 that tends to the 2π-periodic

solution with h = h∗ as ε → 0. Actually, we find the set of γ1, γ2 that guarantees the property above.

Reduce the linear part of the generating system to a system with constant right-hand side [12]. An

o-point implies a Jordan box, so we have the system (Xs, Ys are nonlinear with respect to xs,ys).

dxs

dt
= Xs(xs,ys, t + γs)+ εX1s(ε,γ1,γ2,x1,y1,x2,y2, t),

dys

dt
= xs +Ys(xs,ys, t + γs)+ εY1s(ε,γ1,γ2,x1,y1,x2,y2, t)

s = 1,2

(3)

3.1 Oscillations Existance and Bifurcation

With the aid of (2) and (3) introduce functions

Cxs(γ1,γ2) =
∫ 2π

0
X1s(0,ϕ1(h

∗, t + γ1),ψ1(h
∗, t + γ1),ϕ2(h

∗, t + γ2),ψ2(h
∗, t + γ2), t)dt

s = 1,2
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and write the system of equations.

Cxs(γ1,γ2) = 0, s = 1,2 (4)

Equations (4) are called amplitude equations. They represent necessary conditions for a periodic solution

of MWCS to exist. In the case of simple root of (4), these equations become sufficient conditions. The

following theorem holds.

Theorem 1. Let MWCS (1) be in the main mode. Consistency of equations (4) is necessary condition

of oscillations of (1). If there exists a simple root of (4), then there exists an isolated periodic solution of

(1) (sufficient condition) that differs from the periodic solution of the generating system by the perturbation

magnitude. In addition, if the sufiitient condition is satisfied, there exist at least two periodic solutions of

(1), i.e. the bifurcation of the periodic solution of the generating system occurs.

Theorem 1 is proved with the aid of the implicit function theorem.

3.2 Stability of Oscillations

Given a simple root (γ∗1 ,γ
∗
2 ) of (4), we construct a periodic solution of MWCS. Then write variational

equations of (1) for this periodic solution. The zero characteristic exponent λ splits up as an isolated

periodic solution appears. We can write the following.

λ = α1ε1/2 +α2ε +o(ε) (5)

Appropriate calculations are given in [12]. Numbers α1 and α2 for λs can be efficiently calculated [12] in

terms of coefficients of (4), α1 being roots of a biquadratic equation.

Theorem 2. Consider MWCS in the main mode. If

α2
1s ≤ 0, α2s < 0; s = 1,2

then the periodic solution of MWCS is asymptotically stable. If either

α2
1s ≤ 0, α2s > 0

or α2
1s > 0 for at least one subsystem s, then the periodic solution is unstable.

3.3 Stabilization

We can solve two stabilization problems basing on Theorem 2. The first problem concerns the stabilization

of a periodic motion of the generating system, the second one deals with the periodic motion of MWCS.

Both problems are solved with the aid of small periodic in t controls, which are linear in state coordinates.

3.4 Example

Theory above can be illustrated by the example of two coupled conservative one degree of freedom

mechanical systems. For example, we can consider coupled pendula under perturbations. Let conservative

systems have potential wells, such that each of them permits oscillations in the o-mode. So we have the

main mode of MWCS, which can be studied using the above methods.

4. Conclusion

Introduction of the concept of model with weakly coupled subsystems (MWCS) was inspired by a number

of applications. The study of MWCS is based on the natural approach: subsystems are categorized

according their dynamical properties, then different links and combinations of subsystems are analyzed.

This approach allows to solve problems of existance of oscillations, their bifurcations, and stability and

stabilization. Corresponding results for a single subsystem were obtained earlier.
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In the first part of the paper, the definition and mathematical models of parametric oscillations are 
discussed. It is shown that the universally adopted definition of such oscillations is not quite correct. It 
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Introduction 

Parametric oscillations occur in problems of mechanics, control and other fields of science and 

technology. There is a great number of publications, devoted to analytical and numerical study of  

stability of specific parametrically excited systems; at the same time, qualitative theory is developed 

to a much lesser extent. The known general results on stability regions are obtained by asymptotic 

methods and, therefore, are applicable only to systems with small parametric excitation.  

Below the definitions of parametric oscillations in linear and nonlinear systems and the 

correctness of some parametric mathematical models are discussed; for parametric Hamiltonian 

systems,  some general properties of stability regions are indicated. 

1. On the definition of parametric oscillations 

Various systems in mechanics, dynamic stability of elastic systems and control theory are 

described by the linear differential equation with periodic coefficients 

xtAx )(��� ,                                                                 (1) 

nx RI , 4 5nkiik tatAtA
1,

)()2()( ���� ���� . 

Often, the coefficients of (1) are some varying parameters of the system, so, oscillations in such 

system are called parametric (defining them as caused by periodic fluctuations of the system 

parameters). 

This definition is not quite accurate. First, the coefficients of  (1) may not be the parameters of 

the system, for example, in parametric models of bridges in wind flow, the periodicity of the  
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coefficients is due to the Karman vortices shedding. [1]. Second, the periodic fluctuations of the 

parameters do not necessarily lead to an equation with periodic coefficients. Thus, small oscillations  

of a pendulum with the suspension point, vibrating in the vertical direction, is described by the 

equation 

0),(( 2
0 ��� xtpx ����� , 

 

where x  is an angle coordinate and 
)2,(),( ����� �� tptp  is a reduced acceleration  of the  

suspension point. If the latter is regarded as a parameter, then the oscillations of the system comply 

with the above definition. But then horizontal acceleration of the suspension point should also be 

regarded as a parameter, yet, in this case the oscillations are described by an equation with a  constant 

coefficient 

Similarly, the vibrations of an elastic rod, compressed by a longitudinal periodic force, is 

described by equation of the form (1) , while the same force applied perpendicular to the axis of the 

rod, results in forced oscillations. On the other hand, the vibrations of a circular rod under a 

distributed periodic radial loads are described by an equation with periodic coefficients, etc.  

Given these considerations, it would be more accurate to simply call (1) by an equation with 

periodic coefficients, without introducing any special term. As soon, however, the term «parametric 

oscillations» became generally accepted, it is appropriate to understand by it oscillations in any 

homogeneous linear system with periodic coefficients, regardless of their physical sense.  

Consider now the nonlinear system  

         ),( txfx ��� ,                                                                    (2) 

nx RI ,   )2,(),( ��� �� txftxf ,   0),0( �tf . 

 

Because of the last condition, 0�x  is an equilibrium point. Therefore, the corresponding 

linearized equation is of the form (1). For this reason, it is natural to term the families of periodic 

solutions, emanating from this point, by parametric oscillations.  

 

2.  Parametric models of dynamic systems. 

Consider the self-oscillating system 

 

)(xfx �� ,                                                                        (3) 

nRxI , 0)0( �f . 

It can be written as 

xxCx )(�� ,       F�
1

0

)()( dssxfxC x . 

 

Assume that (3) has a periodic solution. )()( Ttxtx �� . Obviously, it is also a solution of the 

equation  

xtAx )(�� ,   ))(()()( txCTtAtA ��� .                                            (4) 

 

Thus, any periodic solution of an autonomous system, having an equilibrium position, 

coincides with a solution of a linear system with periodic coefficients. In this connection, it may seem 

that the stability of this solution can be investigated with the help of equation (4), using the results of 

the theory of linear parametric oscillations. 

This approach, however, is incorrect. The coincidence of a solution in systems (3) and (4) does 

not mean that it is simultaneously stable or unstable in the both systems. Indeed, the stability of )(tx  

in (3) depends on the corresponding variational equation  
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ytAy )(0�� ,     ))(()(0 txftA x� , 

which is different from (4). 

The coincidence of a solution of a self-oscillating and a parametric system can lead to an error 

when constructing the mathematical model for a physical system. The parametric model of a swing 

(often presented as an evident example of parametric oscillations) may serve as an example of such an 

error. 

When riding on a swing, one squats and raises while going down and up, respectively. In steady 

motion, the angular coordinate and reduced length of the swung, )(tx and )(tL , are periodic functions 

with )(tL  taking its maximum and the minimum values at. 0)( Btx p  and )(max)( txtx pp B . 

Clearly, the equation of a pendulum with the periodic length )(tL , 

 

0sin)()(2 ���,.

*
+-

)
xtgL

dt

dx

dt

dx
tL

dt

d
D ,                                                   (5) 

 

admits the same solution )(tx p , what, at the first sight, proves the parametric model of a swing.   

Meanwhile, this model is wrong.  

It turns out [2,3] that, contrary to the apparent stability of  oscillations of a sing, the solution 

)(tx p  in (5) is unstable. This discrepancy is explained as follows. In a swing, the function )(tL  does 

not set a priori, but is determined by the current position of the swing. Under an external perturbation,  

)(tL  becomes non-periodic along with the swing for as long as the initial motion is restored. On the 

contrary, in (5) the function )(tL  remains periodic regardless of any disturbances.  

Thus, the swing is a self-oscillating system (a more detailed justification of self-oscillatory 

nature of the swing can be found in [3]). Note that while these considerations are obvious enough, 

proponents of the parametric model still exist [4].   

The above considerations show that for any physical system, the use of a parametric model is 

justified only when the exciting forces are independent on the phase coordinates, being solely  the 

functions of time 

 

3. Parametric oscillations in Hamiltonian systems 

Consider the equation 

 

                 xtHxJ ),( ���� ,                                                                           (6) 
nx 2RI ,  0),2(),( ��� ����� tHtH ,     0)0,( HtH ��  

                     

Here T/2�� �  is the frequency of the parametric excitation, the parameter �  describes its 

intensity, J  is a nonsingular skew-symmetric matrix, ),( ��tH  is a symmetric positive definite 

matrix. Note that the vector Hill equation  

 

0),(),( ��,.

*
+-

)
ytC

dt

dy
tM

dt

d
���� ,                                             (7)  

0),2(),( ��� ��� MM ,  0),,2(),,( ��� ����� CC , 

 

which is often found in applications, can be reduced to (6).  

Fundamentals of the stability theory for equation (6) were laid by Lyapunov and Poincare, 

and the further development is in the works by Krein, Gel’fand, Lidskii, Yakubovich and other 

researchers [1]. In [5] the proofs of main theorems of the theory were significantly simplified and 

some new facts were established. 
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In applications, the most interesting are the stability regions in the plane � ,� . The known 

general results of such kind are obtained via asymptotic methods and are applicable only to systems 

with small parametric excitation. So, popular ideas on the stability of these systems are based on the 

results of numerical studies of specific systems, primarily with one degree of freedom 

The following are non-local results on the stability regions (some of which can be found in 

[6,7]) 

As is known, the instability regions in the plane ��,  adjacent to the points   

,0��  nkp
r

kp
q ,...,1, , 

00

�
�

��
��

�� , 

where 0
p�  are the natural frequency of system (6) at 0�� . 

Let kC  be a region of stability. We call it convex in �  when any vertical  segment 21KK  lies 

in this region, provided that kCKK I21, . 

 

Theorem 1. The regions kC  are convex in � .  

Thus, for any � , all  the  points between the boundaries of neighboring instability regions, 

belong to a stability region kC  (Figure 1). Clearly, Theorem 1 greatly facilitates stability analysis in 

system (6). Indeed, instead of checking stability at every point of the plane � ,� , it is sufficient to 

calculate the boundaries )(���
k   

As is known [1], for small � , the converse is true, i.e., at any point between )(���
�   and 

)(���
k , the system is unstable. It appears, however [5], that this may not hold as �  increases, 

namely, at some points of the boundaries )(���
k ,  new stability  regions, going inside the  instability 

ones, may arise  (see point K  in Figure 1). Note that such an effect exists only in systems with 3>n . 

 

 

 

 

 

      

 

 

 

 

 

 

 

Figure 1.  Stability regions in Hamiltonian systems 

 

Now assume that ),( D�tHH � ,  and ),( D�tH  increases with D (in the sense of the quadratic 

form). 

 

 

Theorem 2. The functions )(���
i  increase with an increase in the Hamiltonian. 
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For system (7), this theorem implies the following 

Corollary. In (7), )(���
i  increase  with ),( ��tC  and decrease with ),( ��tM . 

 

Note that, in accordance with the classical Rayleigh theorem, in an autonomous system, the 

natural frequencies 0
i�  increase when C  increases or M  decreases. Thus, the above corollary 

extends  the Rayleigh theorem  to the critical frequencies )(���
i  of the parametric resonance. 

This conclusion holds for the system 

 

0)( ��� ytCyKyM ���� , 

ny RI , 0�M ,   0)( �tC � , 

 

where K  is a skew-symmetric matrix of gyroscopic forces (note that for the natural frequencies of the 

corresponding autonomous system, such result is set in [8]) 

 

Conclusions 

1. It is shown that the existing definition for parametric oscillations is not quite correct, and some 

modifications for linear and nonlinear systems are proposed.  

2. It is found that the coincidence of a periodic solution of autonomous and parametrically 

excited systems may lead to a wrong choice of the mathematical models for some systems.  

3. Some general non-local results on the stability regions of parametric Hamiltonian systems are 

indicated.   

 

References 

[1] Yakubovich V.A. and Starzhinsky V.M. Linear Differential Equations with Periodic Coefficients 
and their Applications. Nauka, Moscow, 1972 (in Russian). 

[2] Pinsky M. and Zevin A. Oscillations of a pendulum with a periodically varying length and a model 

of swing. Int. J. Non-Linear Mech., Vol.34, pp.105-109, 1999. 

[3] Zevin A.A. and Filonenko L.A. Qualitative study of oscillations of a pendulum with periodically 

varying length and the mathematical model of swing. Prikl. Mat. Mekh,  Vol.71, pp. 989-1003, 2007 

(in Russian). 

[4] Belyakov A.O., Seyranian А.P. and Luongo A. Dynamics of the pendulum with periodically 

varying length. Physica D, Vol. 238, pp. 1589-1597, 2009. 

[5] Zevin A.A. New approach to the stability theory of linear canonical systems of differential 

equations with periodic coefficients. J. Appl. Maths. Mechs., Vol.68, pp. 183-198, 2004.  

[6] Zevin A.A.. Generalization  of the Rayleigh theorem to nonlinear and parametrically excited 

systems. J. Sound Vibr., Vol. 171, pp.473-482, 1994. 

[7] Zevin A.A. Analysis of stability and instability regions in parametrically excited Hamiltonian 

systems. Nonlinear Dynamics, Vol.12, pp.327-341, 1997. 

[8] Zhuravlev V.F. Generalization of the Rayleigh theorem on gyroscopic systems. Prikl. Mat. Mekh, 

Vol. 40, pp.606-610, 1976 (in Russian).  

 

 



191 

Proceedings of the 4th  International Conference on Nonlinear Dynamics 

ND-KhPI2013 

June 19-22, 2013, Sevastopol, Ukraine 

Aircraft Landing Gear Shock Absorbers with 
Rectangular Load Characteristics 

Aleksey N. Zotov1, Anvar R. Valeev2, Aleksey A. Kudreyko3*,  
Natalia S.  Golovkina4 

Abstract 
A numerical study of motion of landing gear shock absorber in vibro-impact system is carried out. The 
assembly consists of vibration absorbers with rectangular load characteristics induced by dry friction 
forces.  The theoretical results confirm the absence of bounce on landing. 
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Introduction 

The problem with bouncing on landing in some aircrafts presents a difficulty for aviation. The 

loss of contact between the aircraft landing gear and the ground is potentially dangerous for aviation. 

In this article we suggest to use the landing gear vibro-impact resistant systems as vibration 

absorbers with rectangular load characteristics (hysteresis loops) induced by dry friction forces [1]. 

The configuration of our system is presented in Fig. 1 by analytic functions. We aimed to reduce the 

bounce of aircraft after landing with the vertical velocity . The solution of this problem is possible if 

after landing we put conditions on the coordinate of aircraft. 

Concept and research design 

Aircraft landing dynamic analysis is presented by the load characteristics given in Fig. 1 and 

differential equation (1), where the lift force is neglected 

))(sgn)])][(tanh[(])][(tanh[(

])[sgn)2/)](tanh[)2/(

2/)()](tanh[)2/)(((
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with initial conditions 
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where  is the coordinate of the aircraft, g is the gravitational acceleration, m is a mass of the aircraft, 

 are forces acting upon the fuselage (the friction forces are neglected). Coefficients
 

relate to the height of the hysteresis loop,  is the coordinate of the hysteresis loop for , k, k2 are 

dimensionless coefficients that determine the shape of the hysteresis loop,  are dry 

friction forces. 

Figure 1. Load characteristics of the shock absorber. 

Suppose that during halting, the overload cofficient  for the given load characteristics 

is given by
 

 
(2)   

In order to get quantitative results, determine the constants in (1). Let ,  

. Plots in Fig. 2 are obtained from the numerical solution of (1) and represent the 

coordinate of the aircraft versus time after landing for  

Data analysis and evaluation 

The analysis of the solutions of equation (1) allows us to propose that the application of shock 

absorbers with load characteristics given in Fig. 1 prevents aircraft bouncing (see Figs. 2 e, f). For any 

value of coefficient , we can always set such , that the condition 
 
 holds during the whole 

decay time. 

Figure 2. Coordinate of the fuselage versus time (а, d, e: , ).  , 

, , а) , ,  ,  b) ,  

, , , c) , , ,  , , d) , 

,   , , e) , ,  , , 

, f) ,  

, , , . 
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The value of  for the maximum deviation  is minimally determined when it ranges 

between 0,98 and 0,99 (Figs. 2 e, f). In our example, if  , then for , 

 (Fig. 2 e). To avoid the bounce for , the condition of  must hold. 

The value of the maximum deviation is . The presence of hysteresis in load 

characteristics for 0�x is derermined by ,  and has no impact on  (see Figs. 2 e, f). 

Consider the effect of the tire elasticity of the landing gear. To do this, it is necessary to 

consider a two-dimensional model as shown in Figs. 3 a, b, where all wheels are replaced by a single 

wheel. The elasticity of such wheel is defined by the function , where  is the 

constant characterizing the shape of the load characteristics (Fig. 3 c).  In general, such shape of the 

restoration force corresponds to reality [2]. However, in our case we employed a simpler model. 

Besides the tire elasticity, the wheel is acted on by the damper force, which is proportional to the 

velocity of the center of the wheel , where  is the conversion factor. The load characteristics of the 

landing gear shock absorber are shown in Fig. 3 d. 

Figure 3. Landing simulation with vertical velocity 
 

- fuselage displacemen, - displacement of the center of the gear wheel, 

- coordinates of the hysteresis loops 

a) 1 – aircraft fuselage of mass , 2 – landing gear shock absorber (mass is neglected),  

3 – wheel of mass  

b) forces acted on by each body of the system with two degrees of freedom during landing 

c) load characteristics of the gear wheel 

d) load characteristics of the landing gear shock absorber resistant system. 

The motion of the airframe for the load characteristics given in Fig. 3 b is represented by the 

following differential equations 
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where the lift force is neglected. Constants  in system (3) determine the shape of the 

hysteresis loops, 1x� , 2x� represent velocities of the fuselage and the center of mass of the landing gear, 

 is an arbitrarily given value of the static displacement of the center of the wheel. 

The initial conditions for system (3) take the form . The solution of (3) 

shows that the bounce during landing can be avoided when  and  as well as  and 

. The presence of the hysteresis loop in load characteristics for 0)( 12 �� xx does not yield any 

advantages with respect to the case when the loop is absent, i.e. . Thus, in 

the following, we will consider only resistant systems without hysteresis loop. 
The solution of system (3) is shown in Figs. 4. Regarding Figs. 4 c, d, the bounce does not occur 

because  during the time decay after landing. To achieve the condition , the coefficient 

must be greater than a boundary value. In this example, . The 9,45-g load acting on 

the fuselage (Fig. 4) is determined by .  

Figure 4. Time history diagram of the center of the wheel and fuselage 

 for the load characteristics given in Fig. 3 d . 

,   

 

а) , b) , c) , d) . 

The maximum displacement of the fuselage for such load factor is   (Fig. 4 d) and the 

maximum displacement of the center of the wheel is . The calculated displacements 

can be technically achieved. 
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Abstract 
The paper involves thorough study of non-linear vibratory oscillators and numerical methodology to 
analyze and resolute the non-linear dynamical behavior. The study involves an analysis of the Van 
der Pol oscillator and the Duffing oscillator with third and fifth degrees of nonlinearity. The equilibrium
and stability analysis of the oscillators with graphical representation of solutions in time and phase 
trajectories is simulated through XPP-AUT and MATLAB.  
It is observed by analysis of the Van der Pol oscillator that a variation of parameters, in particular, an 
increase of damping, leads to loss of sinusoidal character of the oscillator periodic motion. The 
frequency and phase place of the oscillator also change with varying parameters simultaneously. 
For the Duffing oscillator, the phase trajectories were found consistent with equations proving the 
stability and equilibrium at the observed locations. Number and character of the equilibrium states 
are analyzed depending on values of the system parameters. Saddle points and centers are obtained
and presented in the phase plot.  
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with Incompressible Potential Stream 

Konstantin V. Avramov1, Christophe Pierre2   

Abstract 
Cantilever plates with geometrical nonlinearities interacting with potential flows are considered. 

A solution of the singular integral equations with respect to the aerodynamic derivatives of the plate 
pressure drop is the basis of the proposed method of aeroelastic vibrations analysis. The Von 
Karman equations with respect to transversal displacements and the stress function are used to 
describe the plate vibrations with geometrical nonlinearity. Using the Galerkin method, the nonlinear 
dynamical system with respect to generalized coordinates is derived to describe the system 
aeroelastic vibrations. The shooting technique and the continuation algorithm are used to analyze 
bifurcations and stability of the plate self-sustained vibrations.  
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Introduction 

The singular integral equations with respect to a circulation density are used basically to 

analyze the aeroelasticity of the plates in three-dimensional potential flow. The vorticity shed from the 

trailing edge of the plate and a wake formation are taken into account. This wake effects on the plate 

vibrations. This leads to long transients, which are analyzed numerically. Then it is impossible to 

analyze in constructive way the stability and the bifurcations of the steady vibrations.   

In this paper the singular integral equations with respect to the plate pressure drop is suggested. 

The drop of the pressure outside the plate is equal to zero and the wake is not analyzed. Then the 

system steady-state vibrations can be analyzed using the single harmonic approximation in time of the 

plate drop of a pressure. Moreover, the methods for stability and bifurcations analysis, such as the 

harmonic balance, the continuation technique, nonlinear normal modes, will be used to analyze flutter.  

The approach for stability and bifurcations analysis of the plate vibrations is developed in this

paper. Assuming, that the gas is three-dimensional, potential, inviscid and incompressible, the system 

of the singular integral equations with respect to the plate drop of the pressure is derived.  

The singular integral equation with respect to the pressure acting on the plate was derived by 

Albano, Rodden [1]. The series of spatial functions were used to approximate the pressure. Katz [2]

analyzed the aerodynamics of wings by using the vortex method. Morino, Chen, Suciu [3] suggested 

the method to predict the flowing of finite thickness curved surfaces. Djojodihardjo, Widnall [4] 

suggested the numerical procedure to solve the singular integral equation with respect to a circulation 

density. Hess [5] considered the method to determine the circulation density of three dimensional 

bodies. Strganac and Mook [6] analyzed the wings flowing at arbitrary angle of attack. The vortex 

method was used to solve the aerodynamic problem.  

1. Problem formulation 



Konstantin V. Avramov, Cristophe Pierre 
 

198 

 

 

Cantilever plate interacting with gas flow is considered. If the plate is turned out in flutter, it 

performs geometrically nonlinear vibrations. Note, that the boundary conditions on the plate free sides 

are nonlinear functions of the plate displacements. In this paper the plate vibrations in potential gas 

flow accounting above-mentioned factors are analyzed.  

 

Figure 1. Sketch of the mechanical system 

 

 Transversal displacements ),,( tyxw  and the stress function ),,( tyx�  are used to describe the 

plate vibrations with geometrical nonlinearities. Then the plate vibrations are described by two Von 

Karman partial differential equations:  
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where / 0;112 2

3

?�
�

Eh
D  ?,E  are the Young’s modulus and the Poisson’s ratio, respectively; C  is the 

density of the plate material; h  is the plate thickness; c  is the coefficient of linear damping; p�  is 

the pressure drop acting on the plate. The pressure drop is determined from the solution of the 

aerodynamic problem, which is treated below.   

In this paper, the bending vibrations of the plate ),,( tyxw  in the gas flow are described by 

nonlinear finite-degree-of-freedom dynamical system. Therefore, the bending vibrations of the plate 

are expanded using the plate eigenmodes ),( yxj	  as: 
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where )(tq j  are the generalized coordinates. The stress function �  takes the following form: 

 

.),()(
2 3

1 1

��
� �

��
N

j

N

jj yxFt
?

??�                                                        (4) 

 

It is assumed, that the plate vibrations are harmonic: 

 

/ 0 / 0tttq jjj �1�6 sincos)( �B ; .,...,1 1Nj �                                  (5) 

 

The plate is streamed by three-dimensional, potential, inviscid and incompressible gas. On the 

significant distance from the plate the flow has constant velocity &U , which is parallel to x  axis 
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(Fig.1). The projections of the flow velocities on zyx ,,  axes are denoted by 

),,,(~;),,,(~;),,,(~ tzyxwtzyxvtzyxu , respectively. The velocity potential / 0txyx ,,,@  and the pressure 

),,,( tzyxp  meet the Laplace equation: 
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Now the boundary conditions for the Laplace equations (6) are considered. The velocity 

potential meets the Sommerfeld radiation condition: .0gradlim
222
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boundary condition is true on the plate surface: 
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is equal to zero on the plane 0�z  outside the plate. Thus, the pressure drop is equal to zero on the 

plate boundary S� : 

.0��
�S

p                                                             (8) 

 

2. Singular integral equations with respect to aerodynamic derivatives of 
pressure drop 

 

The aerodynamic derivatives [7] are used to obtain the perturbations of the flow induced by the 

plate vibrations: 
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Following Belotserkovskii, Skripach [8], the functions / 0zyxj ,,)0(@ , / 0zyxj ,,
)1(@ , / 0zyxp j ,,)0( , 

/ 0zyxp j ,,)1(  satisfy the Laplace equation: 
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The index j  indicates the number of eigenmodes, which induced the pressure drop.   

The solution of the second equation (11) takes the following form [9]:  
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where / 0 / 0 / 021
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1 zzyyxxr ������ ; S  is region of the plate middle plane; 
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j zyxpzyxpyxp  are aerodynamic derivatives of the plate 

pressure drop; 11, yx  are integration variables.  

The Bernoulli equation is used in the following form: 
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where &C  is the gas density. The equations (9, 10) are substituted into the equation (13) and the 

equation (5) is used. As a result, the following system of the partial differential equations is obtained: 
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The method of constants variation is used to solve the equations (14). The solution of this 

system takes the form: 
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where i  is the imaginary unit. The solution of the equation (14) takes the form:  
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The expansions (9, 10) are substituted into the boundary condition (7). As a result, the time 

independent boundary conditions are obtained: 
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The solution (12) is substituted into the equation (17) and the result is substituted into (17). As 

a result, the following system of singular integral equations is obtained: 
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The kernels )~,~( yxKC  and )~,~( yxKS  satisfy the following relations: &�
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The following dimensionless variables and the parameters are used: 
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where L  is the Strouhal number. The system of the singular integral equations (18) with respect to 

dimensionless variables and parameters takes the following form: 
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where S  is the region of the plate middle plane with respect to the dimensionless coordinates.  

The equation (20) is differentiated with respect to x  and the result is substituted into the 

equation (21). Then the following singular integral equation is derived: 
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The index j  indicates on the number of eigenmode, which induced the pressure. The equation 

(21) is differentiated and the result is substituted into (20). Then the following singular integral 

equation is derived: 
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Numerical vortex method [7] is used to solve the system of singular integral equations (22, 23).  

 

3. Finite – degree-of-freedom model of system vibrations 

 

In order to study aeroelastic vibrations, the Galerkin method is applied to every equation of the 

system (1, 2), separately. The solution (3, 5) is substituted into the equation (2) and the Galerkin 

method is applied. The system of linear algebraic equations with respect to the generalized 

coordinates )(tj?�  is derived: 
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The solution of the system (24) takes the form: 
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The stress function (4) is substituted into the equation (1) and the Galerkin method is applied. 

As a result, the nonlinear dynamical system with respect to the generalized coordinates is derived in 

the following form: 
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here i�  are eigenfrequencies of the plate linear vibrations. The dynamical system (26) with respect to 

dimensionless variables and parameters takes the form: 
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4. The results of the numerical analysis 

 

 

Figure 2. Bifurcation diagram of self-sustained vibrations  
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The numerical analysis of the dynamical system (26) is carried out using the combination of the 

shooting method and continuation technique. The results are shown on the bifurcation diagram 

(Fig.2). If 1L  is decreased, the equilibrium of the plate loses stability and the Hopf bifurcation takes 

place. Thus, the plate self- sustained vibrations occur. The Naimark- Sacker bifurcation is observed in 

the point 2H . As a result of this bifurcation, the almost periodic and chaotic motions are observed.  
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Introduction

Consider an equation

∂u

∂ t
= µ

∂ 2u

∂x2
+u−u3, 0 < x < π, t > 0 (1)

with boundary conditions of the second kind

ux(0, t) = 0, ux(π, t) = 0 (2)

and initial conditions

u(x,0) = u0(x), (3)

where is a µ positive parameter. In the space
0

H1(0,π), this equation generates a dynamical system. Each

solution of this equation approaches, as t → ∞, one of its stationary solutions.

The original system of equations belongs to the class of trigger systems with diffusion: –1 and 1 are

exponentially stable spatially homogeneous stationary points for any µ > 0 and 0 is an unstable point

whose instability index is equal to 1 for µ > 1. The transition of the parameter µ through 1 increases the

instability index of the trivial solution by an order of magnitude. As a result, two branches ±ϕ1(x,µ) of

spatially inhomogeneous stationary points with instability index 1 continuous in µ bifurcate at the origin.

By using the method of central manifolds, we arrive at the following equality:

ϕ±
1 (x,µ) =± 2√

3

√
1−µ cosx+O(1−µ).

As the parameter µ decreases and passes through k−2, k = 2, . . . , the instability index of zero

increases (each time) by an order of magnitude. As a result, a pair of stationary points ±ϕk(x,µ) with

instability index k separates from zero. The following inequality is true:

ϕ±
k (x,µ) =± 2√

3

√
1− k2µ coskx+O(1− k2µ).

To study the behavior of the indicated points as the parameter µ deviates from the corresponding

bifurcation value, we construct a hierarchy of simplified models of the original problem.
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1. Galerkin Approximation

We set

u = z0 +
N

∑
k=1

zk coskx (4)

and substitute this representation in (1). Further, equating the coefficients of coskx, k = 0, ...,N, we arrive

at the gradient system of equations

żk =−∂GN(z,µ)

∂ zk

, k = 0, ...,N. (5)

In system (5), the trivial solution is unstable with instability index 1 for µ > 1. As the parameter

µ passes through 1, the instability index of zero increases by an order of magnitude. As a result, two

branches of fixed points ±z1(µ,N) defined on [0,1) separate from zero. The zero and all even components

of z1(µ,N) are equal to zero. The odd components z1
2k+1(µ,N), k = 0,1 . . . , are not equal to zero and,

in addition, (−1)kz1
2k+1 > 0, z1

1 >−z1
3 > z1

5 > .. . .

Hence, we arrive at the following approximate equality:

ϕ1(x,µ)≈
m

∑
k=0

z1
2k+1(µ,N)cos(2k+1)x, (6)

where 2m+1 = N if N is odd and 2m = N if N is even.

The presented analysis of Eqs. (6) enables us to make the following conclusions: In the vicinity of 1,

the function ϕ1(x,µ) has a quasiharmonic form with low amplitude. The amplitude of ϕ1(x,µ) increases

as µ decreases. The maximum values of | ϕ1(x,µ) | are attained at the points 0 and π. The growth of

amplitude of the function ϕ1(x,µ) terminates as soon as it becomes equal to 1. The subsequent decrease

in µ is accompanied by the growth of intervals adjacent to 0 and π in which ϕ1(x,µ) takes constant

values 1 and –1, respectively. As soon as µ attains a certain value depending on N according to (6),

we observe the development of the Gibbs phenomenon: ϕ1(x,µ) begins to oscillate. As N increases,

the amplitude of oscillations decreases and their frequency increases. Thus, for small µ, ϕ1(x,µ) is a

solution of the internal shock (transient) layer.

In Figure 1, we present the plot of the function ϕ+
1 (x,µ) for various values of the parameter µ .

Figure 1. Plot of the function ϕ+
1 (x,µ) for µ = 0.5, µ = 0.09, µ = 0.01, µ = 0.001
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We now pass to the problem of stability of ϕ1. As already indicated, ±ϕ1(x,µ) are born unstable

with instability index 1. The stationary points ±z1(µ,N) are also unstable with instability index 1. The

spectrum of the stability matrix z1(µ,N)

−∂ 2GN(z,µ))

∂ z2
|z=z1(µ,N) (7)

lies on the real axis and its maximal point λ1(µ,N) belongs to the positive semiaxis. The other points of

the spectrum z1(µ,N) lie on the negative semiaxis. The value of λ1(µ,N) decreases as µ decreases from

1. In this case, the points of the spectrum become closer. The minimal point of the spectrum increases

and its maximal negative point decreases. The indicated dynamics of the spectrum takes place within

the interval (0.11,1) of changes in the parameter µ. Beyond this interval, the dynamics of λ1(µ,N)
depends on N. We now describe the behavior of λ1(µ,N) for N greater or equal to N = 5. The function

λ1(µ,5) is monotonically increasing on [0,1), λ1(0,5) ≈ −0.19, and λ1(0.209,5) = 0. The function

λ1(µ,6) is monotonically decreasing on [0,0.11) and λ1(0,6) = 0.16. We now note that λ1(µ,2k+1)
is a monotonically increasing function in the interval (0,µ∗

1 (2k+1)) and λ1(µ,2k) is a monotonically

decreasing function in the interval (0,µ∗
1 (2k)). The following inequalities are true:

λ1(0,2k−1)< λ1(0,2k+1) and λ1(0,2(k−1))> λ1(0,2k).

These inequalities are obtained as a result of numerical calculations performed for the values of N from 5

to 30. There are serious reasons to believe that these inequalities remain valid for N > 30.

According to the numerical results, for N ≥ 10, we get the following principal feature of the func-

tion λ1(µ,N): λ1(µ,N) = 0 in the interval (µ1(N),µ2(N)). We can present the following examples:

µ1(22) = 0.04, µ2(22) = 0.07; µ1(23) = 0.03, µ2(23) = 0.076; λ1(0.08,22) = 0.000014, and

λ1(0.03,22) = 0.000032.

The results presented above enable us to make the following conclusion: For small µ, the spectrum

of the stationary point ϕ1(·,µ) of the original problem contains 0.

We now justify this assertion.

By using the equality

ϕ1(x,µ) =
∞

∑
k=1

ϕ1,k(µ)cos(2k+1)x,

we continue the function ϕ1(x,µ) onto the real axis by periodicity.

The function continued in this way to R is denoted by ϕ1(x,µ). It is clear that ϕ1(x,µ) satisfies

Eq. (1) on R. Hence, ϕ1(x+α,µ) also satisfies this equation for any α ∈ (−π

2
,
π

2
). If µ is located near

the critical value, then, for any small α �= 0, the function ϕ1(x+α,µ) does not satisfy the boundary

conditions (2).

By using the results based on the asymptotic methods [2],[3], we conclude that, for small µ > 0 and

any |α|< δ , δ = δ (µ), the function ϕ1(x+α,µ) is an approximate solution of (1). This means that, for

small µ, ϕ1(·,µ) is a point of an orbitally exponentially stable one-parameter family of stationary points.

This family is a one-parameter family of solutions of the type of internal shock layer [2],[3]. Each

element of this family of solutions is determined by the transition point. Thus, the original problem

has the following specific feature: If the parameter µ is located near the critical value 1, then there

exists an isolated stationary solution ϕ1(x,µ) monotonically decreasing in the interval [0,π] and such

that ϕ1(
π

2
,µ) = 0 and ϕ1(π − x,µ) =−ϕ1(x,µ). As the parameter µ decreases and passes through the

value specified by the condition ϕ1(0,µ) = 1, the function ϕ1(x,µ) turns into a solution of the type of

internal shock layer with transition point
π

2
. In this case, we observe the loss of the isolated character of

the stationary solution ϕ1(x,µ). For small µ > 0, the original problem possesses a one-parameter family

of solutions of the shock-layer type, i.e., a solution of the shock-layer type passes through every point

of (0,π). The problem of the character of bifurcation connected with the transition from the isolated
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solution to a one-parameter family of solutions of the shock type is of significant interest. To solve this

problem, we consider simplified models (5) of the original problem.

In the gradient systems (5), as the parameter µ decreases, we observe the realization of a great variety

of saddle-node bifurcations. The bifurcations leading, by virtue of (4), to the solutions of the shock-layer

type with one transition point are characterized by the following specific features: For fixed N, the

bifurcation values of the parameter µ are close. The branches of stationary points born stable or unstable

are defined for all positive values of the parameter µ lower than the corresponding bifurcation value.

The character of stability of the analyzed branches of stationary points within the indicated range of the

parameter µ is preserved. The spectra of stationary points of the indicated type almost coincide. As the

parameter µ decreases, the highest points points of these spectra slowly move from zero. The stationary

points in the branch slowly vary as the parameter µ decreases.

2. Numerical Analysis

To illustrate these observations, we now present examples of saddle-node bifurcations for N = 22. Thus,

µ = 0.03, ( 0.309, 1.098,−0.477,−0.038, 0.205,−0.111, . . .),

{−2.000,−1.499,−0.000035};

µ = 0.0297, ( 0.408, 0.995,−0.554, 0.119, 0.120,−0.146, . . .),

{−2.000,−1.497,−0.000016};

µ = 0.031, ( 0.046, 1.238,−0.083,−0.332, 0.062, 0.134, . . .),

{−2.000,−1.500, 0.000048};

µ = 0.0285, ( 0.044, 1.240,−0.080,−0.339, 0.061, 0.141, . . .),

{−2.000,−1.500,−0.000044};

µ = 0.0275, ( 0.399, 1.007, −0.553, 0.107, 0.133,0.152, . . .),

{−2.000,−1.498,−0.00006};

µ = 0.0273, ( 0.132, 1.218, −0.235,−0.283, 0.168, 0.077, . . .),

{−2.000,−1.500,−0.000059}.

It is clear that the next point of the spectrum after the maximal point along the negative semiaxis is

located near −1.500.
The solutions of the shock type with different transition points are presented in Figure 2. These

approximate solutions correspond to the bifurcation values of the parameter µ obtained for system (5) in

which N = 22.
We emphasize that the dependence of stationary points born as a result of saddle-node bifurcations

on the parameter µ is weak. We now present an example illustrating this observation. For µ = 0.000001,

the stable wave of stationary points born at µ ≈ 0.0285 corresponds to the point

( 0.044, 1.268,−0.088,−0.411, 0.086, 0.233, . . .).

Hence, the changes in the spectrum are also insignificant. The indicated point corresponds to the

following three maximal points of the spectrum: {−1.807,−1.542,−0.052}. A similar behavior is also

demonstrated by the unstable branches of stationary points with instability index 1.

The saddle-node bifurcations corresponding, for the original problem, to the solutions of the shock-

layer type with one transition point are realized for systems (5) with different N. We observe the following

regularity: As N increases, the corresponding bifurcation value of the parameter decreases. Thus, the
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Figure 2. µ∗
1 = 0.0285 {−2.0000,−1.5001,−0.00004}, µ∗

2 = 0.0273 {−2.0000,−1.5000,−0.00005},
µ∗

3 = 0.0275 {−2.0000,−1.4982,−0.00006}

bifurcation value ≈ 0.0275 of the parameter µ for N = 21 corresponds to the bifurcation value ≈ 0.0252

for N = 22. In this case, the following point is born stable:

( 0.497, 0.886,−0.587, 0.247, 0.0042,−0.112, . . .), {−2.000,−1.499,−0.00003}.

The bifurcation value µ = 0.025 for N = 21 corresponds to the bifurcation value µ = 0.02 for N = 22.

We study the behavior of the function ϕ2(x,µ) as µ decreases from the critical value 2−2. In view of

the equality

ϕ2(x,µ) = ϕ1(2x,4µ)

and the already discussed behavior of the function ϕ1(x,µ) as µ decreases, the behavior of the function

ϕ2(x,µ) becomes clear. In this connection, we emphasize that, for small µ, the function ϕ2(x,µ) is a

solution of Eq. (1) of the shock-layer type with transition points (
π

4
,
3π

4
).

We now pass to the problem of stability of ϕ2(x,µ). To this end, we again consider system (5). For

any N, the instability index of zero in system (5) increases by 1 as the parameter µ decreases and passes

through the value 2−2. As a result of this bifurcation, two continuous branches of fixed points ±z2(µ,N)
determined on [0, 2−2) separate from the origin. The following components of z2(µ,N) are nonzero:

z2
2, z2

6, . . . . The points ±z2(µ,N) are born unstable with instability index 2. For the two points of the

spectra of the fixed point z2(µ,N), we have λ 2
1 (µ,N)> λ 2

2 (µ,N)> 0, and the other points belong to the

negative semiaxis. The functions λ 2
k (µ,N),k = 1,2, decrease as the parameter µ decreases. In this case,

the minimal point of the spectrum increases and the maximal negative point decreases. If N = 2(2k+1),
then λ 2

k (µ,N),k = 1,2, are nonnegative functions in [0, 2−2) and, in addition, λ 2
k (0,N)< 0. Thus, in this

case, λ 2
k (µ,N),k = 1,2, move from the positive semiaxis to the negative semiaxis. We emphasize that the

values of the parameter µ for which this transition is realized are sufficiently close. As an illustration of

this type of behavior of the spectrum, we present some examples restricting ourselves to the case N = 22.

Thus, we indicate the four highest points of the spectrum:

µ = 0.030, {−1.498,−1.480, 0.00021, 0.00007};

µ = 0.029, {−1.498,−1.482, 0.00015, 0.00003};

µ = 0.027, {−1.499,−1.486, 0.00004,−0.00003};

µ = 0.025, {−1.499,−1.489,−0.00012,−0.00005};
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µ = 0.023, {−1.500,−1.492,−0.00023,−0.00017};

µ = 0.020, {−1.501,−1.495,−0.00050,−0.00042};

µ = 0.010, {−1.522,−1,512,−0.00656,−0.00602};

µ = 0.001, {−1.742,−1.644,−0.08016,−0.07943}.
In addition, if N �= 2(2k+ 1), then two positive points of the spectrum also become lower as the

parameter µ decreases. However, we do not observe their transition through 0. Starting from a certain

value of the parameter µ depending on N, the positive points of the spectrum slowly increase. If N = 21,

then this value of the parameter µ ≈ 0.021. The value µ = 0.021 is associated with the following four

points of the spectrum of the stationary point z2: {−1.501,−1.497, 0.00089, 0.00081}. As the parameter

µ decreases further, the growth of the maximal points is slow. In the case where N = 21 and µ = 0.01, we

have the following maximal points of the spectrum of the point z2: {−1.532,−1.5168, 0.0103, 0.0098}.

The facts presented above enable us to make the following conclusion: There exists a value of the

parameter µs
2 such that, for µ < µs

2, the spectrum of stability of ϕ2(x,µ) contains 0 with geometric

multiplicity 2 and the remaining spectrum lies on the negative semiaxis. The appearance of the outlined

structure of the spectrum of stationary structure ϕ2(x, µ) is explained by the fact that, for µ < µs
2, the

point ϕ2(·,µ) is a point of the two-parameter family of solutions of the shock-wave type. The indicated

family of stationary points is orbitally exponentially stable. Each point of this family is determined by

two parameters (transition points).

Note that the approximate solutions of the shock-layer type with two transition points correspond to

the stationary points of system (5) appearing as a result of saddle-node bifurcations. These saddle-node

bifurcations have the following specific features:

We present an example of bifurcation of this sort for system (5) in which N = 21. In this case, a

saddle-node bifurcation is realized for µ ≈ 0.0135. For µ = 0.0135, this system has two close points:

(−0.088,−0.307, 1.143, 0.196, 0.117, 0.256, . . .),

{−2.002,−1.5097,−1.4994,−0.0049, 0.00026} and

(−0.044,−0.392, 1.105, 0.291, 0.048, 0.281, . . .),

{−2.001,−1.501,−1.4870,−0.0018,−0.0016}.
Here, together with the stationary points, we present the corresponding five maximal points of the

spectrum.

Conclusions

Existence of an orbital asymptotically stable family of stationary solutions of the considered problem

for sufficiently small coefficient of diffusion is shown in this article. Points of the family are stationary

solutions of internal transition layer, which are constructed using the Galerkin method.
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Abstract
This paper employs the strain-gradient elasticity theory to derive the non linear mechanical equation

for a slender microbeam with an electrical actuation. The microbeam is fixed at both edges and a

geometric nonlinearity is also present accounting for the axial stretch. A reduced-order model for

the governing equation of motion is obtained and the single-degree-of-freedom problem is studied.

Particular attention is paid to investigate the influence of the high-order length scale parameters,

introduced by the non-classical theory, that progressively modifies the oscillating behaviour. Adopting

the homotopy analysis method (HAM), the free vibrations of the beam are investigated and the

effects of several parameters, such an applied axial load, are analyzed. The results on the nonlinear

phenomena reveal both an hardening and a softening behaviour, in competition between them. As a

benchmark for the analytical results, a numerical solution is also proposed.
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Introduction

Control and design of Micro-electro-mechanical systems (MEMS) is, nowadays, a fundamental step

in widely different engineering fields. Other than mechanical applications, as micro switches, micro-

electromechanical silicon resonators [1], biological and biomedical applications have become field of

particular interest with widespread use in a variety of activities.

The approaches on an electrically actuated microbeam problem depend on the assumptions on the

mechanical and electrical features, developing more or less complex and easy-to-use models. Furthermore,

to perform a better characterization and in order to advance in the MEMS dynamic knowledge [2], new

techniques and models are developed and applied to microbeam problems. The mechanical modeling

of an electrically-actuated microbeams, is, often, based on the classical mechanics [3]. Recently, the

modeling in microstructures is moving towards the non-classical continuum theories [4]. The deformation,

when the characteristic length is on the micro scale order, has been shown to be size dependent [5], and

high-order elastic theories can catch this phenomena. The non-classical approach increments the order of

the governing differential equations introducing high-order length scale material parameters [6; 7]. This

work wants to apply the modified strain-gradient elasticity proposed by [8] at an electrically-actuated

clamped-clamped microbeam. An electric actuation, caused by an applied voltage difference, introduces

into the model a nonlinear electric term. The model includes also the effect of the axial stretch, that

generates a nonlinear integro-differential term.

In this work the analytical approximation, performed by means of the homotopy analysis method

(HAM) [9], is used to investigates the beam dynamics. The homotopic approach is often a valid alternative

to the perturbation techniques avoiding any type of small/large physical parameters and providing an

efficient approximations [10]. The method has already been applied to a microbeam problem [11], but

with a different model derived from the classical theory. Moreover, contrary to the numerical solution, an

analytical approximation is a lightweight method to perform a parametric analysis.
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1. Problem Formulation

We consider the system in Figure 1, composed by an upper moving electrode and a stationary lower

substrate, separated by a dielectric medium. An electric force acts on the upper microbeam due to the

applied electric voltage difference between the two electrodes, provoking a deformation. A dielectric

medium, having a relative permittivity εr, refereed to the vacuum permittivity ε0, separates the microbeam

from the electric ground.

x

w �x,t �

N N

� V

L

g

Substrate

Figure 1. The 1-D model for the electrically actuated microbeam with the main geometrical dimensions

The equation governing the transverse deflection of an electrically actuated slender microbeam, modelled

within the framework of the modified strain-gradient elasticity theory, reads [12]:

ẅ+ cẇ+wiv −α3wvi −
(

N +α1

∫ 1

0

(
w′)2

dx

)
w′′ =

α2V 2

(1−w)2
(1)

The right-hand side of the equation represents the nonlinear electric actuation generated by the applied

potential difference V . We remark that the integro-differential term is due to considering a second-

order axial stretch in the beam-model formulation. For a device clamped at both edges, the associated

dimensionless boundary conditions are:

w = w′ = w′′ = 0 at x = 0,1 (2)

All the variables in the problem (1-2) are dimensionless: the transverse deflection w and the dimensionless

longitudinal coordinate x are normalized, respectively, with respect to the initial gap g and the beam length

L, while the dimensionless time is normalized by means of the term:
√

(ρSL4)/D1. The nondimensional

constants and parameters in Eq. (1) are given as follows:

α1 =
ESg2

2D1

, α3 =
D2

D1L2
, c =

ĉL4

√
ρSL4D1

, N =
ESN0L2

D1

, α2V 2 =
bL4ε0εr

2D1g3
V 2 (3)

ĉ is the mechanical damping, ρ and S indicate the density and the beam cross section, respectevely, while

with N0 we take into account for an axial load generated by fabrication defects. Consequently the use of

the strain-gradient elasticity theory, the equations of motion are enriched with further material parameters,

namely ln(n = 0;1;2):

D1 = EI +µS

(
2l2

0 +
8

15
l2
1 + l2

2

)
, D2 = µI

(
2l2

0 +
4

5
l2
1

)

´

(4)

where µ is the Lame’s second parameter and EI represents the bending stiffness (E is the Young’s

modulus and I is the moment of inertia). Contrary to the classical theory, the formulation presented in

Eqs. (1, 2) is characterized by: i) the appearance in Eq. (1) of the sixth-order differential term; ii) the

non-classical boundary conditions (w′′(0) = w′′(L) = 0 for a fully clamped beam) in Eq. (2).

We write the beam deflection as the sum of a static (ws) and a dynamic (wd) response of the system,

obtaining:

wiv
s +wiv

d s−α3wvi
d + cẇd + ẅd =−α3wvi

[
N +α1

∫ 1

0

(
w′

s
2
+2w′

sw
′
d +w′

d
2
)

dx

](
ws

′′+wd
′′)+

+
α2V 2

(1−ws)
2 (1−wd/(1−ws))

2
(5)
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and

ws +wd = 0, w′
s +w′

d = 0, ws
′′+wd

′′ = 0, at x = 0,1 (6)

Preliminarly the static problem must be solved [13], using the static solution ws in Eqs. (5, 8) we have:

wiv
d −α3wvi

d + cẇd + ẅd −Nwd
′′−α1

∫ 1

0

(
2w′

sw
′
d +w′

d
2
)

dx ws
′′+

−α1

∫ 1

0

(
w′

s
2
+2w′

sw
′
d +w′

d
2
)

dx wd
′′ = α2

(
2VdcVac +V 2

ac

)
η0 +α2V 2

n

∑
k=1

wk
d

ci

(1−ws)
i+2

(7)

and

wd = w′
d = wd

′′ = 0 (8)

The constants ci in Eq. (7) are the coefficients of an optimal polynomial series approximation (truncated

at the order n) for the nonlinear electric term [12; 14]. This is a crucial task to get a reliable and

analytical-solvable single-degree-of-freedom problem.

1.1 Reduced-order model

Using the Galerkin decomposition method we discretize the continuous problem ruling out the spatial

dependence in Eq. (7). We assume:

wd(x, t) =
∞

∑
i=1

φi(x)ui(t)

¨

(9)

Substituting Eq. (9) into Eq. (7), multiplying for the function φi and integrating from 0 to 1, for the i− th

degree of freedom we have:

ui + cu̇i +Kiui +∑
j

Ci juiu j +∑
j,k

Ei jkuiu juk = F0i+

+F1iui +∑
j

F2i juiu j +∑
j,k

F3i jkuiu juk + ∑
j,k,m

F4i jkmuiu jukum + ...+ ∑
j,k,m,..,n

Fni jkm...nuiu jukum...un (10)

To save space the expressions of the coefficients are here not reported but can be easily calculated as

previously described. The coefficients F are related to the electric actuation, C and E depend on α1, while

K depends on the paramenters α1,α3 and N.

The spatial functions φi in (9) are picked up in the set of the linear undamped modal shapes. They

are the solution of the eigenvalue problem given by Eq. (7) assuming an harmonic motion of the form

wd(x, t) = φn(x)e
iωt and neglecting the terms involving the forcing terms:

φ iv
n n−α3φ vi −Nφn

′′ = ω2
n φn

¨

(11)

The eigenpair {φn,ωn} is the nth vibrating mode and its own natural (circular) frequency. Considering the

undamped single-degree-of-freedom problem with Vac = 0, Eq. (10) can be written in the simple form of:

u+a1u+a2u2 +a3u3 + ...+anun = 0 (12)

where the ai are linear combinations of the coefficients appearing in Eq. (10). For the sake of simplicity

we use to indicate only with u, dropping the subscript one, the first dynamic response u1.

1.2 H.A.M. homotopy analysis method

We briefly report the main features of the homotopy analysis method, that, however, can be found with

more details in [11]. Defining a new independent variable τ = ωt, the Eq. (12) becomes:

ω2 d2u

dτ2
+

n

∑
i=1

aiu
i = 0 (13)
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the problem is completed by the imposed initial conditions:

u(0) = A and u̇(0) = 0 (14)

According to [9] it can be constructed a two-parameter family of equations, called the zero-th order

deformation equation, that read:

(1−q)L [u(τ;q)−u0(τ)] = qh̄N [u(τ;q);ω(q)] (15)

with q ∈ [0,1] and h̄ respectively the embedding and the convergence-control parameter. By means of

Eq. (15), varying q, the solution of the auxiliary problem u(τ;q), depending also on q, deforms from

u(τ;0) = u0(τ), the initial guess, to u(τ;1) = u(τ), the solution of ours nonlinear problem. L and N

are respectively the associated linear and nonlinear auxiliary operator, defined as:

L [u(τ;q)] = ω2
0

(
∂ 2u(τ;q)

∂τ2
+u(τ;q)

)
, N [u(t;q),ω(q)] = [ω(q)]2

d2u(t;q)

dτ2
+

n

∑
i=1

ai [u(t;q)]i

(16)

Since, as consequence of the way we defined the auxiliary operators, u(τ;q) and ω(q) depend on q, they

can be expanded in Maclaurin series:

u(τ;q) = u0(τ)+
∞

∑
m=1

um(τ)q
m, ω(q) = ω0 +

∞

∑
m=1

ωmqm (17)

Differentiating the zeroth-order deformation equation, Eq. (15), and computing for q = 0, we obtain the

high-order deformation equation:

L [um(τ)−χmum−1(τ)] = h̄Rm (u1, ...,um−1,ω1, ...,ωm−1) (18)

with

χm =

{
0, if m ≤ 0

1, if m > 0
(19)

and

Rm (u1, ...,um−1,ω1, ...,ωm−1) =
1

(m−1)!

∂ m−1N [u(t;q);ω(q)]

∂qm−1

∣∣∣
∣∣∣
q=0

(20)

The secular term elimination requires that:

1

π

∫ 2π

0
h̄Rm cosτdτ = 0 (21)

The imposition of secular term vanishing successively gives the solutions for ωm−1. Furthermore the

solutions of um(τ) are given from:

um(τ) = χmum−1(τ)+
h̄

ω2
0

j(m)

∑
k=2

bm,k cos(kτ)

(1− k2)
+d1 cosτ +d0 (22)

with j(m) an integer number depending on m, and d0 and d1 are constants calculate with the initial

conditions (14).

2. Results and Conclusions

In this section we compare the analytical approximations of the HAM with the numerical results obtained

by a Runge-Kutta integration scheme. The HAM is always used with a convergence parameter of h̄ =−1,

it assures a wide range of convergence.

Figure 2 illustrates the amplitude of the dynamical response with respect to the nonlinear frequency.

With the H.A. method we have a good approximation for the non-linear response for a quite large
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amplitude; the agreement decreases with the the amplitude growth; this phenomenon progressively

requires, because of the highly non-linear behaviour, an higher-order solution.

The number of terms retained in the HAM solution grows exponentially as the order of the approx-

imation is increased and therefore, in equation (22), we truncated the approximate solution at m = 3.

For larger values of m, the computational time becomes comparable to the computational time of a

long-time numerical integration. In all the simulation, except where indicated, an 8th-order Chebyshev

approximation is used for the non-linear electric term.

(a) N =−20, α1 = 0, α3 = 10−7 (b) N = 20, α1 = 10, α3 = 10−7

Figure 2. Amplitude of u1 versus ω with a comparison between H.A.M. (solid line) and 4th order

Runge-Kutta (circles), for different static working regimes.

In subfigure 2(a) a global softening response is shown; the dynamic instability phenomenon happens

immediately near the static pull-in (lower curves), while, decreasing the static electric field, a larger

value of the amplitude is needed so the instability occurs. Beside the same graphical arrangement of

2(a), where the analysis involves three different regimes, in subfigure 2(b) we also illustrate (lighter

gray curves) the transition from the mechanical hardening effect, driven by the parameter α1, to the

soft response due to the electric field. Both subfigures 2(a) and 2(b) show, after a nonlinear transient, a

sudden decreasing of the response frequency: the dynamic pull-in [15]. We finally investigate on the

Figure 3. Variation of the nonlinear dynamic response for different values of α3. Others parameters are

N =−10, α2V 2
dc = 25, α1 = 0

influence of α3, the parameter generated by the use of the strain-gradient elasticity theory in the beam

modeling. In Fig. 3, several back-bone curves, obtained for different values of α3, show the variation of

the nonlinear frequency responses due to the high-order length scale parameters. An increasing value

of α3, progressively reduces the values of the nonlinear frequency for a fixed response amplitude. The

homotopic approach, still given a very satisfactory uniform approximation, requires a too high-order

solution. However, a low order H.A.M. solution can be successfully used for a low values of the electric

field. The performed parametric analysis, simplified by the use of the analytical method, as shown the
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double hardening/softening behaviours in competition between them, and the different approaches of the

device towards the dynamic pull-in.

Acknowledgments

This work was partially supported by the Italian Ministry of Education, University and Research (MIUR)

by the PRIN funded program 2010/11 N.2010MBJK5B “Dynamics, Stability and Control of Flexible

Structures”.

References

[1] Mestrom R.M.C., Fey R.H.B., van Beek J.T.M., Phan K.L., and Nijmeijer H. Modelling the

dynamics of a mems resonator: Simulations and experiments. Sensors and Actuators A: Physical,

Vol. 142, pp. 306–315, 2008.

[2] Li H., Preidikman S., Balachandran B., and Mote Jr C.D. Nonlinear free and forced oscillations of

piezoelectric microresonators. Journal of Micromechanics and Microengineering, Vol. 16, pp. 356,

2006.

[3] Abdel Rahman E.M., Younis M.I., and Nayfeh A.H. Characterization of the mechanical behavior

of an electrically actuated microbeam. Journal of Micromechanics Microengineering, Vol. 12, pp.

759–766, 2002.

[4] Kahrobaiyan M. H., Asghari M., Rahaeifard M., and Ahmadian M. T. A nonlinear strain gradient

beam formulation. International Journal of Engineering Science, Vol. 49, pp. 1256–1267, 2011.

[5] Yang F., Chong A.C.M., Lam D.C.C., and Tong P. Couple stress based strain gradient theory for

elasticity. International Journal of Solids and Structures, Vol. 39, pp. 2731–2743, 2002.

[6] Fleck N.A. and Hutchinson J.W. Strain gradient plasticity. volume 33 of Advances in Applied

Mechanics, pp 295–361. Elsevier, 1997.

[7] Mindlin R.D. and Tiersten H.F. Effects of couple-stresses in linear elasticity. Archive for Rational

Mechanics and Analysis, Vol. 11, pp. 415–448, 1962.

[8] Lam D.C.C., Yang F., Chong A.C.M., Wang J., and Tong P. Experiments and theory in strain

gradient elasticity. Journal of the Mechanics and Physics of Solids, Vol. 51, pp. 1477–1508, 2003.

[9] Liao S. Notes on the homotopy analysis method: Some definitions and theorems. Communications

in Nonlinear Science and Numerical Simulation, Vol. 14, pp. 983–997, 2009.

[10] Liao S. Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman Hall/CRC,

Boca Raton, 2003.

[11] Qian Y.H. , Ren D.X., Lai S.K., and Chen S.M. Analytical approximations to nonlinear vibration

of an electrostatically actuated microbeam. Communications in Nonlinear Science and Numerical

Simulation, Vol. 17, pp. 1947–1955, 2012.

[12] P. Belardinelli, S. Lenci, and M. Brocchini. Modeling and analysis of an electrically actuated

microbeam based on non-classical beam theory. Submitted to Journal of Computational and

Nonlinear Dynamics, 2013.

[13] Zhao J., Zhou S., Wang B., and Wang X. Nonlinear microbeam model based on strain gradient

theory. Applied Mathematical Modelling, Vol. 36, pp. 2674–2686, 2012.

[14] Xie W.C., Lee H.P., and Lim S.P. Nonlinear dynamic analysis of mems switches by nonlinear modal

analysis. Nonlinear Dynamics, Vol. 31, pp. 243–256, 2003.

[15] Nayfeh A.H., Younis M.I., and Abdel-Rahman E.M. Dynamic pull-in phenomenon in mems

resonators. Nonlinear Dynamics, Vol. 48, pp. 153–163, 2007.

215 



Proceedings of the 4th International Conference on Nonlinear Dynamics
ND-KhPI2013

June 19-22, 2013, Sevastopol, Ukraine

Large Amplitude Vibrations of Thin

Hyperelastic Plates

Ivan Breslavsky*, Marco Amabili, Mathias Legrand

Abstract
Static and dynamic deflections under uniformly distributed pressure of a rectangular plate made of

neo-Hookean rubber material is studied. A new method dedicated to the construction of local models

which describe the behavior of the plate around a deformed configuration is proposed. This new

method compares well with the exact solutions where available but is more versatile.
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Introduction

The stress-strain relationships of rubbers and soft biological tissues are usually described through hypere-

lastic laws. In the context of large structural deflections and strains of structures made of hyperelastic

materials, both geometrical and physical nonlinearities have to be accounted for [1, 2]. It is reported

that the most commonly used hyperelastic material is of the incompressible neo-Hookean type which is

implemented in the present work.

The finite displacements and corresponding deformations of a rectangular rubber plate under time-

invariant external pressure are approximated through a truncated series of linear eigenmodes. The

common simplification that consists of pre-assuming a shape for the deformed structure is not accounted

for and the associated convergence analysis is undertaken. A method which systematically constructs a

local model approximating the plate behavior around a deformed static configuration is proposed. Free

and forced large-amplitude vibrations in the neighborhood of the previously calculated static equilibrium

are analyzed with this method. The comparison with the geometrically nonlinear model is also performed

to estimate the effect of physical nonlinearity. In contrast to the exact method, this method allows for

the uncoupling of spatial and temporal components in the solution, which significantly simplifies the

investigation of the plate behavior. This local model has the form of a system of ordinary differential

equations with quadratic and cubic nonlinearities [3].

1. Description of Plate Behavior

´ ´

The Lagrange framework to derive the governing equations is used to describe the static and dynamic

behavior of a rectangular plate. The geometric nonlinearity is described by using the von Karman

nonlinear plate theory [3]. The physically nonlinear elasticity of natural rubber is described by neo-

Hookean constitutive law [4, 5] through the following strain energy density:

W = ¯
E

4(1+ν)
(I1 −3)+

E

6(1−2ν)
(J−1)2, (1)

where Ī1 is the first invariant of the right Cauchy-Green deformation tensor C [4, 5]; J is the square root

of the third invariant of the right Cauchy-Green deformation tensor; the pair E,ν stands for the Young’s

modulus and Poisson’s ratio of the plate material, respectively. Since C = 2E+ I [5], the two invariants

216 



Ivan Breslavsky, Marco Amabili, Mathias Legrand

are expressed in terms of the Lagrange strain tensor E components as follows:

J2 = (2ε3 +1)((2ε1 +1)(2ε2 +1)− ε2
12); (2)

Ī1 =
2(ε1 + ε2 + ε3)+3

3

√
(2ε3 +1)((2ε1 +1)(2ε2 +1)− ε2

12)
.

´ ´

(3)

The displacements u(x,y),v(x,y),w(x,y) along the directions x,y,z, respectively, are expanded into

three distinct truncated series depending on the participations of the linear vibration eigenmodes of the

underlying linearized system [3].

The von Karman nonlinear plate theory provides the expressions the strain components ε1,ε2,ε12 as

functions of the displacements u,v,w , except for ε3. Accordingly, this expression has to be explicitly

derived. This is achieved by plugging the incompressibility condition J = 1 [4] into equation (2):

ε3 =
1

2((2ε1 +1)(2ε2 +1)− ε2
12)

− 1

2
. (4)

At this stage, it is worth mentioning that the first terms of the expansion in the strain components of

expression (1) after substituting Eq. (4) coincide with those found for a physically linear strain energy

density [3]: in other words, in the small strains setting, both theories are identical.

2. Local Expansion of the Neo-Hookean Strain Energy Density

Expression (4) is not a polynomial in strains, which essentially complicates the investigation of the plate

behavior. It is possible to obtain numerical approximations of the solutions of nonlinear systems deriving

from non-polynomial potential energy but only for low-dimensional models. As a consequence, it is

highly desirable to obtain the governing equations in the form of ordinary differential equations with

polynomial nonlinearities of degree not higher than three. Due to higher-order terms in the expansion

of (1), such a model will only capture the plate behavior in the vicinity of a given fixed-point. We assume

that we know the configuration of slightly bent plate and we want to find the configuration of highly

bent plate. The question how the initial configuration can be found is discussed in the next secion. This

configuration (or the fixed-point) is identified by a vector of generalized coordinates q(0) = {qi
(0)}i=1,...,N .

A new configuration q = {qi}i=1,...,N , close to the configuration q(0) can be expressed as q = q(0)+αq(1)

where α ≪ 1 is a small parameter. Corresponding strain components take the form:

ε1 = ε
(0)
1 +αε

(1)
1 ; ε2 = ε

(0)
2 +αε

(1)
2 ; ε12 = ε

(0)
12 +αε

(1)
12 . (5)

In expressions (5), ε
(0)
1 , ε

(0)
2 , and ε

(0)
12 do not depend on the unknown generalized coordinate q(1).

Equation (1) is expanded into a series in the small parameter α up to the second power of α:

W (q(0)) =
E

3

([
ε
(0)
1 +ε

(0)
2 +

1

2Ξ
− 1

2

]
+α

(
ε
(1)
1 +ε

(1)
2 +

κ

Ξ2

)
+α2

(4κ2 − (4ε
(1)
1 ε

(1)
2 − ε

(1)
12

2)Ξ

2Ξ3

))
(6)

where

Ξ = (2ε
(0)
1 +1)(2ε

(0)
2 +1)− (ε

(0)
12 )2 ; κ = ε

(1)
1 + ε

(1)
2 +2ε

(0)
1 ε

(1)
2 +2ε

(0)
2 ε

(1)
1 − ε

(0)
12 ε

(1)
12 . (7)

The denominators in expression (6) do not depend on the unknown generalized coordinate q(1) and

equation (6) is thus polynomial in {qi
(1)}i=1,...,N . Once the spatial and temporal parts are separated, the

Lagrange equations take the following form:

q̈
(1)
n +2ζnΩnq̇

(1)
n +

N

∑
i=1

kni(q
(0))q

(1)
i +

N

∑
i, j=1

kni j(q
(0))q

(1)
i q

(1)
j +

N

∑
i, j,l=1

kni jl(q
(0))q

(1)
i q

(1)
j q

(1)
l = Qn (8)

for n = 1, . . . ,N. These equations represent the local model describing the behavior of the plate around

the deformed configuration q(0). The static counterpart of equations (8) can be recast in the usual

compact form of a system of nonlinear algebraic equations F(q,Q) = 0 that can be solved with the

Newton-Raphson technique.
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3. Numerical Example

3.1 Problem of interest

As an example, a simply supported rectangular rubber plate defined on the domain:

V = {x ∈ [0;a], y ∈ [0;b], z ∈ [−h/2;h/2]}; (9)

is considered with the following geometrical parameters a = 0.1 m, b = 0.12 m, h = 0.0005 m, and

material characteristics ν = 0.5, E = 107 Pa, ρ = 1100 kg/m3. The plate is simply supported with

immovable edges [3], that is:

w
∣∣∣
∂S

= M
∣∣∣
∂S

= u
∣∣∣
∂S

= v
∣∣∣
∂S

= 0, (10)

where ∂S denotes the boundary of the plate; M is the bending moment per unit length.

Static and dynamic deflections under uniformly distributed constant pressure are investigated. Due to

symmetry considerations on the geometry of the plate and the distribution of the external load, only the

odd bending modes participate in the sought response if internal resonances are not activated:

w(x,y, t) = ∑
n,m∈N

w2n+1,2m+1(t)sin
((2n+1)πx

a

)
sin

((2m+1)πy

b

)
. (11)

Similarly, respective in-plane modes have the form [3]:

u(x,y, t) = ∑
n,m∈N

u2n,2m+1(t)sin
(2nπx

a

)
sin

((2m+1)πy

b

)
;

v(x,y, t) = ∑
n,m∈N

v2n+1,2m(t)sin
((2n+1)πx

a

)
sin

(2mπy

b

)
.

(12)

3.2 Static analysis

Convergence analysis shows that 12, 27 and 34 DOF models yield very similar results. This is true for

model with physical and geometric nonlinearity as well as for the model with only geometric nonlinearity.

The 12 DOF models with the generalized coordinates wi, j, i, j = 1,3; ui, j, v j,i, i = 2, 4; j = 1, 3 are used

in the remainder.

The deflection-pressure curves for the model with only geometric nonlinearity and exact solution

for the 12 DOF system with both nonlinearities are compared in Fig. 1. It is shown that the difference

within a range of deflection up to 30h is small since only a 6% maximal difference in deflection for a

given pressure is observed in this range. The configuration with central deflection 25h obtained with the

geometrically only nonlinear model is considered for the construction of local models.

Fig. 2 compares the corresponding results with both nonlinearities and an increasing number of DOF

to the available exact solutions. As illustrated, the local model provides a sufficiently good approximation

of the underlying plate behavior. At the same time, the local models are much more efficient in a

computational sense. This figure shows that the 12 DOF model stands as a convincing compromise

between prediction capabilities and computational cost. The maximal difference in deflection in the range

[0,100h] is 2% with respect to the 34 DOF model.

3.3 Dynamic analysis

As at small strains, the effect of physical nonlinearities can be ignored, we study the free and forced

vibrations around a pre-loaded state . The initial deformed configuration involves the principal generalized

coordinate w1,1 = 80h. The comparison with the exact static solution shows that the local model around

in a neighborhood of this deformed configuration is accurate for deflection up to 10h that will stand as

the upper bound in the vibratory analysis. The vibrations are studied using the harmonic balance method

and AUTO software [6].

Fig. 3 displays the backbone curves and frequency response for the free vibrations with frequencies

close to the first natural frequency of the pre-loaded plate. Non-dimensional frequencies, normalized

with respect to the natural frequency Ω1 are shown on the horizontal axis.
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Figure 1. Comparison of the exact deflection-pressure curves for the model with only geometrical and

both geometrical and physical nonlinearities; 12 DOFs.
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Figure 2. Deflection-pressure curves for models with physical and geometrical nonlinearities: ,

obtained with local models; 3 DOF exact solution; 12 DOF exact solution.
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Figure 3. Frequency responses and backbone curves for principal bending mode w1,1: stable

motions; unstable motions; quasi-periodic motions; TR, Neimark-Sacker bifurcation.
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As opposed to the vibrations of an unloaded initially flat plate [3], the explored pre-loaded plate

exhibits a very weak nonlinear response. Similar effect of weaken nonlinearity in stretched membranes

is reported in [2, 7]. Despite of the fairly minor deviation of the high-amplitude vibration frequency

from the linear natural frequency, an internal resonance 2:1 with in-plane mode v1,2 (softening branch

in Fig. 3), is predicted. In the same vein, two Neimark-Sacker bifurcations and a quasi-periodic forced

vibration response between them are found.

Conclusions

Large-amplitude vibrations of a rubber plate involving physical and geometrical nonlinearities are

analyzed. The developed method transforms the Lagrange equations in space and time into a system of

ordinary differential equations in time only. This facilitates the investigation of the vibrations around

a deformed configuration taking into account both physical and geometrical nonlinearities. Both the

static and the dynamic results show good agreement with the exact solution. While at small strains,

the influence of the physical nonlinearity is weak, it becomes significant at finite strains. As opposed

to the case of vibratory response of an undeformed plate, which exhibits strong amplitude-frequency

dependence, the vibrations around a deformed plate configuration are nearly linear. However, some

nonlinear effects like bifurcations and internal resonances are present in the system.
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Introduction 

Impact loading of thin-walled structural elements attracts attention of engineers more than one 

hundred years. There are many solved problems in this area, although the most well studied is ballistic 

impact with high speed velocity of projectiles [1, 2]. The case of low velocity impact today is studied 

predominantly for honeycomb composites [3, 4], where inner layer destroys due to its small strength.  

However, the case of repeated impact action on a plate, when fracture occurs after several 

numbers of impacts, practically has not been studied. The presented paper deals with one example of 

such cyclic impact loading, which is realized in special hardware has been designed for preventing of 

unauthorized access to data stored on the hard disk of computer. Special striker jointly with 

electromagnetic device [5] is located into the casing of processor block and after receiving of 

appropriate command it switches on and punches the disk of hard drive.  

Deformation and fracture of impact loaded thin glass and aluminum coated with iron alloy 

disks are studied experimentally and numerically using LS Dyna software. Impacts with low 

velocities which are equal to 10-15 m/s are investigated. Inductive dynamic engine (IDE) is used as an 

impact loading device in developed experimental unit. Impact tests have been done for different 

velocities which correspond to the cases of elastic, elastic- plastic deforming and punching. The 

repeated impact loading in which low cycle punching takes place in plates is investigated. Numerical 

simulation of impact deformation of circular plates is performed and results are compared with 

experimental ones.  

1. Experimental investigations  

Let us briefly present the experimental equipment and results. The special experimental unit 

was developed for impact tests on computer hard drive disks. The unit was made on the basis of 

designed device for preventing of unauthorized access to computer data [5]. The main parts of the unit 

are loading device built on IDE, equipment for plate’s fixing (Fig. 1) and measurement hardware. The 

strain gauge sockets were pasted on the plate’s surface, and data by use of analog-digital converter 
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ADA-1406 had been written into computer text files. In the case of plate’s punching with large strains 

the measurements of deformed plate had been done. 

A number of experiments directed to verification of results which can be obtained using 

developed experimental unit had been performed. Static loading of a plate, impact loading in elastic 

and elastic-plastic areas had been done. Fig. 2. presents the varying of strain components were  

 

 
Figure. 1. Equipment for plate’s fixing and loading 
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Figure 2. Variation of strain components 

 

calculated by use of the measurement data for the case of elastic impact with velocity of 0.5 m/s in the 

strain gauge socket is placed near the striker.  

Performed verification allowed us to move to impact tests in wide range of striker’s velocities. 

For glass – based computer disks only cases of brittle fracture were studied. It was established that 

from the velocity value is equal to 0.5 m/s disk fracture occurs (Fig.3). 
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Figure 3. Glass disk after impact 

 

Aluminum-based disks were tested at single and cyclic loading. For the case of single impact 

with the velocity is equal 10.3 m/s the deformation is characterized by large strains, the maximum 

value of the deflection is equal to 20.3 mm. In this case any substrate were placed under the disk.  

 

 
 

Figure 4. Disk after impact with velocity of 10.3m/s 

 

Real working conditions of the disk are characterized by the presence of lower part of the hard 

disk drive shell, installed under the disk. Impacts with velocity in range 10-11 m/s cannot punch the 

disk from the first loading. So, the cyclic loading of a disk was studied. It was experimentally 

established that disk fracture occurs after 7 impacts (three tests got the value of 6, 7 and 8 impacts). 

Additionally the dependence between the velocity of striker and number of impact cycles to fracture 

was determined. 

 

3. Numerical results 

Numerical simulation of impact loading of a circular plates made from aluminum alloy had 

been done by use of LS Dyna software [6]. Mass and geometrical data of plates and striker, its 

velocity were determined in experimental part of a work and used in calculations. Brick finite 

elements with 8 nodes were used in simulation. Firstly elastic impact solutions were compared with 

experimental results. FE mesh contains 9500 nodes. Fig. 5 presents the comparison of experimental 

and numerical data for the case of impact with striker’s velocity is equal to 0.55 m/s. The satisfactory 

agreement can be found. 

 
Figure 5. Radial strain component. Comparison of numerical and experimental data  

 

The impact loading with the velocity of striker 10.3 m/s (experimental photo is presented on 

Fig.4) was numerically simulated. The results were compared with experimentally measured residual 
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deflections. Comparing Figs. 4 and 6, we can conclude, that numerical data qualitatively correct 

describe the residual shape of a disk after impact loading. Quantitatively we have a satisfactory 

agreement. For example, experimental value of maximal deflection is 20,3 mm, and numerical is 

equal to 20,19 mm. Maximum value of local displacement under the striker: experimental is equal to 

approximately 0,4 mm, numerical is equal to 0,6 mm, the difference in this comparison doesn’t 

exceed 30%. 

Low cycle deformation of a plate were studied numerically jointly with use of solving of 

kinetic equation for the damage parameter. Firstly the elastic-plastic stress-strain state were 

determined, after that by use of impact long term strength data the number of cycles to fracture was 

found. Its value was equal to 7.12, which practically coincides with experimental result. 

  

 
Figure 6. Deformed state of a disk, impact velocity 10.3 m/s 

 

Conclusions 

The paper contains the results of experimental and numerical investigations of deformation and 

cyclic long term strength of computer disks, which were simulated as a circular plates made from 

glass and aluminum alloy composite. The experimental technique allows to obtain the deflection 

distributions as well as the numbers of cycles to failure for studied disks. Comparison between 

experimental and numerical results confirms the right choice of FEM schemes and allows use them in 

selection of the best options of working conditions in hardware for preventing of unauthorized access 

to computer data. 
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Introduction 

Sandwich panels have become a popular structural element in many contemporary engineering 

applications over the two past decades. Because of their small weight and high stiffness and strength 

the sandwich panels are suitable in high performance applications of aerospace and automotive 

industries, where safety and durability demands are critical issues. Those structural members along 

with the advantages by exploiting the sandwich concept seem to be very prone to damaging. The most 

often damage is a partial detach along the skin-to-core interface layer, so-called debond [1]. 

Therefore, to ensure the reliability and safety of constructions made of sandwich panels, the 

knowledge on their mechanical behaviors taking into account a possible existing debond should be 

very well investigated at the design stage. In this respect, numerical methods are superior over 

expensive experimental approaches. 

The finite element modeling of dynamic crack propagation has attracted a lot of attention over 

the last decades, e.g. papers [2, 3] among others. Within the discrete crack approach of fracture 

mechanics, the cohesive crack model describing the material behavior in the process zone in front of 

the crack tip is one of techniques in the finite element method. Such process zone appropriately 

accounts for the dissipative processes due to fracturing [4, 5]. Elices [6] gave a review of the main 

aspects of this model and relevant references. Sridharan and Li [7] simulated the interfacial damage in 

sandwich members under static and dynamic loading conditions. Two types of cohesive layer model 

with finite thickness and with zero initial thickness were utilized and compared. Han et al. [8] used 

cohesive element approach for simulating debonding propagation between a face sheet and a core in a 

honeycomb cored sandwich panel. The critical energy release rate and peak strength of the cohesive 

model were determined from Double Cantilever Beam (DCB) fracture tests and Flatwise Tension tests 

(FWT), respectively. 

Most of the existing studies on strength of layered structures, in particular sandwich structural 

members, are focused on debonding/delaminition growth under static loading, while such 

investigations for the dynamic growth of this interfacial damage are limited. The present paper deals 
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with debonded sandwich plates subjected to dynamic loading and pays attention on the influence of 

loading rate and loading type upon dynamic debonding growth. Hence, outcomes of this research 

would form a useful contribution for a better understanding of the debonding growth under dynamic 

load of sandwich plates. 

1.  Statement of the problem 

From the mathematical standpoint a sandwich panel with a debond subjected to dynamic 

loading fails into the large class of mechanical problems for which a discrete change in the stiffness 

are defined. Such systems usually are referred to impact-contact tasks, where contact and friction 

conditions should be assigned. On the other hand, to predict the propagation of debonding, damage 

initiation and damage evolution criteria are additionally required to be defined. Therefore, the system 

of governing equations involves the elastodynamics problem of a sandwich plate, contact and friction 

laws defined between surfaces in the debonded zone and fracture criteria at the skin-to-core interface. 

The statement of the elastodynamics problem of debonded sandwich plates accounting for contact and 

friction have been stated in [9], while the problem with fracturing conditions are considered herein. 

 

1.1 Cohesive layer model 
The modeling of fracture initiation and propagation in finite element analyses can be specified 

through a cohesive layer model. The cohesive layer model is implemented into a finite element mesh 

as interface (cohesive) elements, which are compatible with regular solid finite elements. In three 

dimension problems they consist of two surfaces separated by a thickness, as shown in Fig. 1a, where 

an 8-noded cohesive element with three displacement degrees of freedom per node is presented.  
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Figure 1. (a) An eight-node cohesive element; and (b) a typical bilinear cohesive law 

 

The relative motion of the bottom and top parts of the cohesive element measured along the 

thickness direction represents opening or closing of the interface and it can be represented in the terms 

of nodal displacements of paired I-th node as follows: 

 

  
bot
I

top
II uu ���  (1) 

 

Such relative motion of theses parts with respect to the element mid-plane is qualified as the 

transverse shear behavior of the cohesive element. The stretching and shearing of the element mid-

plane are associated with membrane strains. The notion of strain is suspended and relative 

displacements of the nodes of the element are used to characterize the deformation and compute the 

nodal forces. Moreover, the cohesive element has zero initial thickness and is usually represented as a 

line in an undeformed state.  

Then, the interface opening along the cohesive surface is interpolated from nodal relative 

displacement jumps (1) by using shape functions, e.g. the shape function NI associated with the I-th 

node we can write down implying summation over repeated indices in the form: 

 

  )()(),( tNt II ΔxxΔ �  (1) 

 

Based on the approximated displacement field, the internal force vector and the tangent 

stiffness matrix of the cohesive element are given in (2), respectively, as the following: 
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where coh
IB  is a displacement separation relation matrix, coh

IT  is cohesive traction along the fractured 

interface within the cohesive surface �e
 and uI is a vector of nodal displacements. 

Note that the vector coh
IT  can be obtained by the definition of cohesive layer constitutive 

(traction-separation) laws. In this respect, linear, bilinear, parabolic, exponential and etc. relationships 

can be used.  

The constitutive response of the cohesive elements used in this investigation is defined by 

bilinear traction-separation law as shown in Fig. 1b, where T represents the interfacial strength, �Crit
 is 

the critical separation, �Fail
 is the separation at failure, and the area under σ-� curve, GC, is the critical 

strain energy release rate (SERR) per unit area dissipated during the fracture process. Under mixed-

mode fracture conditions, the properties required to be defined for the bilinear traction-separation law 

are the three critical fracture energies GIC, GIIC, GIIIC, the penalty stiffnesses K1, K2, K3, and the 

interfacial strengths T, S1, S2.  

The identification of the material parameters of such model can be employed by various 

techniques; however, toughnesses are dependent on the values of peak stress Ti, i.e. {T, S1, S2}, and 

the work of separation per unit area Gi, i.e. {GI, GII, GIII}, but not the shape of the curve [4].  

The initial response of the cohesive element is assumed to be linear until a damage initiation 

criterion is met. The penalty stiffness, Ki, of the bilinear traction-separation law is defined as 

 

  Crit
i

i
i

TK
�

� , (3) 

where Crit
i�  is the critical separation for damage initiation at each separation direction. In general, the 

penalty stiffness is no a material parameter and it should be assigned such that its value must be high 

enough to avoid interpenetration of the faces at the fractured interfaces and to prevent artificial 

compliance from being introduced into the model by the cohesive elements. However, an overly large 

value can lead to numerical problems [5].  

Another critical issue affecting the accuracy of predictions with the cohesive elements is the 

number of the cohesive elements in the cohesive zone. In turn, the length of the cohesive zone is a 

material property. Several guidelines for choosing the penalty stiffnesses and mesh size at the 

cohesive zone are presented in [5] and according to which we follow those rules in this study.  

Several damage criteria such as maximum stress, maximum, strain, quadratic stress and 

quadratic strain criterion exist to represent the onset of damage. The quadratic stress (QS) damage 

initiation criterion shown in (4) is used throughout this numerical study:  
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where the Macaulay bracket N'O signifies that the compression stress does not contribute to damage 

initiation.  

Once the damage initiation criterion of the cohesive element is met, the stiffness of the element 

is degraded. The softening response of the cohesive elements is represented by expression: 

 

  / 0 iii Kd ��� 1M , 3,2,1�i  (5) 

 

Here d is the damage variable, which has value d = 0 when the interface is undamaged, and the 

value d = 1 when the interface is completely fractured. 

For analysis presented herein, we use the energy-based Benzeggagh-Kenane (B-K) damage 

evolution criterion shown in (6) as 
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where A is the B-K material parameter, IIIIIShear GGG ��  and IIIIIIT GGGG ��� . 

The nonlinear contact and friction conditions are employed as the same in [9] to avoid the 

unphysical overlap between the detached face sheet and core under dynamic loading.  

1.2 Explicit solution algorithm 
The discretization of an elastic sandwich plate into finite elements and the assembly of all 

element contributions into global matrices and vectors lead to the following equation of motion: 

 

  / 0 / 0 / 0 / 0/ 0 / 0/ 0 / 0/ 0tttttt contcoh
UFUFUFKUUCUM ����� ��� , (7) 

 

where M is the mass matrix, K is the stiffness matrix and C is the damping matrix presented by 

Rayleigh type as KMC �2 �� . The vectors F and F
coh

 are the right-hand side vectors of the 

prescribed and cohesive nodal forces and F
cont

 is the nodal contact and friction forces. The vector 

U = U(t) is the global vector of nodal displacements, and its time derivatives )(tU��  and )(tU�  are 

nodal accelerations and velocities, respectively. Moreover, some initial conditions at t = 0 are given. 

For the numerical solution of this second order differential equation, we have to discretize the time 

interval in finite steps of size Δt and calculate the approximate solution on time 11 �� ��� iii ttt . 

Explicit time-stepping algorithms determine the solution of equation like (7) without iterations 

and tangent stiffness matrix by explicitly advancing of the kinematical state known from a previous 

increment to the next one. To introduce the concept of the explicit algorithm, the central-difference 

formulation can be exploited. First, accelerations at the beginning of each increment Δti+1 are 

calculated from the equation (7) rewritten in the form: 

 

  / 0iii IFMU �� �1~��  (8) 

 

where M
~

 is the lumped mass matrix, extracted from the consistent mass matrix M, and Ii is the sum 

of internal nodal forces, which are updated during the previous increment Δti.  

Thereafter, the central difference operator uses the accelerations calculated at ti to advance the 

velocity solution to time ti+½�ti+1 and the displacement solution to time ti+�ti+1 as follows: 

 

  / 0 iiiii tt UUU ���� ����� ��� 1
2

1
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111 ��� ��� iiii t UUU �  (9) 

 

Besides, a contact algorithm and a fracture analysis that generate contact and cohesive internal 

forces, respectively, are being performed within this global time stepping scheme. 

 

2.  Simulation results 

To simulate debonding growth of a sandwich plate with a central penny-shaped debonded zone, 

we developed a three-dimensional tri-layer finite element model in ABAQUS [10] with a layer of 3-D 

cohesive elements COH3D8 for the interface between the face sheets and the core. In the model, the 

face sheets are discretized by layered shell continuum elements SC8R based on the Reissner-

Mindlin’s plate theory, whereas the core is simulated by solid continuum elements C3D8R. 

 
Table 1. Mechanical properties of material 

Material properties GFRP face sheet Foam core 

Young’s modulus, GPa 

Exx, Eyy, Ezz 
19.3, 3.48, 19.3 0.085 

Shear modulus, GPa 

Gxy, Gxz, Gyz 
1.65, 7.7, 1.65 0.030 

Density, kg/m
3 

1650 52 

 

The surface-to-surface contact approach is used for discretizing the contacting surfaces at the 

damaged skin-to-core interface. The kinematic predictor/corrector contact algorithm available in 
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ABAQUS/Explicit is utilized to enforce contact and friction constraints defined by the hard pressure-

penetration relationship and the Coulomb friction law, respectively. The contact search is carried out 

with the small-sliding assumptions in order to detect interacting surfaces both initially existing in the 

plate geometry and which are formed due to the debonding growth in the plate. 

The relative displacements of the pair nodes accounting for contact and friction are used by 

ABAQUS to calculate a stress field in the debonded sandwich plate at each instant of time. If the 

stress state satisfies the QS damage initiation criterion defined within the cohesive element layer, the 

stiffness of the cohesive elements starts to degrade in accordance with the B-K law until the critical 

value of the SERR will be accomplished. At this moment the cohesive elements are fully fractured 

and newly-created detached surfaces appear within the sandwich plate. 

One configuration of the sandwich plate is used throughout this study. A simply supported 

rectangular sandwich plate of 180 by 270 mm consisting of a 50 mm-thick WF51 foam core and 2.4 

mm-thick GFRP face sheets and containing the penny-shaped debonded zone of a 39.3 mm radius at 

its center, as shown in Fig. 2a, is analyzed. Properties of the constituent materials are given in Table 1. 

 

U

 
(a) 

Uf

t
t0

V1

V3
V2

U

t3

tend

t1
t2

 
(b) 

Figure 2. (a) A half of the finite element model; and (b) the displacement load 
 

The debonded sandwich plate is loaded by a prescribed displacement U applied to the upper 

face sheet with various velocities Vi, while the bottom of the lower face sheet is fixed (see Fig. 2a).  

 

 

00 �V

 

(a) 

1V

 

(b) 

2V

 

(c) 

3V3V

 
t = t3 

 
t = ½tend 

 
t = ¾tend 

 
t = tend 

(d) 
Figure 3. Debonding growth: (a) V0 = 0, (b) V1 = 10

3
, (c) V2 = 10

4
 and (d) V3 = 10

5
 mm/s. 

 

In numerical studies, the total opening displacement, Uf is the same for all cases and velocities 

are computed as a quotient of this displacement to a ramp time, during which this displacement could 

be achieved. The shorter is the ramp time, the more rapidly is the velocity of loading (see Fig. 2b). 

However, the velocities are chosen such that they not exceed the Rayleigh wave speed, which is 

10
7 
mm/s here. Thereby, the static critical SERRs can be used for predictions. In this study, 

GIC = 0.375 N/mm, GIIC = GIIIC = 2.125  N/mm and A = 1 are accepted. The interfacial strengths are 

assigned as the following: T = 3 MPa and S1 = S2 = 17.2 MPa.  

Fig. 3 shows the debonding growth under the applied displacement. One can see that the 

debonded area increases with increasing the loading rate. Moreover, as the speed of the displacement 

being applied has become relatively comparable with the Rayleigh wave speed, oscillations of the 
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sandwich plate produced by reflected stress waves take place. As a result, the debond continues to 

grow after the ramp time t3 due to the dynamic stress field, which is enough high to advance it. 

Considering the same sandwich plate with the skin-to-core interface circle debond, a dynamic 

harmonic concentrated load with amplitude 10 N and excitation frequency 1000 Hz was applied to the 

plate’s bottom face sheet. Fig. 4 illustrates the debonding growth at the different moments of time. 

The debond propagates in the stick-slip manner, it jumps from one arrest position to another one in 

dependence on the dynamic stress state existing at the current instant of time. 

 

 
 

(a) 
 

(b) 

 
(c) 

 
(d) 

 
(f) 

Figure 4. Debonding growth: (a) t = 1, (b) t = 3, (c) t = 5, (d) t = 7 and (f) t = 10 ms. 
 

Conclusions 

(1) The cohesive layer model and the dynamic debonding growth simulation method presented 

in the paper are effective for the debonding growth analysis of sandwich plate with skin-to-core 

debond. (2) The loading rate is essential for the debonding growth behavior of sandwich plate. (3) A 

harmonic loading causes the unstable debonding growth within the debonded zone of sandwich plates.  
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Abstract 
Free vibrations of rockets deflections, which are described by parabolic shells, are considered. 
Kinetic and potential energies of the structure are derived to analyze free vibrations. The Rayleigh-
Ritz method is used to analyze vibrations. 
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Introduction 

Elements of rockets perform intensive vibrations on flying. The vibrations take place due to 

aerodynamic loads, forces from engine operation. These vibrations can result in destruction of rockets 

elements on the first seconds of flying. Rocket deflector is a thin parabolic shell, which protect 

satellites during orbital injections. On flying, the aerodynamic loads, which result in intensive 

aeroelastic vibrations, act on deflectors. Deflectors are described by constant thickness parabolic 

shells. The Rayleigh- Ritz method is used to study the shell vibrations.  

1. Problem Formulation  

Construction diagram of the rocket deflector is shown in Fig.1. As follows from the analysis of 

the deflection geometry, it is described by parabolic shell with constant thickness. It is assumed, that 

amplitudes of the shell vibrations are significantly less then the shell thickness. Hooke’s stress-strain 

relations are true. As the shell is thin, then shear and rotation inertia are not taken into account.  

The displacements of the parabolic shell middle surface are projected on the tangents of the 

coordinates lines (Fig.2). As a result, the following three projections are obtained [1]: 

/ 0 / 0 / 0, , , , , , , ,u t v t w t@ � @ � @ � . The angles ,@ � describe the location of the middle surface points. 

2. The equations of the parabolic shell vibrations 

The elastic potential energy of the shell takes the following form [2]: 

11 11 22 22 12 12

1
1 1 sin ,

2 V

z z
R R d d dz

R R � @
� @

M D M D M D � � @
 ! !

P � � � � �" #" #" #$ %$ %
FFF                  (1) 

where 11 12 22 11 12 22, , , , ,M M M D D D are components of stresses and strains tensors; ,R R@ � are curvature 

radius of coordinate lines ,@ � .  

The components of stress and strains tensors satisfy the Hooke’s law: 



M.V. Chernobryvko, K.V. Avramov et al. 
 

232 

 

/ 0 / 011 11 22 22 22 11 12 122 2 2

1
,    ,    ,

1 1 1 2

E E E Q
M D QD M D QD M D

Q Q Q
�

� � � � �
� � �

          (2) 

 

 
  

 
Figure 1. Design of rockets deflectors  Figure 2. Middle surface of parabolic shell in 

Cartesian coordinates  
 

and curvature radiuses are determined from the following relations: 

 

/ 0 / 0
0 0

1/ 2 3/ 2
2 2

,    .
1 sin 1 sin

R R
R R@ �

L � L �
� �

� �
                                     (3) 

 

The parameter L  determines the type of shell of revolution; for parabolic shell 1L � � .  

The top point of the shell 0� �  is singular. Therefore, the hole with the diameter equal to the 

shell thickness is cut out close to the singular point to calculate the shell eigenfrequencies. This small 

hole slightly effects on the structure dynamics. Then taking into account (2), the potential energy of 

the shell is presented as  

 

/ 0/ 0
0

22 2
2 2 2

11 11 22 22 122

0 /

2

2

1 1
2

2 1 2

sin sin sin ,

h

h h R

E

R R z R R z d d dz

�
�

� @ @ �

Q
D QD D D D

Q

� � � � @

�

� !P � � � � R" #� $ %

R � � �

F F F
                                     (4) 

 

where h  is the shell thickness; 0R  is curvature radius in singular point 0� � .  

The elements of the strain tensor and displacements meet the following equations:  
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The kinetic energy of the shell takes the form: 

0

2 2 22

0 /

sin ,
2 h R

h u v w
T R R d d

t t t

�
�

� @

C
� � @

 !� � � !  !  !� � �" #" # " # " #" #� � �$ % $ % $ %$ %
F F                                 (6) 

 

where C  is density of the deflectors material.  

The Rayleigh- Ritz method is used to calculate the eigenfrequencies and eigenmodes of the 

shell. The shell linear vibrations take the following form: 

 

/ 0 / 0 / 0
/ 0 / 0 / 0
/ 0 / 0 / 0

, , , cos ,

, , , cos ,

, , , cos .

u t u t

v t v t

w t w t

� @ � @ �

� @ � @ �

� @ � @ �

�

�

�

/ 0@/ 0, cos,/ 0�/ 0/ 0, cos/ 0
/ 0@/ 0�/ 0, cos,/ 0/ 0, cos,/ 0
/ 0@/ 0, cos,/ 0�/ 0/ 0, cos,/ 0

                                                      (7) 

 

Accounting to (7), the kinetic and potential energies of the shell take the following form: 

 
2 2( , , ) sin ( , )T t t T� @ � � � @� � ( , )@( , ), ;                                                    (8) 

2( , , ) cos ( , )t t� @ � � @P � �P( , )@( , ), .                                                       (9) 

 

Now the shell displacements are considered. As the shell is closed, the shell displacements are 

expanded into the Fourier series. Then the shell eigenmodes take the following form: 
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                               (10) 

 

where 
(1) (2) (2), ,...,ij ij ijA A C  are unknown parameters; 

( ) ( ) ( )( ), ( ), ( )u v w
i i i	 � 	 � 	 �  are functions satisfying 

the shell boundary conditions.  

The shell is clamped on the edge / 2� ��  and it is free on the top (on the boundary of small 

cut). As the Rayleigh- Ritz method is used to determine the vibrations parameters, the boundary 
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conditions are not taken into account on the free edge of the shell. The boundary conditions on the 

clamped edge are the following: 

2 2 2 2

0.
w

u v w� � � �
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�
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0�

w
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�v w

w
                                        (11) 

 

The functions 
( ) ( ),u v
i i	 	  are eigenmodes of longitudinal vibrations of cantilever bar; the 

functions 
( )w
i	  are eigenmodes of bending vibrations of cantilever beam. Accounting (11), these 

functions take the following form:    
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The Hamilton variational principle is used to calculate eigenfrequencies and eigenmodes of the 

shell linear vibrations. The minimum of the following functional,  

 

/ 0 / 0/ 0 / 0/ 08 9
2

2 2(1) 2 (1)

0

,..., ,..., .ij ij ij ijT dt A C T A C

�
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�
�

P� � P �F /// ij/ , ,/T A C/ (1)// ijij/ ,...,,...,// ij , ,A/ ij ,...,/ (1)A/ (1)A C/ (1)

iji ,..., ,                        (13) 

 

is determined on the set of parameters 
(1) (2),...,ij ijA C . From this minimum determination, the following 

eigenvalue problem is obtained:  

4 5 ,02 �� MCDet �                                                       (14) 

 

where C  is the stiffness matrix; M  is the mass matrix. 

 

Conclusions 

The results, treated in this paper, can be used to analyze nonlinear aeroelastic vibrations of 

deflectors in subsonic and supersonic stream.  
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Abstract 
The random vibration of the von Kármán plate with moderately large deflection and excited by 
Gaussian white noise is analyzed. The equation of motion of the plate with moderately large 
deflection is a nonlinear partial differential equation in space and time. With Galerkin method, the 
nonlinear partial differential equation is reduced to a multi-degree-of-freedom nonlinear stochastic 
dynamical system which probabilistic solution is governed by Fokker-Planck-Kolmogorov equation. 
The state-space-split method is used to make the Fokker-Planck-Kolmogorov equation in high 
dimensions reduced to the Fokker-Planck-Kolmogorov equations in low dimensions. Then the 
exponential polynomial closure method is used to solve the reduced Fokker-Planck-Kolmogorov 
equations in low dimensions for the probability density function of the responses of the plate with 
moderately large deflection. 
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Introduction 

Many problems in science and engineering can be modeled as nonlinear stochastic dynamical 

(NSD) systems with multi degrees of freedom (MDOF). It is known that the analysis on the 

probabilistic solutions of MDOF-NSD systems has been a challenge for almost a century, especially 

for the systems with strong nonlinearity. There are two methods for analyzing the MDOF-NSD 

systems. One is equivalent linearization (EQL) method and another is Monte Carlo simulation (MCS) 

method [1, 2]. It is well known that the EQL method is only suitable for the weakly nonlinear system. 

There are some challenges in using MCS method in analyzing strongly nonlinear stochastic dynamical

systems, such as the problems of round-off error and numerical stability. Recently, a new method

named state-space-split (SSS) method was proposed for the probabilistic solutions of large MDOF-

NSD systems or solving the Fokker-Planck-Kolmogorov (FPK) equations in high dimensions [3-5]. 

The SSS method can make the problem of solving the FPK equation in high dimensions become the 

problem of solving some FPK equations in low dimensions or make the large NSD system decoupled

into some small NSD systems. Therefore, the FPK equations in low dimensions can be solved with 

the exponential polynomial closure (EPC) method [6]. In this paper, the SSS-EPC method is further 

used to analyze the probabilistic solutions of the simply-supported von Kármán plate with moderate

large deflection and excited by Gaussian white noise. The equation of motion of the plate is a 

nonlinear partial differential equation in time and space. With Galerkin method, the nonlinear partial 

differential equation is reduced to a MDOF-NSD system. The random vibration problems of many 

other plates with moderately large deflection can also be modeled with the similar MDOF-NSD 

systems. The results obtained with the SSS-EPC method are compared with those obtained with EQL 
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method and MCS to show the effectiveness of the SSS-EPC method in this case and the advantage of 

SSS-EPC method over EQL method and MCS in analyzing the resulted MDOF system with strong 

nonlinearity. 

 

1.  The MODF Systems for an Isotropic Plate with Moderately Large Deflection  

Consider the random vibration problem of the isotropic plate with moderately large deflection 

governed by the following equations of motion or partial differential equations in space and time.  
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where ),,( tyxw is the deflection of the plate, ),,( tyxF is the Airy stress function, h is the thickness of 

the plate, E is modulus of elasticity of the isotropic plate, 
)1(12 2

3

?�
�

Eh
D , ? is Poisson ratio,  C is the 

mass density of the material, c reflects damping, M is lumped mass at the center of plate, )(x1 and 

)(y1 are Dirac functions, and )(tW  is Gaussian white noise with its power spectral density S . 

)(tW can be used to describe the vertical ground acceleration caused by earthquake. 

Consider the case that the four edges of a rectangular plate with length a  and width b are all 

simply supported and free from boundary stresses. The boundary conditions for these edges can be 

written as follows when the origin of the coordinate system is at the center of the neutral plane of the 

plate, the x-axis is parallel to the length of the plate, and the y-axis is parallel to the width of the plate. 
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The boundary conditions shown in Eq. (2) can be satisfied by the following expressions of 

),,( tyxw and ),,( tyxF . 
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Substituting Eqs. (3) into Eqs. (1), the following equations governing mnw  and ijF can be 

obtained by the Galerkin method [7]. 
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The constants 1N to 4N in Eqs. (4) and (5) are obtained by replacing pmaxXM ,,,,, and r by 

,,,,,, qnbyYN and s , respectively, in the expressions of 1M to 4M . 

  

2.  Dimension Deduction of FPK Equations with State-Space-Split Method 

 The governing equations for the random vibration of the above plate can be written in general 

as follows. 

                    )(),( tWhY iii 6�� YY ���               Yni ,,2,1 ��          (6) 

where ),,2,1( , Yi niRY ��I , are components of the vector process YnRIY ; RRRh YY nn
i �R: ; 

),( YY �ih are of polynomial type of nonlinearity and their functional forms are assumed to be 

deterministic; i6 are constants, )(tW is Gaussian white noise with power spectral density S . 

Setting 12 �� ii XY , ii XY 2�� , ii Xf 212 �� , ii hf ��2 , 012 ��ig , iig 6�2
, and YX nn 2� , then Eqs. 

(6) can be written by the following coupled Langevin equations or Ito differential equations: 

 

 )()( tWgfX
dt

d
iii �� X               Xni ,,2,1 ��         (7) 

where  the state vector XnRIX , iX ( Xni �,2,1� )  are components of the state vector process X , and 

RRf Xn
i �:)(X . The state vector X  is Markovian and the stationary PDF )(xp of the Markovian 

vector is governed by the following FPK equation [8]: 
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where x is the deterministic state vector, XnRIx , and jsillsij ggSG � . The summation convention is 

used in Eq. (8) and in the following discussions. It is assumed that )(xp fulfils the following 

conditions: 
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If the joint PDF of }  ,{ ii YY �  or }  ,{ 212 ii XX �   ( Yni ,...,2 ,1� )  are needed, separate the state vector 

X  into two parts by 22

21 },{ XX
nn RRR R�I� XXX  with 2

2121 }  ,{ RXX ii I� �X , 2

2
Xn

RIX , and 

2
2

�� Xx nn . 

Denote the PDF of 1X as )( 11 xp . In order to obtain )( 11 xp , integrating Eq. (8) over 2Xn
R gives 
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Because of Eq. (9), we have  
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Eq. (10) can then be expressed as 
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which can be further expressed as 
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Separate )(xjf  into two parts as 
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Substituting Eq. (14) into Eq. (13) and noting )()( 12
2
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For real systems, normally )(xII
jf are functions of only few state variables for given j . Express 

)(xII
jf  by ��

k

k
II
jk

II
j ff ),()( 1 zxx  in which 2XkZ nn

k RR SIz . 
kzn is the number of the state variables in 

kz . Then, Eq. (15) can be written as  
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in which ),( 1 kkp zx denotes the joint PDF of },{ 1 kZX . The summation convention not applies on the 

indexes k  in Eq. (16) and in the following discussions. 

From Eq. (16), it is seen that the coupling of 1X and 2X  comes from ),(),( 11 kkk
II
jk pf zxzx . 

Express ),( 1 kkp zx  by 

   )|()(),( 1111 xzxzx kkkk qpp �                   (17) 

 

where )|( 1xz kkq is the conditional PDF of kZ for given 11 xX � . Substituting Eq. (17) into Eq. (16) 

gives 
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Approximately replacing the conditional PDFs )|( 1xz kkq  by those obtained from equivalent 

linearization, Eq. (18) is written as  
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where )|( 1xz kkq is the conditional PDF of kZ  obtained from EQL for given 11 xX �  and )(~
11 xp  is 

the approximation of )( 11 xp . Denote 
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Then Eq. (19) can be expressed as 
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which is the approximate FPK equation for the joint PDF of the state variables 2

2121 }  ,{ RXX ii I� �X . 

Because there are only two state variables in 1X , the resulting FPK equations is in two dimensions 

and the EPC method can be employed to solve Eq. (21) [6]. 

 

3.  Numerical Analysis 

Consider the simply-supported rectangular von Kármán plate which edges are free from 

stresses. The material of the plate is reinforced concrete used in building design. The length a and 

width b of the plate equal 6m and 5m, respectively. The other parameters are given by mh  1.0� , 
210 /1055.2 mNE R� , 3/000,2 mkg�C , 316.0�? , kgM 000,20� , 01.0�E for each mode, and 

1�S . The subspace 1X  in the SSS procedure contains the deflection w and the velocity w� at the 

center of the plate. 

When the number of shape functions of deflection equals 111 �R�R yx NN  and the number of 

shape functions of Airy stress function equals 111 �R�R yx MM , the resulted equation of motion in 

term of deflection is a Duffing oscillator. The PDFs of the deflection at the center of the plate are 

obtained with the EPC method and EQL method. They are shown and compared in Fig. 1. The tails of 

the PDFs obtained with various methods are also compared in Fig. 2. In the figures, wM  denotes the 

standard deviation of the deflection at the center of the plate. In this case, the exact solution of the 

probability density function of the deflection is obtainable for the resulted Duffing oscillator excited 

by Gaussian white noise. It is observed in Figs. 1 and 2 that the result obtained with EPC is the same 

as exact solution while the result corresponding to EQL deviates a lot from exact solution. Numerical 

experience shows that the results obtained with 111 �R�R yx NN  and 422 �R�R yx MM are only 

slightly different from those corresponding to 111 �R�R yx NN  and 111 �R�R yx MM . In other 

words, increasing the number of shape functions in the Airy stress function can only influence the 

results slightly. 

When the number of the shape functions of deflection equals 933 �R�R yx NN  and the 

number of shape functions of Airy stress function equals 422 �R�R yx MM , the equations of 

motion formulate a 9-DOF system. The PDFs of the deflection at the center of the plate are obtained 

with the SSS-EPC method, MCS, and EQL, respectively. They are shown and compared in Fig. 3. 
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The tails of the PDFs obtained with various methods are also compared in Fig. 4. The sample size in 

MCS is 710 . The simulation about this 9-DOF system was conducted on the original 9-DOF system 

rather than on the SDOF system resulted from SSS deduction procedure. 

 

            
        Figure 1. PDFs of deflection        Figure 2. Logarithmic PDFs of deflection 

 

It is observed in Figs. 3 and 4 that the result obtained with SSS-EPC is close to MCS while the 

result corresponding to EQL deviates a lot from MCS. Numerical experience showed that the results 

obtained with 933 �R�R yx NN  are almost the same as those obtained with 1644 �R�R yx NN . 

Further increasing the number of ,,, xyx MNN and yM  beyond 933 �R�R yx NN  and 

422 �R�R yx MM  can not further increase the precision of the solution obviously. The results 

obtained with 1644 �R�R yx NN and 422 �R�R yx MM  are almost the same as those obtained 

with 933 �R�R yx NN  and 422 �R�R yx MM . The polynomial degree used in the EPC solution 

procedure is four.  
 

               
              Figure 3. PDFs of deflection             Figure 4. Logarithmic PDFs of deflection 

  

Further increasing the number of samples in analyzing the 9-DOF system with MCS can make 

the computational effort huge and it can not make the results from MCS further improved due to the 

round-off error caused by the large sample size and large number of nonlinear terms in the system. 

Hence only part of the PDF of deflection can be obtained with MCS for this complex and strongly 

nonlinear system. It is one of the challenges inherent in MCS. Even so, the computational time needed 

by SSS-EPC method is in minutes mainly spent on the linearization procedure due to the large 

number of nonlinear terms while the computational time needed by MCS is in hours for this 9-DOF 

system in the same computer and same running environment.  

From Fig. 2 and Fig. 4 we found that the PDF of the deflection obtained by modeling the 

system as a SDOF system is quite rough in comparison with the PDF of the deflection obtained by 

modeling the system as a 9-DOF system. The results obtained from SDOF system is about 1 to 5 

times of the solution obtained from the 9-DOF system, as shown in Figs. 2 and 4. For either the SDOF 

system or the 9-DOF system, the result from EQL is far from being acceptable. 
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Conclusions 

The solution procedure of the state-space-split method is used to make the MDOF systems 

governing the nonlinear random vibration of von Kármán plate decoupled or make the FPK equation 

that governing the PDF solution of von Kármán plate deducted to the FPK equations in low 

dimensions. Then the exponential polynomial closure method is used to solve the FPK equations in 

low dimensions. From numerical analysis it is observed that the SSS-EPC method works well for 

obtaining the PDF of the deflection of the plate though the nonlinearity is strong in the resulted 

MDOF system. It is found that the result obtained by modeling the problem as a SDOF oscillator is 

rough while the results obtained by modeling the problem as a 9-DOF system can be much improved 

by using three displacement mode functions and two Airy stress shape functions along each 

dimension of the rectangular plate. Further increasing the number of DOF can not make the solution 

further improved. It means that the solution obtained with this 9-DOF system can be considered as a 

converged solution in the sense of approximation with Galerkin method. It is also found that MCS can 

not make the PDF of deflection fully simulated because of the strong nonlinearity of the system, the 

limitation of acceptable computational effort, and the numerical stability in the simulation procedure. 

This problem can become more obvious when the system nonlinearity becomes stronger as the load 

increases or other system parameters change. The solution from EQL is far from being acceptable for 

this strongly nonlinear random vibration problem of plate.  

 

Acknowledgments  

This research is supported by the Research Committee of University of Macau (Grant No. 
MYRG138-FST11-EGK).  
 

References 

[1] Booton R.C. Nonlinear control systems with random inputs. IRE Trans. on Circuit 
Theory 1954; CT-1(1): 9-18.  

[2] Kloeden P.E. and Platen E. Numerical Solution of Stochastic Differential Equations, 

Springer, Berlin, 1995. 

[3] Er G.K. Methodology for the solutions of some reduced Fokker-Planck equations in high 

dimensions Annalen der Physik, 523(3), pp.247-258, 2011. 

[4] Er G.K. and Iu V.P. A new method for the probabilistic solutions of large-scale nonlinear 

stochastic dynamical systems, Nonlinear Stochastic Dynamics and Control, IUTAM 

Book Series 29, pp.25-34, Springer, Berlin, 2011. 

[5] Er G.K. and Iu V.P. State-space-split method for some generalized Fokker-Planck-

Kolmogorov equations in high dimensions Physical Review E, 85, 067701, 2012. 

[6] Er G.K. An improved closure method for analysis of nonlinear stochastic systems 

Nonlinear Dynamics, 17(3), pp.285-297, 1998. 

[7] Chia C.Y. Nonlinear analysis of plates, McGraw-Hill Inc., New York, 1980. 

[8] Risken H. The Fokker-Planck Equation, Methods of Solution and Applications, Springer, 

Berlin, 1989. 



242 

Proceedings of the 4th International Conference on Nonlinear Dynamics 
ND-KhPI2013 

June 19-22, 2013, Sevastopol, Ukraine 

Forced Nonlinear Vibrations of Turbine Blades 
Package with Pre-Stressed Detachable Shroud 

Sergii O. Grytsan*, Oleksiy O. Larin  

Abstract 
Forced nonlinear vibrations of steam turbine two blades package with detachable bandage shroud 
has been considered. Static loads are taken into account. Numerical algorithm has been developed
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Introduction 

High levels of vibration are the most common cause of failures and breakdowns occurring 

during the operation of steam turbines. At that, the most dynamically loaded part is the blading of low 

pressure cylinder. These blades possess high bending-torsion flexibility due to complexity and 

variable cross section of the profile, large length of the blade and considerable angle of pre-twist. 

These properties of the blades may cause undesirably high levels of vibration. 

In order to increase the stiffness of last stage bladings, the inter-blade detachable joints [1] are 

used. Strength and vibration characteristics of these blades sets are essentially dependent on the 

features of the contact interaction in the joints [1]. And due to the structural nonlinearity in the 

system, nonlinear vibrations occur under the influence of non-stationary loads. In the previous [1] 

studies of forced vibrations of blades packages the static loads were not taken into consideration. As a 

result, there were drawn conclusions on possibility of splitting of the joint. However, the influence of 

the static field of centrifugal force leads to a rather tight closure in the detachable bandage shroud. 

That has a considerable effect upon the dynamic behavior of the system. 

Thus, there is a special practical importance of taking into consideration of the static pre-stress 

state in the analysis of forced nonlinear vibrations of the turbine bladings, since it can lead to more 

accurate results and conclusions. 

1. Object of study 

The free two blades package of fourth stage of low pressure cylinder of steam turbine has been 

considered. The chosen model is not fully reflects the behavior of blading, since the interaction of 

only two blades without influence of neighboring blades of assembly has been studied. However, 

firstly, this model enables to make some qualitative conclusions regarding effects that appear during 

forced vibrations. Secondly, due to thermal overloads [1], decomposition of the blading into separate 

packages is possible. And in this case the used model sufficiently reflects processes occurring, and has 

practical significance. 
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Blades are bounded by the one-tier integral detachable shroud, where contact occurs under 

technological preliminary penetration. The disc and the shank are omitted in simulation. It is 

considered that the root parts of the blades are rigid fixed. 

For the numerical simulations the three-dimensional finite element (FE) model of two blades 

package (Fig. 1) has been used, at that the meshing of the blades was performed with isoparametric 

twenty-node finite elements. Contact interaction in the bandage shroud has been considered taking 

into account the dry friction (according to Coulomb’s law) and simulated by finite elements of 

“surface-surface” type. 

 

 
  a                           b                           c 

Figure 1. FE model of blades package: a – general view and steam load distribution;  
b – bandage shroud; c – contact area 

 

The research is particularly focused on study of the contacting in the shroud of blades, since the 

secure tight closure of the joints is one of the most important conditions for the safe and stable 

operation of the last stage bladings of the low pressure cylinder.  

 

2. Static analysis 

In order to take the pre-stress into consideration in the forced vibrations of nonlinear system 

and for linearization, the static problem has been studied initially. 

It is important to note that the results of solution of the contact interaction problems with dry 

friction depend on the loading history [2]. Because of this, the calculations should be carried out not 

in a single step, but rather large number of substeps. Thus, the process of speeding-up of the turbine 

rotor can be approximately simulated with gradual increase of the angular velocity and aerodynamic 

loads to their nominal values at the operating regime. With setting a large enough number (e. g., 1000) 

of load substeps in calculation, the problem becomes quasi-static.  

Static displacement field (Fig. 2, a) has been obtained with the use of stated above approach, by 

solution of the static problem with the FE method. The contact interaction in the shroud under the 

influence of centrifugal and steam loads on the blades package has been considered. The results show 

that there is contact only on a small area of expected contact surface. The sliding contact area 

(Fig. 2, b) and the contact pressure (Fig. 2, c) are concentrated on the upper edge of the shroud prong. 

There is no area of sticking contact in the shroud joint. 

 

 
         a                                 b               c 

Figure 2. Results of the quasi-static solution: a – distribution of total displacements (m);  
b – contact status on the shroud prong; c – distribution of contact pressure (Pa) 
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3. Modal analysis of pre-stressed linearized models 

In modern engineering practice the linearized FE models are used for determination of the 

dynamic characteristics of bladings. The contact conditions in such models are replaced by kinematic 

constraints. Particularly, the modal analysis results could give a range of variation of dynamic 

characteristics, within which the sought nonlinear process at various regimes of the forced vibrations 

is contained. The eigenfrequencies are taken as potential hazardous resonance frequencies, and 

eigenmodes – as approximations to the mode shapes that are realized by nonlinear moving of dynamic 

systems. In addition, it should be noted that at small oscillation amplitudes a nonlinear system 

approximates to the corresponding linear, which is an originative or the initial iteration in the 

solution’s search. In this case the choice of a linearized model is of great importance, and it is urgent 

to develop scientifically grounded linearization procedures.  

The following two variants of linearized dynamic models of the blades package have been 

developed for the modal analysis. The models possess a various stiffness level according to the types 

of the imposed kinematic constraints. At that the pre-stress from the obtained solution of the static 

problem is taken into consideration. 

Variant 1: at the area of the sliding contact (dark area in Fig. 2, b) the coincidence condition for 

the perpendicular (to the contact surface) displacements of the nodes of the contact finite elements is 

applied. 

Variant 2: at the area of the sliding contact (dark area in Fig. 2, b) the coincidence condition for 

all displacements of the nodes of the contact finite elements is applied. 

The pre-stress has been taken into consideration for linear models with constraints by solution 

of the linear static problem with the same loads as in the contact interaction problem. 

The pattern of total displacements distribution is shown in Fig. 3. It is evident that the deformed 

mode of the linearized model (Variant 1) qualitatively replicates the displacements distribution for the 

quasi-static contact interaction problem that is shown in Fig 2, a. While displacement field of the 

linearized model (Variant 2) has a better quantitative approximation to the previously considered 

equilibrium.  

Due to giving the possibility of unlimited slide of the bandage shrouds, the linearized model 

(Variant 1) is subject to considerably greater displacements. Also there is possibility of the presence 

of such eigenmodes, where the relative shift of the bandage shrouds at a tangent to the contact 

surfaces occur.  

 

    
    a                     b           c 

Figure 3. Distribution of static total displacements (m) in the linearized models:  
a – Variant 1; b – Variant 2; c – eigenmodes for the pre-stressed linearized model (Variant 2) 

 
Table 1. Eigenfrequencies of pre-stressed linearized models of the blades package 

N 
Frequency (Hz) 

Variant 1 Variant 2 

1 
119.25  

125.83 
128.08 

2 212.42 214.49 

3 
323.90 

264.84 

4 331.42 

5 382.79 419.14 
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The obtained values of eigenfrequencies are given in Table 1. Spectra of the eigenfrequencies 

of developed linearized models have differences. The eigenfrequencies (for similar eigenmodes) may 

change for a few Hz, according to different ways of constraints imposition. This range of frequency 

variation has significant importance for practical calculations of securing against working in 

resonance regimes at operating frequencies (rotor rotation frequency and its 5 or 7 multiple 

frequencies). With the variation of the rotor rotation frequency from the nominal value for a few Hz, 

hazardous frequency ranges around multiple frequencies of rotor speed, in their turn, increase by 

greater values. The eigenmodes are given in Fig. 3, c, for the Variant 2 of linearization with 

constraints of higher stiffness. The first two and fifth eigenmodes correspond to in-phase deformation 

of the blades in package. Instead, the third and fourth eigenmodes relating to a mutual torsion of the 

blades correspond to antiphase deformation. 

 

4. Simulation of forced nonlinear vibrations of pre-stressed blades package 

A study of non-resonant nonlinear vibrations of the two blades package has been performed. 

The harmonic load caused by aerodynamic flow pulsation and static load (constant part of the steam 

pressure and centrifugal force due to the rotation of the turbine rotor) have been considered. 

Within the numerical simulation the following algorithm for solving the problem has been 

developed: 

– the first step of computation (steady-state analysis): quasi-static attainment of system to 

equilibrium at nominal loads; 

– the second step of computation (full transient analysis): turning the inertia effects on, that 

leads to an initial-value problem and a necessity to define the appropriate initial condition. Initial 

displacements field is a solution of the first step of computation. Initial velocities are obtained 

automatically from the computational procedure which uses Newmark differential scheme. At this 

stage the dynamic loads are applying and the static loads remain unchanged. 

Solving of the transient forced vibrations problem on the second step of computation within the 

FE method consists in finding solutions of matrix equations of motion of the blades package: 
 

4 58 9 4 5 8 9/ 0/ 08 9 4 5 8 9/ 0/ 08 9 / 08 9l N l NM u D D u u K K u u F t) * ) *� � � � �- . - .9 4 5/ 0 /l 59 4 5/ 0 /u D9 4 5/ l 5 ) * )8 9/ 0 08 9 4 5/D KD K8 9/ 0 08 9 4 5/D4 5/ l 5 D u u KD u u KK8 9/ 0 08 9 4 5/- . -8 9/ 0 08 9 4 5/ l4 5NN 8 9/ 0 08 9 / l4 5NN 8 9/ 0 08 9 / l4 5NNNN 8 9/ 0 08 9 /D u u KD u u KKD u u K8 9/ 0 08 9 4 5/ l4 5NNNNN 8 9/ 0 08 9 /                                 
(1) 

 

There are following designations introduced in the Eq. 1: [M] – mass matrix; [Dl], [Kl] – linear 

components of damping and stiffness matrices; [DN], [KN] – nonlinear components of the matrices 

arising due to contact interaction in the joints of the bandage shrouds [3]; 8 9u9u , 8 9u9u , 8 9u , / 08 9F t  – 

vectors the nodal accelerations, velocities, displacements and stresses, respectively. Numerical 

simulation has been performed by software package that uses the direct integration of the full system 

of differential equations (1) based on the Newmark differential scheme. At each time step the 

nonlinear contact interaction problem is solving with augmented Lagrangian method [4]. According to 

the requirements of the computational algorithms, time step of the calculation should be from 2.5% to 

5% of the expected period of the vibration process. 

The case of in-phase applying of dynamic load has been considered. This type of load cannot 

lead to excitation of antiphase vibration modes (e. g., such as the third and fourth eigenmodes in 

Fig. 3). Also the probability of opening of contact joints and alternating wobble of the one blade’s 

shroud prong about hollow of the other blade’s shroud is reduced. These phenomena can occur by 

antiphase loading [1]. 

The mathematical model of computation of the forced vibrations of the blades package 

corresponds to Eq. (1), where the nodal loads vector {F(t)} depends on time t as follows: 

 

/ 08 9 8 9 / 00 sin 2F t F t� �� � � � �                                                                     
(2) 

 

Here the amplitude {F0} of variable load is assumed to be 10% of the static component the 

steam pressure, ω=50 Hz – the turbine rotor rotation frequency. Damping ratio δ=0.007 has been 

taken according to recommendations for blades of this type [5]. Time interval of the forced vibrations 

study is to the establishment of the stationary vibration mode. Considering that the period of vibration 

is 0.02 s, time step of the calculation is 0.0005 seconds. 
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The resulting graph for time dependence of displacements in the X direction is shown in 

Fig. 4, a, for the point B, which corresponds to the point of maximum contact pressure on the shroud 

prong. Location of the point B is displayed on the distribution of contact pressure in Fig. 2, c. After a 

non-stationary process at the beginning of the computation time interval, the steady vibrations mode 

begins. It should be noted that the stationary motion occurs around a bit shifted equilibrium, as a 

result of dynamic loading effects. This phenomenon is a display of the nonlinearity of the system. In 

the phase trajectory, which is shown in Fig. 4, b, the process of transition from the equilibrium 

to the stable periodic motion mode for the point B is demonstrated. 

 

                 
                   a                                 b 

Figure 4. Dependence of displacements (a) and the phase trajectory (b) over time for the point B 
 

The display of the nonlinearity of forced vibrations at stationary mode can be assessed by 

analyzing the relation between the axial displacements of the point B on the blade’s shroud prong and 

the distant from the nonlinear contact interaction area point C in the center of the blade. Location of 

the point C is shown in Fig. 1. There is a linear relationship (Fig. 5, a) between the axial 

displacements of points B and C. So, only one mode of the forced vibrations is excited, which are 

mostly of harmonic nature. The phase trajectory has an elliptical form (Fig. 5, b), which is typical for 

the stationary linear harmonic vibrations. Thus, at the stationary regime of the forced vibrations there 

is a constant tight closure of the joint in the shroud, and there is a reliable contact between the blades. 

For the stationary regime of forced vibrations the spectral analysis was performed according to 

the procedure of the fast Fourier transformation. The spectrum (Fig. 5, c) of the oscillation process 

presents the main characteristics for the point B: value of the displacement around which the 

oscillations occur (0.619 mm, which is less than the initial 0.7 mm – the result of the static 

computation; i. e. the vibrations have a relaxing effect upon the blades package); the vibration 

amplitude (0.05 mm) at the loading frequency 50 Hz. There is a slight excitation of frequencies that 

are multiples of the frequency of loading - superharmonics (100 and 150 Hz). But the cumulative 

contribution of their amplitudes is negligible and they do by no means affect the vibrations. 

For comparison, a study of the forced vibrations with taking static loads into consideration for the 

linearized model (Variant 2) has been performed. Mean values of displacements around which the 

oscillations occur are somewhat greater in the linear model than the corresponding values of the 

nonlinear model. The amplitudes of forced vibrations of the linear model are higher by 5-10%. 

Study of the interaction in the contact joint at the forced vibrations has been performed for the 

points of the upper edge of the shroud prong (that is the contact zone by results of the quasi-static 

solution). Analysis of the nature of contacting for the stationary vibrations showed that the dynamic 

contact area does not change – the contact status is identical to illustrated in Fig. 2, b. But during the 

period of vibrations on the upper edge of the shroud prong the sticking contact area appears and 

disappears. Contact pressures in the studied locations have nearly harmonic vibration (with the 

frequency of loading – 50 Hz) component of small amplitude and a significant constant component 

around which oscillations occur. Graph of dependence of contact pressure over time for stationary 

forced vibrations for the point B is shown in Fig. 6. 



Sergii O. Grytsan, Oleksiy O. Larin 
 

247 

 

  
Figure 5. Characteristics of in-phase forced stationary vibrations of the blades package:  

a – relation between the displacements of the points B and C; b – phase trajectory at the point B;  
c – spectral response at the point B 

 

     
Figure 6. Dependence of the contact pressure over time at the point B at stationary forced vibrations 

 

Conclusions 

The numerical research algorithm for the forced nonlinear vibrations with consideration of pre-

stress has been proposed and applied for the blades package with detachable peripheral shroud. 

Complex nonlinear phenomena [1], which have been obtained at neglecting the static stress state, 

were not revealed in present study: here the complete opening of contact is impossible, and there is no 

amplitude modulation at the fundamental harmonic due to negligible contribution of superharmonic 

amplitudes. However, the nonlinear effect of a significant shift of the equilibrium (mean value of 

oscillations) by the action of dynamic loadings has been found. The obtained amplitudes of the 

nonlinear forced vibrations are lower by 5-10% in comparison with amplitudes of the linear forced 

vibrations. It should be claimed that the correct modeling of static loadings in the structurally 

nonlinear systems is an important stage of creation of the linearized models or the solution of the 

forced vibrations problems with consideration of the pre-stress. 
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Nonholonomic Whirling Vibrations of Drill 
String Bits in Deep Boreholes 
 

Valery Gulyayev*, Olena Borshch, Lyudmyla Shevchuk 
 

Abstract 
In the paper the problem of whirl vibrations of a rotating drill string bit under conditions of its 
contact interaction with the bore-hole bottom surface is formulated. The mechanism of the bit 
spinning and rolling without sliding on the rigid surface of the bore-hole bottom is analyzed. To 
study the whirl vibrations, the methods of nonholonomic mechanics are used. As examples, 
whirling of spherical and ellipsoidal bits are considered. The kinematic inducement of the rotating 
bit motion without sliding is shown to be the main cause of its stability loss. The detailed study of 
the bit whirling has revealed three types of its stable and unstable motions associated with direct 
and inverse rolling as well as pure spinning. 
It is found that the most detectable influence on the system dynamics and its stability is exerted 
by the overall stiffness of the drill string tube which depends on parameters of compressive axial 
force and torque and diminishes as their critical values are approached. Essential effect of the 
bit’s shape on the process stability is studied. 
 
Keywords 
Drill string1, drill bit whirling2, nonholonomic constraints3, direct rolling4, inverse rolling5, pure 
spinning6 
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Introduction 

Nowadays, the depths of oil and gas deposits are more than 7000 m. The exploitation of these 

fields represents serious technological difficulties relating to deep drilling. One of the major problems 

is the risk of contingencies due to quasistatic-equilibrium critical states and vibrations of a drill string 

bottom hole assembly (BHA) [1,2]. They include critical flexural buckling of a drill string (DS) [3, 4] 

and its vibrations that may combine several vibration occurrences simultaneously [5–7], making it 

difficult to pick out each of them and to explain their mechanisms. 

Considering the direction of the vibrating motion, there are three main types of vibrations of the 

drill string BHA: axial, torsional, and flexural. The DS axial (longitudinal) vibrations cause multiple 

interruptions of the drill bit contact with the well bottom (i.e., rebounds), alternating with the bit–rock 

impact contact interactions. Torsional vibrations arise through self-excitation during stalling-type 

frictional interaction between the drill bit and the wellbore wall [8]. Self-sustained vibrating systems 

usually feature two phases. During the first phase, the drill bit is seized by the wellbore wall and stays 

motionless (called “stuck” in the theory of self-excited vibrations). During the second phase, the drill 

bit detaches itself from the borehole wall and slips along the wall with an increased angular velocity. 

However, the most complex mechanism are the flexural vibrations of the drill string BHA, 

which are induced by the action of time-variable normal and tangential forces of the contact and 

frictional interaction between the drill bit and borehole wall. In this case, the drill bit geometrical 

centre starts moving around the borehole axis, passing ahead or lagging behind the rotation of the drill 

string itself. Similar motions in a laundry washer of an old design are executed by its rotor due to 

gyroscopic and centrifuge inertia forces. In mechanics they are called the precession vibrations. In [5–

7] it was stated that the drill bit motion as described above is of different nature. It was studied using 

rather simplified physical and mathematical models and was called whirling [9-12].
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Note that in the theory of rotating shafts much attention is paid to shaft balancing and self-

centring in order to prevent precession vibrations. However, in the theory of drilling less attention is 

paid to the problems of preventing whirl vibration. This is mostly due to the fact that the flexural 

motions of a drill bit and drill string BHA are limited by the borehole wall. On the one hand, this 

limitation stabilizes the system movement, while on the hand it makes the vibration nature more 

complicated and the problem statement more cumbersome. As demonstrated by experiments and full-

scale tests, in some cases the drill bit centre starts moving along rather complex trajectories that look 

like a many-petalled flower, to produce a set of grooves on the borehole wall, which are not permitted 

by the drilling specification [5–7]. The present work is dedicated to the problem of computer 

modelling of the above effects and theoretical prediction thereof. The simulation is performed on the 

basis of the nonholonomic mechanics methods [13]. 

1.  Equations of The Drill String  

The whirl vibration of drill bit rotating with an angular velocity � usually involves also the DS 

lower sections located between centralizers which serve as additional supports. Usually, no more than 

five supports are used and their spacing il ranges from 9 to 18 m. Since the most intensive flexural 

vibrations of a DS occur in the section directly adjacent to the drill bit, during the analysis of the  

mechanism of excitation of the drill bit whirl vibration we will disregard the influence of the DS 

upper sections and pick out a DS fragment of length l between two lower centring supports A and B
by arbitrarily separating it from the DS upper section and the adjacent cantilevered section of length 

e with a drill bit on its end. The drill bit will be tentatively represented in the form of a body (Fig. 1). 

Figure 1. Schematic of the drill string segment separated for calculation 

The DS tubular section picked out is pre-stressed by a torque zM applied to the drill bit and by a 

longitudinal compressive force T equal to the reaction of support of the drill bit on the borehole 

bottom. Dynamics of this section will be modelled based on the theory of compressed–twisted 

rotating rods [3, 4]. For this purpose we specify a fixed coordinate system OXYZ and a coordinate 

system Oxyz which rotates jointly with the DS, both systems having a common origin O on the 

support A . The axes OZ and Oz coincide with the DS pipe axis. We take into account that a 

drilling fluid runs inside the DS pipe and during the vibrations it acts as additional mass. 

Consider spatial flexural vibrations of the pipe. To analyze them equations of the moment balance for 

a tubular element dz with respect to axes Oy andOx are used [9]: 
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Then, at this point the functions u and v , and their even derivatives are zero, which is 

equivalent to the bending moments xM and yM being zero. Hence, at the edge 0�z one has 

                    0�� AA vu ,  0// 2222 ������
AA

zvzu                                  (2) 

At the centralizer B / 0lz � , the transverse displacements equal zero and slewing angles are 

continuous. So 

                     ,0�� BB vu
0000

,
����

��
llll дz

дv

дz

дv

дz

дu

дz

дu
                             (3) 

To formulate boundary equations at point elz �� , assume that the process of whirling 

excitation is at the commencing stage and the bit can move in a narrow clearance without touching the 

borehole side surface. As this takes place, the character of the bit rolling and the C boundary 

equations, resulting from it, are determined by the surface geometries of both the bit itself and the 

borehole bottom also. In a general case, they may have shapes of different rotary surfaces, which can 

be approximated by spheres or ellipsoids (Fig. 2). Consider the simplest case, when the both surfaces 

are spheres of radii a and R , correspondingly. 

Figure 2. Geometrical shapes of the bits 

To describe the bit slewing through the DS bending, introduce also the 111 zyCx coordinate 

system rigidly bound to it. At the initial state, axes 1Cx , 1Cy are parallel to axes Ox , Oy , 

correspondingly, and in elastic bending of the DS, they slew through angles – 
C

v� and 
C

u� . 

Rolling of bit surface on surface of the borehole bottom will be determined in the movable 

right-hand coordinate system 222 zyGx with origin G located at the contact point of their surfaces. 

This system  axis  2Gz is  an  extension  of the CG segment, while axis 2Gy is normal to the plane 

containing axis OZ and segment CG , and is oriented along the rotation direction.  

The condition of the bit rolling without sliding gives the possibility to formulate two groups of 

boundary equations at the C point. They include two kinematic equations determining the C point 

velocity and two dynamic ones expressing dynamic equilibrium of all moments relative to the G
point.  
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Assume, that displacements u , v , and angles дzдuu �� , дzдvv �� are small. To determine 

the velocity of the bit’s center C , represent the absolute angular velocities of the introduced 

coordinate systems through the ω angular velocity of the Oxyz system, angles u� , v� of elastic 

slewing of the bit and angular velocities u�� , v�� of this slewing. 

Using the methods of nonholonomic mechanics, one obtains the kinematic boundary equations 
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They represent the nonholonomic constraints. 

Dynamical boundary equations for the C point follow from the condition of dynamical 

equilibrium of the moments of elastic forces, inertia forces moments, and constraint reaction moments 

applied to the bit. In their derivation, selection of the polar point and orientations of the reference 

frame axes can have an essential effect on their structure and simplicity. It is usual to take the contact 

point as a polar one and to choose the coordinate axes ensuring invariability of axial inertia moments 

of the movable body as the reference frame [14]. The first condition leads to exclusion of the 

nonholonomic constraint reaction from consideration, while the second one permits to exclude the 

necessity to differentiate the inertia moments of the body with respect to time. In this connection, the 

G point is chosen as the pole and the 222 zyGx coordinate system as the reference frame. 

2.  Results of Computer Simulation 

Correlations (1)-(4) determine the three-point boundary value dynamic problem for the lower 

segment of the DS and the bit. They are also complemented by initial conditions prescribing initial 

perturbation of the system. Numerical solution of the stated problem is carried out by the finite 

difference method with application of an implicit scheme of integration with respect to time t . This 

scheme is stable for any value of the time increment t� , but it provides satisfacfory precision only for 

its reasonably small values. 

Figure 3. Trajectories of the bit’s center motion for different values of � and R 
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As a result, the rate of excitation of the self-induced vibrations and their modes has been found 

to depend on the DS rigidity, values of T and zM , and the ratio Ra / . In this connection, it can be 

inferred that choosing different values of these parameters one can stabilize or destabilize the 

dynamics of the whirl vibrations. 

The calculation results for ,101,10066.4,12.0 546 NTmPaEIma �������

mNM z ���� 4101 are shown in Fig. 3. The values of angular velocity � and radius R of the 

borehole bottom surface were varied. 

As the simplest example with spherical bodies illustrates, the bit whirling reveals three types of 

its motion associated with direct and inverse rolling as well as pure spinning (drilling). 

The distinguishing feature of these processes is essential change of the modes of motion and 

their stability states with variation of the mechanical parameters, as often happens in nonholonjmic 

systems. For this reason, it is difficult to establish general regularities of their dynamics. Novertheless, 

it should be pointed out that the states of the motion certainly become unstable when the DS tube 

loses its stiffness. 

It is known also that dynamics of contacting bodies depends on their shapes. Consequently, the 

performed analysis can be continued with ellipsoidal bits (oblate and oblong) which are commonly 

encountered in practice. 
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Abstract 
Properties of the stationary structures in a nonlinear optical resonator with lateral inversions 
transformer in feedback are investigated. The mathematical description of optical structures is based 
on the scalar parabolic equation with inversion spatial arguments. We determine the forms of 
stationary structures and investigate its stability as the diffusion coefficient decrease. 
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INTRODUCTION 

Extension of research in nonlinear optics is now caused by the intensive use of optical systems 

in information technology. Among the nonlinear optical systems the one of the most popular is a 

system consisting of a thin layer of the Kerr nonlinear medium and differently organized two-loop 

feedback. Nonlinear interferometer with a mirror image of the field in the feedback loop is one of the 

simplest optical systems that implement the non-local nature of the interaction of light fields. 

Experimental researches have shown a variety of types of optical structures arising in this case [3] - 

[6]. Following [7], we construct a hierarchy of its simplified models. 

1.  FORMULATION OF THE PROBLEM 

Mathematical model is the next task 

/ 0 0),,cos1( ������ ttuKDuuut @�6@@ (1) 

/ 0 / 0tutu ,,2 @�@ ��  (2) 

The task (1), (2) models dynamics of phase modulation / 0tu ,@ , / 0�@ 2,0I , 0�t , the light 

wave which has passed a thin layer of the nonlinear medium of kerrovsky type with reflection 

transformation of coordinates in the feedback loop in one-dimensional approach. Designations: D is 

a diffusion coefficient of the nonlinear medium, a positive coefficient K is proportional to the 

intensity of the input field, 6 is a visibility (contrast) of the interference pattern, 10 �� 6 . 

In this paper we consider the existence, shape and stability of spatially non-uniform stationary 

solutions bifurcating from the spatially uniform stationary solutions, i.e. decisions / 0 �@ �tu ,  

defined by the equation 
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/ 0�6� cos1�� K          (3) 

With the growing of K the number of co-existing roots of this equation increases indefinitely, 

so one fix a smooth branch of solutions, / 06�� ,K� ,  / 0 0,sin1 T� 6�6 KK . After linearization 

of the equations (1), (2) by / 06� ,K one obtains the equation 

0�� Luut

where QuDuuLu G��� @@ , / 0 �66 sin, KK ��G�G , Q - the operator defined by the equality 

/ 0 / 0tutQu ,, @�@ �� . 

Lemma 1. The operator L  has a complete orthogonal system of eigenfunctions
 

�,2sin,2cos,sin,cos,1 @@@@  related to the eigenvalues G��107 , ,11 G��� D7
G��� D127 , ,413 G��� D7  G��� D4147

Now we fix K such that the following condition is satisfied.

Condition 1. / 0 1, ��G�G 6K . 

From a lemma 1 and conditions 1 follows that  / 06�� ,K�  is the stable solution of the 

problem (1), (2).  At reduction D and its passing through value / 0G��� 11D � loses stability. 

Instability index [8]; a solution � at 1
1

4
DD

D
�� is equal 1. At reduction D and its passing 

through the values 
/ 02

1

1�k

D
, ,...2,1�k each time the instability index of the solution � increases by 

an order. One takes D as the bifurcation parameter. Replacement �? ��u leads the equation (1) to 

the following:  

/ 0Q?? QRL ��� (4) 

where 

/ 0 / 0432

!3

1

!2

1
vOQvQvctgQvR ��G��G� �

      (5)

Using designations ,1 QDL G���� ,sin�6K��G  / 0tvQv ,@� �� , one obtains 

/ 0432

!3

1

!2

1
vOQvQvctgwQvvDvvt ��G��G�G����

Find the solution of the problem (1), (2) by the method of the central manifold [9] 

/ 0 / 0 ...,,
!3

1
,,

!2

1
cos 32 ������ DzDzzv @@@ ,    (6) 

where / 0,,,2 Dz @� / 0�,,,3 Dz @�  are forms of the second, third, ... degrees with respect to z . The 

equation (4) takes the form 

/ 0 / 0 ...3

11 ���� zDczDz 7�         (7) 

Find the coefficients of decomposition (6), (7).  Substitute (6), (7) in (4) and equate the 

coefficients of the same degrees by z . Assuming 
2

22 zq�� , one has at 
2z that
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/ 0 @�7 2

21 cos!2 ctgqL G�� .  By the lemma 1 / 0 / 0/ 0@7777� 2cos22
2

1

13

1

102

�� ���
G

� ctgq . 

Assuming 
3

33 zq�� , we come to a conclusion that 3q satisfies to the equation 

/ 0 / 0 @@�@7 3

2131 cos
!3

1
cos

2

1
cos3

!3

1
G�G���� QqctgDcqL .   (8) 

Condition of solvability of this equation in a class analytical on D and periodic on @ functions 

leads to unequivocal definition 
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The equation (8) has a solution of the same type as its discontinuity:  
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The specified process will continue indefinitely. Under the condition 1 one has that 

/ 0 ,011 �Dc / 0 011 �D7 . As / 0 111 �� D7  there is a supercritical bifurcation from the trivial singular 

point of (7) two exponentially stable points branch off,  

/ 0
/ 0/ 01
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Therefore, the family of (4) gives us the supercritical bifurcation of exponentially stable 

stationary solutions:  
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Theorem 1. Let the condition 1 is satisfied. Exists 00 �1 such that if 010 1��� DD ,  the 

task (1), (2) has two solutions: / 0 / 0,,, DvDu @�@ �� �� where satisfies (10). The solution 
�u is 

stable. 

Example 1. Let ,4�K 7,0�6 . Then the equation for the stationary solutions will be: 

/ 0�� cos7,014 �� . Solving this equation, we receive three values: � :  2.24721  5.1264    6.63168

Check a condition 1:  -2.18351   2.56344   -0.956161. Condition is satisfied if 24721.2�� . 

Critical value D : 1D = 1.18351, then / 0 0562709.011 ���Dc . Depending on value D different 

values / 0 / 0 �@?@ �� DDu ,, , / 0 / 0DvD ,, @@? ��  are obtained 
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Figure 1. Function u at .007.0,04.0,08.0,44.0,1.1 ����� DDDDD

Field of application of equality to describe spatially non-uniform stationary solutions of (4) is 

narrow. In this regard, we construct a two-mode approximation of the equation (4). We use the 

formalism of constructing the center manifold in combination with the Galerkin method. The 

approximate solution of equation (4) as 

/ 0 / 0 / 0DzDzzz ,,
!3

1
,,

!2

1
2sincos 3221 @@@@? ������

 (11) 

where 2� , 3� - forms second, third degree relatively z , / 021, zzz � - the system solution 
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here 1g , 2g  are forms of the third degree with respect to z . Substitute (11), (12) in (4) and equate 

the form of the second and third degree. Using the algorithm described earlier, one determines ,2�
,3� ,1g 2g
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Note that the coefficients in (13) are analytic functions of D . Let / 0 / 0/ 0DxDx 21 , - a 

continuous branch of stationary solutions of the system (13), branching off from the zero solution and 

such that / 0 01 �Dx at small 01 �� DD . Then, by (11), (13) approximate stationary solutions of the 

equation (4) are the following functions: 
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Note that denominators in (13) are positive on the next interval of the parameter D change: 
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Figure 2. Stationary points of system (13) 
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Example 2. When passing through critical value 18351.11 �� DD from the stationary 

solution of system (13) two stable spatially nonuniform solutions / 0/ 00,1 Dx�  are appeared, and the 

trivial solution loses stability. 

One considers the interval / 0 / 069.0;18.1; 1

1 �DD . The following figure shows graphs of the 

solutions / 0/ 00;01 �Dx . 

Figure 3. Function u at .007.0,04.0,08.0,44.0,1.1 ����� DDDDD

CONCLUSIONS 

Theorems on existence and stability of stationary structures in a problem of nonlinear optical 

resonator with lateral inversions transformer in feedback, are proved under some general assumptions.

At unlimited decrease of the diffusion coefficient the stationary structures evolve and pass to 

contrasting structures. 
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Abstract 
The problem of stabilization of Kelvin-Helmholtz instability of the interface between two deep 
dielectric fluids by the external tangential electric field is considered. Three regimes of fluids motion 
are revealed for which the nonlinear dynamics of interface can be described analytically. For the first 
one, the tangential discontinuity of the velocity field at the liquids interface is negligibly small, that is a 
destabilizing factor is absent. It is found that weakly nonlinear waves on the boundary can move 
without distortion in the direction and against the direction of the external electric field; the analytical 
expression that describes the interaction of counterpropagating nonlinear waves is obtained. In the 
second regime, the electrostatic pressure exerted by the external field completely compensates the 
hydrostatic pressure on the interface and, hence, the evolution of the system is only determined by 
nonlinearity. For this case, a class of exact solutions (with accuracy up to quadratic nonlinear terms) 
is obtained, which describes the propagation and interaction of structurally stable localized waves at 
the interface. In the third regime of fluids motion, the electrostatic pressure exceeds the hydrostatic 
one (a transitional regime between the first and second ones). In the general case, the profile of the 
nonlinear wave is distorted with time. We find the conditions under which this distortion does not 
occur, and nonlinear waves can propagate without dispersion in the direction or against the direction 
of the external electric field. 
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Introduction 

The one of the most frequent types of hydrodynamic unsteadiness is the Kelvin–Helmholtz 

instability occurring when there is velocity shear in a single continuous fluid, or where there is a 

velocity difference across the interface between two fluids [1]. Meanwhile, it is well known that the 

external electric field directed tangentially to unperturbed fluids boundary has a stabilizing effect [2]. 

Thus, the stabilization of fluids interface undergoing such instabilities as the Kelvin-Helmholtz or the 

Rayleigh-Taylor instability can provide the electrostatic pressure exerted by tangential electric field. 

The features of nonlinear waves evolution on the interface in the presence of the horizontal 

(tangential) field and the Kelvin-Helmholtz instability have been analyzed in [3, 4]. In [5, 6] the 

problem of stabilization of Rayleigh-Taylor instability using the tangential electric field has been 

studied. As a rule the complexity of equations describing the evolution of the boundary requires the 

use of numerical methods. Nevertheless studies [7, 8] have shown that in some cases a significant 

progress can be attainable in analytical investigating of the interface dynamics. In the present work we 

generalize the approaches developed in [7, 8] to study the nonlinear stages of the interface Kelvin-

Helmholtz instability suppressed by the external electric field. Three classes of analytical solutions 

corresponding to the different modes of fluids motion are obtained. These results demonstrate the 

stability of nonlinear waves and possibility of their propagation without shape distortion.

1.  Boundary conditions and the weakly nonlinear model equations 

259 



Evgeny A. Kochurin, Nikolay M. Zubarev 

Let us consider the dynamics of the interface between two deep perfect dielectric 

(nonconducting) fluids moving with different velocities in an external horizontal electric field. In the 

unperturbed state, the interface is a horizontal plane z=0. The electric field strength is directed along 

the axis x and in absolute value is equal to E. Let the deviation of the interface from the plane z = 0 be 

given by the function η(x, t), that is the equation z = η defines the shape of the boundary. We will 

consider the plane-symmetric waves, i.e. all values depend on two spatial variables (z, x), as shown in 

Figure 1. We assume that both fluids are inviscid and incompressible, and their flows are irrotational 

(potential). The velocity potentials for fluids Φ1,2, as well as the electric field potentials φ1,2, satisfy the 

Laplace equations (here and below the subscripts “1” and “2” refer to the lower and upper fluids, 

respectively).   

Figure 1. The geometry of the problem. 

The normal components of the velocities are equal at the interface, i. e. 1 2=n n� � � � , here ∂n denotes 

the derivative along the normal to the boundary z = η. The tangential component of the electric field 

and the normal component of the electric displacement field are continuous at the interface. Thus, the 

electric field potentials obey the boundary conditions at the interface 1 2 1 1 2 2= , = ,n n@ @ D @ D @� � where 

ε1,2 are the dielectric constants of the lower and upper fluids, respectively. At an infinite distance from 

the interfacial boundary the velocity field and the electric field are uniform Φ1,2→V1,2x, φ1,2 → Ex.The 

Hamiltonian H coincides with the total energy of the system 
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where ρ1,2 are the densities of fluids, 0D is the vacuum permittivity. For convenience of the further 

analysis, we switch to dimensionless notations (with dashes) as follows: 
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here V, λ are the characteristic velocity and the wave length, respectively. Let us introduce 

perturbations of the velocity potentials and the electric field potentials of liquids: Φ1,2= Φ'1,2 ‒ V1,2x, 
φ1,2= φ'1,2+Ex. Further the dashes, in the notation of all dimensionless variables, are omitted. The 

equations describing the motion of the interface z = η can be represented in the Hamiltonian form [9]: 

= =t t

H H1 1
	 A

1A 1	
�

260 



Evgeny A. Kochurin, Nikolay M. Zubarev 

where 	 is generalized momentum defined as 1 1 2 2= =
( , , ) = .

z z
x y t

A A
	 C C� � �

Consider the dynamics of the interface in the approximation of small angles of inclination of 

the boundary, i.e. | | 1,A 2UJ 1, here 2 is a small parameter. To obtain the equations of the interface 

motion is necessary to express the Hamiltonian of system (1) in terms of the canonical variables η and 

ψ. We write the expression for Hamiltonian (with the accuracy up to the cubic terms in integrand) 

omitting the procedure details of the integrand expansion in the powers of η and ψ (for more details 

see [7,8])  

/ 0 / 0
2 2

2 2 2 21 ˆ ˆ ˆ ˆ= ( ) ( )
2 2

E
c x x x x x E x x

A E
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where Ĥ denotes the Hilbert integral transform, 
1 2 1 2= ( ) / ( )A C C C C� � is the Atwood number and 

1 2 1 2= ( ) / ( )EA D D D D� � is an analogue of the Atwood number for dielectric constants, cV is the 

velocity of fluids center mass, and without loss of generality, we can set it equals to zero, which 

corresponds to a transition in the center of mass of the fluids. Taking the variational derivatives of H, 

we obtain the desired equations of motion: 
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As can be seen, these equations are a fairly complicated system of nonlinear integral-

differential equations. Construction of the general solution of the system (2)-(3) is very hard problem; 

therefore we consider a number of special cases in which the system can be described analytically. 

2.  Nonlinear waves in the absence of velocity discontinuity  

The first regime of motion discussed in the paper is realized when the following conditions are 

satisfied:  

1 2 1 2 1 2= 0 = / = /EV V A A C C D D� V (4) 

That is the interface velocity discontinuity is absent, and the ratio of fluids densities is equal to 

ratio of their dielectric constants. In this case the system of equations (2)-(3) has pair of exact 

solutions: 

( , ) = ( ) ( , ) = ( )x t f x AEt x t g x AEtA A� � (5) 

here f(x-AEt) and g(x+AEt) are arbitrary functions. In accordance with the expressions (5) the 

nonlinear waves of arbitrary shape propagate without distortion in the direction and against the 

direction of external electric field. Thus in the regime, the nonlinearity has not an influence on wave 

speed and does not lead to the singularity. The nonlinear effects should be considered only in the 

analysis of the interaction of counterpropagating waves. Let us consider the interaction of 

counterpropagating waves (5), in a situation where the condition (4) is satisfied. As in [8], we find the 

general solution of the equations (2)-(3) 
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/ 0 / 0ˆ ˆ ˆ ˆ ˆ( , ) = ( ) ( )
2

x

A
x t f x AEt g x AEt H fg Hf Hg fHg gHfA ) *� � � � � � � � �- . (6) 

This expression describes the nonlinear superposition of the counterpropagating nonlinear 

waves (5). From (6) we can see that the interacting waves are structurally stable. 

3. Nonlinear waves in the neutral stability regime  

The second motion regime corresponds to the situation for which the Kelvin-Helmholtz 

instability is completely stabilized by the external field, i.e. under the following condition 2 2

сE E� , 

here Ec is the critical value of electric field strength 

2 2
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2
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4
c

E

A V V
E

A

� �

A significant progress in the study of the problem can be achieved in the case 0	 � (this 

condition can be realized if = ,EA A� or that the same 
1 2 2 1/ = /C C D D ). Since applying the Hilbert 

transform to a function analytic in the upper half-plane reduces to its multiplication by the imaginary 

unit equation (5) can be rewritten in the complex form 

2

1 2
ˆ= (1 )( ) ( )t x xA V V iPA A A� � � �� � (7) 

here ˆ ˆ= (1 ) / 2P iH� � is the projection-operator, that action on an arbitrary complex function defined 

as ˆ =P � �� � , here � �
is an analytic function in the upper complex half-plane. This equation admits 

the exact solution in the form of structurally stable perturbation of the form 
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here S is a real constant, (-b,-ia) are coordinates of the singular point (pole in the lower complex half-

plane ( ) > 0a t ). After substitution of the function ( , )x tA�
into equation (7) we obtain ordinary 

differential equations for the ( ), ( )a t b t

2

1 22
= 0 = (1 )( ) =

8
s

da db S
A V V V
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It follows directly that =a const , 0( ) = sb t x V t� , that is the localized perturbation of the form 

(8) propagates without shape distortion along the interface with the velocity sV , which depends on 

parameters S and a. It should be noted that the equation (7) can be reduced to ODE system for the 

more general case, where the solution of system is a superposition of the perturbations (8) 

1

/ 2
( , ) =

(t)

N
n

n n

iS
x t

x p
A�

� ��

here Sn are real constants, pn(t) are complex functions, that determine the locations of poles in the 

lower complex half-plane Im (t) 0np � . After substituting this expression into equation (7) we obtain 

the ODE system 
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The system of ODE describes the propagation and interaction of stable nonlinear waves of the 

form (8) along the interface between liquids. 

4.  Nonlinear waves in the regime of suppression of the Kelvin-Helmholtz 
instability 

In this section we consider the situation in which the tangential velocity discontinuity at the 

boundary is not zero, and the electric field does not equal to the critical value. We suppose that E>Ec, 

i.e. the regime is intermediate between that discussed in Section 2 (which formally 

corresponds cE EcEc ), and that considered in Section 3 (for which cE E� ). The equations (2) and (3) 

can be rewritten using new variables 

1 1
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2 2
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where 0 > 0V is the speed of linear wave 
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In the linear approximation, the equations (2) and (3) have the following form in terms of the 

new variables 

0 0= 0 = 0t x t xf V f g V g� �

Thus, the equations system (2)-(3) is divided into independent equations. The equation for f
describes the propagation of linear wave to the left and the equation for g does to the right. The same 

way we can divide the system (2)-(3) in the framework of weakly nonlinear model. So the equations 

for the traveling waves have the following form 
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here we also introduced dimensionless parameter 6
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It is not difficult to see that the case of dispersionless nonlinear wave propagation,  discussed in 

the  Section 2, corresponds to the value of the parameter =16 , and = EA A , 1 2 0.V V� � Here, we 

should note the possibility of dispersionless wave propagation, if the following conditions are 

satisfied: 

/ 0 2

0 1 21 (1 )( ) = 0AV A V V6 � � � �                        (11) 

i.e. in this case either the right part of the equation (9) equals to zero or the right part of (10) equals to 

zero. The conditions (11) determine an implicit dependence of electric field on the physical 

parameters of the problem ( 1 2 , , EV V A A� ). Herewith, the choice of sign in (11) corresponds to the 

different directions of dispersionless wave propagation; the plus for the left-traveling waves, and the 

minus for the right-traveling waves. That is the wave propagation without distortion is only possible 

in one direction, in contrast to the regime discussed in Section 2, in which waves can propagate 
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without dispersion in both directions. It should be noted that the conditions (11) do not contain a strict 

condition on A and AE , whereas for the realization of above mentioned regimes the conditions were 

necessary: = .EA A�

Conclusions 

In the present work, the nonlinear dynamics of the interface of dielectric liquids in a horizontal 

electric field in the presence of velocity discontinuity at the interface have been studied. In the 

framework of Hamiltonian formalism the nonlinear integral-differential equations describing the 

propagation of quadratic nonlinear waves at the interface are obtained. It is shown that the external 

electric field can stabilize nonlinear stages of the Kelvin-Helmholtz instability. Three regimes of 

fluids motion are considered, for that the nonlinear surface waves propagate without distortion of their 

shape. It is important that for the obtained solutions the evolution of system does not lead to an 

increase of surface disturbances and singularities formation. As a consequence the angles of interface 

slope remain small and applicability conditions of the theory are not broken. It should be noted that 

the above results are applicable for the description of wave propagation at the interface between 

ferromagnetic liquids in a horizontal magnetic field at replacement the of electric field strength E on 

the magnetic field strength H and the dielectric constants ε1,2 on the magnetic permeability μ1,2. 
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We consider on a circle the scalar parabolic equation with a rotation of the spatial variable. Dynamics
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solutions of the type of internal shock layer for sufficiently small coefficient of diffusion.

Keywords

Bifurcation, parabolic equation,optical structure,orbitally stability, stability,internal shock layer,Galerkin

method

Taurida National V.I.Vernadsky University, Simferol, Ukraine

*Corresponding author: korn 57@mail.ru

Introduction

Consider an equation in a circle R/2πZ [1]

∂tu+u = µ∂xxu+LThu+(Thu)3 ,

u(x+2π, t) = u(x, t) , (1)

u(x,0) = u0(x), 0 < x < 2π,

where Thu = u(x+h, t), h is an angle of rotation of the field, and L, µ > 0 are parameters. The original

problem is obtained in the case of investigation of the optical structures in a nonlinear interferometer

with transformation of rotation in the two-dimensional feedback as a result of a series of simplifying

assumptions. In the present work, it is assumed that h = π . We note that stationary structures in Eq. (1)

with transformation of rotation are investigated in [2-4].

For each value of the parameter µ, Eq. (1) generates a dynamical system in the Sobolev space

H1(R/2πZ) of 2π−periodic functions. The solutions of Eq. (1) approach one of its stationary solutions

as t → +∞. For L < −1, Eq. (1) possesses three stationary spatially homogeneous solutions: 0 and

±
√
−1−L. For µ >−1−L, the trivial solution is exponentially stable.

The transition of the parameter µ through the value

µ∗
k =

−L−1

k2
, k = 1,3, . . .

leads to changes in the character of stability of the trivial solution. As µ passes through the value

µ∗
1 , one simple eigenvalue of the trivial solution passes through zero from the negative semiaxis to the

positive semiaxis. As a result of this bifurcation, two stable and continuous (in µ) branches of spatially

inhomogeneous stationary points ±ϕ1(x,µ) separate from the trivial solution.

By using the method of central manifolds, we arrive at the equality

ϕ1(x,µ) =
2√
3

√
−1−L−µ cosx+O(−1−L−µ) .

As the parameter µ decreases and passes through the value µ∗
k for k = 3,5, . . . , the instability index

of the trivial solution increases each time by an order of magnitude. As a result, a couple of stationary

points ±ϕk(x,µ) with instability index
k−1

2
separates from zero.
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By applying the similarity principle

ϕk(x,µ) = ϕ1(kx;k2µ),

we get

ϕk(x,µ) =
2√
3

√
−1−L− k2µ coskx+O

(
−1−L− k2µ

)
.

In the present work, to study the behavior of the stationary structures ϕk(x,µ) as the parameter µ

moves from the corresponding bifurcation value, we construct a hierarchy of simplified models of Eq. (1).

1. Galerkin Approximation

We represent the solution of the original equation in the form

u =
N

∑
k=0

zk coskx (2)

and substitute this expression in Eq. (1). In the equation obtained as a result, we equate the coefficients of

coskx, k = 0,N, and arrive at the following gradient system of equations:

żk =−∂GN (z)

∂ zk

, k = 0,N. (3)

In system (3), the trivial stationary solution is stable for µ > −1−L. As the parameter µ passes

through −1−L, the trivial solution becomes unstable with instability index 1. As a result, two continuous

branches of fixed points ±z1 (µ,N) =±(z1,0;z1,1; . . . ;z1,N) separate from zero

z1,2s = 0, (−1)s
z1,2s+1 > 0, s = 0,1, . . . ; z1,1 > |z1,3|> z1,5 > .. .

Thus, we get the following approximare inequality:

ϕ1 (x,µ)≈
n

∑
s=1

z1,2s−1 cos(2s−1)x, n =

{
N
2
, is N is even;

N+1
2

, if N is odd.
(4)

The numerical analysis is performed for the case L =−3

2
. In the vicinity of the value of the parameter

µ =−1−L, the plot of the function has a quasiharmonic form with low amplitude. As the parameter µ

decreases, the amplitude of the function ϕ1 (x,µ) increases. Moreover, the modulus of this function takes

its maximal value at the points 0, π and 2π . As soon as the function |ϕ1 (x,µ)| attains its maximum value

≈
√
−1−L, the growth of its amplitude terminates. As the parameter µ decreases further, the intervals

adjacent to x = 0, x = π , and x = 2π in which the function takes constant values increase. As soon as

µ attains a certain value depending on N, the function ϕ1 (x,µ) begins to oscillate, i.e., we observe a

manifestation of the Gibbs phenomenon. As N increases, the amplitude of oscillations decreases and their

frequency increases. For µ close to zero, ϕ1 (x,µ) has the form of a contrast structure with two transition

points
π

2
and

3π

2
. As an illustratioin, in Fig. 1, we present the plots of the function ϕ1(x,µ) for N = 21

and the values µ = 0.4, 0.1, 0.01, 0.001, 0.00001.

We now proceed to the analysis of stability of the function ϕ1 (x,µ). It has already been indicated that

±ϕ1 (x,µ) are born stable. To this end, we consider the problem of stability of fixed points ±z1 (µ,N).
According to the results of numerical analysis performed for the values N = 5,21, these points are stable.

All points of the spectrum λk (µ,N) ,k = 0,N, of the stability matrix

− ∂ 2GN (z,µ)

∂ z2

∣∣∣
∣∣∣
z=z1(µ,N)

lie on the negative semiaxis. As the parameter µ decreases, the points of the spectrum become closer. Thus,

λk (µ,N) ,k = 1,N, monotonically decrease in the interval

(
0;

1

2

)
. The maximum point of the spectrum
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Figure 1. Plots of the function ϕ1(x,µ)

λ0 (µ,N) monotonically decreases in the interval (0; 0.011) and monotonically increases in the interval(
0.011;

1

2

)
. Moreover, for the values of the parameter µ close to zero, we have λ0 (µ,N)≈−0.7.

As the parameter µ decreases and passes through the value
−1−L

9
, the instability index of the

trivial solution increases by 1. As a result, the second couple of stationary points ±z3 (µ,N) =
±(z3,0,z3,1, . . .z3,N) continuous in µ and such that

z3,k = 0, k �= 3,9, . . . ; (−1)s
z3,6s+3 > 0, s = 0,1, . . . ; z3,3 > |z3,9|> z3,15 > .. . .

separates from zero. In view of (2) and (3), we get the following approximate equality:

ϕ3 (x,µ)≈
n

∑
s=1

z3,6s−3 cos(6s−3)x, n =

[
N −1

9

]
+1. (5)

The function ϕ3(x,µ) has six transition points
kπ

6
, k = 1,3, ...,11 and its behavior is similar to the

behavior of ϕ1(x,µ). As an illustration, in Fig. 2, we present the plots of the function ϕ3(x,µ) for N = 21

and the values µ = 0.05, 0.04, 0.01, 0.001, 0.00001.

1 2 3 4 5 6

�0.5

0.5

Figure 2. Plots of the function ϕ3(x,µ)

The solutions ϕ3 (x,µ) are born unstable with instability index 1. The points z3(µ,N) are also born

unstable with instability index 1. The analysis of the stability of z3(µ,N) for N = 5,21 gives the following

results:

For any N, the eigenvalues λs(µ,N)< 0, s = 1,N, in the interval

(
0;
−1−L

9

)
.

For N = 5,6, as the parameter µ decreases, the sole positive eigenvalue λ0(µ,N) shifts to the negative

semiaxis for µ ≈ 0.02 and remains negative as the parameter µ decreases further. Note that, for µ close

to zero, λ0(µ,N) is small, e.g., λ0(0.000001)≈−0.00002.
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For N = 7,8, as the parameter µ decreases, the point of the spectrum λ0(µ,N) > 0 in the interval(
0;
−1−L

9

)
: the function λ0(µ,N) monotonically increases as (0;0.0194) and monotonically decreases

as

(
0.0194;

−1−L

9

)
.

For N = 9,10 as the parameter µ decreases, the positive eigenvalue λ0(µ,N) shifts to the negative

semiaxis for µ ≈ 0.01804. As the parameter decreases further, λ0(µ,N) remains negative and moves

from the origin.

For N = 11,12,17,18, the behavior of λ0(µ,N) is similar to its behavior for N = 5,6 but, in this case,

λ0(µ,N) shifts to the left semiaxis for µ = 0.01333 and µ = 0.00959, respectively.

For N = 13,14,19,20, the positive eigenvalue λ0(µ,N) remains on the right semiaxis as in the case

N = 7,8.

For N = 15,16,21, the unstable stationary point z3 becomes stable, as in the case N = 9,10, but for

smaller value of the parameter µ .

The results presented above enable us to make the following conclusion: For small µ, the spectrum of

the stationary point ϕ3 (x,µ) of the original problem contains 0. This means that, for small µ, ϕ3(·,µ) is

a point of an orbitally exponentially stable one-parameter family of stationary points. This family is a one-

parameter family of solutions of the type of internal shock layer [5]. Thus, the original problem has the

following specific feature: If the parameter µ is located near the critical value, then there exists an isolated

stationary solution ϕ3(x,µ) monotonically decreasing in the interval [0,
π

3
] and such that ϕ3(

π

6
,µ) = 0.

We note that ϕ3(0,µ) increases as µ decreases.The growth of the function ϕ3(0,µ) terminates as soon

as it becomes equal to
√
−1−L. In this case, the function ϕ3(x,µ) turns into a solution of the type of

internal shock layer with transition point
kπ

6
,k = 1,3, ...,11. Than, we observe the loss of the isolated

character of the stationary solution ϕ3(x,µ). The problem of the character of bifurcation connected with

the transition from the isolated solution to a one-parameter family of solutions of the shock type is of

significant interest. To solve this problem, we consider simplified models (3) of the original problem.

1 2 3 4 5 6

�0.6

�0.4

�0.2

0.2

0.4

0.6

Figure 3. Plots of one-parameter family ϕ3(·,µ)

The solutions of the shock type with different transition points are presented in Fig. 3. These

approximate solutions correspond to the bifurcation values of the parameter µ = 0.005 obtained for

system (3) in which N = 25.

In the gradient systems (3), as the parameter µ decreases, we observe the realization of a great variety

of saddle-node bifurcations. The bifurcations leading, by virtue of (2), to the solutions of the shock-layer

type with three transition point are characterized by the following specific features: For fixed N, the

bifurcation values of the parameter µ are close. The branches of stationary points born stable or unstable

are defined for all positive values of the parameter µ lower than the corresponding bifurcation value. The

character of their stability preserves as the parameter µ decreases. The spectra of stationary points of the

indicated type almost coincide. As the parameter µ decreases, the highest points points of these spectra

slowly move from zero. The stationary points in the branch slowly vary as the parameter µ decreases.

To illustrate these observations, we now present examples of saddle-node bifurcations for N = 25.
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Thus,

µ = 0.000920618,

(0.86968;−0.21197;0.04326; 0.04397; 0.09327; 0.11702;−0.12182;−0.11302;−0.09561; ...) ,

σs = {−2.53192; ...;−1.00413;−0.99984;−0.99814;−0.58296;−0.00011371} ,
(0.86969;−0.21201;0.04332; 0.04390;−0.09320; 0.11696;−0.12177; −0.11298;−0.09559; ...) ,

σu = {−2.53204; ...;−1.00413;−0.99984;−0.99813;−0.58295; 0.00011379} .

µ = 0.0001,

(0.86549;−0.20008; 0.02369;0.07119;−0.12764; 0.15719;−0.16541; 0.15685;−0.13616; ...) ,

σs = {−2.06130; ...;−0.96356;−0.93894;−0.93582;−0.89937;−0.16546} ,
(0.88365;−0.25391; 0.10771;−0.03437;−0.01111; 0.04072;−0.05912; 0.06879;−0.07144; ...) ,

σu = {−2.43375; ...;−0.92573;−0.90616;−0.89004;−0.65910; 0.34249} .

µ = 0.000001,

(0.86584;−0.20139; 0.02565; 0.06919;−0.12629; 0.15712;−0.16702; 0.16021;−0.14095; ...) ,

σs = {−2.0107; ...;−0.93763;−0.93505;−0.89991;−0.89287;−0.18034} ,
(0.88434;−0.25614; 0.11132;−0.03897;−0.00602; 0.03568;−0.05468; 0.06537;−0.06934; ...) ,

σu = {−2.43636; ...;−0.90020;−0.88279;−0.85259;−0.65068; 0.36349} .
It is clear that the next point of the spectrum after the maximal point along the negative semiaxis is

located near −1.

1 2 3 4 5 6

�0.5

0.5

Figure 4. Plots of the function ϕs,u(x,µ)

In Fig. 4, for µ = 0.000920618, 0.0001, 0.000001, we present the plots of the corresponding struc-

tures.

We observe so saddle-node bifurcations leading, by virtue of (2), to the solutions with splash points.

There are serious reasons to believe that the results obtained in the present work remain true for

N > 25.

Conclusions

Existence of an orbital asymptotically stable family of stationary solutions of the considered problem

for sufficiently small coefficient of diffusion is shown in this article. Points of the family are stationary

solutions of internal transition layer, which are constructed using the Galerkin method.
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Introduction 

This work is devoted to a study of the nonlinear vibrations and stability of laminated plates with 

complex geometric shape that are subjected to a periodic in-plane load. The relevance of the problem 

is explained by wide adoption of composite materials in the industrial applications. A special attention 

has been paid to the vibrations of composite plates under various types of loading, and in particular, 

parametric vibrations. There are many publications on this subject, but the previous works considered 

mostly the plates of a canonical form with a homogeneous subcritical state. Currently, the computer 

simulation of the nonlinear dynamics of plates with complex geometric shape and inhomogeneous 

subcritical state are performed using the Finite Element Method (FEM) [5]. A different approach has 

been proposed in references [2,4]. It is based on the theory of R-functions and variational methods, 

and enables obtaining the meshless solutions to the plate and shell vibration problems. In this work 

the R-functions method (RFM) is extended to a new class of problems – nonlinear parametric 

vibrations and dynamical stability of laminated plates. In the proposed approach we will take into 

account the subcritical state.  

1. Mathematical Statement 

Let us consider the parametric vibrations of the laminated plates with symmetric structure. We assume 

that plate and all its layers have a constant thickness; and the plate is subjected to a periodic in-plane 

load tppp t ��� cos0 , where p0 is a static component, pt is an amplitude of a periodic part, and � is a 

frequency of the load. We derive mathematical formulation of the problem using Kirchhoff’s 

hypotheses. Accordingly, the strains acting in the midplane are expressed as follows:  
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In these expressions u, v, w  are the displacements of the points in a midplane in the directions of the 

coordinate axes Ox, Oy, and Oz. Stress resultants Nx, Ny, Nxy and moments Mx, My, Mxy are presented 

as: 

8 9 8 9,][ D�� CN   8 9 8 9L�� ][DM , 

where C and D are stiffness matrices: 
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equations, expressed in the displacements, can be written as follows [1]: 
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where D  is a damping coefficient. System (1)-(2) is supplemented by the initial and boundary 

conditions. The load, specified at the traction portion of the plate’s boundary, is specified by its 

normal and tangential components: 

0, ��� nn TpN . 

The normal component nN  of the applied load can be expressed via the stress resultants Nx, Ny, Nxy  

 

lmNmNlNN xyyxn 222 ��� , / 0 / 0lmNNmlNT xyxyn ���� 22 , 

 

where / 0OynmOxnl ,cos),,cos( ��  are directional cosines of the normal vector n  to the plate’s 

boundary. 

 

2. Investigation Method  

The proposed method reduces solution of a nonlinear problem to a series of auxiliary linear 

problems. First, we need to determine the subcritical state and solve a linear vibration problem for the 

loaded plate in the midplane. Detailed description of the solution methods involved in this step as well 

as several numerical examples can be found in the reference [4]. Once eigenfunctions wi of a linear 

vibration problem are determined, they can be utilized in a truncated series to represent the deflection 

w of the plate: 

/ 0 / 0 / 0�
�

�
n

i
ii yxwtytyxw

1

,,, .     (3) 

 

To satisfy the motion equations (1) we propose to present the in-plane displacements as 
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In these expressions functions / 011,vu  are solution of system  
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supplemented by the following boundary conditions: 
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Functions / 0ijij vu ,  are solutions of the following inhomogeneous system: 
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They satisfy the following boundary conditions:  
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Right hand side of the system (5) depends on the eigenfunctions wi  and can be written as follows: 

 

/ 0
/ 0 .,

,,

22,12,

)()()2(

2

12,11,

)()()2(

1

jyijxi
c

j
c

i

jyijxi
c

j
c

i

wLwwLwwwNl

wLwwLwwwNl

��

��
 

 

Functions in the right hand side of the boundary conditions (6) are defined as 
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To determine the functions  u1, v1, uij, vij  we will use the R-function method (RFM).  

Substituting expressions (3),(4) in equation (2) and applying Bubnov-Galerkin method to the 

resulting equation, we will obtain a system of ordinary differential equations (ODEs): 
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where / 0nm ,1� . The coefficients in this system of ODEs are defined by the formulas: 
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Let us consider in detail the one-mode approximation:  
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In this case the system of equations (7) is reduced to one equation 

 

/ 0 0)())(cos1()( 22 ��������� tytytptyty tL 6�2D .   (8) 

 

Equation (8) uses the following notations: 

 



Kurpa Lidiya, Mazur Olga, Tsukanov Igor 
 

275 
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Equation (8) can be transformed  to the known form  [3]: 
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12)( 0))()()cos21(( 32 �6����� tytytkL ,    (9) 

where ,2kpt ���2  2/1 D�D . 

The main task of investigation of parametric vibrations is finding instability areas and 

studying behavior of plate after loss of stability. To investigate the stability [3], it is enough to 

consider the linearized equation ( 0�6 ): it is well-studied Mathieu equation and its main instability 

domain is situated near L��� 2  and bounded by curves [3]: 
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where 
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�� 12
 . The relation between the frequency ratio and the amplitude of nonlinear vibrations 

after the loss of stability, according to [3], has the form: 
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3. Parametric vibrations of a plate with circular cutouts  

Now we will use the proposed method to investigate parametric vibrations of a three-layered 

plate with circular cutouts that is shown in Fig.1. Plate is subjected to a load along the sides parallel to 

axis OX. 
 

  
Figure 1 

 

Numerical results are obtained for the following mechanical parameters (glass-epoxy 

,3/ 21 �EE  ,6.0/ 2 �EG  25.0/ 2121 �?�? EE ) and geometric parameters ( ,1/ �ab  ,5.0/2 �ar  

01.0/ �ah ). The boundary of the plate is simply supported.  

Table 1 presents the values of the frequency and critical load parameters 
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2 / hEpap krkr � . 

 

Table 1. Frequency and critical load parameters  

krp  7  

 p0/pkr 

0.25 0.5 0.75 

9.45 46.68 38.33 27.29 
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Results of the influence analysis of static load component on the location of the instability domains 

and amplitude-frequency relations are presented in Fig. 2,3.  The load increase results in the shift of 

domains to lower values of excitation frequency. The value of the static component of load affects the 

slope of the curves.  

 

 
Figure 2    Figure 3 

 

Conclusions  

The paper presents an approach for studying the parametric vibrations of the laminated plates with 

symmetric structure and constant thickness. Applying multi-mode approximation enables 

investigating the parametric resonances of the plate near ,..2,1,2 ���� ii  and mutual influence of the 

vibration modes. The method is based on the theory of R-functions, which makes this method useful 

for plates of complex geometric shape and various boundary conditions. 
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Geometrically nonlinear vibrations of laminated shallow shells with layers of variable thickness are studied.

Nonlinear equations of motion for shells based on the first order shear deformation and classical shells theories 
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Introduction 

Extensive literature reviews on nonlinear vibrations of plates and open shallow shells have been 

given by many scientists [1-3]. A huge number of publications is devoted to this issue. But virtually 

no studies that have investigated multilayer shallow shells with layers of varying thickness. In this 

paper we attempt to develop an algorithm for solving this class of problems. Proposed algorithm 

applies meshless discretization. It is based on combination of the classical approaches and modern 

constructive tools of the R-functions theory [8]. Application of R-functions theory allows studying 

geometrically nonlinear dynamic response of the laminated shallow shells and plates with complex 

shape and different boundary conditions. We present also new types of structure formulas that allow 

to construct appropriate system of basic functions. These basic functions satisfy exactly all boundary 

conditions. 

1. Mathematical Formulation 

Laminated shallow shells of an arbitrary plan form with radii of curvature yx RR , which consist 

of M layers of the variable thickness / 0yxhi , are considered. Assume that the plane of 1x O 2x

coincides with the mid-surface of the shallow shell. The shell theories used in the present 
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investigation are shear deformable theory (FSDT) and the classical shell theory (CST). According to 

these theories we assume that the tangent displacements are linear functions of coordinate z and the 

transverse displacement w is a constant along the thickness of the shell. Let us recall that the CST 

adopts Kirchhoff’s hypothesis. But FSDT is based on hypothesis of straight line. This means that the 

normal to the mid-surface remains straight line after deformation, but not necessary normal to the mid 

surface. In the abbreviated form the nonlinear stress strain relations can be written as follows: 

8 9 4 5 8 9D�� AF                                                                    (1) 

where 
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Here u, v and w are the displacements at the mid-surface, x	 and y	 are the rotations about 

the y- and x-axes respectively and MN, , Q are the stress, moment and the transverse shear resultants.  

Matrices 4 5C , 4 5D and 4 5K have the following form: 
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Since the laminate consists of a number of variable thickness lamina, the elements of the 

constitutive matrices 4 5A , 4 5C , 4 5K , 4 5D , 4 5S are expressed as [2,7]: 
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In the expressions (2) values 
/ 0m
ijB are stiffness coefficients of the m-th layer; ik ( 5,4�i ) are 

shear correction factors. Further we assume that 6/554 �� kk , that is 5445 SS � . Indicator 1 is the 

tracing constant which takes values 1 and 0 for the FSDT and CST respectively. It should be noted 

that problem about nonlinear vibrations of shallow shells with symmetric layers is essentially simple 

than relative problem for nonsymmetrical layers. This is explained by the fact that factors ijK vanish 

and matrix A takes the form: 
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In this paper we will only consider symmetric cross-ply and angle-ply laminated shallow shells.  

2. Method of solution 

We will apply the method proposed in works [7]. According to this approach the first step is 

study of linear problem in order to find the natural frequencies and eigenfunctions 

8 9 8 9Tc
y

c
x

cccc wvuU )()()()()()( ,,,, 		� that satisfy the given boundary conditions. Solution of linear 

problems for laminated shells with variable thickness we will fulfill by RFM [8]. Note that we will 

not ignore inertia forces solving linear problem. Since linear vibrations are harmonic ones, then this 

problem may be reduced to variational problem about finding minimum of the following functional   

                                                     maxmax ТПJ �� (3) 

where maxП ,  maxТ are strain and kinetic energies relatively. These energies are defined by the 

following expressions:  
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In order to find extreme of the functional (3) we will use method by Ritz. The system of basic 

functions we will build by R-functions theory. That is why first we construct the corresponding 

solutions structures [6-8], which satisfy the given boundary conditions.  

3. Solutions structures for different boundary conditions 

Below we present solutions structure for some boundary conditions for case of the classical 

theory.  

Clamped edge. Solution structure is known for this case and may be found in references [6-8]. 

Solution structures have more bulky form for other boundary conditions. Below we present some of

them.  

Movable simply supported edge. Let us consider the following boundary conditions:
  

0,0 �� nMw                                                             (4) 

0,0 �� nn TN (5) 

It is possible to prove that the following structures satisfy all boundary conditions (4-5): 
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Here 
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The function ),( yx� satisfies the following conditions: 

/ 0 / 0 / 0 0,,,,0, ��IW
��

yxyxyx �� �

Hence / 0 0, �yx� is equation of the domain boundary. To build this function we will apply R-

functions theory worked out by V.L.Rvachev  [8]. 

The differential operators ),(),,( yxfTyxfD mm are defined as [8]: 

/ 0 ffyxfD m
yyxx

m
m ��������JJ� ��� ),(),( ,

   

/ 0 fyxfT m
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Note that boundary condition will be satisfied at any choice of the indefinite components 

321 ,, ��� . 

Immovable simply supported edge. The boundary conditions of the immovable simply 

supported edge are described as  

0,0,0,0 ���� nMwvu (6) 

We can prove that the following structures of solution satisfy boundary conditions (6) 

1���u , 2���v ,

/ 0 / 0/ 0���
�

�
� 2333111322331122

1

1
2

3 22
)(2

TBTTDBDDB
B

B
w ���������

�
����

In order to obtain the basic functions we will expand the indefinite components in series on 

some complete system of functions (power or trigonometric polynomial, splines or others).  
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Like previous case we can obtain appropriate structures for case of the first order of the shear 

deformable theory.  

4. Method of solving nonlinear problem 

Let us present unknown functions in the following form: 
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where / 0tyk are unknown functions in time, ),()( yxw c
i , / 0 / 0yxu c

i , , / 0 / 0yxv c
i , , ),()( yxc

xi	 , ),()( yxc
yi	

are components of the i-th eigenfunctions of linear vibration problem. Functions ijij vu , must be 

solutions of the following system [6-7] 
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Obtained system is solved by RFM. Substituting the expressions (7) for functions 

yxwvu 		 ,,,, in initial system of equation of motion and applying procedure by Bubnov-Galerkin 

we get nonlinear system of ordinary differential equations in unknown functions / 0ty j : 
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Expressions for coefficients jikljikj 6�2 ,, are found and expressed through double integrals of 

known functions. In order to solve the obtained system (8) we will apply method by Runge-Kutta. 

5. Numerical results 

The developed approach is validated on some tested problems and will be applied to solve new 

ones. 

Problem. Consider three-layers clamped shallow shell with square planform of side а and 

thickness ah 01.0� . Suppose that the face layers are isotropic, but middle layer is orthotropic with 

the following mechanical constants: 

,029.0/,077.0/,25.0/ 0120201 ��� EGEEEE .24.01 �?

Here 0E is elastic modulus for isotropic layers, Poisson’s ratio for isotropic layers 3.00 �?
and density of all layers is taken by the same 0CC � . As middle surface we take the plane 0�z . 

Assume that thickness of layers varies linearly, but the general thickness is a constant and defined as: 

.
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1
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�

Equations of surfaces which bound the inner layer maybe written as (Fig.1): 
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Figure 1. Surface bounding the inner layer 

In the given case rigid coefficients are expressed by the following relations: 
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Table 1. Comparison of the values for three layers square clamped plate 

i7 Meth. 0��m 250.��m 50.��m

17 RFM 0.886 1.023 1.057 
[4] 0.88 1.02 1.06 

27 RFM 3.608 4.259 4.369 
[4] 3.60 4.25 4.35 

37 RFM 3.781 4.264 4.429 
[4] 3.80 4.26 4.40 

The values of non-dimensional frequencies / 0 / 03,2,1,/ 2
0

22 �� ihEa oii C�7 obtained by 

proposed method are presented in the Table 1. In paper [4] the similar results were obtained for plates. 

Comparison of received results with available confirms the validation of proposed method. In the 

Tables 2 we present values of non-dimensional frequencies 
2

00
2 / hEaii C�7 � for cylindrical and 

spherical shells with square planform. 

Table2. Effect of parameter m on values of non-dimensional frequencies  

of the clamped cylindrical and spherical shells 

Cylindrical shells( 2501 .��k , 02 ��k ) Spherical shells ( 2501 .��k , 02 ��k .25) 

i7 0�m 25.0�m 5.0�m 0�m 25.0�m 5.0�m

17 18.287
2 

19.5
27 

19.836 24.382 26.836 27.562 

27 20.633 22.0
42 

22.392 26.941 28.918 28.992 

37 25.275 26.9
96 

27.382 28.023 29.078 29.565 

47 30.983 32.8
13 

33.269 34.422 36.524 37.027 
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The backbone curves were also obtained for clamped and simply supported spherical and 
cylindrical panels. 

6. Conclusion 

Numerically-analytical approach for investigation of nonlinear vibration of shallow shells with 
layers of variable thickness is developed. New solution structures satisfying all boundary conditions 
corresponding movable and immovable simply supported edge are proposed for shells with 
symmetrical layers. The present approach has advantage of being suitable for considering different 
types of the boundary conditions in domains of arbitrary shape. 
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Abstract 
The work deals with the investigation of the forced non-resonance vibrations of blades package of 
steam turbine. The non-linear model of the blades package, with taking into account the contact 
interaction in the shroud and linearized models have been developed. The package of coupled and 
free blades is introduced as two linear models. The modeling has been carried out in the framework 
of the finite element approach. The direct numerical simulation of the nonlinear forced vibration has 
been carried out. The wobble contact character in the blades shroud has been defined through the 
simulation of the non-linear vibrations of the blades package. The realization of the harmonics with 
natural frequencies of the coupled blades and independent blade shows a necessity to take into 
account both the linear systems spectra at the resonance detuning. In addition the presence of the 
super- harmonic component at the vibration process has been found. An adequacy of linearized 
models has also been analyzed. 
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Introduction 

Failures caused by the increased vibrations are widespread at steam turbines operation. The 

blades assemblies of low-pressure cylinder are the most dynamically loaded elements of the steam 

turbines. Inter-blades detachable joints are used for blades stiffness magnification. Dynamic and 

strength characteristics of these designs essentially depend on the contact interacting peculiarities in 

such bandage [1-5]. Linearized finite-elements models where the contact conditions are replaced by 

the kinematic constrains are commonly developed for studying the vibrational characteristics in the 

modern engineering practice [2-8]. Thus, these constrains are applied to the areas which are set a 

priori [2, 8] or by results of the preliminary static solution of the contact interaction in the bandage 

under centrifugal forces [3-7]. It should be noted that results obtained on basis of linearized models 

often have significant difference with experimental data [2 and 8].  

The series of reasons may lead to this particular situation. 

At first, the blades assembling technology leads to deviations in the inter-blade joints that could 

be a cause of bladed disk assembly mistuning [5-7].  

Secondly, it stands to mention that linearized procedures lead to the inter-blade joints stiffness 

overestimation. This leads to the development of the augmented linearization procedures as well as on 

the estimation of the linearized models usage possibilities.  

At third, the dynamic changing of the contact in the bandage joints is realised under 

aerodynamic loading [5, 8, 9]. This has been proved via experimental observations. The wear marking 

[8], peening, the craters formation and material transfers are found sometimes in detachable joints of 

blades of the steam turbines low-pressure cylinder and in blades of gas-turbine engines.  

Such situations occur at the long term operation of the bladed disk assemblies [10], or, for 

example, at the work of the turbine under the temperature overloading conditions (fig. 1). Vibrations 
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of the blades assembly become nonlinear under dynamic contact in the bandage [9-14] and can be 

accompanied by the great number of the various phenomena.  

The work deals with the investigation of the forced non-linear vibrations of blades package of 

steam turbine, taking into account the contact interaction in the shroud. 

 

1. The Object of the Research  

An independent (free) package of two blades of the fourth stage of the low-pressure cylinder of 

the steam turbine is considered as an object of the research. The model does not represent the real 

blading because 2 blades without the influence of the neighbouring blades of assembly are observed 

only. 

At the same time the model allows to make some qualitative conclusions about the realised 

phenomena in case of the non-linear vibrations, and also allows to estimate the degree of conformity 

of the linearized models and to formulate recommendations for their construction. It should be noted, 

that a decomposition of the shrouded blading on separate packages is possible as a result of 

temperature overloading (fig. 1). The model is adequately reflect the situation and has practical value 

in this special case. 

 

  
  

 
 

Figure 1. The damaged detachable shrouds of the steam turbine blading after the 3 years of 
operation (the series of temperature overloading was missed in operation of the turbine) 

 

The blades have a variable cross-section, considerable length (28 inch) and the angle of pre-

twisting. They assembled on the package via shroud. The blade tail and disk has been neglected in the 

investigations. The rigid termination was applied to the root part of blades.  

 
 

 

 
b 

 

a c 
Figure 2. FE mesh of the blades package(a – general view, b – shroud, c - contact zone) 

 



Oleksiy Larin, Oleksandr Stepchenko 
 

286 

 

All researches were done on the basis of three-dimensional finite-element (FE) models of the 

package of two blades (fig. 2а) which has been developed in the commercial CAE software package. 

Isoparametric eight-node solid FE is used in the mesh. FE mesh of the blades is shown in the Fig.2. 

 

2. Static and Linear Modal Analysis 

An important phase of the analysis of system dynamics is the problems of static strength and 

modal analysis. The static deformation defines a system equilibrium position where vibration 

processes are observed, and initial stresses are capable of executing the work at the dynamic strains, 

consequently influencing the design stiffness.  

In the work, preliminary the static structural analysis of a design has been carried out under the 

centrifugal and steam pressure loadings which are applied to the package of blades taking into account 

contact interaction in the shroud. Contact interaction was considered taking into account the dry 

friction Coulomb's law. Friction coefficient for the steel was set as 0.15 according to the data from the 

manufacturing company (OJSC "Turboatom"). The level and spatial distribution of the steam pressure 

on the blade was set by the manufacturing company.  

The procedure of FE geometry updating has been carried out based on the obtained results: 

 
8 9 8 9 }{0 stuRR �� ,      (1) 

 

where {R} is the vector of nodal coordinates of updated FE model, {R0} is the vector of nodal 

coordinates of initial FE model, {ust} is the vector of nodal displacements, defined in the static 

structural solution. 

The updated geometry defines the equilibrium position of system and allows to carry out the 

analysis of its dynamic behaviour without applying the static loading (the centrifugal force and 

constant component of steam pressure loading). The pre-stress effect has not been taken into account 

in the linearized model for the simplification of the computational scheme of nonlinear system. Such 

assumption is a compulsory measure and, of course, distorts the results. 

In addition, the modal analysis of the blades package has been carried out on the basis of the 

linearized model. Such model  has been built basing on the results of static strength analysis. Thus, 

the total compatibility of displacements constrains have been applied to the nodes of finite elements in 

the places, where the contact status shows stick character.  

The natural frequencies, which were calculated, are shown in the table 1. Single blade natural 

frequencies also are shown in the table. 

 
Table 1 Natural frequencies 

N 
Natural frequency (Hz) 

Single blade Linearized model of a package from 2 blades 

1 68.935 82.425 

2 174.06 181.28 

3 – 239.95 

4 330.08 289.25 

 

It is obvious, that not all the modes can be excited in the forced vibrations. Harmonic analysis 

has been carried out with the aim of definition of excited modes and their amplitudes in linearized 

statement. The amplitude of harmonic load (the value was set as 10 % from  static pressure according 

to the data from the manufacturing company OJSC "Turboatom").  

Two types of loading: in-phase and out-of-phase have been considered. The damping ratio was 

set to 0.7% according to recommendations [1]. The computed amplitude to frequency characteristics 

(AFCh) are shown in the Fig. 3 for the blades package under in-phase and out-of-phase loading. The 

results are presented in the point on the blades shroud (A) and in the point on the blade feather (F). 

The amplitude to frequency characteristics for the single blade is also shown in the same figures (blue 

line). In the graphics the variable U is used for summary displacement. 

Only two first natural frequencies are excited at in-phase vibrations of the package and 

amplitude of vibrations in the shroud (point A) above the amplitude in the blade feather (point F).  
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The different excitation is observed at out-of-phase vibrations in a package for points A and F: 

in the shroud (point A) all natural frequencies are excited from a range with similar amplitudes; in the 

blade feather (point F) first and third natural frequencies are only excited, and amplitude of resonance 

on third natural frequency is considerably higher. 

 
a         b 

Figure 3. AFCh in the points A and F on the shroud (a) and leaf (b) of the blade 

 

3. A Non-Linear Vibrations Simulation of the Blades Package  

Non-linear vibrations have been studied for a blades package under the influence of harmonic 

loading with the frequency of excitation according to the nominal angular velocity of the turbine rotor 

(50 Hz). Non-resonance vibrations are only dealt with in the work.  

The matrix equation of the nonlinear vibrations of blades package of blades within the FEM 

framework is: 
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where 4 5M  is a matrix of mass, 4 5 4 5ll K,D are linear matrixes of a damping and stiffness, 
4 5 4 5NN K,D  are 

matrixes of  nonlinear components of the damping and stiffness, which appears due to the contact 

interacting in the shroud. Contact interaction was considered taking into account the dry friction 

Coulomb's law. Friction coefficient for the steel was set as 0.15. A direct integration of full system of 

the differential equations on the basis of Newmark scheme, with the solution of a nonlinear algebraic 

problem by the Newton-Raphson method on each time step was used for the solution of the problem 

of non-linear vibrations of blades package. Up to the 70 periods of external loading have been studied 

through calculations. In the graphics the variable U is used for summary displacement and variable V 

is used for summary velocity. 

 

 
a        b 

Figure 4. Time dependence of displacements in the point F (a) and the phase path (b) 
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The results of non-linear vibrations calculations are shown in the Fig. 4 for the point on the 

blade feather (F) under the in-phase loading. The analysis of time dependencies (fig. 4) shows that 

non-stationary vibrations become steady approximately after 50 periods of a loading.   

Quasi-periodic vibrations are observed in steady regimes. The small harmonic modulation of 

amplitude is also found in the results. The phase path has not elliptic character. It represents the 

combination of two ellipses with different curvatures. Such phase paths is the result of non-linearity 

realisation and are common for the system with gaps. This can account for the periodic contact 

opening in the shroud during vibrations. 

Five points in the shroud contact zone have been monitored aiming at the contact interaction 

monitoring at the forced vibrations. The points are marked in the Fig. 5. 

 

 
Figure 5.  The points under control in the contact zone 

 

The analysis has shown that the contact is observed only near the points A and C. Synchronous 

periodic breakings of contact in both points (fig. 6) occurred during vibrations.  Time dependencies of 

displacements in the point A and of contact pressures in the points A and C are presented in the Fig. 6. 

Amplitudes of contact displacements and pressures have a harmonic modulation as well. In the 

graphics the variable P is used for normal contact pressure. 

The spectral analysis (fast Fourier transformation) of received time dependencies has been done 

aiming at a deeper analysis of the results. Spectral characteristics of vibrational process in point F are 

shown in Fig. 7. The non-steady process (within the time range of up to 50 periods of influence) and 

steady process (within the time range from 50 to 70 periods of influence) have been separately studied 

basing on their spectral characteristics. 

 

    
a       b 

Figure 6. Time dependences of displacements (a) and contact pressure (b) in the points A and C 

 

The spectrum of non-steady vibrations (Fig. 7,b) shows that the natural frequencies of single 

blade are strongly excited together with the frequency of loading. It is necessary to note, that a two-

fold harmonic of the excitation (super- harmonic) is also found in the spectrum. The presence of the 

super- harmonic represents the fundamental phenomena of nonlinearity.  

Comparison with the spectrum of the steady vibrations (Fig. 7,a) shows the decay of the natural 

frequencies accompanying vibrations at the initial period of time. The presence of the super- harmonic 

in vibrations defines its amplitude modulation. The amplitude of a super- harmonic is less than 1% 
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from amplitude of basic harmonic. The small equilibrium position shifting is also possible to note in 

the results. 

   
a         b 

Figure 7. Spectral characteristics of non-steady (a) and steady (b) vibrations in the point F 

 

Thus, quasi-harmonic steady motions are observed at the in-phase loading. The maximum 

amplitude of the nonlinear steady vibrations of the package is more than 30% higher than the 

corresponding amplitude of linearized package (Fig. 3). This is because at the nonlinear vibrations the 

motions are accompanied by the periodic opening of shroud contact and the blades become 

independent. Therefore, the amplitude of the nonlinear steady vibrations of the package is close to the 

amplitude of free blades forced vibrations (less than 4%). 

Analogous researches have been carried out at the out-of-phase loading. Results of these 

investigations are shown in the Figures 8 and 9. The analysis of time dependencies (fig. 8) shows that 

non-stationary vibrations become steady approximately after 15 periods of loading.  Quasi-periodic 

vibrations are observed in steady regimes, as well as in the motions under in-phase loading. 

Essential difference from the previous case is observed in the contact behaviour in the shroud. 

So, during the vibrations occurring under out-of-phase loading a nonsynchronous periodic contact 

opening in the points A and C is observed (Fig. 8). Thus, the point C is involved into the contact after 

the point A has got out of the contact. The wobble motion of the blades shroud cog relative to the next 

blade shroud cavity has been observed. The maximum value of contact pressure is higher than in the 

vibrations under the in-phase loading. 

 

  
a       b 

Figure 8. Time dependences of displacements (a) and contact pressure (b) in the points A and C 

 

Phase paths (Fig. 9) show the great irregularity of process of vibrations at the period of loading. 

Phase paths in the points A and F are very different. 

The spectral analysis for all time dependencies has been done. The non-steady process and 

steady process have been separately tested for their spectral characteristics. The spectrum of non-
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steady vibrations (Fig. 10) shows that the frequencies near the natural frequency of single blade and 

the super- harmonic are strongly excited together with the frequency of loading.  

The basic and super- harmonics appears at the steady vibrations (fig. 10,b). The amplitude of a 

super- harmonic is about 4% of the amplitude of basic harmonic in the nonlinear vibrations under out-

of-phase loading. The slight equilibrium position shift is also to be noted in the results 

 

  
a        b 

Figure 9.  Phase paths in a point A (a) and in point F (b) 

 

Thus, quasi-harmonic steady motions are also observed at the out-of-phase loading.  

The complex motions of the shroud occur at the nonlinear vibrations. The wobble contact 

appears between the edge points of shroud cog. Such kinematics is poorly described by the developed 

linearized models. The maximum amplitude of the nonlinear steady vibrations of the package is more 

than 20% higher than the matching amplitude of linearized package and more than 10% less than the 

matching amplitude of single blade vibrations (fig. 3, at the excitation frequency, 50 Hz).  

 

  
a       b 

Figure 10. Spectral characteristics of non-steady (a) and steady (b) vibrations in the point F 

 

To kinematics peculiarities of the contact interaction at the vibrations under out-of-phase 

loading allow to offer another procedure of linearization. So, a linearization by constraining of the 

normal displacements in the point between the points A and C  allows to realise the degree of freedom 

for the shroud twisting  and will be more realistic for the description of the features of contact natures. 

 

Conclusions 

The wobble contact character between the points A and С of the blade shrouds cog has been 

defined through the simulation of the non-linear vibrations of the blades package.  

The realization of the harmonics with natural frequencies of the coupled blades and 

independent blade shows the necessity to take into account both of the linear systems spectra at the 

resonance detuning. The super- harmonious component presence at vibration process, despite its 
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small-scale amplitude accounts for the possibility of the complex resonance regimes (super- and 

combines resonances). The linearized mode with rigid kinematic constrains in the shroud provides 

essentially underrated values of amplitudes of forced vibrations. 

 

References 

[1] Rao J.S., Peraiah K.Ch., Singh U.K. Estimation of Dynamic Stresses in Last Stage Steam 

Turbine Blades under Reverse Flow Conditions, Advances in Vibration Engineering, J. Vib. Inst. 
India, 8 (1), pp. 71-81, 2009 

[2] Kaneko Y., Ohyama H. Analysis and measurements of damping characteristics of integral 

shroud blade for steam turbine, Journal of System Design and Dynamics, 2(1), pp. 311–322, 2008 

[3] Stepchenko A.S., Larin A.A., Artomov S.L. An investigation of the dynamic characteristics of 

the blades assembly with double-leveled detachable bandaging, Bulletin of the National Technical 
University “KhPI”, Seria: Dynamics and Strength of Machines, Vol. 48, pp. 3-14, 2010 (in Russian) 

[4] I. Fedorov, J. Szwedowicz, W. Kappis, I. Putchkov Reliable FE Modeling of Chord-Wise Blade 

Modes in Compressor Design Process, Proceedings of the ASME Turbo Expo 2010, June 14-18, 2010, 
Glasgow, UK, GT2010-22619, pp. 12, 2010 

[5] Zhovdak V.A., Larin A.A., Stepchenko A.S., Demuz Ya.D., Solyannikiva Yu.V. An 

investigation of dynamic contact interaction in inter-bandage conjunctions of steam turbines blades 

packages The Problems of the Computational Mechanic and Strength of Constructions, Vol. 11, 

Dnipropetrovsk National University, pp. 53-62, 2007 (in Russian)  

[6] Zhovdak V.A., Kabanov A.F., Larin A.A Statistical dynamics of turbomachine rotor wheels 

with a technological mistuning, Strength of Materials, 40(5), pp. 577-583, 2008 

[7] Larin O.O. Forced vibrations of bladings with the random technological mistuning, 

Proceedings of the ASME Turbo Expo 2010, June 14-18, 2010, Glasgow, UK, GT2010-23099, pp. 

667-672, 2010 

[8] Kaneko Y., Tomii M., Ohyama H., Kurimura T. Analysis of  Fretting Fatigue Strength of 

Internal Shroud Blade for Steam Turbine, Journal of  Power and Energy Systems, 2(3), pp. 909–920, 

2008 

[9] Petrov E.P. A high-accuracy model reduction for analysis of nonlinear vibrations in structures 

with contact interfaces, Proceedings of the ASME Turbo Expo 2010, June 14-18, 2010, Glasgow, UK, 

GT2010-23295, pp. 13 2010 

[10] V. Ya. Krivoshei, N. I. Glushchenko and S.S. Tripol'skii  Effect of design factors on the life of 

shroud flanges of turbine rotors, Strength of Materials, 19(8) pp. 1110-1115, 1987 

[11] Petrov E.P., Ewins, D.J. Analitical Formulation of Friction Interface Elements for Analysis of 

Nonlinear Multi-Harmonic Vibrations of Bladed Disks Trans. of the ASME, 125, pp. 364-371, 2003 

[12] Ender Cigeroglu, H. Nevzat Ozguven Nonlinear vibration analysis of bladed disks with dry 

friction dampers, Journal of Sound and Vibration, 295, pp.1028-1043, 2006 

[13] Ender Cigeroglu, Ning An, Chia-Hsiang Menq Forced Response Prediction of Constrained and 

Unconstrained Structures Coupled Through Frictional Contacts, Journal of Engineering for Gas 
Turbines and Power, 131, pp. 11, 2009 

[14] Yang B.D., Menq C.H. Modeling of Friction Contact and Its Application to the Design of 

Shroud Contact, Journal of Engineering for Gas Turbines and Power, 119, pp. 958-963, 1997 



Proceedings of the 4th International Conference on Nonlinear Dynamics
ND-KhPI2013

June 19-22, 2013, Sevastopol, Ukraine

Numerical Prediction of the Vibratory

Response of Mechanical Systems Undergoing

Unilateral Contact Conditions

Mathias Legrand1*, Christophe Pierre2

Abstract

The Harmonic Balance Method based on Fourier expansion is a common formulation to efficiently

obtain the vibratory response of a mechanical structure. In the context of nonsmooth dynamics

involving unilateral contact conditions, wavelet bases may be superior. This assumption is explored

by means of an axially vibrating rod undergoing regularized inequality constraints on one tip. The

introduced distributional formulation in time makes use of weak derivatives to efficiently capture

the possible nonsmoothness and discontinuity possibly exibited by the displacement, velocity, and

acceleration fields. The mixed wavelet Petrov-Galerkin solutions are found to yield better results than

HBM.
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Introduction

Efficiently predicting the vibratory responses of flexible structures which experience unilateral contact

is becoming of high engineering importance where light materials and thin designs involving larger

displacements together with tighter operating clearances between components are becoming common. In

the time domain, structural displacements and velocities which satisfy these non-penetration Signorini

conditions are known to respectively feature absolute continuity and bounded variation only [1]. This

implies displacements are not necessarily differentiable everywhere in the defined domain and velocities

may exhibit jumps; these types of problems are generally referred to as nonsmooth.

It is proposed to approach this class of unilateral problems in the framework of vibration theory.

The original initial-value formulations are transformed into partial differential equations periodic in

time [2]. They are subsequently solved through a weighted residual technique. This method involves

approximating the solution using a set of time-dependent basis functions and enforcing the respective

residual error to be orthogonal to a set of independent functions. The periodicity conditions satisfied by

the targeted vibratory behavior are exactly enforced while the remaining unilateral contact constraints

and governing local equations of motion are satisfied in a weak integral sense [3, 4]. The main goal of

the current work is to explore relevant basis functions whose order of smoothness can be adapted to a

particular system to attain accurate approximations and rapid convergence.

1. System of Interest

A schematic of a simple unilateral contact system showing a one-dimensional bar clamped on the left is

depicted in Fig. 1. A gap g exists between the tip and a rigid foundation. When the tip displacement is

sufficiently large, the bar comes into contact with the rigid foundation and unilateral contact conditions

are activated. The existence of periodic solutions of period T are assumed where T is the period of
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the external forcing f (x, t) acting on the bar. The unknown displacement has to satisfy the following

complementary boundary value problem:

1. local equation of motion

ρSu(x, t)+ESu,xx(x, t) = f (x, t), ∀x ∈]0, ℓ[, ∀t (1)

2. conditions of periodicity in time

u(x, t +T ) = u(x, t) and u̇(x, t +T ) = u̇(x, t), ∀x ∈ [0, ℓ], ∀t (2)

3. boundary condition in displacement

u(0, t) = 0, ∀t (3)

4. unilateral contact conditions

g−u(ℓ, t)≥ 0 ; λ (t)≥ 0 ; λ (t) ·
(
g−u(ℓ, t)

)
= 0, ∀t. (4)

Here ρ signifies density, S cross-sectional area, and E elastic modulus. The dot superscript represents a

temporal derivative, whereas the subscript x represents a spatial derivative. The periodicity conditions

result in a final formulation derived on a circle in time. Without loss of generality, the basis functions are

taken from an L2(S1)N Hilbert space [5].

x

u.x; t/

f .x; t/

g

Figure 1. One-dimensional linear bar undergoing unilateral contact conditions

The quantity λ (t), that mechanically is a contact force, stems from the enforced non-penetration

condition g−u(ℓ, t)≥ 0 and is necessarily positive. The complementarity condition λ (t) ·
(
g−u(ℓ, t)

)
= 0

states that the contact force λ (t) and the distance g−u(ℓ, t) separating the rod’s end-tip from the rigid

foundation may not be zero at the same time. These three conditions are such that the mathematical

object pairing the contact force to the displacement is not a function in the usual sense. This motivates

the derivation of numerical techniques capable of efficiently handling functional nonsmoothness. As a

first approach, the unilateral contact inequalities (4) are replaced by a penalty function of the form:

fc(u(ℓ, t)) = max
(
ac(e

α(u(ℓ,t)−g0)−1),0
)
. (5)

to approximate the contact forces.

2. Weighted Residual Formulations in Time

The method of weighted residuals is a classic method of obtaining numerical solutions to boundary

value problems by expanding the sought solution as a finite sequence of basis functions, also known as

trial functions in a proper functional space. The subsequent residual is rendered orthogonal to a set a

linearly independent functions of the same space, referred to as weighting functions. The Petrov-Galerkin

suggests the selection of two independent bases in the construction of weighting and trial functions. The

functional space into which the solution is sought is such that the boundary conditions in space and time

are satisfied. To solve Eqs. (1), (2), (3), and (4), the unknown displacement is expanded into a truncated

series of N functions separated in space and time:

u(x, t) =
N

∑
i=1

ϑ(x)ui(t)

¨

(6)

The standard Finite Element Method is implemented for the spatial variable using two-node linear rod

elements [6]. This yields the following vector ordinary differential equation of size N:

Mu(t)+Cu̇(t)+Ku(t) = fext(u(t), t) (7)
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together with the remaining periodicity conditions in time and the unilateral contact condition. Con-

dition (3) is also enforced. Here M and K are the standard mass and stiffness matrices for a rod, and

β -damping is enforced such that C = βK to account for structural damping. The displacement vector

u(t) in Eq. (7) stores the temporal unknowns ui(t), i = 1, . . . ,N, where N is the number of spatial degrees-

of-freedom. Similarly, fext(u(t), t) stores the external forcing functions for each degree-of-freedom as

well as the contact forces stemming from Eq. (5).

2.1 Strong integral form

The standard weighted residual formulation of a differential equation is commonly termed the strong

form. Taking the inner product of Eq. (7) with a weighting function stored column-wise in v results in the

strong integral form of the equation: find u ∈ H2(S1)N such that

∀v ∈ L2(S1)N ,
∫

S1

(
vT Mu+vT Cu̇+vT Ku−vT fext(u, t) dt = 0 (8)

and the superscript T denotes a transpose. This strong form of the equation is not the best framework for

obtaining a solution [6]; for this example, the solution must be at least H2, limiting the permissible basis

of trial functions.

2.2 Weak form

The respective weak form of the weighted residual statement can be obtained by performing one integra-

tion by parts over the domain S
1 for all terms containing a double time derivative in Eq. (8). This results

in: find u ∈ H1(S1)N such that

∀v ∈ H1(S1)N ,
∫

S1

(
−v̇T Mu̇+vT Cu̇+vT Ku−vT fext(u, t)

)
dt = 0 (9)

The integral form of the weak formulation offers the advantage of shifting a portion of the functional

smoothness requirement from the trial functions onto the weighting functions. This allows the trial

functions to be chosen from a wider permissible space [6].

2.3 Formulation in a distributional sense

A weaker formulation is proposed by integrating again the terms involving time derivatives of the trial

functions. This formulation can be understood in the sense of distributions, also known as generalized

functions, ie: find u ∈ L2(S1)N such that

∀v ∈ H2(S1)N ,
∫

S1

(
v̈T Mu− v̇T Cu+vT Ku−vT fext(u, t)

)
dt = 0 (10)

Here the double time differential on the field variable is transferred to the weighting function and the

continuity requirement on the trial function is reduced. As discussed later, the desired displacement

functions u can now be described using a series of constant piecewise functions for instance. Each of the

strong, weak, and distributional formulations can now be discretized with proper basis functions.

3. Trial and weighting function bases

The selection of functional bases to be used in the above approaches is an important factor in approxima-

tion accuracy and computational efficiency [6]. In the current investigation two bases are investigated to

compare the quality of approximation: Daubechies and Haar wavelets.

3.1 Discrete orthogonal wavelets

Discrete orthogonal wavelet families are composed of highly localized, oscillatory functions which

provide a basis of L2(R) and can be adapted to the periodic domain L2(S1) [7]. These localized

characteristics allow sparse representation of piecewise signals including transients and singularities. This

makes them useful functions for use in the Galerkin approach when nonsmooth solutions are predicted [8].

Galerkin methods using appropriate discrete wavelet families as the trial functions have been shown to

accurately approximate the solutions to differential equations [9]. The discrete wavelet family is built
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from scaling functions φ(t) and wavelet functions ψ(t) and the decomposition of a continuous time

signal y(t) can be written as:

y(t) = ∑
k

gkφJ,k(t)+
m

∑
j=J

∑
ℓ

h j,ℓψ j,ℓ(t) (11)

with φJ,k(t) = 2J/2φ(2Jt − k) and ψJ,k(t) = 2J/2ψ(2Jt − k) where J,k ∈ Z; J is the dilation parameter, k

is the translation parameter, and m is the maximum resolution given by the sampling rate of the function

y(t). Standard wavelet definitions are commonly built on the real line. The functions can be adapted

to periodic functions of L2(S1) by utilizing a standard periodization technique [10]. Let φ (p)(t) be the

periodized form of the scaling function φ(t) defined on R

φ
(p)
J,k (t) = ∑

ℓ∈Z
φJ,k(t − ℓ) 0 ≤ k ≤ 2J −1. (12)

A number of periodic discrete wavelet families exist [7]. The investigation considers two families to

determine how they perform in unilateral, nonsmooth contact problems: Daubechies and Haar.

3.2 Daubechies wavelets

The Daubechies wavelet family is defined by a set of L filter coefficients {pℓ : ℓ= 0,1, . . . ,L−1}, where

L is an even integer. The scaling function is defined by the fundamental two-scale equation [11]:

φ(t) =
L−1

∑
ℓ=0

pℓ φ(2t − ℓ) (13)

which has support over the finite intervals [0,L−1]. This equation can be used to determine the value of

the scaling function at dyadic points t = n/2J , n = 0,1, . . . [11]. The corresponding scaling functions

are highly nonsmooth and fractal in nature. When Daubechies scaling functions are used in a Galerkin
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Figure 2. Examples of periodized 6-coefficient Daubechies scaling functions (DB6)

approach, it is necessary to derive the inner products of the scaling function with itself or derivatives

of itself. The exact solution to these inner products can be found by using the recursive nature of the

fundamental equation on L2(R) [11]. Fig. 2 provides examples of the 1-periodized scaling functions.

3.3 Haar scaling functions

The simplest Daubechies wavelet family requires only two filter coefficients (p0 = p1 = 1) and is

commonly known as the Haar wavelet family. The Haar scaling functions are rectangular tophat-type

functions. Since the compact support of the father scaling function is S
1, the periodized function is

equivalent. Examples of normalized Haar scaling functions are shown in Fig. 3.
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Figure 3. Examples of periodized Haar scaling functions
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4. Results

To act as a comparison solution, the unilateral contact finite-element equations detailed above are solved

using a variable-order numerical differentiation formula time-stepping algorithm. It is indicated as a gray

line in the coming figures. Three combinations of functions are employed to solve the nonlinear weighted

residual formulation: Fourier:Fourier (HBM), Daubechies 6:Daubechies 6, and Haar:Fourier.

4.1 Tip displacement

Samples of the approximate tip displacement responses at 150 Hz using 64 basis functions are provided

in Fig. 4. For this number of basis functions, HBM (Fourier:Fourier) as well as DB6:DB6 approximate
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time stepping
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(b) DB6:DB6

0 1

(c) Haar:Fourier

Figure 4. Tip displacement versus normalized time t for Case 1

the tip displacements well compared to the time-stepping solution. However, close examination of the

contact plateau for the 150 Hz case shows oscillations due to Gibbs phenomenon and rounding off of

the sharp gradient changes. Alternatively, the Haar:Fourier combination appears to approximate the tip

displacement outside the contact zone less well due to the blocky nature of the Haar scaling functions.

However, the contact plateau is well represented by the constant Haar scaling functions.

4.2 Tip velocity

When the trial basis functions are sufficiently smooth, they are differentiated pointwise with respect

to time to approximate velocities. Haar trial functions are piecewise constant functions and cannot be

directly differentiated in the usual pointwise sense. Instead, their weak expression is used.
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Figure 5. Tip velocity versus normalized time t

The approximate tip velocity response at 150 Hz is plotted in Fig. 5. It is visible from these

approximations that there is a sharp jump in velocity due to the contact condition. As expected, this

results in ringing due to Gibbs phenomenon when the Fourier trial functions are used. The DB6 trial

functions appear to do the best job of approximating the tip response. This is attributed to the compact

support of the scaling functions allowing accurate representation of rapid changes in gradient. For Haar

trial functions, the velocity function envelope is reasonably approximated by the weak representation.

4.3 Tip contact force

The tip contact force is calculated using the penalty function provided in Eq. (5) in conjunction with

the predicted tip displacement and presented in Fig. 6. The effect of Gibbs phenomenon can be seen

in the HBM. The cases where Haar trial functions are used approximate the contact force well. It is

hypothesized that when a rigid contact law is enforced the Haar scaling functions will perform even better

relative to the other functions. Again, the DB6 trial functions appear to most accurately approximate the

contact forces compared to the other cases.
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Figure 6. Normalized contact force versus normalized time t

5. Conclusions

The method of weighted residuals for capturing the periodic responses of unilateral contact problems is

investigated. The contact condition is simulated using an exponential penalty function approach. Weak

and distributional formulations are introduced which transfer trial function continuity requirements to the

weighting functions. This allowed piecewise constant Haar scaling functions to be used as a trial basis.

Results show that a number of trial:weighting function combinations produce accurate solutions which

rapidly converge as the size of the discrete spaces is increased. As expected, Fourier functions perform

well as a trial basis, though nonsmooth functions such as Haar and Daubechies scaling functions are also

attractive since they provide comparable prediction accuracy and even out perform the Fourier functions

in some measures. It is also shown that all the basis combinations considered can be used in an arc-length

continuation framework to capture the nonlinear frequency response of the unilateral contact problem.
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Abstract 
Thin-walled composite plates and shells are among the most common support structural elements of 
buildings and facilities of various purposes. Under intensive dynamic performance loads (including 
cyclic ones) displacements of the elements are comparable with their thickness. This leads to 
geometric nonlinearity of their stress-strain state. To prevent resonances in the operating conditions it 
is needed to determine the spectrum of natural frequencies of such elements at the design stage. 
Using the classical theory by Karman, based on the Kirchhoff-Love theory, and the theory based on 
shear model by S.P. Timoshenko, it is developed analytical and numerical methods to determine the 
basic natural frequency for plates and a rather wide class of shells. However, the specified approach 
does not fully take into account the following features of deformation of thin-walled elements with 
modern composite materials reinforced polymer-based, as pliability to transverse shear and 
compression. Previously, the authors found a significant impact on the value of the basic natural 
frequency for geometrically nonlinear vibrations of composite plates. High density of a cyclic loads is 
requires defining a set of values of the spectrum of natural frequencies. Knowledge of a wide range 
of natural frequencies is needed to identify internal resonances of plates and shells. 
To solve this problem the relations of refined theory of geometrically nonlinear dynamic deformation 
pliable to transversal shear and compression of orthotropic shells and plates, are obtained and 
justified. The problem of finding the spectrum of natural frequencies for geometrically nonlinear 
vibrations of plates, strips and elongated cylindrical panels is reduced to infinite system of integro-
differential equations by time coordinates. Methods of determining the number of their first natural 
frequencies and amplitudes on the base of asymptotic method are developed. The influence of the 
parameters of pliability to transversal shear and compression on the associated amplitude-frequency 
dependence is investigated. Expressions for characteristics of longitudinal and shear vibration 
processes by generated transversal vibrations are obtained 
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Nonlinear Dynamics of a Thin Plate in a 
Nonstationary Electromagnetic Field of the 
Inductor  

Oleg K. Morachkovsky1, Denis V. Lavinsky1*   

Abstract 
The problems of the non-stationary deformation of a thin round plates in the electromagnetic field 
(EM-field) created by a massive inductor are considered. The finite element method is used for the 
analysis of spatial-temporal distribution of the electromagnetic field components and the parameters 
of the stress-strain state in the system of the «inductor-billet (plate)» with a consideration of the air 
layer. The data of measurements in experimental studies of vibrations of plates in pulsed EM-field
are used to establish the frequency modes with the maximum values ponderomotive forces 
generated by an EM-field. The solution of the problem of plate vibrations was obtained. The temporal 
and spatial distribution of components of the electromagnetic field, displacements and stresses on 
the surface of the plate with the analytical solutions and experimental data are compared. Areas with 
the maximum displacements and stresses in the plate were installed for some «configuration» of 
electromagnetic field.  

Keywords 
Electromagnetic field, vibrations, deforming 

1
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* Corresponding author: lavinsky_d@mail.ru 

Introduction 

The interaction of electro-conductive bodies with the electromagnetic field (EM-field) leads to 

occurrence in them of the solenoidal currents, which in turn causes the appearance of ponderomotive 

forces leading to movement and deformation of the conductive bodies. Influence of intensive EM-

fields is exposed to the elements of various technical devices: various converters of energy 

(generators, transformers), devices for the geological exploration with the help of pulsed EM-field, 

the system for processing of materials by EM-field forces. The energy created in the EM-field, can 

reach such values, in which the strength of structural elements is violated. In addition, the movement 

of structural elements in an EM-field (vibrations) can lead to the distortion of the distribution of EM-

field components, which might disturb the normal mode of work of the device. 

Thus, the problem of the analysis of component of the EM-field and the subsequent analysis of 

the stress-strain state (SSS) is relevant in the scientific and practical terms. It should be noted that a 

large number of scientists in different times focus special attention to problems of the analysis of the 

thermo-mechanics in presence of the EM-field. A significant contribution was made by S.A. 

Ambratcumyan, Ya.Yo. Burak, O.S. Wol’mir, A.R. Gachkevich, O.M. Guz’, S.A. Kaloerov, Ya. S. 

Pidstryhach etc. However, basically these researches are focused on the analysis of elastic behavior of 

material, and the solutions are given for bodies of the canonical form. Thus, the problem for the 

creation of effective methods of calculation of magneto-elastic plasticity for a body of arbitrary shape 

in the present time is actual one. 

The paper presents the analysis of the spatial-temporal distribution component of the EM-field 

in the system for electromagnetic forming (EMF) of materials and the subsequent analysis of 

deformation of the elements of this system. EMF is one of the progressive methods of processing of 

materials, based on the ability of metals to deform plastically under the action of ponderomotive 
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forces. In this case, the high levels of ponderomotive forces on the one hand positively influence on 

process of plastic deformation of the workpiece, on the other hand, they negatively affect the 

resistance of the inductor systems, because it may violate the strength of the inductor.  

 

1.  Problem Statement 

Let's consider one variant of the inductors designed a deformation of thin-walled billets. In this 

case, it is a massive body of rotation of the complex form (fig.1). In the center of the inductor the bore 

(window) was made in the form of a truncated cone. It is necessary to analyze the distribution of the 

component of the EM-field in the system of the «inductor-billet», consider the vibration process in the 

system, to assess the SSS of the system. 

 

 
 

Figure 1. The inductor with cone bore  

 

The mathematical formulation of the problem in this case has the following form. The 

equations of motion: 

 

1, uFpijij ��C��M , / 0 4 5HjExF cip

����

R��C�                                            (1)  

 

where iu  are components of the vector of displacements, ijM  are components of the stress tensor, C  is 

the mass density, piF  are components of the vector of volumetric forces of Lorentz, j
�

 is the vector of 

current density , E
�

, H
�

 are vectors of the intensity of electric and magnetic fields, c�  is the magnetic 

permeability. The electromagnetic field is determined by the system of the Maxwell's equations [1]:   

 

ju
t

E
Hrot c

�
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�
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�C��
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���
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�

,  0�Hdiv
�

, C��D Edivc
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                (3) 

where �  is the density of electrical charges, cD  is the electrical permeability. Equations (1) and (3) 

are supplemented by physical relations: 

 

ED c

��

D� ,  HB c

��

�� , ,.

*
+-

) R6�6� BuEj cc

���� .

,  kl
e
ijklij A M�D                        (4) 

where BD
��

,  are induction vectors of electric and magnetic fields, 
c6  is an electrical conductivity of 

the material, ijD  are the components of a tensor of strain, 
e
ijklA is the components of a tensor adopted 

for the description of the properties of the material, within the limits of linear elasticity of the 

material, the ratio meet the generalized Hook’s law. For isotropic body the material constant tensor is 

defined as: 4 5klijjlik
e
ijkl

E
A 1?1�11?�� )1(

1
, where Е, ?  are the elastic modulus and Poisson's ratio. The 

relationship between deformations and displacements will be considered in the framework of the 

linear Cauchy relations: 
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/ 0jiijij uu ,,21 ��D                                                           (5) 

The problem is supplemented by boundary conditions: 

;0,0,0,0 ���R���R nBnHnDnE ГГГГ

��������

  / 0 Г
с

Гnn HiuEp
��

��
���

R�X
�

�
X

��M 
22

       (6)  

where nn

��
�M�M  is the vector of mechanical stresses on the boundary with the normal n

�
,  X , i

�

– 

density of surface charges and currents, u�
�

 are the projection of the velocity vector of a point on a 

plane tangent to the boundary of the body. 

 

2.  Solution and Analysis of the Results 

2.1 The analysis of the distribution component of the EM-field in the system of 
the «inductor-billet»  

Let us consider the distribution of components of the EM-field in the system of the «inductor-

billet» with the help of the finite element method (FEM). In the first approximation inductor can be 

modeled as an axisymmetric body [2]. The calculation scheme of the problem of determination of 

space-time configuration of the EM-field is shown in figure 2. In this case, the system of Maxwell's 

equations in a cylindrical coordinate system relative to the component of the magnetic field intensity, 

in the mind of axial symmetry, is reduced to the form (8): 
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                                                    (8) 

 

 
Figure 2. Calculation model of the analysis of the EMF in system of the «inductor-billet» 

 

To solve this problem use a FEM that allows to largely avoiding the various simplifying 

assumptions. In addition, it is necessary to have in mind that the transfer of the current of the inductor 

for billet takes place through the intermediate environment – air, which is excluded from 

consideration in the analytical solution. Enter into a consideration the magnetic vector potential [3] – 

/ 0tzrA ,,, @
�

: ArotB
��

� .  In this case, the magnetic vector potential has only one non-zero 

component AA �@ . Compare the obtained solution with the analytical and experimental data [2]. 

Figure 3 shows the distribution of the radial components of the intensity of electromagnetic field on 

the surface of the billet directly in the neighborhood of the window field. The solid line is the solution 
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obtained FEM, dashed line – analytical solution, points – experimental data [3]. From the figure it is 

shown a good agreement between the numerical and an analytical solution, which testifies to 

expediency of application of the FEM for the analysis of the distribution of EM-field in the systems 

similar to, considered one. 

 

Figure 3. The comparison of the distribution of the radial component of magnetic field intensity 
on the surface of the billet 

 
2.2 Analysis of vibrations of a round plate in a variable magnetic field 
The variability in time of the EM-field components, obviously, leads to vibrations of elements 

of the «inductor-billet». Due to the fact, that the inductor is much more massive than the workpiece, 

the vibrations of the workpiece are most pronounced. For their modeling consider vibrations of a thin 

round plate  in a variable magnetic field, which is a transverse to the surface of the plate – fig.4. In 

this case, for the analysis of bending vibrations of plates we can use the equation of the 445: 
 

/ 0 / 0 / 0

FFF
���

������

�
�
�

�
�
�

�

�M�M�M�M
�
�

�M�M
�
�

�C�J

h

h
z

h

h
y

h

h
x

zzzzzyzyzxzx

dzfzdzf
y

zdzf
x

y
h

x
hwhwD ��24

                                    (9) 

where ������ MMMMMM zzzzzyzyzxzx ,,,,, – the stresses at the top and bottom of the outer boundaries of the 

plates, zyx fff ,, – components of the Lorentz force, / 02

3

13

2

?�
�

Eh
D – the bending stiffness of the plate.  

 

а) b) 

Figure 4. Calculation model of the analysis of vibrations of a round plate in a variable magnetic 
field 

 

We approximated the distribution of the functions of the bending of the plate along the radial 

coordinate of the function: 

/ 0/ 0222 rRtAw ��                                                     (10) 
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where / 0tA  – the value of the bending in the center of the plate, t – the time. This function 

automatically satisfies the boundary conditions type of rigid fixation. Let us pass to dimensionless 

designations of variables and functions: 
h

w
w

h

A
A

R

r
r ��� ;; . Then, taking into account 

dependencies (4) and (5), and taking into account the axial symmetry of the equation (9) is converted 

to the form: 

rz ffwhwB
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After substitution, we obtain:  
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The components of the Lorentz force can be presented according to 455 in the form of:  

 

/ 00

2

2

2
cos

1

t
z r

r
f f e t

r
�1 � ) *�

� � � + ,�- .
,                                                               (13)  

where�  is a frequency of current in pulse. Let us consider the solution of the tasks for the following 

data: 

/ 0 / 0 00,0005 ì , 0.07 m , 0,25, 40, 2,h R B� � 1 � � � � / 06 3 1

0 1,257 10 , 17,9 10 s� �� � � �� � , 

pulse duration – of 0.001(s).  Fig. 5 shows the plot of the time-dependence of the bending of a centre 

of a plate. The graph shows that the pulse of the impact of the fixed plate makes damped oscillations, 

which are continuing in time longer than the current pulse. Also note that the first maximum 

displacement, attributable to the initial moment of time, is almost twice more than the second 

maximum. It is logical to assume that this is the first maximum corresponds to the occurrence of the 

maximum levels of stress, which can lead to the appearance of plastic deformations. Thus, in the 

analysis of deformation of systems for EMF, the task can be considered in the quasi-stationary set, 

which corresponds to, in fact, a review of the distribution of EM-field in the initial moment of time. 

 

 
Figure 5. The time-dependence of the bending of a centre of a plate 
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2.3 The analysis of the SSS of the system «inductor-billet» in the case of quasi-
stationary EM-field  

The analysis of the SSS of the system «inductor-billet» was made with the help of FEM, means 

the software package (SP) ANSYS. Baseline data for the analysis of the SSS served as the distribution 

component of the EM-field. As is known, the ponderomotive forces can lead both to the repulsion and 

to the attraction of conducting bodies. It is experimentally shown [2] that the low-frequency current in 

pulse inductor mechanisms for attraction prevails over the mechanisms of repulsion. 

An ideal variant, in which the attraction is the impact of a constant current of great strength, but in 

reality to implement such a process, is not possible. At the same time calculated in the approximation 

of quasi-stationary process provides an opportunity to carry out qualitative assessments of the 

deformation of the elements of the system. It is in this setting, and the calculation was done. The 

picture of the deformed state of the system «inductor-billet» is presented in Fig. 6. Note that the most 

intensive process of deformation is directly opposite the cone of the window field. Also as results of 

the analysis of the SSS have been identified zones, in which the stress intensity reaches maximum 

values and it is in these areas should be expected of plastic deformations.   

   

 
Figure 6. The deformed shape of the system «inductor-billet» 

 

Conclusions 

In the article the problems of the analysis of component of the EM-field for a system of 

interacting bodies and the subsequent analysis of deformation have been shown. The calculations on 

the example of the system of the «inductor-billet», which are used in the processes of EMF, have been 

made. The analysis of the distribution component of the EM-field and the subsequent analysis of 

deformation produced by FEM. Elements of the system «inductor-billet» are considered in the 

framework of the united calculation model. Vibrations of a thin conducting of the round plate in a 

variable magnetic field have been analyzed.  
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Transformation of the field in two-dimensional nonlinear optical feedback system leads to a rotating 
structures [1]. Such systems are used in modern computer technology and research of laser beams.
In this paper it was shown that a traveling-wave solution branches off spatially homogeneous 
stationary solution by vibrational buckling. This solution is orbitally asymptotically stable. 
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Introduction 

Transformation of the field in two-dimensional nonlinear optical feedback system leads to a 

rotating structures [1]. Such systems are used in modern computer technology and research of laser 

beams. Mathematical model of the system is a quasi-linear parabolic functional differential equation 

with the transformation of the spatial variables. The problem of self-oscillations in the equation for 

the case of a thin circular ring and a rotation transformation is considered in [2-5]. The papers  [2,4, 6-

8] are devoted to the small diffusion coefficient study. 

1.  The problem on bifurcation of periodic traveling-wave solutions of the spatially 
homogeneous steady state 

On the circle  ZRS �2/1 � let's consider the equation 

/ 0QuK
u

u
t

u
cos1

2

2

6
�

� ��
�

�
��

�
�

, / 0 / 0thutQu ,, �� �� ,   (1) 

where u is the phase of the light wave;  0�� is the particle diffusion coefficient of the nonlinear 

medium; 10 =� 6 is the visibility of the interference pattern;  0�K is a coefficient which is 

proportional to light intensity. 

The problem of bifurcation of periodic traveling-wave solutions of the spatially homogeneous 

steady state is the following: 

/ 0wKw cos1 6��          (2) 

In the study of bifurcation loop an interest is in a loss of stability of the stationary solutions, 

and approximate formulas for periodic solutions that are grown with small amplitude. 

With the K growing number of co-existing roots of this equation increases indefinitely, and 

for &�K their composition is constantly updated: an appearance of the new state of equilibrium 

and a vanishing of the old. 

In this regard, we fix some continuous branch of solutions 
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/ 0Kww � , / 0 0sin1 T� KwK6       (3) 

of (2). Then we linearize the equation (1) near the state of equilibrium (3) and apply it to the 
1S resulting equation for 

/ 0QuKu
u

t

u
G��

�

�
�

�
�

2

2

�
�  

where / 0 / 0KwKK sin6��G  , the Fourier method for system functions / 0�imexp , ,...2,1,0 ���m  .  

As a result, we can see that the range of stability of the equilibrium state under consideration is 

determined by the eigenvalues 

 
 

                      / 0 / 0imhKmm exp1 2 G���� �7 ,  ,...2,1,0 ���m                         (4) 

where  / 0 / 0KwKK sin6��G . One considers the case  / 0 1��G K . 

Next, we consider the following case. 
3
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�h . 

It is easy to verify the equality  0)(Re *
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               Suppose that 0Re 3 �c . 

Theorem: Suppose that the above conditions. Then there is 0�1  that if  1�� ��� (0  there are 

two periodic solutions (1) traveling wave 

/ 0 / 0/ 0 / 02, ������@ �Y���� (� tKwu , 

where 

/ 0/ 0 / 0 / 0/ 0 ,,,, ),(32 �
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. 

Solutions  �u  -  orbitaly asymptotically stable. 

 

Conclusions 

In this paper it was shown that a traveling-wave solution branches off spatially homogeneous 

stationary solution by vibrational buckling. This solution is orbitally asymptotically stable. 
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Introduction 

This work is devoted to derivation of the non-linear strain fields’ models in the three-

dimensional space. We also propose some algorithms for  their realization. The mathematical model 

has been obtained by variational principle of Hamilton- Ostrogradskii [1-3]. The models are 

constructed in orthogonal curvilinear coordinates. This procedure we can call algorithmic because it 

is a common approach to the construct mathematical models of different processes.   

1. Derivation of three-dimensional nonlinear mathematical models for dynamical 
problems of elasticity and plasticity theory 

In the general theory of vibrations, displacements of the deformable bodies 1u , 2u and 3u are 

functions of four variables: the coordinates 1 2,x x and 3x and time t. Equation motion and boundary 

conditions are derived from Hamilton-Ostrogradskii’s principle:  

                                                           F ���
2

1

0)(

t

t

dtAK P1 ,                                               (1) 

where K, P are kinetic and potential energy relatively, and A is  the work of external volume and 

surface forces. Variation of the kinetic energy is defined as follows [2]: 

                                   
2 2

1 1

22
31 2

1 2 32 2 2
.

t t

t t v

uu u
Kdt u u u dVdt

t t t
1 C 1 1 1

) *�� �
� � � �+ ,

� � �+ ,- .
F F F   (2) 

Let us introduce the notation 312312332211 ,,,,, MMMMMM and 312312332211 ,,,,, DDDDDD            

for the components of stress and strain.Then for  the variation of potential energy, we have 
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2 2

1 1

11 11 22 22 33 33 12 12 23 23 31 31' ( ) .

t t

t t v

dt dVdt1 1 M 1D M 1D M D M 1D M 1D M 1DP � P � � � � � �F F F     (3) 

       

Let us denote the linear strain component as 
L

ijD and nonlinear one by 
N

ijD . Then strains may be 

presented as [4] 
L N

ij ij ijD D D� �

Here
L

ijD = ije , 1,3i � 1,3j � ; 
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We’ll consider the linear and nonlinear part of the variation (3) separately. Then 

( , 1,3)L N
ij ij ij i j1D 1D 1D� � � , 

and the variation of the potential energy becomes 

NL P1P1P1 ��

Here 
LP is linear and 

NP is  nonlinear part of the potential energy 

F �������
v

L dVeeeeeeeee )( 3131232323231212333322221111 111M1M11M1MP1

F ������
v

NNNNNNN dV)( 232323231212333322221111 1DM1DM1DM1DM1DM1DMP1

Let us denote components of the volume forces as 1 2 3, ,P P P and components of  the surface 

forces as 1 2 3, ,q q q . Then the variation of  the work of the external forces takes the form       

8
2 2

1 1

1 1 2 2 3 3 1 1 1 1 2 2 2 2 3 3 3 3( ) ( )

t t

t v t s

A P u P u P u dV q H n u q H n u q H n u ds1 1 1 1 1 1 1� � � � � �F F F F      (7) 

After calculation of the variations  11 22 33 12 23 23, , , , ,N N N N N N1D 1D 1D 1D 1D 1D and 
N1P L1P we can 

obtain the variational equation of nonlinear vibrations of elastic and elastic-plastic three-dimensional 

bodies. From this equation we get systems of differential equations  of motion, the natural boundary 

and initial conditions. The obtained system is nonlinear system of differential equations with partial 

derivatives: 
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        (8) 

       

Here ( 1,2,3)iR i � are the nonlinear terms of the 
N
ij1D equations, resulting from the variation, the 

essence and content are detailed in [5]. 1 2 3, ,H H H H� are Lame coefficients [1,4]. 

The natural boundary conditions is defined as 

                                                    
3

1

( ) 0, 1..3,

s

si i i s s s
i Г

H n q H G sM
�

) *
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- .
�                                              (9) 

           Here, sG are the nonlinear terms of the boundary conditions, from the 
N
ij1D resulting 

variation, substance and content are detailed in [5]. 

          Next,  we write down the initial conditions: 

                                        
0

0

0,0u u , 1..3;i ii it t
t t

u u i
' '

�
�

� � �                                                           (10) 

where 
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1 2 3u (u ,u ,u ).�
     Thus, we obtain a system of nonlinear partial differential equations (8), supplemented by 

boundary and initial conditions (9) and (10). 

This system is nonlinear three-dimensional mathematical model of vibration problems for 

elastic and elastoplastic bodies. [5-6]. 

2. The computational  algorithm for solving problem 

              In the system (8) expressions ( 1,3)iR i � and ( 1,3; 1,3)ij i jM � � contain nonlinear terms. 

That is why we present ( 1,3; 1,3)ij i jM � � in the following form 

                           , 1,3, 1,3L N
ij ij ij i jM M M� � � �                                                 (11) 

               For clarity, the system (8) with the notation (6) and (11) can be rewritten as 
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Solution algorithm is based on the method of successive approximations. 

In this case, the basic functions are constructed by R-functions method [6-7], i.e, 
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             The essence of the method of successive approximations is following: 

First, we solve the  linear equation, putting
* *

1 20, 0R R� � and 
*

3 0R � . For this purpose let us 

substitute (13) into (12) and (10) and apply the Bubnov-Galerkin procedure [9]. Taking into account 

that each ijM is the function of 1 2 3, ,u u u , we  finally obtain the following system of linear ordinary 

differential equations, 
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The system (14) can be solved upon special initial conditions 
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Hence, we obtain the vector C of unknown functions. Knowing values C we can calculate 

values 
(0) (0) (0)

1 2 3( , , )n m ku u u by formulas (13) and hence the values 
(0) (0)

1 2,n mu u and 
(0)

3ku .and the 

values
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2 1 2 3( , , )n m kR u u u , 
* (0) (0) (0)

3 1 2 3( , , )n m kR u u u . These values and values 

*( 1,3)iR i � are substituted into (12). Applying the Bubnov-Galerkin procedure we obtain the 

following system of ordinary linear differential equations: 

                                                  / 0
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1 2 32
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dt
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which are supplemented by condition  (15). 

Here 
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On the following step we determine the unknown function 
(1)C and hence the values 

(1) (1) (1)

1 2 3, ,n m ku u u . This process continues until an acceptable solution is found. When we have i-th 

iteration step,  the equation (16) takes the form 
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                                                 / 0
2 ( )

( ) * ( 1) ( 1) ( 1)

1 2 32
, ,

i
i i i i

n m

d C
A BC F R u u u

dt
� � �� � � 0)

                         (17)                 

The rate of convergence of simple iterations is directly related to the choice of initial 

approximation. Therefore, in order  to improve the convergence rate we use extrapolation method 

described in reference [7]. 

Conclusion 

Thus, we have constructed a mathematical model of nonlinear vibrations problem for three-

dimensional elastic and elastoplastic bodies and suggested algorithms of its implementation on the 

base of the method of successive approximations. The proposed approach may be used for solving 

both static and dynamic nonlinear problems for three-dimensional bodies with a complex shape. 
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1. Total Governing equations 

In order to obtain the movement equations of magneto-elasticity theory of  thin shells and 

plates we apply the classical approach based on variational principle of Hamilton-Ostrogradskiy [1]. 

Assume that Kirchhoff-Law hypothesis for thin shells and plates, geometrical Cauchy relations and 

physical correlation in inverse form to Hooke’s law are fulfilled. Representation of ponderomotive 

forces of electromagnetic field is carried out by Lorentz expressions. [2]. Cartesian system of 

coordinates is used to obtain movement equations. Then it is possible to show that equations of 

motion for shells and boundary conditions have the following form: 
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The body forces of electromagnetic origin are included into the total volume forces [5,6], in the 

form  
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where H (Hx, Hy, Hz) is the magnetic field vector.  

In order to complete the derivation we should add surface and contour forces described by 

Maxwell electromagnetic stress tensors [2, 5, 6]  
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2. Mathematical models of magneto-elasticity of thin plates 
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As a particular case we can obtain mathematical models of vibration problem for isotropic plate 

made of a material with finite electrical conductivity provided that an external magnetic field has 

given intensity. These equations are   
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3. Mathematical models magneto-elasticity of thin shells 
 

Similarly we can obtain nonlinear motion equations for thin shallow shells.    

By relation (6) the components of body forces of electromagnetic origin and their moments are 

as follows:  
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Substituting these expressions into equations (1) we get non-linear system of differential 

equations of the motion for magneto - elastic thin shallow shells. The system supplemented by 

boundary and initial conditions. To solve the resulting problems iterative algorithm is developed. This 
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algorithm is based on combined application of the method by Bubnov-Galerkin and structure method 

of R-functions [8-10]. We will develop corresponding software to implement proposed approach.  
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shells. Method simplifies the determination of the period of oscillation for nonlinear structures. 
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Introduction 

Wide usage of lightweight constructions requires new complex calculation schemes for 

extremely thin walled shells. Their behavior is nonlinear, mostly, and thus development of new 

calculation methods is topical. Analytic solution of shells dynamics equations leads to expressions in 

form of power series. The problem of convergence of such series, especially in a case of artificial 

parameter, is often solved by means of general summation. One of the most efficient methods of 

general summation is the method of Padé approximants [1]. There is shown earlier [2], that the best 

results are produced by special kind of perturbation of equations and boundary conditions combining 

with 2-D Padé approximants in form by V. Vavilov. This form of the modified method of 

continuation by parameter (MMCP) provides an existence and convergence for meromorphic 

continuation of approximate solutions.  

Theory of dynamics of shells is usually applied for technical purposes. There are some 

technical parameters, which are usually used for analysis of vibrations: frequency, period, amplitude, 

etc. They are the result of usage of methods based on representation of approximate solutions by 

means of trigonometric functions. Such representation is a common and occurs from classical form of 

solution for linear vibrations with small amplitude [1]. Classical perturbation approaches, such as the 

Lindstedt – Poincaré, van der Pol, Krylov – Bogolyubov methods are based on the use of small 

parameter. Contrary to the classical methods, MMCP leads to power series both by time and artificial 

parameter and is not restricted by the smallness of them [2]. In this paper we demonstrate that 

parameters of vibration can be  found easy and accurately using even first few terms of MMCP 

without of any additional methods. 

1.  Model Example 

Let’s consider Duffing equation as a model example. This equation with initial conditions can 

be written in the following form  

3 0

(0) (0) 0

u u u

u a u

D� � �

� �

u u D� �u D
(0) 0(0)

(1) 



Igor V. Andrianov, Victor I. Olevs’kyy 
 

320 

 

Oscillations in this case are not isochronous [1]. Using of classic perturbation procedure leads 

to isochronous solution with secular terms. It is not appropriate on the whole time axe. For small 

nonlinearity and amplitude it can be used the Lindstedt - Poincaré method to construct appropriate 

approximate solution in term of trigonometric series in the form 

 

/ 0
2

2cos( ) cos(3 )
32

a
u a t t O

D
� � D� � �     (2) 

 

where circle frequency is found in the form 

 

/ 0 / 02
2 2 33 51

1
8 256

a a O� D D D� � � �     (3) 

 

Thus period of oscillation T  is 

 

/ 02
2 2

2

3 51
1

8 256

T
a a

�

D D
B

� �
    (4) 

 

The same result can be found using methods of stretched coordinates or averaging [1]. 

Everyone can see that it is not so easy to implement those methods even for so simple example. 

Moreover, initial conditions in (1) are satisfied approximately only: / 02 2(0) 32u a a OD D� � � . 

On the other hand, MMPC solves this problem in the direct way. Let’s involve artificial 

parameter 1D  in form 

 

/ 03
1 1

0

0 0

0

(0) (0) (0) (0) 0 1,

i
i

i

i i

u u u u u

u a u u u i

D D D
&

�

� � � �

� � � � � &

�/1 /u D1 /1 /� /D /u/1 /

0 (0) (0) (0) 0 1,0 i i(0)(0)(0) (0) (0) 0(0) (0) 00 (0)(0)(0) (0) (0) 0 1(0) (0) (0) 0 1,(0) (0) (0) 00 (0)

   (5) 

 

We can get approximation in form 

 

/ 0 / 0/ 02 2 2

2 2 4
1 1

1 1 1 3

2 24

a a a
u a a t a t

D D D
D D

� � �
B � �   (6) 

 

2-D Padé when 1 1D �  give us such approximation, exactly satisfied initial conditions 

 

/ 0
/ 0

2 2

2 2

12 5 3

12 1 3

a t
u a

a t

D

D

� �
B

� �
     (7) 

 

Let’s find quarter of period as first zero of this approximation 

 

2

2 3

4 5 3

T

aD
B

�
     (8) 

 

Behavior of corresponding approximations for measureless ratio of movements (3) (solid 

curves) and (7) (dashed curves) to initial amplitude u  is shown on fig. 1. The numbers near curves 

correspond to values of parameter 2aD . Comparison between find periods according to (4) (solid 

curve) and (8) (dashed curve) is shown on fig. 2. They demonstrate good agreement in whole domain 
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under consideration. It worse mentioned, that near 2 1.4889aD B  additional terms in (3) are equal to 

the circle frequency of linear pendulum and so can’t be treated as “small”. 

 

 
Figure 1. The movement response  

 

 
Figure 2. The period response  

 

2.  Free Nonlinear Vibration of Stringer Shell 

Let’s consider free vibration of a flexible elastic circular cylindrical shell of radius R, thickness 

h and length L, reinforced by a set of uniformly distributed stringers having a simple support at the 

ends (fig. 3). Shell is considered as the structurally-orthotropic one [1].  

 

 
Figure 3. Scheme of the stringer shell 
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The calculation is based on mixed dynamical equations of the theory of shells after splitting 

them in powers of natural small parameters [3]. The shape of radial deflection w satisfies the 

boundary conditions given in the form 

 

/ 0 / 0 / 0 / 0 / 02
1 1 1 2 2 2 1 1sin cos sinw f t s x s x f t s x� �     (9) 

 

Here functions 1f  and 1 2 2
2 2 10,25f R s f��  are related by the condition of continuity of displacements, 

the parameters 1
1s ml� ��  and 2s n�  are characterizing the wave generation along the generator and 

directrix, respectively. 

The governing equations can be reduced by the Bubnov – Galerkin method to the Cauchy 

problem with respect to 1 /f R� �  on 2
1 1 /t t B RC�  (all symbols are taken in accordance with [3]) 

 

/ 0
/ 0 / 0

2 3 5
1 2 3 0

0 0 0

A A A

f

� 2� � �� � � �

� �

) *� � � � � �+ ,- .

� �

11� 2� �A) */ 02
� ��/ 02� � ��2� � �� A11� ��/ 0� ��� ��/ 0� ��/ 0+ ,+ ,/ 0� ��� ��� ��� ��/ 0� ��� ��� ��� ��/ 0

/ 00 0/ 0�� 0/ 0
   (10) 

 

The application of the proposed method of parameter continuation to the Cauchy problem (10) 

gives approximation of the second order for the artificial parameter for frequency �  of nonlinear 

oscillations in the form 

 

/ 0 / 0/ 0 / 02 4
2 1 3 11 / / 1f A A f A A f2� � � � �     (11) 

 

and represented on fig. 4 ( f  – normalized amplitude, 1 – according the proposed method, 2 – 

Lindstedt - Poincaré method [3]). 

 

 

Figure 4. The frequency response 

 

Conclusions 

MMCP based on 2-D Padé approximations is an efficient method for recognizing of parameters 

of nonlinear shell vibrations.  
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Abstract 
This work analyses some complicated dynamic phenomena that take place when circular shells are 
excited along the axial direction with an excitation which cannot be considered as an infinite energy 
source. The interaction between the vibrating system, the shell, and the energy source, the shaker, 
has shown a surprisingly complex response. A circular cylindrical shells is excited from the bottom 
and a rigid disk is clamped on the top, allowing a rigid body-like motion. When the excitation is 
harmonic and resonant with the first axial-symmetric mode a violent resonant phenomenon is 
experimentally observed and theoretically reproduced, using a nonlinear model for the shell 
dynamics combined with a model of the electro-mechanic machine used in vibrating the shell base. 
The shell model is based on the Sanders-Koiter theory and takes into account geometric 
nonlinearities and imperfections. An energy approach based on the Lagrange equations combines 
shell and shaker equations, giving rise to a large set of ODEs, which is solved numerically using high 
performance time integration algorithms, in order to be able to reproduce both stationary and 
nonstationary responses. 
It is numerically proven that, in some frequency bands, when a sufficient energy is provided, periodic 
responses do not exist, even though the excitation is harmonic. 

Keywords 
Nonlinear vibration, Shell 

1
 Dept. of Engineering “Enzo Ferrari”, Univ. Modena and Reggio Emilia  

* Corresponding author: francesco.pellicano@unimore.it  

Introduction 

Several commercial software allow to carry out static, stability and vibration analyses; 

however, regarding the shell dynamics, such kind of analyses are generally reliable in the linear filed, 

i.e. very small deformations. Problems like global stability, post-critical behaviours and nonlinear 

vibrations cannot yet be accurately analysed with commercial software; on such fields there is need of 

further development of computational models. 

Readers interested to deepen the literature are suggested to read Refs.[1-6]: some topics of 

extreme importance need further investigations: dynamic stability, post-critical behavior, sensitivity to 

imperfections, nonlinear vibrations and fluid structure interaction.  

Kubenko and Koval’chuk [7] published an interesting review on nonlinear problems of shells, where 

several results were reported about parametric vibrations; in such review the limitations of reduced 

order models were pointed out.  

In Ref. [8] a new method, based on the nonlinear Sanders Koiter theory, suitable for handling 

complex boundary conditions of circular cylindrical shells and large amplitude of vibrations. The 

method was based on a mixed expansions considering orthogonal polynomials and harmonic 

functions. Among the others, the method showed good accuracy also in the case of a shell connected 

with a rigid body; this method is the starting point for the model developed in the present research. 

Mallon et. al [9] studied circular cylindrical shells made of orthotropic material, the Donnell’s 

nonlinear shallow shell theory was used with a multimode expansion for discretization (PDE to ODE). 

The theoretical model considered also the shaker-shell interaction; such work is strictly related to the 

present paper for which concern theory and experiments; here a further step toward improved 

modelling and complete understanding of complex dynamic phenomena is attempted, in addition here 

experiments show great coherence with theoretical results. 
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In the present paper, experiments are carried out on a circular cylindrical shell, made of a 

polymeric material (P.E.T.) and clamped at the base by gluing its bottom to a rigid support. The axis 

of the cylinder is vertical and a rigid disk is connected to the shell top end.  

Nonlinear phenomena are investigated by exciting the shell using a shaking table and a sine 

excitation. Shaking the shell from the bottom induces a vertical motion of the top disk that causes 

axial loads due to inertia forces. Such axial loads generally give rise to axial-symmetric deformations; 

however, in some conditions it is observed experimentally that a violent resonant phenomenon takes 

place, with a strong energy transfer from low to high frequencies and huge amplitude of vibration. 

Moreover, an interesting saturation phenomenon is observed: the response of the top disk was 

completely flat as the excitation frequency was changed around the first axisymmetric mode 

resonance. 

A semi-analytical approach is proposed for reproducing experimental results and giving a 

deeper interpretation of the observed phenomena. The shell is modelled using the nonlinear Sanders 

Koiter shell theory; in modelling the system the effect of the top disk was accounted for applying 

suitable boundary conditions and considering its inertial contribution; moreover, the interaction 

between the shell-disk and the electro-dynamic shaking table was included in the modelling. The shell 

displacement fields are represented by means of a mixed series (harmonic functions and orthogonal 

polynomials), which are able to respect exactly geometric boundary conditions; an energy approach, 

based on the Lagrangian equations, is used to obtain a set of ODE that represents the original system 

with good accuracy. 

Comparisons between experiments and numerical results show a good behaviour of the model, 

numerical analyses furnish useful explanations about the instability phenomena that are observed 

experimentally.  
 

1.1 Experimental setup and results 
In the present section the problem under investigation is described by means of experimental 

results. The description follows the history of the present research, which started from experimental 

observations that led the author in developing the theoretical model. 

 

1.1.1 The setup 
The system under investigation is described in Figures 1 and 2; a circular cylindrical shell, 

made of a polymeric material (P.E.T.), is clamped at the base by gluing its bottom to a rigid support 

(“fixture”); the connection is on the lateral surface of the shell, in order to increase the gluing surface, 

see Figure 1; on the top, the shell is connected to a disk made of aluminium alloy, such disk is not 

externally constrained; therefore, it induces a rigid body motion to the top shell end.  

The system data are the following: � =1366
kg

m3 , � = 0.4 , E = 46�108 N/m2 ; mass of the top 

disk 0.82kg. The geometry is: radius R=43.88 10
-3

m, length L=96 10
-3

m thickness h=0.25 10
-3

m.  

 

 
Figure 1. Experimental setup 

 

The fixture is bolted to a high power shaker (LDS V806, 13000N peak force, 100g, 1-3000Hz 

band frequency). 

When the base of the shell is excited by the shaker, a fluctuating vertical move is determined, 

such base movement results in a seismic-like excitation for the shell; the rigid body motion generates 

big inertia forces on the top disk that cause an axial shell loading. In particular, the vertical excitation 

can cause the resonance of the first axisymmetric mode of the shell, Figure 3; therefore, the base 

excitation can be amplified inducing large axial stresses on the shell. 
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Figure 2. System geometry 

 

1.1.2 Experimental results 
Initially, an experimental modal analysis is carried out (about 80 points are considered) in order 

to extract (identify) natural frequencies, modal damping and mode shapes from experimental data.  

The natural frequencies of the system are reported in Table 1, the corresponding mode shapes 

are represented in Figure 3. 

 
Table 1. Natural frequencies and mode shape description [8]. 

Mode Natural frequencies [Hz] 

Experimental 
frequency 

Theory Finite elements 

k n Frequency Error % Frequen
cy 

Error% 

first beam like 
mode n=1 

95 96 1.1 93 2.1 

1 0 314 322 2.5 314 0 

second beam 
like mode n=1 

438 432 2.5 424 3.2 

1 6 791 797 0.8 782 1.1 

1 7 816 802 1.7 802 1.7 

1 5 890 888 0.2 885 0.6 

1 8 950 926 2.5 918 3.4 

1 9 1069 1016 5.0 1103 3.2 

 

The first three modes of Table 1 present a shape that includes the top disk motion; the second 

mode (first axisymmetric mode) shows a simple translational motion of the top disk, see Figure 3; 

shell like modes (modes after the third of Table 1) behave like clamped-clamped shell modes, i.e. the 

top disk does not move. For the linear theory, shell like modes of a perfect shell are not directly 

excited by a translational base motion on the shell axis, because the top disk motion cannot pump 

energy in such modes. The only prediction that could be done using linear models is to consider the 

time varying axial forces caused by the top mass acceleration, this will lead to a time varying linear 

system, which could undergo to parametric instabilities of Mathieu type; therefore, linear theories 

could be able to analyze the instability boundaries only. 
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first beam like mode n=1 (95Hz) mode (1,0) (314Hz) 
mode (1,6) (791Hz) mode (1,7) (816Hz) 

 
Figure 3. Experimental mode shapes [8]. 

 

Experiments proved that, when the shell is excited harmonically from the base, with an 

excitation frequency close to the first axisymmetric mode, complex dynamic scenarios appear and the 

energy pumped in the system at low frequency spreads over a wide range of the spectrum.  

Tests are carried out using a seismic sine excitation, close to the resonance of the first 

axisymmetric mode (m=1, n=0).  

The complexity and violence of vibrations due to nonlinear phenomena gave several problems 

to closed loop controllers of the shaking table; therefore, an open loop approach was chosen. 

The accelerations of the base, the top, and the displacement of the shell lateral surface are measured. 

Figures 4a-e represent the amplitudes of vibration in terms of acceleration (base and top disk 

vibration) or displacement (measured on the lateral surface of the shell, the vertical position is on the 

middle): during experiments the input voltage was sinusoidal (v(t)=v0sin(2π f t), v0=0.07V) and the 

frequency was moved step by step (stepped sine approach with a frequency step of 0.3Hz) starting 

from high frequency, 340Hz, and reducing up to 290Hz; the sampling frequency was about 6400Hz.  

Figure 4a shows that the maximum excitation (base motion) is between 8 and 14 g; there is a 

strong interaction between the shaker and the shell-disk. 

The top disk vibration (Figure b) increases as the first axisymmetric mode resonance is 

approached, from 340 to 333Hz the top disk response follows the usual behaviour expected by a linear 

resonance. The top disk vibration amplitude remains flat from 322 to 295 Hz. 
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c) 

 

d) 
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Figure 4. Experimental results, amplitude, harmonic excitation: a) base excitation amplitude 
(acceleration [g]), b) top disk amplitude (acceleration [g]), c) response on the shell mid-span 

(displacement [mm], positive inward), d) minimum response of the shell mid-span (displacement 
[mm], negative outward). 

 

For frequencies higher than 333Hz the shell vibration is small, about 0.04 mm (about 16% with 

respect to the shell thickness, 0.25mm), Figure 4c; reducing the excitation frequency below 333Hz, 

the shell vibration amplitude suddenly grows up, at 331.5 Hz the amplitude is 0.57 mm, the increment 

is 1325%; such huge increment takes place in a narrow frequency band, i.e. from 333 Hz to 331.4 Hz 
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(about 0.5% frequency variation). Another jump in the shell response is observed from 325 Hz (0.75 

mm amplitude) to 320 Hz (1.53 mm), i.e. 104% increment in terms of amplitude in 5 Hz. The 

response remains almost flat from 300 to 296Hz, the amplitude oscillates around 1.5 mm; then at 295 

Hz the phenomenon suddenly disappears (0.022mm amplitude). 

 

2.1 Modelling 
The shaker used in the present experiments is an electromechanic machine, the main body is 

suspended on the ground by means of very soft gas suspensions, which have the task of reducing 

forces transmitted to the ground. The power supply is given by an amplifier that furnishes the current 

both to the field coil and the armature coil; the amplifier input E0(t) is a low power and voltage signal 

(up to 1V), it is generated by an external device.  

In the present work the nonlinear Sanders-Koiter theory is considered, this is a theory based on 

the Love’s first approximation  

Details are omitted for the sake of brevity. 

 

2.1.1 Numerical Analysis  
Numerical analyses are carried out after a deep convergence analysis, details are omitted for 

the sake of brevity. 

Results presented in Figure 5 are referred to a simulation carried out considering a sine 

excitation of the shaker with input voltage equal to 0.09V, this value is larger than the excitation used 

during the experiments (0.07V); however, below such value the numerical model did not detect any 

dynamic instability. Simulations are carried out by decreasing the excitation frequency. The issue 

about the voltage level is not really significant; indeed, the need of a voltage slightly larger than 

experiments is probably due to an underestimation of the amplifier gain: this quantity could be 

influenced by the operating conditions of the amplifier-shaker system.  

The instability phenomenon is captured, i.e. the instability region is close to the experiments.  

 

  
Figure 5. Amplitude frequency diagrams, numerical simulations, companion mode participation, 

backward frequency sweep, shell vibration (mm). a) inward displacement and RMS(w); b) outward 
(positive) displacement. Excitation source: 0.09V. 

 

a)                                         b) 

 

c) 

 

Figure 6. Stability boundaries. a,b) theory, c) experiments 

 

Figure 6 shows the stability boundaries obtained numerically by varying both the excitation 

source voltage and frequency; the boundaries are coherent with experiments and similar to the Ince-

Strutt diagrams referred to the Mathieu equation, this is a further confirmation that the instability is 
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due to a parametric resonance. The boundaries, obtained by increasing the excitation frequency 

(forward), are quite similar to the experimental boundaries; numerical boundaries are moved up with 

respect to the experiments, i.e. for the same excitation voltage the experimental instability region is 

wider. Backward boundaries present a wider instability region for low voltage; moreover, left and 

right curves do not match at the bottom, this indicates that the boundaries search could be improved 

by using a more sophisticated search, which is however beyond the purposes of the present work. 

 

Conclusions 

In this paper an experimental investigation on the nonlinear dynamics of circular cylindrical 

shells excited by a base excitation is presented. A nonlinear model of the shell considering also the 

shell shaker interaction is developed. 

Experiments clearly show a strong nonlinear phenomenon appearing when the first 

axisymmetric mode is excited: the phenomenon leads to large amplitude of vibrations in a wide range 

of frequencies, it appears extremely dangerous as it can lead to the collapse of the shell; moreover, it 

appears suddenly both increasing and decreasing the excitation frequency and is extremely violent. By 

observing experimentally a strong transfer of energy from low to high frequency a conjecture can be 

made about the nonlinear interaction among axisymmetric (directly excited) and asymmetric modes. 

A saturation phenomenon regarding the vibration of the top disk is observed, this is associated with 

the violent shell vibration; the shell behaves like an energy sink, absorbing part of the disk energy. 

The theoretical model shows satisfactory agreement with experiments and clarifies the energy 

transfer mechanism from low frequency axisymmetric modes and high frequency asymmetric modes, 

confirming the conjecture arising by the experimental data analysis.  

It is now clear that, in order to safely predict the response of a thin walled shell carrying a mass 

on the top, i.e. the typical aerospace problem for launchers, a nonlinear shell model is needed, but it is 

not enough: a further modeling regarding the shell mass interaction and the interaction between shell 

and excitation source is needed. 
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Abstract 
Nonlinear dynamics of acoustic wedge waves was investigated. For the theoretical analysis of this
problem the displacement field was presented in the form of a double series of Laguerre functions. A
nonlinear evolution equation for wedge waves in anisotropic elastic media, including weak dispersion,
was derived. Dispersion laws were obtained for the cases of a surface coated by a thin film and 
modification of the wedge tip. A numerical solution, corresponding to a solitary pulse, was found. 
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Introduction 

Edge acoustic waves are guided waves with associated displacement field decaying 

exponentially away from the tip in the plane normal to the edge [1]. Recently, these one-dimensional 

guided modes have attracted renewed interest [2-5], partly because of various potential applications 

including non-destructive testing, sensors, ultrasonic motors, and aquatic propulsion. 

Theoretical investigations and numerical calculations of the characteristics of acoustic waves 

guided by wedges were carried out on the basis the finite element method [6] and of the Laguerre 

function approach [7,8]. In the following, we apply the latter. 

Because of translational invariance along the apex direction (x-direction), the displacement 

field may be set up in the form 4 5 ),()(exp),,,( kzkywtkxitzyxu 22 ��� , and for rectangular 

wedges, )()(),(
,

, kzkyakzkyw nm
nm

nm ���� 2
2 , where 4 5!/)()2/exp()( mLmm ��� ��� and )(�mL

is the m-th Laguerre polynomial. In the case of sharp-angle wedges, a conformal transformation first 

maps the two faces of the wedge to the (x,y) and (x,z) planes.  

1 Evolution Equation 

We consider elastic nonlinearity that arises in the expansion of the Piola-Kirchhoff stress tensor 

in powers of the displacement gradients �2 ,u , 

)( 3

..,..,,2
1

, uOuuSuCT ��� ED16DE612�16612�2� (1) 

Here, the components of the sixth-rank tensor (S) are linear combinations of 3rd-order and 2nd-

order elastic moduli. Summation over repeated indices is implied. 
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 The displacement field is written as an expansion in powers of a typical strainD , 

 

)( 3)2(2)1( DDD 222 Ouuu ���
     (2) 

 

 This expansion is inserted in the equations of motion in the elastic medium and boundary 

conditions at its surfaces,  

2�
�

2C T
x

u
�
�

���
,             

0�2��TN
    (3) 

 

with stress tensor (1), and �N  are the Cartesian components of a unit vector normal to the surface. 

These equations and conditions are required to be satisfied at each order of the expansion 

parameterD . Consequently, the first-order field 
)1(

2u  may be set up as a superposition of linear wedge 

waves in the form 

 

4 5 ..
2

),(
1

)(exp),(),,,(
0

)1( cc
dk

kB
ik

tvxikkzkywtzyxu W ��� F
&

�
22

   (4) 

 

where kvW /��  is the velocity of linear wedge waves and c.c. stands for the conjugate complex. 

),( kB  is a displacement gradient amplitude that depends on wave number k and on a “stretched” 

time coordinate tD � .  

 From a compatibility condition for the inhomogeneous linear boundary value problem 

obtained at second order of D , the desired evolution equation for the strain amplitudes is obtained in 

the form [9]: 

 

4 5
:
;
<

�
�

 �

������
�

�����
�
�

F F
&k

k

w

kd
kkBkBkkGkk

kd
kkBkBkkGkvkBi

0

**2

2
)()()/()/(2

2
)()()/()(

��
(5) 

 

The dimensionless kernel function )(XG may be expressed as an overlap integral over products 

of modal functions and their derivatives in the following way: 

 

)(
~

)(
0

XGS
N

i
XG Z��?2�Z��?2��

      (6) 

 

where 

KAKAKAC 22 ddwwvN w ),(),(4 *2

0 FF�      (7) 

 

4 5 4 5 4 5 KAKAKAKA Z��?2�

Z��?2�

ddXXwXDXXwDwD

XX
XG

))1(,)1(()1(),()1(),()1(

)1(

1
)(

~

*

���R

�
��

FF
 (8) 

 

where we have defined the operator )/,/,()(ˆ KA ����� iXXD . 

The double integrals in (7) and (8) with dimensionless integration variables KA,  run over the 

cross section of the wedge. 



Elena S. Sokolova, Pavel D. Pupyrev, Alexey M. Lomonosov,  
Andreas P. Mayer, Alexander S. Kovalev 

 

331 

 

 The function )(XG  is defined for real arguments 10 == X and has the symmetry property 

)1()( XGXG �� . Numerical calculations of )(XG  for different materials and wedge angles were 

done in framework of the Laguerre function method [10]. 

2 Dispersion 

The existence of stationary nonlinear excitations like solitary waves is caused by a competition 

of two factors: nonlinearity of the system and dispersion (see corresponding predictions for wedge 

waves in [11] and [12]) of propagating waves. A necessary condition for dispersion of acoustic waves 

is the presence of a length scale in the system. In case of a perfect wedge, dispersion can only be due 

to discreteness of the crystalline lattice, which is beyond continuum theory and may be neglected for 

sufficiently long wavelengths. Numerous modifications of the ideal homogeneous wedge give rise to 

dispersion of wedge waves. Some of them have been discussed in [13] and references given there. For 

two of these modifications, namely coating of one of the wedge’s surfaces by a thin film and a small 

deviation of the material properties near the apex from those in the rest of the wedge, we demonstrate 

here that they can be incorporated in the nonlinear evolution equation in a straightforward way, 

referring to our earlier work on dispersion of linear acoustic wedge waves [13]. 

Coating of the surface perpendicular to the z  axis can be taken into account by an effective 

boundary condition of the form 

 

:
;
<

�
�



�

�
�

�
�

���
[

[�
� x

u
C

x
udT �

�222 CD ��
3      (9) 

 

where dD  is the film thickness, scaled to be of first order in the expansion parameter D introduced in 

section 1, C� is the density and [�� �2C  are effective elastic moduli of the film material [13], which 

may be functions of the coordinates y and z . Capital Greek indices run over 1 and 2, only.  

The deviation CD�  of the density and the deviations 2��?D C� of the elastic moduli near the tip 

of the wedge from their values in the rest of the wedge are also scaled to be of first order of D .  

Extending the derivation of the nonlinear evolution equation described in section 1, it now 

takes the form 

 

4 5
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2
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 (10) 

 

The coefficient 1F  and the function 3F were introduced in [13]. 1F  is determined by the 

acoustic mismatch between film and substrate. The function 3F  depends on the deviation of material 

constants near the apex of the wedge, a  is a length characterizing the size of the modified part of the 

wedge’s cross sectional area. In the linear limit, the following dispersion law is obtained: 

))(5.0()(),()( 31 kaFkdFkvkkkvk WW ������� D� . In the long-wavelength limit, 

2

3 )()( kakaF \ . The coefficients 1F  and the function 3F  are strongly dependent on elastic moduli of 

the materials involved. 

 

3 Numerical Results 

 All calculations have been done for waves propagating in the (-1-12) direction ( x  direction) 

of cubic elastic media. The other coordinate axes are y along (-110) and z along (-1-1-1). One surface 

of the wedge is always the xy plane with inner normal pointing into the (-1-1-1) direction (z 

direction). 
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 The shift of the wedge wave velocity due to small modifications of material properties near 

the apex was calculated for wedges that consist of GaAs  in the spatial region )2/tan(/)( �yaz ��  

 

Figure 1. Shift of velocity of acoustic waves 
u
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�
��  guided by the apex of 

an edge of angle �  consisting of on GaAs in its lower part and of AsGaAl 9.01.0 in its upper part 

 

(lower part) and of AsGaAl 9.01.0 in the region )2/tan(/)( �yaz ��  (upper part) (Fig.1), where a is 

a given length. In the limiting cases 0�ka  and &�ka , the wedge wave velocity tends to the 
l
wv  

and 
u
wv  which are velocities of acoustic waves guided by the tip of an edge purely made of GaAs  

(lower material) and purely made of AsGaAl 9.01.0 (upper material), respectively. 

 
Table 1. Numerical values for kernel function G(X) at two different arguments, computed with 

2nd-order and 3rd-order elastic moduli for Si [15] and for CaF2 and SrF2 [16]. 

θ  X  Si CaF2 SrF2 

90 0.5 -0.126+0.134i -0.071+0.041i -0.082-0.015i 

0.01 0.030+0.045i -0.028+0.032i -0.006+0.006i 

60 0.5 0.003-0.022i -0.041+0.020i -0.022+0.004i 

0.01 -0.006+0.008i -0.001-0.002i 0.000-0.003i 

45 0.5 0.040-0.012i -0.028+0.012i -0.010+0.003i 

0.01 0.005+0.006i -0.004-0.007i -0.002-0.004i 

30 0.5 0.053+0.006i  0.034+0.001i  0.015+0.000i 

0.01 0.01+0.01i -0.01-0.01i -0.01-0.00i 
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The calculated kernel function )(XG  for various anisotropic materials and wedge angles and 

for the normalisation 1)0,0(3 �w  is presented in Table 1. Silicon shows the strongest nonlinearity (the 

largest absolute value of the kernel function in the nonlinear evolution equation). The data in the table 

have been computed with a representation of the modal functions as a linear combination of products 

of the lowest 11 Laguerre functions. The quantity )5.0(G  for silicon and wedge angle 90°, calculated 

with the lowest 6 Laguerre functions, deviates from )5.0(G , calculated with the lowest 9 Laguerre 

functions, by less than 0.3% [13]. For smaller wedge angles, we used a convergence factor introduced 

in [14].  

A stationary solution of the evolution equation (10) for F3=0 was determined numerically in the 

form of a periodic pulse train consisting of spatially well-separated pulses. In Fig. 2 and Fig. 3 the 

surface elevation profile associated with a solitary pulse is presented for both of the two surfaces 

forming the edge (the (1 1 1) and (1 -1 0) surfaces). A half-period of the periodic pulse train is shown. 

The spatial extension of the pulse in the y-direction (normal to the edge) is similar to that in the x 
direction (along the edge). 

 

 

Figure 2. Surface elevation profile 3u�  of the (1 1 1) surface of a rectangular silicon wedge, 

corresponding to a solitary pulse train with periodicity L (with x  axis along (-1 -1 2) and z axis along 

(-1-1-1) directions) [12] 

 

 

Figure 3. Surface elevation profile 2u�  of the (1 -1 0) surface of a rectangular silicon wedge, 

corresponding to a solitary pulse train with periodicity L (with x  axis along (-1 -1 2) and z axis along 

(-1-1-1) directions) 
 

Conclusions 

We demonstrated that the propagation of acoustic waves guided by the apex of an anisotropic 

wedge is influenced by second-order nonlinearity. It has been shown how the kernel function in the 
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nonlinear evolution equation for wedge acoustic waves can be computed for wedge angles equal to or 

smaller than 90°. 

Two mechanisms of generation of weak dispersion were considered: film covering of the 

wedge and spatial inhomogeneity of the elastic properties of the wedge material. For these cases 

dispersion laws were obtained. 

These results form a basis for simulations of nonlinear stationary waves and pulse evolution. 

They should be useful also for finding wedge systems with high nonlinearity or to minimize nonlinear 

effects in technical applications where such effects are undesired. 
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Abstract 
The nonlinear vibrations of Single-Walled Carbon Nanotubes are analysed. The Sanders-Koiter 
elastic shell theory is applied in order to obtain the elastic strain energy and kinetic energy. The 
carbon nanotube deformation is described in terms of longitudinal, circumferential and radial 
displacement fields. The theory considers geometric nonlinearities due to large amplitude of 
vibration. The displacement fields are expanded by means of a double series based on harmonic 
functions for the circumferential variable and Chebyshev polynomials for the longitudinal variable. 
The Rayleigh-Ritz method is applied in order to obtain approximate natural frequencies and mode 
shapes. Free boundary conditions are considered. In the nonlinear analysis, the three displacement 
fields are re-expanded by using approximate eigenfunctions. An energy approach based on the 
Lagrange equations is considered in order to obtain a set of nonlinear ordinary differential equations. 
The energy distribution of the system is studied by considering combinations of different vibration 
modes. The effect of the conjugate modes participation on the energy distribution is analysed. 
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Introduction 

Carbon Nanotubes were discovered in 1991 by Iijima [1], who first analysed the synthesis of 

molecular carbon structures in the form of fullerenes and then reported the preparation of a new type 

of finite carbon structure, the carbon nanotubes, described as helical microtubules of graphitic carbon. 

Rao et al. [2] studied the vibrations of SWNTs by using Raman scattering experimental 

techniques with laser excitation wavelengths in the range of the nanometers. They observed numerous 

Raman peaks, which correspond to vibrational modes of the nanotubes. 

Gupta et al. [3] simulated the mechanical behaviour of SWNTs with free edges by using the 

molecular dynamics potential. They considered the effect of the chirality and geometry on the natural 

frequencies of the longitudinal, torsional and inextensional modes of vibration. 

Arghavan and Singh [4] carried out a numerical study on the free and forced vibrations of 

SWNTs by considering the FE method. They analysed different boundary conditions, obtaining the 

natural frequencies and mode shapes, time histories and spectra of axial, bending and torsional modes. 

Wang et al. [5] examined the applicability and limitations of different simplified models of 

elastic cylindrical shells for general cases of static buckling and free vibrations of carbon nanotubes. 

They considered the Flugge, Donnell thin shell and Donnell shallow shell models. 

Strozzi et al. [6] analysed the linear vibrations of SWNTs for various boundary conditions in 

the framework of the Sanders-Koiter thin shell theory. They analysed several types of nanotubes by 

varying aspect ratio and chirality in a wide range of the natural frequency spectrum. 

In the present paper, the nonlinear vibrations of SWNTs are analysed. The Sanders-Koiter thin 

shell theory is applied. The displacement fields are expanded by means of a double series based on 

harmonic functions for the circumferential variable and Chebyshev polynomials for the longitudinal 

variable. The Rayleigh-Ritz method is applied to obtain approximate natural frequencies and mode 
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shapes. Free boundary conditions are considered. In the nonlinear analysis, the three displacement 

fields are re-expanded by using approximate eigenfunctions. The Lagrange equations are considered 

to obtain a set of nonlinear ordinary differential equations. The total energy distribution is studied by 

considering different combined modes. The effect of the conjugate modes participation is analysed. 

 

1.  Elastic strain energy 

The nondimensional elastic strain energy Ũ of a cylindrical shell, by neglecting the transverse 

normal stress σz (plane stress hypothesis) and the transverse shear strains γxz, γθz, is written as 
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where (
,0 ,0 ,0, , x x� �D D 6,0 ,0 ,0x,0 �,0,0D D 60x,0 � 00,00

) are the nondimensional middle surface strains, ( , , x xk k k� �x ,k k k, x , � �x, k, x, ) represent the 

nondimensional middle surface changes in curvature and torsion, with (η = x / L) and (β = h / L). 

 

2.  Kinetic energy 

The nondimensional kinetic energy TT of a cylindrical shell (rotary inertia neglected) is given by 
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where ( , , u v w, ,u v w, , ) are the nondimensional displacement fields, (
' ' ', , u v w' ' ', ,u v w, , ) denote the nondimensional 

velocity fields and τ is the nondimensional time variable obtained by introducing a reference natural 

frequency ω0. 

 

2.  Linear vibration analysis 

A modal vibration can be written in the form 
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where ( , ),U A �( , ),U A( , ), ( , ),V A �( , ),V A( , ), ( , )W A �( , )W A( , ), describe the mode shape and ( )@  is the nondimensional time law. 

The mode shape is expanded by means of a double series in terms Chebyshev polynomials 

Tm
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(η) in the axial direction and harmonic functions (cos nθ, sin nθ) in the circumferential direction 
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where Tm
*
 = Tm (2η – 1), m is the polynomials degree and n denotes the number of nodal diameters. 

 

3.  Nonlinear vibration analysis 

The displacement fields ( , , ),u A � ( , , ),u A( , , ), , ( , , ),v A � ( , , ),v A( , , ), , ( , , )w A � ( , , )w A( , , ), , are expanded by using both the linear 

mode shapes ( , ),U A �( , ),U A( , ), ( , ),V A �( , ),V A( , ), ( , )W A �( , )W A( , ), obtained in the previous linear analysis and the conjugate 

mode shapes ( , ),cU A �( , ),cUc A( , ), ( , ),cV A �( , ),cVc A( , ), ( , )cW A �( , )cWc A( , ), in the following form 
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The Lagrange equations of motion for free vibrations are expressed in the following form 
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where the nondimensional modal coordinates iqiq  are ordered in a vector ( )q ( )q(  = [..., φu,j,n, φu,j,n,c, φv,j,n, 

φv,j,n,c, φw,j,n, φw,j,n,c, ...] and the maximum number of degrees of freedom Nmax depends on the number 

of modes considered in expansions (7). 

Using the Lagrange equations (8), a set of nonlinear ordinary differential equations is obtained; 

such system is then solved by using numerical methods. 

 

4.  Numeric results 

In order to analyse the discrete molecular carbon nanotube as a continuum thin shell, equivalent 

mechanical parameters (Young’s modulus, Poisson’s ratio, mass density, wall thickness) must be 

considered. These parameters are not dependent from the CNT diameter (no size effect). The carbon 

nanotube described in Table 1 is considered for the following computations. 

 

Table 1. Effective and equivalent parameters of the Single-Walled Carbon Nanotube 

 Effective thickness h0 (nm)  0.10 ÷ 0.15 

 Equivalent thickness h (nm)  0.066 

 Effective Young’s modulus E0 (TPa)  1.0 ÷ 2.0 

 Equivalent Young’s modulus E (TPa)  5.5 

 Effective Poisson’s ratio ν0  0.12 ÷ 0.28 

 Equivalent Poisson’s ratio ν  0.19 

 Surface density of graphite σ (kg/m
2
)  7.718 × 10

-7
 

 Equivalent mass density ρ (kg/m
3
)  11700 

 

The present model is validated with molecular dynamics data available in the literature [3]; the 

results reported in Table 2 show that the model is accurate and the equivalent parameters are correct. 
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Table 2. Natural frequencies of the radial breathing mode (j = 0, n = 0): comparisons between 
the Sanders-Koiter theory (SKT) and the Molecular Dynamics Simulations (MDS). 

Natural frequency (THz) Difference % 

(r, s) SKT - Present model MDS - Ref. [3]  

(10, 0) 8.966 8.718 2.84 

(6, 6) 8.636 8.348 3.45 

(12, 0) 7.478 7.272 2.83 

(7, 7) 7.399 7.166 3.25 

(8, 8) 6.473 6.275 3.15 

(14, 0) 6.414 6.235 2.87 

(16, 0) 5.606 5.455 2.77 

(10, 10) 5.184 5.026 3.14 

(18, 0) 4.985 4.850 2.78 

(20, 0) 4.489 4.364 2.86 

 

In Figures 1(a-f), three mode shapes of a free-free carbon nanotube are presented, such modes 

are considered for the development of the semi-analytic nonlinear model of the carbon nanotube in the 

re-expansion of Equation (7). In Figures 2-4, the total vibration energy distribution is represented, 

where the nanotube is unwrapped on a plane in order to allow the energy representation. The damping 

is not considered here, so the total energy is constant (the integral of the density over the surface). 

The sequence of Figures 2(a-f) shows the distribution of the total energy density [Jm
-2

] in the 

linear field during a time period corresponding to the natural frequency of the fundamental mode. The 

analysis of the total energy distribution over the shell shows a periodicity along the circumferential 

direction. This is expected as in this preliminary linear analysis no conjugate modes are present. The 

energy is distributed symmetrically along the longitudinal direction because we are combining the two 

symmetric modes (0,2) and (2,2). 

The sequence of Figures 3(a-f) shows the distribution of the total energy density [Jm
-2

] in the 

nonlinear field for the two combined modes (0,2) and (2,2). Comparing linear and nonlinear analyses 

(with same initial conditions) we obtain that, due to the nonlinearity, the energy distribution changes 

dramatically evolving in a complex pattern with absence of periodicity. 

 

(a) (c) (e) 

   
(b) (d) (f) 

   
Figure 1. Mode shapes of the SWNT (r = 10, s = 0, L = 10.0 nm). Equivalent parameters of Table 1. 

(a),(b) Conjugate modes (0,2). (c),(d) Conjugate modes (1,2). (e),(f) Conjugate modes (2,2). 
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(a) (b) (c) 

   
(d) (e) (f) 

   
Figure 2. Contour plots of the total energy distribution Ẽ (η, θ, τ). Linear vibration analysis. Combined 

modes (0,2) and (2,2). (a) τ = 4.90. (b) τ = 6.40. (c) τ = 7.60. (d) τ = 8.20. (e) τ = 9.40. (f) τ = 10.60. 

 

The sequence of Figures 4(a-f) shows the total energy density [Jm
-2

] in the nonlinear field for 

the two conjugate modes (1,2). The periodicity along the circumferential direction is now lost due to 

the presence of the conjugate modes and the nonlinearity. The participation of both conjugate modes 

gives rise to a travelling wave moving circumferentially around the shell. The initial conditions on the 

conjugate modes are different, one of them is activated and the second one is slightly perturbed, i.e., 

an infinitesimal initial energy is provided; after a suitably long time period the conjugate mode having 

infinitesimal initial energy is activated and it vibrates with large amplitude, this is due to an internal 

transfer of energy probably due to the internal resonance (1:1). The activation of the second conjugate 

mode implies that the energy distribution on the shell surface is completely different with respect to 

the linear model. 

 

(a) (b) (c) 

   
(d) (e) (f) 

   
Figure 3. Contour plots of the total energy distribution Ẽ (η, θ, τ). Nonlinear analysis. Combined 

modes (0,2), (2,2). (a) τ = 10.88. (b) τ = 10.91. (c) τ = 11.00. (d) τ = 11.15. (e) τ = 11.39. (f) τ = 11.54. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
Figure 4. Contour plots of the total energy distribution Ẽ (η, θ, τ). Nonlinear analysis. Conjugate 

modes (1,2). (a) τ = 7.68. (b) τ = 7.72. (c) τ = 7.76. (d) τ = 7.92. (e) τ = 8.06. (f) τ = 8.08. 

 

Conclusions 

The nonlinear vibrations of SWNTs are studied. Equivalent parameters, which allow to analyse 

the discrete carbon nanotube as a continuum thin shell, are considered. The Sanders-Koiter elastic 

shell theory is applied in order to obtain the elastic strain energy and kinetic energy. The Rayleigh-

Ritz method is applied in order to obtain approximate natural frequencies and mode shapes. The 

present model is validated in linear field with molecular dynamics data available in the literature. An 

energy approach based on the Lagrange equations is considered in order to obtain a set of nonlinear 

ordinary differential equations. The total energy distribution is analysed, where the nanotube is 

unwrapped on a plane in order to allow the energy representation. The energy distribution in linear 

and nonlinear field with the same initial conditions is compared. The nonlinear energy distribution 

changes dramatically evolving in a complex pattern with absence of periodicity. The participation of 

conjugate modes gives rise to an energy transfer between the two conjugate modes and nonstationary 

response. 

 

References 

[1]    Iijima S. Helical microtubules of graphitic carbon. Nature, 354, pp. 56-58, 1991. 

[2]    Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, 

Menon M, Thess A, Smalley RE, Dresselhaus G and Dresselhaus MS. Diameter-Selective Raman 

Scattering from Vibrational Modes in Carbon Nanotubes. Science, 275, pp. 187-191, 1997. 

[3]    Gupta SS, Bosco FG and Batra RC. Wall thickness and elastic moduli of single-walled carbon 

nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Computational 
Materials Science, 47, pp. 1049-1059, 2012. 

[4]    Arghavan S and Singh AV. On the vibrations of single-walled carbon nanotubes. Journal of 
Sound and Vibration, 330, pp. 3102-3122, 2011. 

[5]    Wang CY, Ru CQ and Mioduchowski A. Applicability and Limitations of Simplified Elastic 

Shell Equations for Carbon Nanotubes. Journal of Applied Mechanics, 71, pp. 622-631, 2004. 

[6]    Strozzi M, Manevitch LI, Pellicano F, Smirnov VV and Shepelev DS. Low-frequency linear 

vibrations of Single-Walled Carbon Nanotubes: analytical and numerical models. Journal of Sound 
and Vibration (paper submitted). 



341 

Proceedings of the 4th  International Conference on Nonlinear Dynamics 
ND-KhPI2013 

June 19-22, 2013, Sevastopol, Ukraine 

Nonlinear Vibrations of Functionally Graded 
Shells Subjected to Harmonic External Load 

Matteo Strozzi*1, Francesco Pellicano1   

Abstract 
The nonlinear vibrations of functionally graded (FGM) circular cylindrical shells are analysed. The 
Sanders-Koiter theory is applied in order to model the nonlinear dynamics of the system. The shell 
deformation is described in terms of longitudinal, circumferential and radial displacement fields. 
Simply supported boundary conditions are considered. The displacement fields are expanded by 
means of a double mixed series based on Chebyshev polynomials for the longitudinal variable and 
harmonic functions for the circumferential variable. Both driven and companion modes are 
considered. Numerical analyses are carried out in order to characterize the nonlinear response when 
the shell is subjected to a harmonic external load. A convergence analysis is carried out to obtain the 
correct number of axisymmetric and asymmetric modes describing the actual nonlinear behaviour.
The influence of the material distribution on the nonlinear response is analysed considering different 
configurations and volume fractions of the constituent materials. The effect of the companion mode 
participation on the nonlinear response of the shell is analysed. 
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Introduction 

Functionally graded materials (FGMs) are composite materials obtained by combining two or 

more different constituent materials, which are distributed along the thickness in accordance with a 

volume fraction law. 

The idea of FGMs was first introduced in 1984/87 by a group of Japanese material scientists 

[1]. They studied many different physical aspects such as temperature and thermal stress distributions, 

static and dynamic responses. 

Loy et al. [2] analysed the vibrations of the cylindrical shells made of FGM, considering simply 

supported boundary conditions. They found that the natural frequencies are affected by the constituent 

volume fractions and configurations of the constituent materials. 

Pradhan et al. [3] studied the vibration characteristics of FGM circular cylindrical shells made 

of stainless steel and zirconia, under different boundary conditions. They found that the natural 

frequencies depend on the material distributions and boundary conditions. 

Amabili [4] analysed the nonlinear vibrations and stability of isotropic and FGM shells. He 

carried out a comparison of thin shells theories for large-amplitude vibrations of circular cylindrical 

shells and analysed the effect of the companion mode participation on the nonlinear response. 

Pellicano [5] studied the dynamic instability of a cylindrical shell carrying a top mass under 

base excitation. He investigated the shell response with a resonant harmonic forcing applied taking 

into account geometric nonlinearities, electrodynamic shaker equations and shell-shaker interaction. 

The method of solution used in the present work was developed by Strozzi et al. in Ref. [6]. 

In this paper, the nonlinear vibrations of FGM cylindrical shells are analysed. The Sanders-

Koiter theory is applied to model the nonlinear dynamics of the system. Simply supported boundary 

conditions are studied. Both driven and companion modes are considered allowing for the travelling-

wave response in the circumferential direction. The model is validated in the linear field by means of 
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data present in the literature. Numerical analyses are carried out in order to characterize the nonlinear 

response when the shell is subjected to a harmonic external load. A convergence analysis is carried 

out by considering different axisymmetric and asymmetric modes. The present study is focused on 

determining the nonlinear character of the shell dynamics as the material distribution varies. 

1.  Functionally graded materials 

A general material property Pfgm of an FGM depends on the material properties and the volume 

fractions of the constituent materials, and it is expressed in the form 

1

( , ) ( ) ( )
k

fgm i fi
i

P T z P T V z
�

�� ( ) ( )i fi( )( )( ) (( ) (( )( )( ) (1)

where iPiPi and Vfi are the material property and the volume fraction of the constituent material i. 

For an FGM thin cylindrical shell made of two different constituent materials, the Young’s 

modulus E, the Poisson’s ratio ν and the mass density ρ are expressed as 
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where the power-law exponent p is a positive real number, (0 ≤ p ≤ ∞), and z describes the radial 

distance measured from the middle surface of the shell, (- h/2 ≤ z ≤ h/2). 

2.  Sanders-Koiter nonlinear theory of cylindrical shells 

The elastic strain energy Us of a cylindrical shell (plane stress hypothesis σz = 0) is given by 

1 2 /2

0 0 /2

1
( )

2

h

s x x x x

h

U LR d d dz
�

� � � �M D M D  6 A �
�

� � �F F F (5)

The kinetic energy Ts of a cylindrical shell (rotary inertia neglected) is given by 

1 2 /2

2 2 2

0 0 /2

1
 ( )( )

2

h

s

h

T LR z u v w d d dz
�

C A �
�

� � �F F F 2 2 2u v w d d d2 2 2 A �)d d dd)2 2 22 22
(6)

The virtual work W done by the external forces (qx, qθ, qz) distributed per unit area is written as 

1 2

0 0

( )x zW LR q u q v q w d d
�

� A �� � �F F (7)

The Rayleigh’s dissipation function (viscous damping coefficient c) is written as 
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3.  Linear analysis 

A modal vibration can be written in the form 

( , , ) ( , ) ( )u t U f tA � A �� ( , , ) ( , ) ( )v t V f tA � A �� ( , , ) ( , ) ( )w t W f tA � A �� (9)

where ( , ),U A � ( , ),V A � ( , )W A � describe the mode shape and ( )f t is the time law. 

The mode shape is expanded by means of a double series in terms Chebyshev polynomials 

Tm
*
(η) in the axial direction and harmonic functions (cos nθ, sin nθ) in the circumferential direction 

*
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where Tm
*
 = Tm (2η – 1), m is the polynomials degree and n denotes the number of nodal diameters. 

4.  Nonlinear analysis 

The displacement fields ( , , ),u tA � ( , , ),v tA � ( , , )w tA � are expanded by using the linear mode 

shapes ( , ),U A � ( , ),V A � ( , )W A � and the conjugate mode shapes ( , ),cU A � ( , ),cV A � ( , )cW A �

( , ) ( , )

, , , , ,

1 1
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The Lagrange equations of motion for forced vibrations are expressed in the following form 

i

i i

d L L
Q

dt q q

 !� �
� �" #� �$ % iq
� �#

%iqiqi
max[1, ]i NI ( )s sL T U� � (16)

The generalized forces Qi are obtained by the differentiation of the Rayleigh’s dissipation 

function F (8) and of the virtual work done by the external forces W (7), in the form 
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Using the Lagrange equations (16) a set of nonlinear ordinary differential equations is obtained; 

such system is then solved by using numerical methods. 

5.  Numerical results 

The present study is carried out on an FGM made of stainless steel and nickel; its properties are 

graded in the thickness direction according to a volume fraction distribution, where p is the power-law 

exponent. The material properties, reported in Table 1, have been extracted from Ref. [2]. 

Table 1. Properties of stainless steel and nickel vs. coefficients of temperature (300 K) 
Stainless steel Nickel 

E ν ρ E ν ρ 

P0 2.01 × 10
11

 Nm
-2

 0.326 8166 kgm
-3

 2.24 × 10
11

 Nm
-2

 0.3100 8900 kgm
-3

 

P-1 0 K 0 K 0 K 0 K 0 K 0 K 

P1 3.08 × 10
-4

 K
-1

 - 2.002 × 10
-4

 K
-1

 0 K
-1

 - 2.79 × 10
-4

 K
-1

 0 K
-1

 0 K
-1

 

P2 - 6.53 × 10
-7

 K
-2

 3.797 × 10
-7

 K
-2

 0 K
-2

 - 3.99 × 10
-9

 K
-2

 0 K
-2

 0 K
-2

 

P3 0 K
-3

 0 K
-3

 0 K
-3

 0 K
-3

 0 K
-3

 0 K
-3

 

P 2.08 × 10
11

 Nm
-2

 0.318 8166 kgm
-3

 2.05 × 10
11

 Nm
-2

 0.3100 8900 kgm
-3

 

In order to validate the present method, the natural frequencies of simply supported FGM shells 

are compared with those of Loy et al. [2], see Table 2. The comparison shows that the present method 

gives results quite close to Ref. [2], the differences being less than 1%. 

Table 2. Comparisons for a simply supported FGM shell (h/R = 0.002, L/R = 20, p = 1) 

Natural frequency (Hz) Difference % 

m n Present model Ref. [2]  

1 3 4.1562 4.1569 0.02 

1 2 4.4794 4.4800 0.01 

1 4 7.0379 7.0384 0.01 

1 5 11.241 11.241 0.00 

1 1 13.211 13.211 0.00 

1 6 16.455 16.455 0.00 

The shell is excited by an external modally distributed radial force qz = f1,6 sin η cos 6θ cos Ωt; 
the amplitude of excitation is  f1,6 = 0.0012 h2

 ρ ω1,6
2 

and the frequency of excitation is Ω ≈ ω1,6. The 

external forcing  f1,6 is normalized with respect to the mass, acceleration and thickness; the damping 

ratio is equal to ξ1,6 = 0.0005. 

Table 3. Nonlinear convergence analysis. Modes selected for the expansions (13-15). 

(j,n) (1,6) (1,12) (1,18) (3,6) (3,12) (3,18) (1,0) (3,0) (5,0) (7,0) 

6 dof u, v, w v – – – – u, w – – – 

9 dof u, v, w v – – v – u, w u, w – – 

12 dof u, v, w v – u, v, w  v – u, w u, w – – 

15 dof u, v, w v v u, v, w v – u, w u, w u, w – 

18 dof u, v, w v v u, v, w v v u, w u, w u, w u, w 

In Figure 1, a moderately thick and long shell is analysed (h/R = 0.025, L/R = 20, p = 1), the 

amplitude-frequency curves are obtained with the expansions of Table 3. The 6 dof model, with an 

insufficient number of axisymmetric modes, is clearly inaccurate; indeed, for this kind of shell the 
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correct behaviour is softening. From the convergence analysis, one can claim that the 9 dof model 

gives satisfactory results with the minimal computational effort; therefore, in the following the 9 dof 

model of Table 3 will be used. 

0.99 0.992 0.994 0.996 0.998 1 1.002 1.004 1.006 1.008 1.01
0

0.2

0.4
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h
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6 dof model

9 dof model

12 dof model

15 dof model

18 dof model
    6 dof
   model

   18 dof
   model

Figure 1. Convergence analysis, amplitude-frequency curves (h/R = 0.025, L/R = 20, p = 1).
“–”, 6 dof model; “–”, 9 dof model; “–”, 12 dof model; “–”, 15 dof model; “–”, 18 dof model. 

The effect of the material distribution on the nonlinear response is analysed by considering two 

different FGM shells, Type I (nickel on the inner surface and stainless steel on the outer surface) and

Type II (stainless steel on the inner surface and nickel on the outer surface). 

In Figures 2(a-b), the behaviour of the natural frequency ω1,6 and the nonlinear character vs. the 

exponent p (equations (2-4)) is shown for the FGM shell (h/R = 0.025, L/R = 20) having a softening 

nonlinear character identified by means of the following indicator 

1,6 1,6 

1,6 

1000
nonlin lin

b

lin

NL
� �

�
�

� R (18)

where the nonlinear character is hardening when NLb > 0, softening when NLb < 0. 

When the stiffer material is outside (Type I FGM, Figure 2(a)), an increment of the exponent p
leads to a predominance of the material with a smaller Young’s modulus (nickel) and this implies a 

decreasing of the natural frequencies, while an increase in the predominance of the weaker material 

produces a decrease of the nonlinearity of the system. In the case of FGM with stiffer material inside 

(Type II FGM, Figure 2(b)), the increment of the exponent p magnifies the presence of stainless steel, 

increasing the natural frequencies and the nonlinearity. 

(a) (b) 

Figure 2. Natural frequency ω1,6 and nonlinear character NLb vs. exponent parameter p
for the cylindrical shell (h/R = 0.025, L/R = 20). (a) Type I FGM. (b) Type II FGM. 
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The effect of the companion mode participation on the nonlinear response is analysed. In 

Figures 3(a-b), the amplitude-frequency curve with the companion mode participation is presented 

(h/R = 0.025, L/R = 20, p = 1, mode (1,6)). The response  fw,1,6 (t) with companion mode participation, 

solid blue line of Figure 3(a), is very similar to the response without companion mode participation, 

dashed black line, see Figure 1. The companion mode, Figure 3(b), produces a variation in the small 

region close to the resonance (0.9996 < Ω/ω1,6 < 0.9999), where the companion mode is excited by 

means of a 1:1 internal resonance which induces an energy transfer between the two conjugate modes. 

             (a)             (b) 
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Figure 3. Amplitude-frequency curves of the FGM shell (h/R = 0.025, L/R = 20, p = 1). 
14 dof model. (a) “– –”, driven mode (1,6) w without companion mode participation; 

“–”, driven mode (1,6) w with companion mode participation. (b) Companion mode (1,6) w. 

6.  Numerical results 

The nonlinear vibrations of FGM cylindrical shells are analysed. The Sanders-Koiter theory is 

applied to model the nonlinear dynamics of the system in the case of finite amplitude of vibration. 

A convergence analysis is carried out. The fundamental role of the axisymmetric and higher-

order asymmetric modes is clarified in order to obtain the actual nonlinearity. 

The effect of the material distribution is analysed. The relationships between the power-law 

exponent, the corresponding natural frequency and nonlinearity are studied. 

The effect of the companion mode participation on the nonlinear response is analysed. Both 

driven and companion modes are considered. Nonlinear amplitude-frequency curves are obtained. 
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Abstract 
The presented paper is devoted to the numerical study of the dynamic behavior of shallow shells with 
complex form of the plan and the mixed boundary conditions. For the calculation the method 
proposed earlier in [1,2] have been used. This method uses essentially the R-functions theory, the 
variational Ritz, Bubnov-Galerkin and Runge-Kutta methods. For the considered three-layer spherical 
shell with mixed boundary conditions (combinations of clamped and simply supported conditions) 
amplitude-frequency characteristics for different types of material are produced and the natural 
frequencies and mode shapes are presented. 
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Introduction 

Elements of many modern constructions are designed with the help of composite laminated 

shallow shells. The attention of many researchers is drawn to the construction methods of 

investigation laminated shallow shells and plates. Refs. [3–5] are the most complete reviews of studies 

on nonlinear vibrations of shallow shells. As can be seen from the review, one of the most the most 

widely used method for solving this class of problems is the finite element method (FEM). In [1,2, 

etc.] an alternative numerical-analytical approach based on the theory of R-functions is proposed. This 

method allows us to investigate geometrically non-linear vibrations of laminated shallow shells with 

complex form of the plan and mixed boundary conditions. 

1.  Formulation 

To describe the dynamic behavior of thin shallow shells the mathematical formulation is carried 

out in the framework of the classical geometrically nonlinear theory by Donnell-Mushtari-Vlasov, 

which is based on the Kirchhoff-Love hypotheses adopted for the whole package of layers of the shell 

as a whole [6]. In matrix form, the system of equations of motion of the shell is: 

}{1}{}]{[ UttmNLUL ��� ,  (1) 

where 
3,1,

][][
�

�
jiijLL is a matrix of linear operators, }{NL is a vector of nonlinear operators, 

TwvuU },,{}{ � is a vector of displacements. The system (1) in expanded form is represented in [1]. 

The system is supplemented by the boundary and initial conditions. In this paper we consider the 

combination of the following types of boundary conditions: 

Clamped edge: 

0,0,0,0 ����� wwvu n (2) 
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Immovable simply supported: 

 

 0,0,0,0 ���� nMwvu   (3) 

Here lmMmMlMMn 12
2

22
2

11 2��� , expressions 2cos�l , 2� sincos ��l  are the 

direction cosines of the normal vector to the boundary of shell. 

The initial conditions were adopted in the form of:  

 

 0,
0max0
���

�� ttt
www .  (4) 

 

2  Method of solution 

According to the method proposed in [1,2], we represent solutions of the system (1) as follows: 
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where )(tyi  are unknown functions, depending on the time, ),()( yxu c
i , ),()( yxv c

i  and ),()( yxw c
i  are 

eigenfunctions of the linear vibrations of the shell. Functions ),( yxuij  and ),( yxvij  are solutions of 

the following system: 
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where pmL , 2,1, �mp  are the linear operators of the system (1), )2(
1Nl  and )2(

2Nl  are nonlinear 

operators that depend on the partial derivatives of the eigenfunctions )(c
iw  [1,2]. 

The system (6) is supplemented by appropriate boundary conditions. For cases considered in 

this work they have the form: 

 

 / 0 ��IW�� yxyxvyxu ijij ,,0),(,0),(   (7) 

 

The sequence of tasks (6) – (7) and the linear problem of free vibrations of the shell are solved 

by the R-functions method (RFM). 

Let us substitute the relations (5) into equations (1). Then the first two equations of (1) are 

satisfied identically. Applying the Bubnov-Galerkin procedure to the third equation of system (1), we 

obtain a system of ordinary differential equations, which have been described in [1]. Solutions of the 

system of ordinary differential equations are sought for by the Runge-Kutta method of order 7-8. 

 

3  Numerical results 

We investigate nonlinear free vibrations of three-layered shells with the form of the plan shown 

in Fig. 1. Table 1 shows values of the dimensionless mechanical properties of materials, which are 

considered in this paper. 

The solution structure [7] for this problem is: 

 ,,, 3212
2
1 ������ ���� vuw   (8) 
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where 0),( �yx�  is the equation of domain boundary, 0),(1 �yx�  is the equation of clamped part 

of the domain, 0),(2 �yx�  is the equation of immovable simply supported part of the domain: 

 

/ 0 / 0 / 06040504030201),( fffffffyx ]^]^^^�� , 

11 ),( fyx �� ,   / 0 / 0 / 0604050403022 ),( ffffffyx ]^]^^�� , 

 
Table 1. Mechanical characteristics of shells 

Material E1/E2 G12/E2 v1 

Glass-epoxy 3 0.5 0.25 

Boron-epoxy 10 0.33333 0.3 

Graphite-epoxy 40 0.6 0.25 

 

 

 
Figure 1. Plan form of the shell 
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0^  is the R-conjunction symbol, 0]  is the R-dizjunction symbol [7]. 

The geometrical parameters of the shell are following: 1/ �ab , 01.0/ �ah , 2.0/ �ac , 

3.0/ �ad . Table 2 shows the values of the dimensionless linear frequencies 2
1

2 / hEbLii C���  

and forms of vibrations of three-layered spherical cross-ply (0º/90º/0º) shells which is made of a 

Boron-epoxy. 

 
Table 2. Non-dimensional linear frequencies and forms of vibration 

Linear 

frequencies 
Ω1 = 11.28 Ω2 = 13.66 Ω3 = 16.13 

Forms of 

vibration 

   

 

The amplitude-frequency curves of vibrations of cross-ply (0º/90º/0º) shallow spherical shells 

( 1.0// �� aRaR yx ) which are made of different materials are presented in Figure 2a. Futher the 

results are presented for shells made of Boron-epoxy. Effect case of the way of stacking of layers on 

amplitude–frequency curves is shown in Figure 2b. Figure 2c shows a comparison of the amplitude-
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frequency curves of cross-ply cylindrical, spherical shells and panels of double curvature. As shown 

in Figure 2c, the amplitude-frequency curves for panels of double curvature are curves of the rigid 

type, and in the other cases (for cylindrical and spherical shells) they are curves of the soft type. 

 

a) 

 

b) 

 
 c) 

 

 

Figure 2. The amplitude-frequency response of shells 
 

Conclusions 

A numerical-analytically approach proposed in [1,2] is used to research free vibration problems 

for laminated shallow shells with complex planform. Three-layered shells made of different materials 

with various ways of stacking and curvature ratios are considered. Form of the plan of the considered 

shells includes two rectangular cutouts, the domain partially clamped and partially immovable simply 

supported. The amplitude-frequency curves of vibrations of considered shells have been constructed 

using the first-mode approximation. 
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Abstract 
High rate deformations of structures cylindrical elements are considered 3D formulation. Elastic-
plastic finite deformations and dynamic properties of material take into account. The problem is
geometrically and physically nonlinear, and the finite element method is used. The numerical analysis 
of dynamics stress-strain state of real structures elements is executed. 
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Introduction 

Cylindrical elements of many structures are subjected by local shock. For example, it may be 

the elements of the cases and the input and output devices in gas turbine engines, equipment cases of 

many industries, technological chambers and other. While such structural elements often possess axial 

symmetry, the problem is not axial-symmetric because of the peculiarities of local load, which is 

attached to a limited area. These cylindrical elements can not also be consider as thin, as in a limited 

area of impact develop three-dimensional elastoplastic deformation. Therefore, the problem is 

considered in three-dimensional formulation. Speed deformation of structural elements at impact 

occurs in the elastoplastic stage. In these cases it is necessary take into account the dynamic properties 

of materials. With intensive shock loads may arise finite displacements and deformations [1 - 3]. 

Cylindrical elements of modern structures can be performed from metal, polymer and composite 

materials.  

1.  Problem Statement  

Cylindrical structures elements are considered in three-dimensional formulation [1, 2], taking 

into account the relations of the dynamic theory of plastic deformation.  

2
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where �7,   – Lame parameter,  C – density of material, ),,( vwuU – displacement vector, 

divU�0D – relative volume expansion , which is given by 
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The relations between stresses and strains in a cylindrical coordinate system @,,rx  is given by 
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where - zr MMM @ ,, the components of the stress; zr DDD @ ,,  - strain components 

In the case of elastic deformation 
�

	
2

1
� , where �  - Lame parameter. Then the relations (4) 

become the expression of Hooke's law. When plastic deformation factor 	  has the form 
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D
	

M
�                                                                          (5) 

 

Formula (2) contains relation between the intensities of the stress iM  and of intensities strain iD , 

and strain rate iD� . 

 

/ 0iiii DDMM �,�                                                                   (6) 
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There are a series of empirical relations of the form (6) [1 - 3]. The investigation uses the relation 

of the Pezhiny type [3]. 

 

1

mpl
i

i iE
D

M D
6

) * !
+ ,� � " #
+ ,$ %- .

EDE
*mplD
,
**!

iD
pD ii

!!
iD

                                                                (7) 

 

where Е is the elastic modulus;  

 m and r are coefficients of sensitivity to strain rate;  

 
pl

iD� is the rate of deformation in the plastic phase. 

The problem is nonlinear and requires special modifications to the finite element method. 

Cylindrical structures of metal and composite material are considered. The layer thickness is 

variable )(xh . The finite element model of the system takes into account of the elastoplastic high rate 

deformation, the dynamic properties of the material and the finite displacements and deformations. 

The zone of intense stress at impact is very limited. Stress decrease rapidly in time and at a 

distance of about five - ten times the size of the zone of load application [4, 5]. Therefore, as a result 

of the numerical analysis of stress intensity zone is found, there is an allocation of the structural 

element area of interest. In this area can be used over a dense grid. 

 

2.  Analysis of the Numerical Results 

The finite-element models of cylindrical elements of different materials are considered. The 

numerical analysis of the dynamic stress-strain state in the region under impact loading on the inner 

surface of a series of cylindrical elements. The projectile hade mass = 0.1 kg and speeds of impact 

was different. 

It is present the results of analysis of impact of the projectile on the inner surface of the element 

made of composite material. It is considered the element with internal diameter of 800 mm., thickness 

30 mm. Material of element has density ρ = 1300 kg/m
3
, modulus of elasticity E = 2660 MPa, 

Poisson's ratio ν = 0,45. For these element when impact speed is 400 m/s maximum displacement 

were 0.167·10
-2

 m, and maximum stress intensity up to 54 MPa. In these case the plastic strains is 

occur in a small area. 

Fig. 1 shows the distribution of displacement intensities on the inner surface of the cylindrical 

element made of composite material. Fig. 2 shows the distribution of stresses intensities in the cross 

section over the thickness of the element in the impact zone. 

 

 
Figure 1. Field of displacements intensities on the inner surface of the cylindrical element under 

impact with speed 400 m/s 
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Figure 2. Fields of the stresses intensities in the cross section of the cylindrical element under impact 

with speed 400 m/s 

 

 
 

Figure 3. Fields of the stresses intensities in the cross section of the cylindrical element under impact 
with speed over 1000 m/s 

 

If the impact speeds over 1000 m/s are observed plastic deformation and further penetration 

element (Fig. 3).   

 

 
 

Figure 4. Fields of the stresses intensities in the cross section of the cylindrical element under impact 
with speed over 400 m/s (the moment of impact) 
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For example, the results of the analysis of the dynamic stress strain state of a steel cylindrical 

element are showed. It is considered element of steel with inner diameter of 400 mm and the thickness 

h1 = 1,4 mm and h2 = 2 mm. When the impact speed is 400 m/s the stress in one-layer element 

intensity reaches 123 MPa in the zone of impact (Fig. 4) and reduced to 1 MPa after unloading 

(Fig.5). It is elastic deformations for these impact speed. The maximum intensity of the displacements 

make 0.26·10
-3

 m and 0.13·10
-13

 m after unloading. When the impact speeds are more than 1000 m/s 

there is significant plastic deformation and further penetration of the element. 

 

 
 

Figure 5. Fields of the stresses intensities in the cross section of the cylindrical element under impact 
with speed over 400 m/s (after unloading) 

 

Fig. 6 show fields of the displacements and stress intensity in the two- layer cylindrical element 

under impact with speed over 1000 m/s. 
 

 
Figure 6. Fields of the displacements and stress intensity in the two- layer cylindrical element under 

impact with speed over 1000 m/s in local zone with a dense grid 
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The analysis of the stress-strain state of structural elements under local shock confirmed that 

zone of intensive displacement, strains and stresses is very limited. It should be noted the wave 

propagation of stresses and displacements 

The results of these investigations were used to analysis the dynamic strength of the elements 

of real structures. In particular, the dynamic strength of cases of gas turbine engines and power 

transmission are considered 

 

Conclusions 

Three-dimensional dynamic stress-strain state development in structural element under local 

shock is considered. There for it is necessary to used three-dimensional models taking into account 

finite elastic-plastic deformations and dynamics properties of material. 

Under an action of the local shock loadings with speeds 300 m/s in the cylindrical elements of 

corps the dynamic stress-strain state takes place, as a rule, in the elastic stage.  

At the increase of speed of projective the elastic-plastic process takes place and after unloading 

there are remaining deformations. 
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Abstract

Thin shells structures have an important role in engineering; several important examples can be

found in Structural Engineering, Mechanical Engineering and Aerospace: water tanks, containment

shells of nuclear power plants, concrete arch domes, piping systems, pressure vessels, aircrafts,

missiles, rockets, ships. Even though many researchers have extensively studied nonlinear vibrations

of cylindrical shells, experimental studies are rather limited in number; in particular, rare experimental

reports have been published about shells loaded with in-plane . In this paper the response of a

circular cylindrical shells subjected to axial compressive and periodic loads has been experimentally

investigated. The experimental setup is explained and deeply described along with the analysis of

preliminary results. The linear shell behavior is investigated by means of a finite element model in

order to enhance the comprehension of experimental results in the linear field. The main goal is to

investigate the nonlinear phenomena associated with a combined effect of compressive static and a

periodic axial loads, the investigation have been carried out for different combinations of loads. Several

interesting nonlinear phenomena have been observed such as softening-type non-linearity and non

stationary response when the periodic axial load is resonant with one of the shell modes.
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Introduction

In the present paper, circular cylindrical shells subjected to axial loads having static (compressive) and

harmonic components are investigated. Difficulties in developing accurate models for shell structures

were the motivations of a large scientific production [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], withal there are few

experimental studies about dynamic instabilities and the comparisons between theory and experiments

are not yet satisfactory.

1. Experiments

This section provides informations about the experimental setup developed to test thin shell structures

under constant axial load and periodical excitation. In Figure 1 a schematic representation of the setup is

shown. A shaker is rigidly inserted in a frame designed for the application of the preload. Connections to

the system for data acquisition are shown.

1.1 Description

The system under investigation consists of a circular cylindrical shell, made of aluminum alloy, clamped

both base and top sides by means of two worm gear clamps at two rigid supports. The bottom support is

an aluminum alloy circular disk rigidly bolted to the shaker. The top disk is connected to the frame by

means of a dynamic load cell, a stinger, and a static load cell. The stinger is introduced in order to reduce

the effects of misalignments. A laser vibrometer is used to measure the velocity of the side of the shell

and its output is routed both to the spectrum analyzer and to the LDS controller. The control system is

open-loop in order to avoid control instabilities induced by nonlinear behavior of the tested structures.

The characteristics of the shell are the following: length L = 0.137m, thickness h = 0.1× 10−3m,

mean radius R = 32.9×10−3m, density ρ = 2796
kg

m3 , Young’s modulus E = 71.020×109 N
m2 , Poisson’s
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ratioν = 0.31 and static preload P0 = 0−250N.

Figure 1. System setup: (1) structure under test (2) shaker (3) shaker amplifier (4) air cool system (5)

static load cell (6) digital load gauge (7) force transducer “pcb m231b” (8) force transducer amplifier (9)

press system to apply static preload (10) laser vibrometer (11)laser controller (12) lds dactron laser usb

shaker control system (13) pc (14) spectrum analyzer “ono-sokki cf-5220”.

The press system has been suitably designed for this research. A screw can move up or down a plate

which applies the desired preload to the shell, both compressive and tractive. A static load cell “AEP

transducers TC8 10KN” is interfaced with a digital load gauge that displays the exact preload applied

to the shell. The Shaker “LDS V530” is integrated rigidly in the press system structure, is powered

independently and equipped with a system of air cooling.

The laser vibrometer is targeted on the shell surface and plays a significant role as it measures

velocity data acquisition on the shell side without interfering with it. This point is very significant for thin

structures, because the use of a standard accelerometer would introduce an undesired extra mass, thus

altering the symmetry of the structure. The signal coming from the laser is splitted and directed both to

the spectrum analyzer, used to detect the regions of instability, and to the LDS controller.

1.2 Data presentation

In this section all tests carried out on the shell are described. Formerly few tests were done to calibrate

the devices properly, then several combination were investigated for different preloads. The experimental

analysis was carried out by sweeping frequencies from 700Hz to 2500Hz, with a step rate of 7.5 Hz

per second, starting from the highest frequency (2500Hz) towards the lower frequency (700Hz) and

backwards, each time varying the magnitude of the oscillations generated from the shaker, from 0.1 V

with regular steps of 0.1 V up to the maximum value of 1.0 V. These sweeps were repeated, not only by

varying the power supplied to the shaker, but also by imposing an increasing axial static compressive load

P0. The static axial load is increased from 0N up to 250N (safety limit to avoid shaker damage). Results

are presented for preload values of 0N, 100N and 250N and for voltage levels of 0.5V and 0.8V . In

Figures 2 and 3, d and u represent the decreasing frequency sweep (d, down) and the increasing frequency

sweep (u, up).

1.2.1 External load amplitude of 0.5 volt

In Figure 2 the dynamic axial load vs frequency is plotted whereas in figure 3 the amplitude of vibration

of the shell (in terms of velocity) vs.-frequency are shown.

Dynamic load-frequency diagrams show a reduction in terms of resonance frequency for increasing

preloads. The amplitude of the resonance peak has a peculiar behavior: it has a maximum value of 350N

for the mid value of preload (100N), see Figure 2b. This point needs further investigations. The same

behavior can be observed in terms of velocity amplitude at the target point, see Figure 3. The maximum

velocity, i.e. the maximum amplitude of vibration, is seen for P0 = 100N. The velocity frequency diagram

shows another resonance between 1300 and 1350 Hz. For this resonance, the amplitude of vibration is

minimum for P0 = 100N.
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(a) (b)

Figure 2. Dynamic load-frequency diagram for different preloads at 0.5 volt.
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Figure 3. Amplitude-frequency diagram for different preloads at 0.5 volt.

1.2.2 External load amplitude of 0.8 volt

Figure 4 and 5 present the corresponding experimental results for 0.8V excitation amplitude. From Figure

4a and 4b it is noted that increasing the static load P0, the maximum peak in dynamic load is reduced.

The system presents the opposite behavior with respect to the case of 0.5V excitation. Moreover, Figure 5

shows again the frequency reduction due to the preload.

(a) (b)

Figure 4. Dynamic load-frequency diagram for different preloads at 0.8 volt.

2. Measured Non-linear Phenomena

The behavior of the structure close to the mode (1,4) is investigated. Numerical and experimental analyses

show that this mode is close to 1623 Hz and it is quite far from other modes. The amplitude-frequency

diagram for such resonance is shown in Figure 6. In order to describe the nonlinear behavior close to the

resonance, it is useful to introduce the following dimensionless values:

1. ωx = ωn/ω0,1 , is the ratio between the frequency corresponding to the maximum amplitude for

the n-th excitation amplitude and the frequency at which the maximum occurs for the reference

case (0.1 V);

2. vx = vn/v0,1 , is the ratio between the corresponding maximum velocities.

In terms of dimensionless variables, the backbone can be drawn by interpolating the maxima, Figure

6 it results that the shell presents a softening behavior. The backbone curve moves to the left with respect

to the vertical line through the resonance frequency.

Figure 7 shows dependence of the non linear behavior on the different values of the preload. The

preload of 100N produces a less softening resonance, with respect to the non preloaded case and the case

of 250N preload.
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Figure 5. Amplitude-frequency diagram for different preloads at 0.8 volt.
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Figure 6. Amplitude-frequency diagram. mode (1,4); P0 = 100N; voltage levels 0.1-1V

Figure 7. Amplitude-frequency diagram comparison of mode (1,4) with different preloads (0N, 100N and

250N) at 0.8 volt

3. Nonstationary Response

Tests performed on the shell structure pointed out the existence of certain frequency intervals characterized

by high amplitude of vibration and complex dynamics; in the following we will call them ”instability

regions”, this gives the clear idea that the periodic orbit has lost stability. Table 1 summarizes the

instability ranges found during experiments and Figures 8 - 11 shows the time histories and spectra of the

lateral shell vibration at different forcing loads and with a static compression of 100N.
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Figure 8. Time history and Spectrum at 900 Hz forcing load

In Figure 8 the dynamic scenario is represented, the excitation frequency is 900Hz. The response is

quasi-periodic, i.e. there is an amplitude modulation that presents two time scales: i) a slow time scale

with period of 2s (see 0.5Hz sidebands); ii) intermediate time scale with period of 10-2s (see 100Hz
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Table 1. Frequency ranges of instability regions with different preload.

P0 (N) Voltage level (V ) Instability range (Hz)

100

0.8 1210.01 - 1217.92

0.9 1205.61 - 1218.80

1.0 1201.22 - 1225.84

150

0.7 1208.25 - 1210.01

0.8 1202.97 - 1212.53

0.9 1199.46 - 1215.29

1.0 1196.82 - 1221.44

200

0.7 1209.13 - 1211.77

0.8 1207.37 - 1213.53

0.9 1195.06 - 1215.29

1.0 1191.54 - 1218.80

250

0.5 1208.25 - 1215.29

0.6 1204.73 - 1221.44

0.7 1202.92 - 1234.63

0.8 1198.53 - 1236.39

0.9 1194.18 - 1238.42

1.0 1189.78 - 1242.42

sidebands). The response is dominated by the second main spectral harmonics (1800Hz), suggesting an

important role of quadratic nonlinearities; this role is also confirmed by the loosing of symmetry in the

time response (max = 0.2m/s, min =−0.25m/s).
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Figure 9. Time history and Spectrum at 1100 Hz forcing load

At 1100Hz (Figure 9) the scenario changes; here the energy in frequency domain is mainly concen-

trated at 1100 and 3300Hz. This means that here the linear and cubic behaviors are dominant; note that

this is confirmed by the symmetry in the time history.

At 1182Hz (Figure 10) an interesting phenomenon takes place, the response is quasi-periodic but

something interesting happens in the “periodicity”. The main spikes in the spectrum are spaced of

about 590Hz, i.e. one half the excitation frequency. This means that the periodic part of the response

presents a fundamental frequency of 590Hz. The straightforward consideration is that the response is one
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Figure 11. Time history and Spectrum at 1230 Hz forcing load

half sub-harmonic; this is partially contradicted by the spectrum that does not present spikes at 590Hz.

However, if one zooms around 590Hz, then will disclose an extremely small peak. Our conjecture is that

the response is sub-harmonic and the amplitude of the fundamental harmonic is negligible.

4. Conclusions

The dynamic behavior of a thin cylindrical shell under static axial preload and harmonic external axial

load has been characterized. An ad hoc setup has been developed in order to measure both the dynamic

load and the amplitude of vibration on the shell surface. Tests performed at different preload values and

different amplitudes of the external excitation pointed out the existence of non linear behavior in certain

instability ranges. Nonstationary response is found close to 1230 Hz and a very well defined softening

behavior can be observed close to the mode (1,4). Non linear dependence of the response on the preload

parameter is observed. Further experiments and correlation with numerical and theoretical models need

to be performed in order to fully understand the observed phenomena.
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Abstract 
Quasistatic processes of multi-cyclic compaction of oxide nanopowders have been studied by the
granular dynamics method in 3D. Uniaxial and isotropic compaction processes have been simulated. 
Elastic forces of repulsion, tangential forces of "friction" (Cattaneo - Mindlin), and dispersion forces of 
attraction (Van der Waals – Hamaker) have been taken into account. During cyclic process a system
is subjected to multiple increase of outside pressure up to a predetermined level, followed by a 
complete unloading the pressure. The dependence of the unloading density of powders on the 
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Introduction 

Compression of nanopowders is a necessary step in many processing routes of nanostructured 

materials manufactured by powder metallurgy [1]. Strong ceramics can be obtained by this way if the 

initial blanks have been compacted up to high densities. However, it has been known from 

experiments that nanopowder pressing is characterized by the so-called size effect, i.e., the smaller the 

particle size, the greater the pressure necessary to reach a preset density [2, 3]. Thus, studying the 

features of different processes of nanopowder compactions and searching for methods to raise the 

efficiency of these processes have presently a high priority. 

In this work we present the theoretical results of an investigation on oxide nanopowder 

compaction processes by the granular dynamics method [3]. The high sphericity and the non-

deformability (the strength) of oxide nanopowder particles make the granular dynamics method 

particularly attractive and promising tool of the theoretical analysis. Simulations have been performed 

in 3D for mono-sized systems, whose particle diameter is in the range of 10–100 nm. Interactions of 

powder particles involve elastic forces of repulsion (modified Hertz law), tangential forces of 

"friction" (Cattaneo – Mindlin law), as well as dispersion forces of attraction (van der Waals –

Hamaker forces). Taking into account the dispersion forces allows correct describing the properties of 

nanosized powders and, in particular, simulating the size effect in compaction processes [2, 3]. 

As a candidate for a highly effective method of nanopowder compaction the multi-cyclic 

processes have been studied. During these processes a powder system is subjected to multiple quasi-

static increase of outside pressure to the predetermined level, followed by a complete unloading the 

pressure. In practice the maximum level of the outside pressure is determined by the mechanical 

properties of the experimental setup, as a rule. The high efficiency of such processes has been 

revealed in previous simulations of 2D structures [2]. In the present study the multi-cyclic compaction

has been tested with a more realistic 3D model. Free parameters of the model have been determined

by experimental data on uniaxial compaction of alumina based nanopowders.  

1.  Theoretical model 
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In the first stage of a compaction process simulation a model cell is filled by an initial structure 

with given number (8000) of particles. Periodic boundary conditions are imposed at sides of the 

model cell. An original algorithm developed makes it possible to create rather isotropic and uniform 

distributions of particles, which form a connected cluster. Properties of structures are controlled by 

the analysis of such characteristics as the radial distribution function, the angular distribution of 

interparticle forces and contacts, and the coordination numbers of particles. For all simulations the 

minimum size of model cells (even after compression) exceeds 18d, where d is the diameter of 

powder particles. As test simulations have showed, this value (18d) exceeds the correlation radius of 

particles arrangement more than double in the whole range of densities studied. 

A compression step of a model cell implements by a simultaneous reduction of the cell size (all 

sizes when simulating the isotropic compaction; the cell height when simulating the uniaxial 

compaction) by 0.1 percent of the current value and the proportional resizing of coordinates of all 

particles. New equilibrium positions of all particles are determined after each compression step. A 

particle moving is determined by the interaction of it with other particles. 

The elastic force ef  of repulsion of particles when compressing is calculated on the basis of the 

modified Hertz law [4] 
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where E  and ?  are the Young modulus and the Poisson's ratio of particle material, h d r� �  is the 

displacement of particles after coming into contact (at the moment of r d� , where r  is the center 

distance of the particles). The law of Eq. (1), on the one hand, does not contrary to the classical Hertz 

law in the limit of infinitesimal particle deformations ( h dd ) and, on the other hand, increases 

significantly the repulsion of particles at large deformations, where Hertz law becomes already 

invalid. The interparticle force of "friction" tf  when the tangential displacement 1  with respect to the 

contact plane taking place is described by the linearized Cattaneo – Mindlin law  
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where / 2a hd�  is the radius of the contact spot, �  is the friction coefficient. The dispersion force 

of attraction af  is determined by modified Hamaker formula [3], 
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where 0d  and D  are the size and energy parameters of intermolecular interactions. The 2 -phase of 

aluminium oxide is intended as the particle material, and simulation parameters are: 382E �  GPa, 

0.25? � , 3
0 2nd � , 0.242 � , 0 0.392d �  nm [3]. The value of D , in contrast to Ref. [3], is set 

equal to 1224 Bk . At that the maximal value of dispersion force ( )af d  is in accord with the adhesive 

force of DMT model ( d�6 ), where the surfave energy 16 �  J m
-2

 that representes typical 

covalent/ionic ceramic material [5]. 

 

2.  Comparison with experimental data  

To verify the theoretical model the natural and numerical experiments on uniaxial and isotropic 

compactions of nanopowders have been performed. The natural experiments have been performed 

with Al2O3 nanopowders (alumina based powders) and Y2O3 nanopowders (yttrium oxide doped with 

1% neodymium). The powders is obtained in the Institute of Electrophysics (Ural Branch of RAS) by 

target evaporation with a pulse-periodic CO2 laser. Size distributions of the powders is adequately 

fitted by a log-normal distribution. In the case of Al2O3 powder the half-width of the size distribution 
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is about 15 nm and the typical size of particles, where the maximum of distribution function takes 

place, is equal to 10.4d 3  nm. The Y2O3 nanopowder is characterized by close values of the 

parameters. During natural experiments the powders were subjected to pressures of 100, 150 and 200 

MPa. The closed-die compaction (i.e., uniaxial compaction) was performed in a hydraulic decimal 

press DP-36. Here the powder was placed into the cylindrical hole of metal mould, and the external 

pressure zp  was applied to the upper movable punch. The isotropic pressing was performed by an 

original izostate based on the hydraulic machine NGR-2000. Fig. 1 presents the experimental results 

in the coordinates of "density vs uniaxial pressure zp ".  

 

  
Figure 1. The powder density depending on the pressure applied. Symbols are the natural 

experimental data on the uniaxial (diamonds) and the isotropic (circles) compaction of Al2O3 (solid) 
and Y2O3 (open) nanopowders. Lines show the simulation results on the uniaxial (solid) and the 

isotropic (dashed) compaction of Al2O3 nanopowder. The curve of monotonic loading and the curves 

of elastic unloading from the levels of zp � 100, 150, and 200 MPa are shown. Simulation parameters 

are d = 10.4 nm, �  = 0.13, 2  = 0.37. 

 

  
Figure 2. The "Poisson's ratio" of the powder body calculated from the ratio of lateral pressure 

to axial one during the uniaxial compaction of model systems with d = 10 nm (solid line) and 100 nm 

(dashed line). The dotted line shows the approximation of Eq. (5). 
 

The friction coefficient �  and the value of 2  parameter were playing the role of free 

parameters of the theoretical model. The values of these parameters can depend strongly on the state 

of the surface of powder particles. A value of 2  determines the minimal separation between particles 

( 0h d2� ), which is considered as a touch of the particles. Note that the value of 0.242 �  was 

obtained in Ref. [3] with reference to the clean surfaces of particles, when nothing prevented them 

coming together. In this study, to keep a low powder agglomeration we have not performed powder 

annealing, during of which cleaning the surfaces of particles from the volatile matter takes place. As a 

consequence, the increased content of adsorbates should increase the separation between particles in 

contact, i.e., the value of 2 .  

The best description of the experimental data has been obtained with the following parameters: 

0.13� �  and 0.372 � , see Fig. 1. In addition to the monotonic loading curve the lines of elastic 

unloading have been presented, where the outside axial pressure zp  is decreased from the values of 
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100, 150, and 200 MPa to zero. It is the powder density, which is realized after the pressure release 

(the unloading density), which should be compared with experimental data, since the latter are also 

obtained from the analysis of unloaded compacts. Fig. 1 shows that the theoretical model can 

reproduce the experimental data with high accuracy, the error in the density is less than the scatter of 

the experimental points. Note that all theoretical curves in the figure have been constructed by 

averaging over 10 independent simulations. 

The theoretical model with the fixed parameters �  and 2  has been used to study the powders 

compaction in other geometry of outside load, i.e., the isotropic (or isostatic) loading. A joint analysis 

of the experimental data and the simulation curves in Fig. 1 shows a complete consent of them. It 

turns out that the density of the oxide nanopowder dependents very weakly on the geometry of the 

outside load. Both the simulation and the natural experiments reveal a little difference (less than 1 

percent) between the unloading densities of the compacts after isostatic or uniaxial compaction with 

pressure zp � 100 MPa. When the maximal pressure zp  is raised up to 200 MPa, these differences 

wholly disappear. 

It should be noted that the observed insensitivity of oxide nanopowders to the geometry of 

outside loads is very surprising. Traditional continuum theories (see, for example, Ref. [1]) predict an 

apreciable influence of the loading geometry on the final porosity of compacts. For example, in the 

pressure range investigated the theory of plastically hardening porous body of [1] predicts the 

difference in density between the isotropic and the uniaxial compaction processes of about 10 percent 

that corresponds exactly to the behaviour of coarce powders [6]. Contrary to this predictions the oxide 

nanopowders studied show a qualitatively different behavior, namely, they display the extremely low 

sensitivity to the geometry of outside loads. On the one hand, it is evidence of the inapplicability of 

traditional continuum theories to describe the mechanical properties of these powders. On the other 

hand, it emphasizes the high reliability of the simulations within the theoretical model developed, 

which makes it possible to reproduce this specific behavior of oxide nanopowders to high precision. 

The insensitivity of powder density with respect to geometry of loading, as it would seem, 

brings their behavior to the fluid one. However, in contrast to fluids in the powder systems studied 

there is no evenning the stresses in different directions in the course of uniaxial loading. In support of 

this, Fig. 2 demonstrates the "Poisson's ratio" p?  of powder systems, which determines the ratio of 

lateral ( x yp p� ) to axial ( zp ) pressures when uniaxial compacting. 
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The figure shows that, first, the value of p?  for the systems studied is significantly lower than 0.5 (the 

value for fluids) and, secondly, the density dependence is nearly linear. In the case of the system with 

d = 10 nm, for example, with the exception of starting density range (the density of initial structures is 

equal to 24 percent) this dependence is well fitted by the expression,  

 

3

2
p? C

�
� ,      (5) 

 

which gives the value 0.5p? �  at the density of hexagonal close packing 2 /6hcpC �� . 

 

3.  Simulations of cyclic compaction processes  

During multi-cyclic compactions a powder system is subjected to multiple quasi-static increase 

of outside pressure to the predetermined level, followed by a complete unloading the pressure. The 

high efficiency of such processes has been revealed in previous simulations of 2D structures [2]. The 

theoretical approach presented above allows studying the cyclic loading with more realistic powder 

model: 3D geometry, accordance with natural experimental data. Fig. 3 demonstrates a typical shape 

of simulation curves. 
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The figure does show a noticeable rise of the unloading density of the powder when a number 

of "loading-unloading" cycles increasing. However, it should be noted that this effect is about twice 

lower than in the case of 2D structures of Ref. [2]. For example, when unloading run from the level of 

100 MPa the increase of the unloading density uC  in 2D geometry is about 3 percent, whereas in 3D 

we have less than 1.5 percent at similar conditions. Fig. 4 displays another difference from the case of 

2D geometry. Here the dependence of uC  on a number of "loading-unloading" cycles performed has 

been presented. If in 2D geometry the unloading density uC  is proportional to the number of cycles 

with exponent equal to 1/ 2�  then now the same exponent is 1/3� . Fig. 4 shows that starting with 

4cycN �  the results of simulations are surely fitted by a linear dependence in the coordinates of " uC  

vs 1/ 3
cycN � ". This fact makes it possible to extrapolate easily the results obtained to the region of large 

values of cycN , right up to the limit cycN �& . Of course, the large values of cycN  can be realized 

within the real setup on conditions only that it is completely automated. This condition, in particular, 

is not in existence for our experimental equipment.  

 

 
Figure 3. The powder density depending on the 

pressure pz when uniaxial loading. Ten cycles of 

"loading-unloading" at the levels of pz = 100 MPa 

/2/ and 200 MPa /3/ are shown. The first cycle 
includes the curve of primary loading from the 

initial density 0C  = 24 percent /1/ 

 
Figure 4. The unloading density of the powder 

system depending on the number cycN  of 

"loading-unloading" cycles when uniaxial 
compacting (solid squares) and isotropic 

compacting (open circles) with maximal pressure 

pz = 100 MPa /1/, 200 MPa /2/, and 500 Mpa /3/. 

In addition to the simulation results the 
extrapolations to the region of large values of 

cycN  have been shown: dashed lines are the 

uniaxial process, dotted lines are the isotropic 
pressing 

 

Fig. 5 presentes the powder density, reached in the limit of infinite number of "loading-unloading" 

cycles performed, in comparison with density, reached after single cycle. Simulation results for the 

levels of maximal pressures 100zp � , 200, and 500 Mpa have been fitted by dependences in the form 

of max
m

u zk pC C �� � , where maxC , k , and m  are the adjusting parameters. These approximation 

functions, shown by the curves in Fig. 5, make it possible to get a theoretical prognosis (of course, it 

is an overbold prognosis) for the region of large levels of pressures zp , which exceed appreciably an 

ability of our experimental equipment. According to this prognosis, the rise of the pressure zp  value 

results in a noticeable increase in the efficiency of the multi-cyclic process in the case of the uniaxial 

compaction. For example, the value of maxC  parameter, which gives the maximal density reached in 

the hypothetical limit of zp �& , is equal to 71 percent in the case of uniaxial compaction process. It 

is close to the density of hexagonal close packing of spheres ( 74hcpC 3  percent). While, the density, 

which is reached by a single cycle, tends to the value of 64 percent in the same limit, i.e., the density 

increase resulted from the multi-cyclicity amounts to 7 percent. In the case of the isotropic 

compaction the efficiency of multi-cyclic process is noticeably smaller. Here, according to the 
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theoretical prognosis, the density increase does not exceed 3.5 percent in the whole range of pressures 

and the maximal compact density is about 65 percent. 

 

 

Figure 5. The unloading density of the powder system after single process of loading and 
unloading (open symbols, dashed lines) and in the limit of infinite number of "loading-unloading" 

cycles performed (solid symbols, solid lines) depending on the level of maximal pressures: squares 
are the uniaxial compaction, circles are the isotropic compaction. 

 

Conclusions 

A discrete theoretical model of oxide nanosized powders has been presented. Free parameters 

of the model have been determined by the experimental data on the uniaxial compaction of alumina 

based nanopowders. The processes of uniaxial and isotropic compaction have been studied both 

experimentally and theoretically (within the model developed). Contrary to the predictions of 

traditional phenomenological theories, both numerical and natural experiments have revealed a low 

sensitivity of nanosized powders to the geometry of outside loading. Processes of multi-cyclic 

compaction, when a system is many times subjected to the outside pressure increase up to the 

predetermined level, followed by a complete unloading, have been simulated. A high efficiency of 

such processes in the case of the uniaxial compaction has been revealed. Here, in the hypothetical 

limit of an infinite number of "loading-unloading" cycles and large pressures the powder densities can 

be reached, which are close to the density of closest packing of spheres in space. In the case of 

isotropic compaction the efficiency of the multi-cyclic process is noticeably smaller: the total increase 

in density due to additional "loading-unloading" cycles does not exceed 3 percent. 
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Abstract 
In this paper, the analysis of the possibility of describing the cyclic creep effect is performed using a 
system of equations of the endochronic theory of plasticity. It is shown that the introduction of the 
dependence of the kinematic hardening on the maximum stresses reached on the previous portion of 
loading has made it possible to avoid the closure of the elastic-plastic hysteresis loop, and the 
improved model is capable of predicting the ratcheting under non-proportional loading. 
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Introduction 

A special feature in the use of a number of currently available machines and units is their 

operation under multiaxial asymmetrical loading. Such loading is peculiar to power engineering and 

chemical engineering structures and structures of transportation engineering. Here, the presence of the 

asymmetry of loading with stress control results in the accumulation of plastic strains, which can lead 

to unacceptable displacements. This phenomenon got the name “cyclic creep, or ratcheting.” 

At present, experimental and theoretical investigations on the effect of cyclic creep under non-

proportional loading are urgent. Numerous investigations on this subject matter are known in the 

literature, however, they still have significant differences in the experimental and theoretical data. It 

should be noted that the available models for predicting the kinetics of the stress-strain state are rather 

complicated in use and require a large number of basic experiments to be performed in order to 

determine the necessary calculation parameters. In view of the above said, it can be concluded that the 

problem of constructing a simple model for engineering calculations is still urgent. 

1.  Development of the model of cyclic plasticity to describe the ratcheting effect 

When constructing the cyclic plasticity model, we will analyze the case with biaxial loading of 

thin-walled tubular specimens of 316 stainless steel from the square paths in the deviatoric stress 

space under the combined action of the axial force and torque. Consider a random portion of this path, 

for example, AB. Let the intrinsic time value 2z correspond to the point A, and 3z to the point B. 

Then, for the given stage of loading, 2 3z z z= = , the following equation for a straight line can be 

written: 

3kM  M� � � ,      (1) 

where k is the slope of the straight line AB; M is the coordinate of the intersection of the straight line 

AB with the D axis, Fig. 1. Since the straight line AB is parallel to this axis, then, in order to avoid the 
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indeterminacy K �& , there is no need to strictly fulfill the parallelism conditions. In this case, the 

accuracy will remain the same if we introduce a very small slope different from 0. 

 

M  

3  
А B 

C D 
 

Figure 1. The non-proportional loading path 

 

Since the initial model based on the constitutive relations of the Valanis endochronic theory of 

plasticity [1] is unable to predict correctly the ratcheting evolution, we employ a simple model of 

cyclic plasticity proposed previously to describe the asymmetrical uniaxial low-cycle loading. 

To describe the cyclic creep effect, in Refs [2, 3, 4] the constitutive equations of the 

endochronic theory of plasticity were refined by using a more complex definition of the hereditary 

function, namely: 

 

1 2( , ) ( ).zE z E e E21 1�� �       (2) 

 

That is, the model was constructed from the assumption that the kinematic hardening defined 

by the hereditary function E depends not only on the measure of the deformation process – the 

intrinsic time z - but also on the level of stresses reached in the previous loading half-cycle. The latter 

assertion admits the dependence of the hereditary function E on the characteristic distance in the stress 

space 1 proposed in Ref. [5] to improve the kinematic hardening rule of the plastic flow theory. Such 

improvement has made it possible to solve the problem of the elastic-plastic hysteresis loop closure 

that was the cause of the impossibility of describing the effect of cyclic creep when simulating the 

asymmetrical cyclic loading according to the classical model. 

In view of the above said, for the case of biaxial loading, the hereditary function can be written 

in the following way: 

 

/ 0 / 0 
1 2, , , ,zE z E e E2

M  M 1 1 1 1�� �     (3) 

 

i.e., we can say that the values of this function in some equations of the endochronic theory of 

plasticity [1] will take the values different from one another, that is: 

 

/ 0 / 0 
1 2, zE z E e E2

M M1 1�� � ,      

/ 0 / 0 
1 2, .zE z E e E2

 1 1�� �       

 

Thus, the output set of constitutive equations of the endochronic theory of plasticity [1] can be 

re-written in the following way: 

 

/ 0 / 0 

1 2

0 0

,
p p pz z

z z
x y

d d d
E e dz E dz

dz dz dz
2

M
D D D

M M 1�� � � �� � �
� �F F     (4) 

/ 0 / 0 

1 2

0 0

3 ,
3 3 3

p p pz z
z z

xy y

d d d
E e dz E dz

dz dz dz

2


6 6 6
 M 1�� � � �� � �

� �F F    (5) 

3 ,x xykM  M� � �      (6) 
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/ 0
2 2

2 1
,

3

p pd d
F z

dz dz

D 6 !  !
� �" # " #
$ % $ %

     (7) 

 

where yM  is the yield strength, z is the intrinsic time, / 0F z  is the hardening function: 

 

/ 0 / 01 .zF z C C e ��� � �      (8) 

 

After the corresponding transformations, a non-linear system of differential equations of 

different orders was obtained describing the stress-strain state of the material on the n-th 

/ 01n nz z z �= =  portion of the piecewise polygonal path in the stress space: 
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The system of equations (9) has no analytical solution, and therefore it was solved numerically 

using the Runge-Kutta method. For the numerical implementation of this method, an appropriate 

calculation program was compiled. The transition to the next step occurred only when the obtained 

stresses reached the required value with a certain accuracy. During this transition, a change occurred 

in the constants describing the loading path, and the corresponding stress and strain values were taken 

as initial conditions from the previous portion. As a first approximation to the unknown strain 

increments on new portions, these increments were determined from the equations of the initial model 

[6]: 

 

/ 0 / 0/ 0 / 0/ 0

/ 0 / 0/ 0 / 0/ 0

22 2

2

22 2

2

1
,... 1 ;

1

1
,... 1 .
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p
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Ф z k F z k Ф z
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d
kФ z F z k Ф z

kdz

D

6

) *� �� � � �+ ,� - .

) *� �� � � � �+ ,� - .

    

 

To evaluate the possibility of the given model to describe the process of the accumulation of 

ratcheting irreversible strains, the test problem on the representation of the stress-strain state for the 

square path shown in Fig. 1 was solved. 

The calculations for the simulation of the square loading path for the peak values of stresses 

200a MPaM �  and the mean stress 50m MPaM �  were carried out with the parameter values as 

listed in Table 1. Figure 2 shows the stress-strain diagram for stainless 304L steel obtained during the 
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simulation according to the improved procedure and the use of the conventional values of the 

hereditary kernel. It is evident that the introduction of the dependence of the kinematic hardening on 

the maximum stresses reached on the previous portion of loading has made it possible to avoid the 

elastic-plastic hysteresis loop closure, and the improved model is capable of predicting the ratcheting. 

At the same time, a slight discrepancy (a turn) in the calculated strain field distribution with respect to 

the experimental one is observed. This can be caused by the following reasons, namely: the 

insufficient accuracy of determining the material constants, such as the modulus of elasticity E0 which 

was taken from the analysis of the static diagram; a small deviation of the calculated strain path from 

the experimental one to avoid the singularity of the equations; the influence of the path bend points, 

etc.  

 
Table 1. Parameters of the computational model 

тσ , МPа 1Е , МPа 2Е , МPа 0E , МPа α  С �� p 

140 172 4280 178202 2300 1,33 32 1 

 

36  

D  

6

D

Figure 2. Simulation of strain for the 304L stainless steel with the modified model 

 
Besides, to test for the correctness of calculations according to the developed numerical 

procedure, the analysis of the stress-strain state kinetics under asymmetrical uniaxial tension-

compression was performed, and the results obtained were compared with those obtained for the 

calculation according to the uniaxial model [4]. 

As a test example, we selected the loading of 1020 carbon steel with the following cycle 

parameters: maximum stress max 402,5МPаM � , minimum stress min 281,2МPаM � � . The other 

parameters of the endochronic model used in the prediction are given in Table 2. 

 
Table 2. Parameters of the computational model for steel CS 1020 

E, МPа σт, МPа E1, МPа E2(0), МPа α C β2 

1,73·10
5 

275 1,74·10
5 

11850 965 0,78 30 

 

In addition, the hereditary function form defined earlier [7] was also used in the calculation: 
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where Mа is the stress amplitude, bas
aM  is the stress amplitude in the basic experiment; Ms is the 

plasticity surface radius in a stabilized state. 

Figure 3 illustrates the calculated ratcheting curves for CS 1020 steel under conditions of the 

above-mentioned loading. The curves with points correspond to the calculation results according to 

the uniaxial model presented in [4]; the solid lines correspond to results of the calculation according 

to the approach proposed in this paper. It is obvious that the developed numerical procedure is 

completely correct, and the approximate selection of the initial conditions does not introduce 

considerable error. 
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Figure 3. Calculated cyclic creep curves for CS 1020 steel 

 

Conclusions 

The constitutive relations of the endochronic theory of plasticity were modified by introducing 

the dependence of the kinematic hardening on the maximum stresses reached during the previous 

portion of loading. An appropriate numerical procedure was developed, and the calculation of the test 

problem in the square path loading of the material in the stress space was performed. It was shown 

that the given model has made it possible to eliminate the closure of the elastic-plastic hysteresis loop 

and is capable of predicting the ratcheting under non-proportional loading. 
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Abstract 
The paper contains the equations of steel beam flexural oscillations which were obtained considering 
creep strains. Approximated solution had been obtained by use of Galerkin method, solution for 
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Introduction 

Cyclic loading of structural elements which work at elevated temperatures can be accompanied 

by arising of creep irreversible strains. This case of nonlinear deformation is well-known for 

polymers [1], and much worse for metals. Dynamic loading which leads to forced oscillations in creep 

conditions causes the phenomenon which is called as ‘dynamic creep’ [2]. Calculations of stress-

strain components in structural elements in dynamic creep conditions can be carried by use of 

methods of two time scales and averaging in period [3]. This approach allows us to obtain the 

averaging dependences of stresses and strains from the time reflecting the influence of cyclic loading, 

which is the acceleration of displacement and strain growth. Otherwise, several solutions can be 

obtained directly. The paper contains one of similar problem, formulated for the beam flexural 

oscillations when creep irreversible strains are developed in a beam material.  

1. Equations of the flexural oscillations  

Let us regard the long isotropic steel beam which is heated to such elevated temperature when 

creep irreversible strains are developed it material. We suppose, that total strain can be presented as a 

sum of elastic e and creep component c :  

ce��D ,                                                                     (1) 

Let us use Bailey-Norton power law [1] for creep strain rate  

nBc M�� ,  tBc nM� ,                                                         (2) 

where B and n are the material constants, t is the time. To be definite, let us regard the beam material 

as a high-temperature steel CIS grade 45Х14Р14В2М at 873 K. For this steel B=2 10-10 (MPa)-n, n=3. 
Following [4] we use traditional way for obtaining the equation of motion. Let us present the 

bending moment:  

                                   FdxdM � .                                                                          (3) 
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Let us use the linear geometrical equations, considering small strains and displacements. After 

classical transformation for elastic part and bracketing it as a multiplier we obtain: 
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where y(x,t) is the beam deflection,  / 0

2/

2/

2

3

1

h

h

n

n
y

yФ

�

�

�
� , E is the Young modulus, I is inertia moment of 

beam with rectangular cross-section hxh. For dF we have: 
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Let us use the d’Alembert principle. The inertia force has the following form: 
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Here S is a square of the beam cross-section, C is the density of beam’s material. Finally we have: 
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Here 
S

EI
a

C
�2 , f(x,t) is an internal force which is considered as / 0.sin tAf ��  The console beam is  

considered.  

 

2. Method of solution  

Obtained equation (5) is solved by method of weighted discrepancies in Galerkin’s form. Beam 

deflection is presented in the standard form of product of functions depends upon time and co-

ordinate: 

 

/ 0 / 0 / 0,, xtqtxy @�                                                           (6) 

 

where q(t) – is the generalized co-ordinate, @(x) –is the first eigen form of beam oscillations. 

Following approach of S.P.Timoshenko it is presented in simplified form: 
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where l is a beam length. Let us substitute the expression (6) into equation (5). The result of 

substitution designates as operator / 04 5txyL , . Due to approach of the method of weighted 

discrepancies / 04 5txyL , is multiplying on function (7) and integrating over a beam’s length: 

/ 04 5 / 0 0,
0

��F
L

dxxtxyL @ .                                                    (8) 

After transformations and calculations of integrals we obtain the ordinary differential equation, 

which describes the physically non-linear forced oscillations of a beam: 

/ 0 / 0txfh
n

tbqAqAaqAaqA nnnn ,
1

3 2
43

2
2

2
1 �

�
������ �

�� .                     (9) 

Here cumbersome coefficients 4,1, �iAi are omitted.  

3. Numerical results 

Differential equation (9) is integrated numerically by Runge-Kutta method. Some steps were 

used for convergence analysis, and finally calculations had been done with the time step 0.01s. 

Let as take the following values of beam parameters: cross-section with h = 1mm, Young 

modulus: МPаE 51067.1 �� , steel density: 
3

3108.7
m

kg
��C , beam’s length l = 50 mm. The force 

amplitude is A=0.1H.The time of a process was selected as 1200s.  

Results are presented in figures 1-2. The growth of amplitude due to irreversible creep is 

presented in Fig.1.  

Figure 1. Beam deflection versus time 

More detailed the varying of the maximum deflection in a cycle of loading through time is 

presented on Fig. 2. It can be seen that the maximum amplitude value at the moment t=1200s is equal 

to 1.3 sm. Such result can be regarded as only qualitative because the displacement is more greater 

than beam cross-section height. So, the geometrical nonlinear equations have to be used for 

satisfactory description of the creep-forced oscillations process.  
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Figure 2. Maximum beam amplitude versus time  

 

Conclusions 

The paper contains the new approach for the beam flexural oscillations with considerations of 

essential creep of its material. The equation was derived, reduced to simplified model and numerically 

solved. Physically non- controversial result of cyclic amplitude growth had been obtained. 
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Introduction 

New structural materials like light weight alloys and metallic composites are widely used in 

industrial applications. Their creep-damage behavior is strongly anisotropic which demands using of 

tensor models for description of creep strain rate as well as damage accumulation. Such models had 

been suggested by Murakami [1], Cordebois-Sidoroff [2], O.Morachkovsky [3] and others. In recent 

years these approaches were used for the case of static loading.  

Otherwise, very often structural elements are loaded by joint action of static and cyclic loading 

from their forced vibrations. As it is known [4], in this case so-called ‘dynamic creep’ processes are 

developed in the material. They are characterized by essential acceleration of creep strain rate as well 

as of damage accumulation which leads to decreasing of time to rupture values in comparison with 

pure static loading.  

Constitutive equations for description of dynamic creep-damage processes as well 

mathematical procedures for their adequate numerical simulation were suggested by D.Breslavsky 

and O.Morachkovsky [5, 6]. In this paper these approaches were applied for tensor creep-damage 

model [3]. 

1. Anisotropic creep-damage laws 

Let us regard creep-damage laws for anisotropic materials which correspond to general linear 

tensor dependences for principal axes of symmetry of creep and damage properties of anisotropic 

material. Damage accumulation in this case will be described by tensor of second rank ij_ .  

Let as accept that damage tensor ij_ , as an internal parameter, corresponds to the associated 

with it tensor of thermodynamic stresses in damaged media Rij . For materials with initial anisotropy 

equivalent stress VM is determined by mutual invariants of stress tensor ijM with material creep 

properties tensors ijklij ba , , as well as equivalent stress VR is determined by mutual invariants of 

tensor ijR with material damage properties ijklij dg , :  
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,21 MMM ��V  ,1 ijija MM �  ;2 klijijklb MMM �
 

,21 RRRV ��  ,1 ijij RgR �  .2 klijijkl RRdR �
 

 

Using above mentioned suggestions let us present the dissipation potentials for creep strain and 

damage parameter’s rates in the following forms: 

 

  ijijV cTDD ��� M_M �� ),;( ,   ijijV RTR __ ��� ���� ),;( . (1) 

 

Thereat the flow rule and damage equations can be presented using the gradiental law as 

follows: 
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where scalar multipliers (77 ��,  are determined from eqs (1) after specification of the form of each 

potential. 

For the establishing of failure criterion in invariant scalar form let us consider in a some 

material point the dissipation’s part which is responsible for creep damage, as well as its limit value in 

the rupture time moment: 
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Let us suppose that limit value of creep damage dissipation of the material (�  is completely 

definite material characteristic. In this case, assuming as the scalar damage measure the value of 

(��� /)()( tt� , the failure criterion can be written in the following form: 1)( �(t� , where t* is the 

value of failure time.  

By use of thermodynamic assumptions for materials with initial creep anisotropy we obtain the 

constitutive equations: 
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where ijc , ij_  are symmetric tensors of irreversible creep strains and damage; ijijcD �� M�  is dissipation 

due to creep: ijijR _� �� �  is the dissipation due to creep damage, which is referred for its limit  value 

(�  at failure moment )10( ==� . 

By using of the principle of strain equivalence the influence of damage tensor on effective 

stress is considered from the following equation: )1/( �M �� ijijR , and besides ijijR _� �� � , 

)10( ==� , / 0 1�(t� . Keeping of the demands of basic thermodynamic inequality 0>�� ��D  

dissipation potentials (1) can be rewritten in the following form: 

 

  )(),;( VV RDTD �� ��M ,   )(),;( VV RT (( ��� �� �M , (3) 

 

where )1/( �M �� VVR , ,21 MMM ��V  ,1 ijija MM �  klijijklb MMM �2 ; )1/( �M �� (( VVR , 

,21 ((( �� MMM V  ,1 ijijg MM �(  klijijkld MMM �(2  are effective stress invariants. 

Within the supposed assumptions the principal directions of the material anisotropy are 

considered constant directly to failure, as well as surfaces of the dissipation potentials in the stress 

space are expanded in time proportionally to one parameter, which is connected with damage measure 

10 ==� . 

Let us regard further constitutive equations (2) for materials with creep transversally isotropy. 
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Dissipation potentials (3) are chosen as power functions from stress invariants: 

 

  ,)1/(, Sk
V

N
V RRD �� ��� (��  (4) 

 

where N, k, S  are the constants. 
Equations (2) are regarded as constitutive ones for materials with initial anisotropy and creep-

damage properties asymmetry, in particular for tension and compression. If these effects are absent, 

then 0�� ijij ga . In this case creep-damage equations for materials with creep transversally isotropy 

can be written in the following form: 
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Further let us regard the cyclic loading, where stress tensor consists from pure static part σ0 

and fast varying part σ1 : σ=σ0+σ1 . The frequency f is the frequency of forced oscillations: 

/ 0fta �MM 2sin1 � , where Ma
 is amplitude stress. Such process is referred as dynamic creep-damage 

process [4]. It had been mathematically described in [6] for scalar damage parameter by use of 

method of asymptotic expansions jointly with averaging in a period technique. 

Let us use this approach for eqs (5)-(6). After introducing the small parameter μ=Т/t* we 

present processes in two time scales (slow t and fast �= /T, where = t/�, ) in the following form of 

expansions:  

)()( 10 ��ctcc �3 ,  ),()( 10 ����� �3 t                                             (7) 

 

where c0(t), �0(t), c1(�), �1(t,�) are the functions which coincide to basic creep-damage process in 

slow (0) and fast (1) time scales.  

Considering the dependence of creep strain and damage parameters only from ‘slow’ time [5], 

after averaging we have: 
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So, by use of asymptotic expansions methods with subsequent averaging in a period of cyclic 

load, after transition to the case of multi-axial stress state, we obtain constitutive equations for 

dynamic creep-damage processes in alloys with orthotropic creep-damage properties: 
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invariants of cyclic stresses.  

 

2. FEM solution for plane stress problem  

Let us regard the problem statement for structural element, made from material with anisotropic 

creep-damage properties, which is in plane stress state. The volume V is fixed in a surface part S1 and 

is loaded by traction р {р1, р2} on another surface part S2.  In co-ordinate system ОX1X2 the motion of 

material points under the creep conditions is described by use of Lagrange approach. The vectors of 

displacements u={u1, u2}
T 

 and their rates v={v1, v2}
T 

are introduced. In these assumptions creep 

problem for the case of small displacements and strains is described by following boundary – initial 

value problem: 
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The level of stresses which don’t exceed yield limit will be considered. Let us accept, that 

elastic eij and creep cij
 
strain components as well as their rates are additive: 

 

  ,ijijij ce ��� ��D  (13) 

 

Obtained system (10-13) has to be solved jointly with constitutive equations (8-9). Boundary 

conditions on surface parts  S1 :
*
ii uu �� �  and  S2: ijij pn �� �M  as well initial ones at t=0 considering the 

elastic strain-stress distribution have to be added. Constitutive equations (8-9) are added to above 

system.  

 The system (8-13) is solved by use of two time scales method jointly with averaging in a 

period of forced vibration 1/f. Full description of the procedure can be found in [5,6]. The problem 

derives to the simplified one which is similar to problem of static loading, but with constitutive 

equations (8-9). 

Anisotropic creep-damage behavior is simulated by FEM software had been developed in NTU 

’KhPI’. Triangular linear element is used. The problem which is formulated in rates is solved: 
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3.  Anisotropic creep-damage in titanium plates 

Developed method and software were used for creep-damage modeling in titanium plates made from 

BT1-0 alloy which is similar to IMI125 or T40 grades. The properties of creep and long term strength 

of the specimens made from the plane billet in three directions were experimentally obtained for 

temperature T=773K by O.Morachkovsky and V.Konkin [7]. The constants values which had been 

obtained after data processing are the following: ,10303,2 4
1111

���b  
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2222
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; k=N=5, s=1. Comparison between 

experimental data at static loading for specimens had been cut in different directions with numerical 

simulations of rectangular plates in tension simulating the above test data were done at first in order to 

verify numerical method. A satisfactory agreement which doesn’t exceed 25-32% had been obtained 

for time variation of strains and time to rupture values. Table 1 contains some examples of these 

comparisons for time to rupture values for net stress 60 MPa.  

 

Table 1.  Comparison of time to rupture values for static loading  

Orientation of 

anisotropy axes, K�  
Stress, MPa 

Experimental value of 

time to rupture t( , h 

Numerical value of time 

to rupture t( , h 

0 60 24  25.9 

45 60 19  20.5 

90 60 28.7 19.7 

 

Further the static and dynamic creep of titanium plate (0.8mx0.8m) with a central hole (radius 

is equal to 0.1m) were numerically simulated. One quarter of a plate was considered and stress-strain 

state and damage redistribution on time were analyzed. Fig.1 contains the distribution of damage 

measure � for the case of pure static loading by net stress 10MPa at the moment t=220h  which is 

nearest to the failure moment t*=221h. Essential stress concentration near the hole leads to failure in 

this area. The creep –damage behavior of the plate is strongly non-linear: increasing of the traction 

from 10 to 13MPa leads to decreasing of time to failure from 221h to 68.5h. 

 

 
 

Figure 1. Damage parameter at t=220h 
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Let us present the results of dynamic creep simulation of the similar plate. The axial loading in 

this case consists from static part p0=16.9MPa and the cyclic one which is varying due to sine law 

with frequency 10Hz. Let us introduce the loading parameter L=p0/pa, where pa is amplitude value of 

the loading. The varying of L from 0 to 0.3 was analyzed.  

The time to failure values in this loading program decreases with increasing of L from 0.166 h 

for L=0 to 0.122h for L=0.3. It happens for material with anisotropic creep-damage properties just the 

same in dynamic creep processes of elements with isotropic ones [6]. The character of stress and 

damage redistribution is similar for the static case, but both processes are run faster.  

However, for smaller values of net stress, and, respectively, for smaller stress values in a plate, 

character of a process differs from above analyzed one. Dynamic loading accelerates the stress 

relaxation in area near the hole as well as in conventional dynamic creep [6], wherein the obtained 

stress level became so small, that rate of damage accumulation decrease significantly. For example, 

for p0=13MPa the value of time to failure for L=0 is equal to t*=68.5 h, but adding of small cyclic part 

(L=0.05) leads to it’s increasing and t*=72.6 h. Subsequent increasing of L leads to similar growth of 

time to failure values due to fast dynamic relaxation at first time of a process: for L=0.1 t*=120.1 h.  

 

Conclusions 

An approach for the effective mathematical modeling of dynamic creep-damage processes in 

structural elements made from the titanium alloy with anisotropic properties is presented. The use of 

two time scale method with asymptotical expansions on the small parameter and subsequent 

averaging in a period allows us to avoid the direct integration through a cycle and simulate only static 

problems with flow rule and damage equation of special form. Effects of essential acceleration of 

strain and damage rate growth as well as stress relaxation due to dynamic creep had been established 

for plate with a hole made from material with anisotropic creep-damage properties.   
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Abstract 
Notch effects on uniaxial and torsion fatigue behavior of low-carbon steel are investigated in this 
study. Constant and variable amplitude axial and torsion both load and strain-controlled tests were 
conducted on smooth and notched tubular specimens. Maximum principal stress theory was chosen 
as driving parameter for experimental program. Torsion loading resulted in significantly shorter lives 
and fatigue data could not be correlated by the maximum principal stress theory for smooth 
specimens. However, considering fatigue notch factor for notched tubes the maximum principal 
stress theory gives acceptable results. Linear rule, Glinka’s rule, Neuber’s rule as well as FE analysis 
were used to estimate local strain at the notch root. Similar results were found for Neuber’s rule and 
FEA simulation due to plane stress condition. However, strain energy density rule correlates data 
better. The Fatemi-Socie (FS) critical plane parameter was found to correlate constant amplitude 
data of both specimen geometries very well. Maximum principal stress and the linear cumulative 
damage rule were also employed for fatigue life prediction of notched specimens under block 
loadings with different contribution of axial and torsion cycling. 
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Selected damage measures applied for degradation description of engineering materials subjected to 
fatigue loading conditions are presented. In addition to well-known measures the new concepts of 
fatigue damage development are discussed using known mechanisms of cyclic plasticity and 
ratcheting. Their usefulness was studied on the basis of experimental results for modern metal matrix 
composites commonly applied in many branches of the industry.  
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Introduction 

First investigations aimed to clarify the phenomenon of fatigue were already carried out in the 

first half of the nineteenth century. The tests in this area were conducted by Albert in 1838. The first 

experimental programme important from the scientific point of view was executed for selected metals 

by A. Wöhler in 1860. From that moment, intensifying progress of material testing under fatigue 

conditions can be observed and it is continued to this day. Especially in recent years there has been an 

increased interest in the problems of fatigue and at the same time enormous progress in this field. This 

is mainly because of an increase either in the level of loading or degree of loading complexity in the 

number of operating units. As typical examples one can indicated aviation where aircraft speed and 

weight increase or energetics with rapid temperature increase of devices producing energy. The 

observed technical progress enforces a development of fatigue testing methods, because the safety of 

people depends many times on the results of these tests. Modern passenger aircrafts may be operated, 

if parallel simulation fatigue tests are carrying out, the results of which allow for the safe exploitation 

of machines being currently in use. Among fatigue tests one can distinguish two basic directions: 

' investigations conducted by physicists and metallurgists focusing on trying to learn the 

mechanisms governing the process of fatigue,  

' theoretical and experimental investigations in order to create a phenomenological theory to 

allow quantitative description of the phenomenon. 

Both of these trends are currently developing parallelly [e.g. 1-6]. 

1.  Experimental evaluation of fatigue damage  

In order to assess damage degree due to fatigue of the material in the as-received state and after 

exploitation the Wöhler diagrams may be elaborated that represent the number of cycles required for 

failure under selected stress amplitude. The results of such approach are illustrated in Fig.1 for the 

13HMF steel. As you can see, the Wöhler diagrams depending on the state of material differ 

themselves, thus identifying the fatigue strength reduction due to the applied loading history. 
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Unfortunately, such method of degradation assessment of the material undergoing fatigue suffers on 

very high cost and additionally it is time consumable. 

Figure1. Wöhlers diagram for the 13HMF steel before (0h) and after exploitation (80 000h) [7] 

Therefore, searches are conducted continuously for new solutions that would provide a better 

assessment of the fatigue damage development. To obtain this effect, an adequate damage parameter 

must be defined on the basis of the measurable indicators of its development. Selected proposals are 

discussed in the next section of this paper. 

2.  Indicators and measures of fatigue damage  

The essence of fatigue are changes in the structure of a material due to operational stresses, 

movement of lattice defects (slip dislocations, vacancies migration), the concentration of these defects 

in areas where they face further obstacles to movement (grain boundaries, inclusions), forming the so-

called persistent slip bands, and other processes, such as stress/temperature-induced phase 

transformations, and diffusion processes. The net effect of these phenomena is the nucleation and 

growth of microcracks, and in the final stage of damage development formation of the dominant crack 

in the material. Such crack develops subsequently in the element of structure until it reaches a critical 

size. After that the service loading applied can cause its uncontrolled growth leading to structural 

failure. 

The fatigue damage development is associated with nucleation and growth of micro-cracks. In 

the theoretical papers concerning fatigue damage a size of the micro-cracks located in the material was  

assumed as the fatigue damage measure. The most common idea of damage measure is the surface 

density of micro-cracks in the representative unit volume of a material (Kachanov, 1958 [8]). In this 

case the damage parameter is no scalar, since it depends on the direction. Such a concept has been 

developed further by other researchers, and as a consequence, in 1981 Murakami [9] introduced the 

second order tensor as a measure of damage. This form of damage parameter is still often used by a 

number of researchers. The disadvantage of such defined parameter, however, is that it cannot be 

measured in a period prior to the formation of a dominant crack in the material by any of the currently 

known methods. Nevertheless, experimental study of a damage measure changes in material during 

construction operation or laboratory tests is a necessary condition for fatigue life prediction and 

assessment of the risks associated with further safe operation of the structure. Therefore, intensive 

searches are still ongoing in order to find measurable parameter representing fatigue damage of 

structural materials. 

The behaviour of materials under high cycle fatigue (HCF) for stress amplitude of levels below 

the yield point can be divided into two basic types according to their mechanisms of damage 

development. 

The behaviour of the first group may be described by cyclic plasticity generated by dislocation 

movement at the level of local grains and slip bands. In this case a non-elastic strain is the damage 

indicator characterized by the width of the hysteresis loop at total unloading of the material, equation 

(1), Figs. 2a, 3. 
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                          a)                                                                     b) 

Figure 2. Hysteresis loops depending on the damage mechanism:   (a) cyclic plasticity, (b) 
ratcheting 
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where  N@ – accumulated strain up to the current loading cycle; min)( N@ - accumulated strain at the 

first cycle; max)( N@ - accumulated total strain calculated for all cycles.  
The behaviour of the second group of materials subjected to cyclic loading is described by 

ratcheting generated by local deformation around the voids, inclusions and other defects of the 

microstructure. In this case the damage indicator is atributted to the mean inelastic strain describing a 

shift of the hysteresis loop under unloaded state. It can be defined by the following expression,  

2
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FFin
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D .                                           (4) 

Its graphical interpretation is shown in Fig.2b. 

Applying damage indicator in the form of equation (4) the damage measure can be defined as: 
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and thus damage parameter taking values varying within <0;1> can be expressed by the relationship of 

the structure of equation (3). The sign of absolute value at relationships (2) and (5) results from the 

fact, that the hysteresis loops of the subsequent cycles may move either in the positive or negative 

direction of the strain axis, Fig. 4. 

Figure 3. Ilustration of strain damage 
indicators during fatigue conditions 

Figure 4. Variants the hysteresis loops movement 

In both cases, changes of strain taken for the entire measuring volume of the specimen is the 

sum of local deformation developing around defects in the form of nonmetallic inclusions and voids

for the first group of materials or developing  slides at the consecutive grains in the case of the second 

one. Evolution of the hysteresis loop depending on the damage mechanism for the loads corresponding 

to stress levels below the yield point is shown in Fig. 2. 

In many cases the process of fatigue damage is controlled by more than one mechanism. The 

fatigue tests carried out on metal matrix composites have shown that the damage process occurred due 

to combination of cyclic plasticity and ratcheting mechanisms. Therefore, using damage indicators 

determined on the basis of formulas (1) and (4), damage measure can be defined by the following 

relationship: 
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Hence, a definition of damage parameter takes the form of equation (3), in which damage measure is 

included in the form of equation (6). The results published so far [e.g. 1, 10, 11] confirm the 

correctness of the adopted methodology for damage analysis of the materials after service loads, that 

taking into account parameters responsible for cyclic plasticity and ratcheting. 

3.  Application of damage parameters for fatigue tests analysis of MMC  

Damage analysis presented in section 2 and confirmed for the conventional materials [1] was 

applied in this research for the metal matrix composite. The Al/SiC composite was prepared from a 

commercial Al powder with a purity of 99.7% and an average particle size of 6.74 μm (delivered by 

the Bend-Lutz Co) and the reinforcing phase was made of the SiC powder of 99.8% purity and an 

average particle size of 0.42 μm (Alfa Aesar Co). The technological process included several stages. 

In the first stage of process the powders were mixed so as to obtain (Al+x vol.% + SiC) mixtures, 

where x ranged from 0% to 10% and was changed at an increment of 2.5. The mixtures were 

homogenized, for 6h, in a polyethylene vessel using a suspension of isopropyl alcohol and Al2O3 balls, 

then dried and granulized at room temperature on a sieve with the mesh size of  #0.25 mm. In the next 

stage, the powder mixtures were subjected to isostatic consolidation at the pressure p = 245 MPa. The 

samples thus obtained were machined to give them the desired shape (cylindrical) and dimensions 

(radius r=40 ± 1 mm, length ~50 mm). The final stage of the technological process included direct 

extrusion of the prepared samples in the KOBO 100T horizontal hydraulic press, equipped with a 

reversely rotating die whose movement was transmitted onto the extruded material so that its 

deformation path varied.  

Force controlled high cycle fatigue tests (20 Hz frequency) were carried out on the servo-

hydraulic testing machine MTS 858. During the tests, sine shape symmetric tension-compression 
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cycles were applied to keep constant stress amplitude equal to 65 and 70 MPa. Tests were performed 

at ambient temperature. Each cylindrical specimen manufactured from the Al/SiC rod was subjected to 

cyclic loading until fracture. A movement of the subsequent hysteresis loops along the strain axis was 

observed with an increasing number of cycle (Fig. 5). Simultaneously, a width of the subsequent 

hysteresis loops became almost unchanged. Such behaviour identifies the ratcheting effect. Only 

insignificant increase of inelastic strain amplitude was observed (Fig. 6). 

Figure 5. Hysteresis loops for selected cycles 

Figure 6. Inelastic strain amplitude εa
in
 for selected cycles 

Since ratcheting is the dominant mechanism of the composite deformation, the mean strain was 
taken into account during a damage parameter calculation in the stable growth period. Hence, the 
damage parameter can be defined using equation (3). It is worth to notice that the rate of damage is 
relatively high at the beginning of the period. Afterwards, it becomes slower (Fig. 7). 

Figure 7. An influence of SiC content on damage parameter variation (stress amplitude 70MPa) 
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Such a phenomenon indicates that the linear damage accumulation rule cannot be applied for 

the Al/SiC MMC. Moreover, it can be seen that the rate of damage parameter at the initial stage of 

fatigue increases with an increase of the SiC particle content. 

Conclusions 

The paper presents an alternative method for damage evaluation of materials subjected to 

fatigue loads. Studies in which a width the hysteresis loop variation and its movement were recorded 

for cycles under fixed constant stress amplitude have demonstrated that this procedure gives a 

possibility to assess  safe operation period for composites in question and there is no need to perform 

so many experiments, as is required for the Wöhler diagram determination. The proposed method of 

assessing fatigue damage evolution makes it possible to determine the damage, determine the damage 

indicators, assessment of fatigue and stress levels to find ranges in which the accumulation of damage 

can be described by a linear law. 

An increase of the SiC content improved the fatigue resistance, and moreover, it increased the 

rate of hardening during monotonic tensile tests. Hence, it can be concluded generally that the SiC 

reinforcement led to the material properties improvement. However, it has to be mentioned that a 

larger content of the SiC particles may lead to generation of their clusters, which often include 

incoherent particles. Since is well known that the main part of the specimen loading is carrying out by 

reinforcements, such type of clusters do not contribute to tensile load transfer, and therefore, they can 

be treated as voids in the structure of a material. 
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Microstructure in a Ni-based Single Crystal 
Superalloy  
 

Serge Kruch1*, J.-B. le Graverend1, J. Cormier1, F. Gallerneau1, J. Mendez1  
 
Abstract 
This paper is devoted to the presentation of a phenomenological model recently developed to 
reproduce effects of the microstructure on the overall behavior of a Ni-based single crystal 
superalloy. This one is used in aircraft engine blades for the very good mechanical properties at 
elevated temperatures and loads. It takes these interesting properties from the precipitation of high 
volume fraction (close to 70%) of long range L12 ordered γ’ phase which appears as cubes 
coherently embedded in fcc solid solution γ matrix. However, the accumulation of temperatures and 
high stresses in fatigue with dwell times leads to important evolutions of the microstructure 
(directional coarsening, rafting) having a strong influence on the mechanical behavior. 
The proposed macroscopic model, based on a previous crystal plasticity one, must be able to take 
into account all these evolutions of the microstructure experimentally observed from thermo-
mechanical tests detailed in the paper.  
On each slip system, the yield criterion involves several terms including a classical Orowan stress 

which depends on the thickness of the 6 channels, a non-linear isotropic hardening which describes 
the cyclic hardening effect, the age hardening and the recovery processes and a non-linear kinematic 

hardening which describes temperature aging effects like dissolution/precipitation of 6’ precipitates . 
The internal variables governing the evolution of the isotropic and kinematic hardenings depend on 
the volume fraction of secondary and tertiary precipitates which evolve as a function of the 
cumulative plastic strain.   
Also, in order to be able to describe the damage evolution during the secondary and tertiary creep 
stages, an isotropic damage variable, based on the classical Rabotnov-Kachanov-Hauyhurst 
concept, is coupled to the model using the effective stress approach. 
After the identification of the material parameters performed with complex thermo-mechanical tests 
and microstructure observations, the phenomenological model is applied to describe the behavior of 
a double notched specimen subjected to a non-isothermal complex creep load. The model is able to 
predict the strong multiaxial stress state and its influence on the evolution of the microstructure. 
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Abstract 
The paper deals with the development of a new approach for high-cycle fatigue lifetime prediction, 
which is made in the stochastic framework and allows to take into account the natural degradation of 
the material properties. Mathematical expectation, correlation function and variance of the continuum 
damage function have been obtained. 
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Introduction 

The reliability analysis for the most of engineering structures is performed on the basis of static 

and dynamic stress-strain states that are realized in the nominal operating conditions. Strength safety 

factors which are commonly applied when designing also provide a high level of reliability of the 

mechanical engineering systems on these operating regimes. In this regard, the life-time of such 

systems is determined by their work not on the nominal but on dangerous regimes, i.e. stress peaks 

and outbreaks at the start and stop of their usage or during any other harsh changes in operating 

conditions. Naturally, the life-time depends on the transient states rate which is determined by the 

usage conditions, and therefore can be changed during the operation so that frequency of loading is a 

random value for these systems. 

Due to the relatively low incidence of the transient regimes and taking into account availability 

of strength safety factors, the lifetime of such engineering designs becomes comparable with the 

period of initiation of natural degradation processes in materials, i.e. aging. Degradation influences 

mechanical properties and especially strength characteristics of material because of irreversible 

microstructural changes as well as physical and chemical changes in materials. The study of these 

processes is performed experimentally. The information on the changes of characteristics is very 

limited, and the data obtained differs considerably. This determines the necessity for probabilistic 

approaches when modeling degradation of the mechanical properties of materials. 

Thus, the actual problem is to develop models and approaches towards the reliability analysis 

and predicting the life-time of engineering design in the stochastic framework taking into account 

material degradation and the random time variation of the load frequency. 

1. A problem statement 

This paper deals with the life-time prediction of engineering designs under high-cycle fatigue. 

The life-time is determined by the non-localized damage accumulation rate. For this class of problems 

the hypothesis that the linear (Miner’s) accumulation of fatigue resulting from stress cycling with a 

fixed level of amplitude and random frequency is introduced. Degradation of properties has been 

modeled as a process of the reduction of fatigue (endurance) limit in time. 
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Kinetics of damage accumulation is introduced in the framework of effective stress concept and 

could be described by the following equation [1]: 
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where D(t) is a damage function, ω(t) is a variable in time frequency of the loading, N0 is the base 

number of cycles before failure, m is the Wöhler (S-N) curve parameter (in the paper m = 4), σa is an 

amplitude of stress cycle, σe(t) is the fatigue (endurance) limit, t is a time. In the paper, we assume 

that ω(t) and σ-1(t) are statistically independent random functions of time.  

 

2. Characteristics of loading 

This paper deals with the designs which are under the influence of cyclic loads with a fixed 

level of deterministic amplitude and random frequency. Such a situation can be realized in the 

systems for which the most dangerous regimes of operation are well-known and studied, but there is 

uncertainty as to the occurrence of these regimes. For example, these are the regimes of start, stop, 

etc. 

We assume that the frequency of these regimes is a stationary random process, i.e., probabilistic 

characteristics of the process are independent of the starting time. Probabilistic characteristics of the 

process should be determined on the basis of the statistics of the operation of the design or its 

prototype. Expectation, variance, and correlation function of frequency can be known. Determination 

of the valid characteristics of the frequency requires a large number of statistical data, which often 

leads to considerable difficulties. Therefore, in practice it makes sense to postulate a priori a form of 

the correlation function, and to only define its parameters. 

In this paper, approximation by the exponential law is used [2]. The parameters of 

approximation are variance (σω
2
) and intensity (λω) of the appearance of dangerous regimes 
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The intensity parameter is determined on the basis of correlation time, i.e. the period of time 

necessary for the expected statistical influence of frequency of a dangerous regime within time t1 on 

the frequency of this mode within time t2 to vanish. The correlation time can be found on the basis of 

the operation conditions and also can be calculated using the following equation [3]: 
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The intensity of the frequency of occurrence of the dangerous regime is defined as λω=1/τω 

taking into consideration the accepted form of the correlation function and a priori determined 

correlation time for the frequency of occurrence of  dangerous regimes.  

The intensity was assumed to be equal to 1 for the computation of test examples in this paper. 

Such assumption does not reduce the generality of the results due to the arbitrariness of the time scale. 

 

3. Modeling the degradation as a gradual reduction fatigue limit in time 

There are papers dealing with the experimental study of the natural aging processes of different 

materials [3-7]. 

The most detailed studies of the degradation processes are carried out in in elastomers, due to 

the relatively short time of  noticeable changing of their mechanical and strength properties. For 

example, in [3,4], the results are represented for the rubber-like material used in the tire industry. In 

this case, it was found out that the natural aging of rubber during the 4 years leads to a decrease in its 

static and fatigue strength in more than 3 times. In [3] a hyperbolic dependence of the strength, 

decreasing was observed and described. 



Oleksiy Larin, Oleksii Vodka 
 

395 

 

The works [5-8] deal with the study of aging of metals and alloys. In this case, it is determined 

that the natural aging of the metal has little effect on its static strength and elastic characteristics, but 

significantly changes the long-term strength (resistance to fatigue). Thus, in [5] for 45 steel it was 

found out that natural aging of the material for 50 years results in a change of static strength 

properties only within 5%, but reduces the fatigue limit by 44%. In the article it is argued that the 

fields of dispersion of the experimental data for non-aged and aged specimens do not overlap. A more 

detailed analysis of the samples allowed the authors to identify the fundamental structural changes in 

the processes of nucleation of fatigue micro- and macro- cracks in the material. Similar results were 

obtained in [6] for 20 steel – thus, it was determined that the aging during 15 years reduces the fatigue 

limit by 38%. 

Summarizing the data from the literature on the degradation processes in this article we suggest 

the process of reducing the limit of fatigue to be considered as a hyperbolic dependence of the form: 
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where βi and p – approximation parameters, σe
*
 – fatigue limit for non-degraded material. 

The approximation parameter p determines the character of the decrease of the fatigue limit. 

The value of parameter p equals to 1 is used for polymer materials and p = 2 relevant for metals. 

Typical curve (p = 2), which describes the degradation of the fatigue limit is shown in Fig. 1. As the 

input data the results presented in [5] are used.  

It should be noted that there is the necessity to consider variations in the values of the fatigue 

limit. Obviously, during the aging process of the material this uncertainty persists or even increases. 

Therefore, we assume that the fatigue limit is the product of the normalized to a unit function φ(t) and 

the values of the fatigue limit at the initial time is a random variable, which (as recommended in 

[9,10]) follows the log-normal probability density function: 
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where s and μ are distribution parameters, which are determined from the values of mean and variance 

(or coefficient of variation) of the fatigue limit. 
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The notation <...>  for mathematical expectation operator and Var[...] for the operator of the 

variance are introduced in the formulas (7); *
e

V
M

is a variation factor. 

Thus, the variation of the fatigue limit is a random non-stationary process. Its one-dimensional 

probability density function could be obtained from the linear transformation of the random variable 

σ*
e (5) and has the form: 
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Figure 2 graphically shows the one-dimensional probability density function of the random 

process of the decreasing in time of the fatigue limit. Graphs are built for the approximation with 

p = 2. 

It is useful to normalize the fatigue limit by its mean value. Let us introduce a change of 

variables: 
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where χ is a random variable that obeys the log-normal distribution, and has a unity mean value and 

variance equal to the variation factor of the fatigue limit in non-aged state 

 

 
Figure 1. Approximations of the decreasing of fatigue limit due to natural aging 

(approximation is built for 45 steel according to data given in [5]) 
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Figure 2. One dimensional probability density of the random process of the limit of fatigue 

strength falling over time as a result of degradation of the material 

 

4. Probability characteristics of the process damage accumulation 

The process of damage accumulation is described by the equation (1). It is a nonlinear 

differential equation due to the power dependence of the damage parameter and presence of the 

variable in time function of material degradation @(t). The equation (1) can be represented in 

quadrature  
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It is useful to simplify (11) substituting the variables which leads to the reduction to a linear 

relation. Let U(t) be a new function which equals to: 
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Under the notations (9) and (12) one can obtain: 
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The mean value of the function U(t) is easily found by the averaging procedure taking into 

account the hypothesis of statistical independence of the loading and degradation processes: 
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The correlation function of U(t) which is expressed through the second initial moment is used 

to determine the variance  
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Using the integral representation of the function U(t) (13) and the hypothesis of independence 

of the processes of loading and degradation, one obtains the following expressions: 
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fχ(χ) is the log-normal probability density function with mean and variance, which are 

determined by the expression (10). 

The second initial moment of a random frequency is expressed in terms of its correlation 

function and its squared mean value, which is a constant due to the assumption of stationary of 

processes. 
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The variance of the function U(t) is calculated from its correlation function  
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Due to the additivity of the process of accumulation of the function U(t) it can be assumed that 

it satisfies the conditions of the central limit theorem, starting from a certain period of time. Then the 

probability density function of U(t) has the form of a normal Gaussian distribution with the 

characteristics (14) and (21). 

Using the relationship between the process U(t) and damage (10) the probability density 

function of damage can be written in the form (23) 
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Then the mean and variance of damage can be determined by the equation (24) 
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The spread of damage parameter values can be defined as a confidence interval with a set level 

of the confident probability α: 
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where α = 0,9973 which corresponds to the area under the normal law, obtained by the three sigma 

rule; Sl(t) and Sr(t) – left and right border of the damage spread (confidence interval). 

Reliability function can be found from (27), and the density of the probability of failure is 

determined from (28). The mean and variance of time to failure are determined from (29) and (30). 
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5. Performing test calculations 

Based on the proposed approach to the determination of the probability parameters of fatigue 

damage accumulation with the natural degradation of the material properties was carried out a series 

of test calculations. We assume that at the dangerous modes stress amplitude than the normal value of 

fatigue limit by 2 times, the intensity of the frequency of dangerous regimes λω = 1, and the average 

frequency <ω> = 30. The variation of frequency is 0.5, i.e., standard deviation of the frequency is 1/2 

of its average value. Degradation is modeled according to the data given in [5], i.e., it was thought that 

for 50 years the fatigue decreased by 44%. Random variations in the fatigue limit at a time to be fixed 

with a coefficient of variation of 0.05. The results of the calculations are shown in Figures 3 and 4. 

Predicted life-time parameters are listed in Table. 1  
 

Table 1. Predicted life-time parameters 

subject to degradation without degradation 

<Tr> Var[Tr] VT <Tr> Var[Tr] VT 

732.66 896.79 0.040 3963.97 478611.1 0.175 
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Figure 3. The accumulation of damage to time with the degradation of (a) and without (b) 
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Figure 4. Reliability function and the probability density of failure: a,c - subject to 

degradation of b, d - without degradation 

 

Conclusions 

In this paper a new approach to predicting life-time under high-cycle fatigue, which is made 

in the stochastic way and allows taking into account the natural degradation of the material properties 

have been proposed. Resolving equations to determine the mathematical expectation and the variance 

of the correlation function of damage accumulation function have been obtained. The proposed 

approach allows for the analysis of reliability and life prediction of structures designed for long 

service life, the accumulation of damage to which only occurs when the realization of dangerous 

regimes, the occurrence of which is random. 
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Micro-macro analysis of creep and damage 
behavior of multi-pass welds 
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Abstract 
Different zones of welded joints are subjected to different temperature fields during the process of 
welding. Furthermore, in multi-pass welding heating and cooling cycles, which occur due to the 
overlap of the pass beads, form a complex microstructure. In this paper a method of evaluating the 
creep response of the multi-pass weld based on the micro-macro mechanics approach is introduced. 
Multi-pass weld microstructure that consists of columnar, coarse-grained, and fine-grained zones is 
considered. The materials of these constituents assumed to be isotropic. Weld metal properties of 
inelastic behaviour have general type of symmetry and are described by an anisotropic creep 
constitutive model. 
To model the microstructure of the multi-pass weld metal the representative volume elements 
(RVE’s) with different number of passes are created and analyzed with FEA software ABAQUS. 
Numerical tests on uniform loading of the RVE’s are performed. Creep material properties for 
equivalent weld material are found for welds with different number of passes.  
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Introduction 

Quite often welded constructions are found damaged before the predicted lifetime of 

components [1]. One of the reasons for that is mismatch in creep deformation properties between the 

weld and the parent metal, non-favorable weld shapes, which result in stress concentrations developed 

within the weldment. This combined with the fact that creep produces damage in the form of voids 

and micro-cracks leads to material failure. A typical weld in a component consists of parent material, 

heat affected zone and a weld metal. The two parent materials joined by the weld may be made from 

same one or different. The weld and parent material can have the same or different composition. But 

even for welds joined by the weld metals with the same composition as the parent materials, the creep 

properties in parent, heat-affected zone and weld materials will be different [2]. Thus, the weldments 

are highly complex heterogeneous structures. Moreover, in the case of multi-pass welds, the weld 

material is also inhomogeneous. It consists of overlapping weld beads that will create specific heat 

affected zones within the weld metal because of cooling and heating from the next pass. A single weld 

bead generally consists of a columnar solidification structure. However in multi-pass weld when the 

further bead is laid over the previous one, part of it will be recrystallized and this will create coarse 

and fine grained structure [3]. It should be noted that the design rules of weldments under pressure are 

based only on the long term fracture properties of weldable material at uniaxial tension. However in 

reality such constructions operate at multi-axial stress state conditions. All of these factors make it 

important to take anisotropy into account in modeling creep behaviour of the multi-pass weld.  

1.  Constitutive Equations of Anisotropic Creep 

The strain rate – stress relations for creep of anisotropic materials are based on the assumption 

of the existence of the creep potential. The creep potential hypothesis is widely used for continuum 
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mechanics modeling of isotropic and anisotropic creep [4]. During the secondary creep stage strain 

rate is defined by the scalar valued potential W(σ ) and the flow rule: 
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.                                                                     (1) 

 

For simple determination of creep potential on basis of uni-axial creep tests, the equivalent 

stress  eqMM is introduced as intermediate scalar argument W( // 0eqM σ ). The Norton-Bailey’s power law 

is assumed here for the approximation of the strain rate-stress relations. 
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where the material parameters , K n  depend on the temperature.  

The form of equivalent stress depends on the symmetry type of material. Materials of columnar, 

coarse and fine grained zones assumed to be isotropic. In case of isotropic creep, equivalent stress is 

suggested as von Mises type. For the Norton-Bailey type potential the flow rule results in: 

 

                                                        13
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The macroscopic creep properties of equivalent continuum are anisotropic in general case. The 

symmetry type of equivalent media is determined by geometric structure of multi-pass weld and the 

creep properties of the microstructure components [5]. For modeling anisotropic creep behaviour the 

equivalent stress is assumed in the general quadratic form: 

 

                                                                     
// 042 ,eq � � � � �σ σ B σ                                                      (4) 

 

where 
// 04

B  is the symmetric positively definite fourth rank tensor. The number of independent tensor 

components depends on symmetry class of equivalent continuum. For most multi-pass weld geometric 

structure RVE allows to consider equivalent continuum as an orthotropic solid. In this case tensor 
// 04

B  can be presented in the base of orthonormal vectors 1 n , 2n , 3n , which are perpendicular to 

symmetry planes of orthotropic solid:  

 

                                                       
// 04

ijklb� a a ai j k lB n n n n .                                         (5) 

 

In this case tensor 
// 04

B  includes 9 nonzero independent components  ijklb (including K in 

Norton-Bailey’s law). With equivalent stress (4) the secondary creep equations for orthotropic solid 

can be written as follows: 

 

                                                                      
/ 0041n

eqKM �� � �1n
eqKMKM ��ε B σ .                                                   (6) 

 

Creep law for all microstructure zones of weld reflects the incompressibility of materials. 

Therefore it is assumed that the creep deformation does not produce a change in volume of equivalent 

continuum. The spherical part of the creep rate tensor is set to zero: 

 

                                                               
// 041 0n

eqtr K trM � ) *� � � �- .
1n

eqK t1n
eqMKε B σ .                                           (7) 

 

The volume constancy assumption reduces number of independent components of tensor B to 

6. Identification of independent material constants in the equivalent stress and the creep potential for 
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homogeneous solid carried out experimentally. Only for secondary creep stage 6 independent stress 

states should be implemented in order to identify 6 constants of equivalent stress. In addition, for 

identification of the parameter n in the power law (6) a few uni-axial creep tests for different constant 

stress values should be executed. Theoretical determination of effective properties of multiphase 

periodical materials has many advantages with comparison to experimental investigation. The 

analytical or numerical homogenization technique for periodical media enables to find effective creep 

properties for many variants of multiphase structures. In this paper FEM is used for the determination 

of the averaged parameters of the creep law of the multi-pass weld. 

 
2.  Numerical Procedure of homogenization for multi-pass welds 

2.1 Analysis of anisotropic creep 
To model the anisotropic creep of multi-pass welding the representative volume element RVE 

is created as prismatic body with the transversal section shown on the Figure 1. This section is 

considered as the repeated unit cell periodically distributed in the plane OXY. The axis Z is directed 

along the weld seam. Material properties of weld metal grain size zones are assumed to be isotropic. 

To describe the creep behaviour of weld metal zones, the Norton creep law is used (3).  

 

 
Figure 1. Finite element model of Representative Volume Element 

 

Material parameters used for (3) are taken from [6] and are presented in Table 1. It should be 

noted that it is impossible to make the specimens directly from fine and coarse grained zones 

independently, that is why for this heat affected zones, material properties in
 
them are assumed equal. 

 
Table 1. Parameters of Norton law for weld metal zones 

 

Zone type K, 
nMPa

sec

�

 
 

n 

Columnar  
212,74 10���  7,86 

Coarse grained  
201,37 10���  7,86 

Fine grained  
201,37 10���  7,86 

 

The creep law for the homogenised continuum is presented by the averaged components in the 

volume V of the unit cell. 
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where ijD ijD  and klMM  are the averaged creep strain rates and stresses, which correspond to uniform 

macroscopic strain rate and stress: 
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For identification of 6 material constants in (8) 6 independent numerical tests should be 

executed. Since the structure of the weld material with a sufficiently large number of passes can be 

assumed periodical, three types of representative volume are created - a reference one (8 passes), the 

realization with twice more passes and realization with a half of the number of passes. Due to the fact 

that in different zones on microscale level creep behaviour is described by the different relations 

numerical experiments should be carried out to define the possibility to how equation (8) 

approximates the creep behaviour on the macroscopic level. 

Series of creep analysis of RVE are performed under the constant uniform stresses for different 

time levels. From the results of numerical experiments one can extract the set of strain rate values for 

the different time moments // 0  1it i N� b . For example, let us consider the numerical experiment on 

tension in 11  direction. To derive the exponent in creep law, set of numerical experiments under 

different macro-stress 11MM  levels are made. Result of this series of  M experiments is the set of 11iD11i11D   

for different stress values 11 iMM , ( 1i M�� b ).  

 To process the results of numerical experiments, simplified relation (8) is presented in 

logarithmic coordinates: 

 

                                                                            11 11ln ln ln  K nD MM� � �11 ln11DD .                                                      (11) 

 

Material constants for creep law of homogenised material are defined by processing results of 

numerical experiments using the least squares method: 
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The other components of the tensor 
// 04

B  can be defined by processing the results of numerical 

experiments of uniaxial macroscopic stress state of other types.  

 

Table 2. Parameters of tensor B multiplied by K, 

nMPa

sec

�

 

- 8 – pass 16 – pass 4 – pass  

 1111b   1.64 10 n���   1.61 10 n���   
5.251.66 10���  

 2222b   1.51 10 n���   1.58 10 n���   1.49 10 n���  

 3333b   1.16 10 n���   1.18 10 n���   1.2 10 n���  

 1212b   1.33 10 n���   1.36 10 n���   1.35 10 n���  

 1313b   1.26 10 n���   1.27 10 n���   1.27 10 n���  

 

2.2 Damage analysis 
Thermal loading and melting-solidification cycles are not the only issue that influences material 

properties of the weld metal and HAZ in case of the multi-pass welds. Welding process itself creates 

structural imperfections and cracks on the weld metal. This phenomenon combined with voids and 

micro-cracks which nucleate during creep process may lead to the failure of the welded components 
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earlier than predicted during pure creep analysis. That is why it is necessary to include damage into 

account in modeling of the weldings behavior.  

As we assumed previously, weld metal constituents are isotropic so to implement damage in 

modeling behaviour of the weld metal during creep, Kachanov-Rabotnov isotropic creep damage 

model is used. In this model, the creep rate depends on the damage parameter that can be referred to 

fraction of the voids and micro-cracks in the cross-section of the uniaxial specimen during the damage 

process 

 

      / 0, ,cr crD D M �� / 0, ,0cr crD DDDD M �������                                                       (14) 
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,DA

A
� �                                                              (15) 

 

where 0A  is the initial cross-section area, and DA  is the area of the voids and micro-cracks caused by 

damage. Damage process in this case can be formulated with the evolution equation 

 

                                            / 0, ,� � M �� / 0, ,0� � M �������                                                         (16) 

 

Assuming power laws for creep and damage the constitutive equations for isotropic materials 

can be written as follows 
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where *t  is the time to rupture value. Similar to pure creep analysis, it is not possible to define 

parameters , , , , C D n m k  and l  for all weld metal zones. However to perform qualitative evaluation of 

the influence from the inhomogeneity of the weld metal, we can take creep curves (Fig. 3) of the 

columnar zone and fine-grained zone in HAZ of the base metal from [7], and assume that the relation 

between time to rupture would be the same as for the columnar and HAZ of the weld metal.  

 

 
Figure 3. Creep curves for columnar and heat affected zones [7] 

 

Processing the data from the creep curves and assuming that  n m�� , and  k l�� , relation between 

time to rupture of the weld metal constituents * * /  2.5h ct t �� , where indexes h  and с  are for HAZ and 

columnar zone respectively. Power indexes are set 3, 4n k�� �  for both materials.  
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To model the creep damage behavior of the equivalent homogenous material for weld metal, 

RVE from the previous analysis is used and the same set of numerical experiments is performed. As 

results of this numerical experiments damage parameter evolution during time is obtained.  

 

                
a)                                                                   b) 

Figure 4. Damage parameter evolutions for a) longitudinal and b) transverse direction 

 

On Fig. 4 one can see the difference in the damage parameter evolution between a) longitudinal 

tension test and b) test transverse direction. In case of the longitudinal direction damage parameter 

increases faster on the columnar zone, despite the fact that HAZ is more prone to damage according to 

the material parameters. This happens because of the stress redistribution due to creep in the 

longitudinal tension test. Obtained results show that stress during this numerical experiment 

concentrates in the columnar zone, and in some time points the equivalent stress in columnar zone 

may reach twice the value compared to HAZ. On the other hand, in numerical experiments on tension 

in one of the cross-section directions, stress redistributes between the zones not so dramatically, 

however still been higher in columnar zone. This is why damage parameter in these tests reflects 

material parameters better, and increases faster in more damage prone zone – HAZ.  

 

Conclusions 

Multi-pass weld joint as complex heterogeneous object was considered. As a result of finite 

element analysis on one-component loadings of a representative volume equivalent total strains are 

obtained and by processing them using averaging procedure the material constants for constitutive 

equation of the equivalent material were found. Influence of damage processes on a life period of the 

welded elements was analysed. 
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The paper presents the analysis of autofrettage process for thick-walled pipe in the case of plane 
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Introduction 

This paper is devoted to the analysis of material damage influence on the autofrettage process 

and determination of optimal conditions of autofrettage for thick-walled pipes.  

The issue of improvement of thick-walled pipes is important in many fields of heavy industry. 

It is especially important in military industry, because continuous improvement of armament requires 

an increase of strength characteristics of weapons. To give greater initial velocity for projectile it is 

necessary to increase pressure of explosion of powder gases in the barrel. However, the value of 

ultimate pressure is limited by material strength of a gun. 

To improve strength properties of thick-walled pipes loaded with internal pressure, as well as a 

low-cycle fatigue lifetime the process of autofrettage is often used.  

Such phenomenon as the Bauschinger effect may occur during unloading of a pipe. It is 

manifested by appearance of secondary plastic strains when a pipe is unloaded, and thus it leads to 

reduction of favorable residual stress. Therefore, for solving of autofrettage problems it is necessary 

to apply plasticity theory which allows considering the Bauschinger effect It’s influence on the 

autofrettage process has been investigated in papers [1, 2]. 

The autofrettage process is based on formation of significant plastic strains. Therefore, the 

material damage can occur. A pipe can withstand the pressure increase for some time before failure, 

in spite of the fact that the damage appears on the internal layers of a pipe in the place of maximum 

plastic strains. Continuum damage mechanics is used for modeling this behavior of material.  

As well as the Bauschinger effect, the damage of material leads to a decrease of residual hoop 

stress, therefore finding optimal conditions of the autofrettage has  great practical importance.    

1.  Coupled plastic-damage governing equations 

In order to simulate effect of softening at significant plastic strains occurring during the process 

of autofrettage the theory of damage mechanics in the case of isotropic damage is applied. 

Phenomenological models of damage growth based on thermodynamics of irreversible processes, and 

also methods of measurement and identification of parameters for damage evolution are considered in 

[3, 4, 5, and 6]. 
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According to the principle of equivalence of strains postulated in [3] any constitutive equation 

for a damaged material can be replaced by the same for an undamaged material by introducing 

effective stress tensor. Effective stress tensor is introduced in accordance with effective stress concept 

[7]: 

D
ij

ij �
�

1

~ M
M .                                                               (1) 

 

In order to obtain law of elasticity with damage, and also law of plasticity it is necessary to 

build a thermodynamic potential in form of the Helmholtz free energy. If we assume that damage does 

not depend on plasticity, and regard it only as the degradation of elastic properties the thermodynamic 

potential of its state variables in case of isothermal process will be written as: 
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In order to describe elasticity behavior of damaged material Chaboche [5] proposed to write  
e	  referring to the strain equivalence principle and effective stress conception in the following form: 
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Cauchy stress tensor and the thermodynamic force Y  associated with the damage parameter: 
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Depending on the choice of the second part of the thermodynamic potential (2) we can obtain 

different models for plastic behavior of the material. We used the model with linear isotropic 

hardening: 
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The second law of thermodynamics imposed positive intrinsic dissipation implies an existence 

of the potential of dissipation which is a scalar convex function of the dual variables and state 

variables acting as parameters: 
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The first part of the potential pF  is a plastic potential. To obtain associate plasticity theories 
pF  is chosen equal to the loading function f . Using von Mises yield criterion the loading function 

takes the following form: 
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It gives the constitutive equations for the evolution of dissipative variables. These laws of 

plasticity are derived from the plastic potential by means of a scalar multiplier which is always 

positive. This provides the normality condition of yielding for plasticity. For the chosen potential of 

plasticity the constitutive equations are defined as:  
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Here D
ijM  and iM  are stress deviator and stress intensity respectively. 

We can write the plastic multiplier 7�  through accumulated plastic strain rate p�  in the 

following way:  
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Accumulated plastic strain rate is defined as: 
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The second term dF  is a part of the potential (6) from which the kinetic law of damage 

evolution is derived. In [3] Lemaitre offered following form of the potential for ductile damage and 

respectively following form of the kinetic law for damage evolution: 
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The plastic multiplier 7�  is determined from the consistency condition 0�f� . The paper [8] 

presents the way of obtaining of the plastic multiplier and also relations between strain rate and stress 

rate built by means of fourth-order tensor which is defined by current stress state, constants of 

elasticity, values characterizing plastic behavior and damage evolution of material. An incremental 

constitutive relations have been offered in the following form: 
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Here ijklB  is the fourth-order tensor known as the elastic-plastic-damage tangent operator which is 

defined in [8] as: 
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Here ijklC  is the fourth order Hooke’s elastic tensor. 

Relation (12) can be written in invertible form:  

 

klijklij H DM �� �
                                                               

(14) 

 

2.  Solving of the problem of autofrettage for thick-walled pipes 

Modeling of autofrettage process consists in following: at the first stage we solve the problem 

of loading of the pipe subjected to internal pressure, and at the second stage pressure is removed, and 

we solve the problem of unloading. After unloading of the pipe there is residual stress state which we 

have to investigate . 

Thick-walled pipe was considered under the assumption of plain strain. In this case relations 

between stress rate and strain rate according to (14) in cylindrical coordinate system are written in the 

following form: 
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;1211 �DDM ��� HH rr ��  

 .2221 �� DDM ��� HH r ��                                                            (15) 

 

For small deformation analysis relationships between strain and displacement are obtained: 
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Differential equations of equilibrium: 
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The set of equation (15) - (17) can be reduced to one resolving equation for displacement rate: 
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The second order differential equation should be complemented by boundary conditions at 

inner and outer radius. For displacement rate boundary conditions will be written as: 
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For solving the nonlinear elastoplastic problems we used iterative Newton-Raphson method 

which is based on sequential approximations of linear problems. In order to determinate the plastic 

multiplier on each equilibrium iteration the implicit radial return integration scheme was applied.  

Damage parameters were defined by means of explicit scheme. Detailed description of these methods 

is given in [9, 10]. Boundary problem was solved using the finite difference method. In this way the 

differentiation operator in the equation (18) was replaced by the finite differences. Arising set of 

linear equation was solved by the sweep method [11]. We have developed the solving algorithm 

which was implemented by using software Microsoft Visual Studio 2008 and programming language 

Visual С#. 

 

3.  Analysis of results 

For the calculation we take the following parameters: inner radius 05.0�a  m; outer radius 

09.0�b m; Young’s modulus 5102 ��E MPa; Poisson's ratio 32.0�? ; yield stress 260�TM MPa; 

tangent modulus 3106 ��TE MPa; energy strength of damage 7�S MPa; damage threshold 

.05.0�Dp  

Figure 1 shows the distribution of residual hoop stress over pipe thickness for different values 

of autofrettage pressure. An increase of this pressure leads to a growth of the residual hoop stress until 

effects of material damage at significant plastic strains will not prevail. In order to obtain the optimal 

autofrettage pressure at which residual hoop stress on inner wall of the pipe has maximum value we 

carried out the calculations with different values of pressure. When autofrettage pressure reaches 

value equal to 604�P MPa the residual hoop stress have a maximum in absolute value. The damage 

parameter is then equal to 125.0�D . Figure 2 shows distribution of residual hoop stress under the 

pressure equal to 604�P MPa taking into account the material damage and excluding the damage 

effects. You can see that residual hoop stress significantly less if we take into account the material 

damage. Figure 3 shows the distribution of the damage parameter for different values of autofrettage 
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pressure. The damage is accumulated on inner bore of the pipe in a place where the level of 

accumulated plastic strains reaches its maximum value.  

 
Figure 1. Distribution of the residual hoop stresses  

 

 
Figure 2. Distribution of the residual hoop stresses 

 

 
Figure 3. Distribution of the damage parameter 



Gennadiy Lvov, Volodymyr Okorokov 
 

411 

 

Conclusions 

The analysis of the material damage influence on efficiency of the autofrettage process has 

been performed. Elasto-plastic constitutive equation with strain hardening and material damage has 

been introduced to the model of material behavior. The proposed material model is derived using 

rigorous and consistent thermodynamic formulation. The additive decomposition of the Helmholtz 

free energy concept is used to define the thermodynamic conjugate forces associated with the internal 

state variables, including the damage thermodynamic conjugate force (damage energy release rate). 

The energy dissipation mechanisms are formulated to satisfy the first inequality of thermodynamics, 

and to postulate the plastic and damage dissipation functions.  

Continuous increase of autofrettage pressure proved not to lead to a growth of residual hoop 

stresses. As well as the Bauschinger effect the damage of material reduces favorable residual hoop 

stress. The optimal value of autofrettage pressure at which residual hoop stress has a maximum value 

has been found. Also comparison of the results obtained taking into account the material damage and 

excluding influence of the damage showed that residual hoop stress with damage significantly less 

than without the damage effect. 

Once the technological process of the autofrettage is completed it is necessary the subsequent 

mechanical treatment of a pipe. It consists in removing material on inner bore of the pipe. Therefore, a 

zone occupied by the material damage formed in a place of maximum plastic strains can be removed. 

Also it will lead to reduction of the residual hoop stress. Therefore, further interest is investigation of 

residual stress-strain state of thick-walled pipes after the removal of material. 
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Abstract 
The paper presents results of the influence of initial fatigue loadings on the tensile stress-strain 
curves of AISI 1045 steel. Tensile characteristics were determined using servo-hydraulic testing 
machine at wide range of strain rates. It was found that the cumulative fatigue damage introduced 
into material may significantly affect the mechanical behavior of AISI 1045 steel. Lower CFD values, 
i.e. 25% and 50% induce the increase in the flow stress value, whereas further increase of CFD to 
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Introduction 

Development of the reliable method of the cumulative fatigue damage (CFD) assessment is 

major engineering challenge. Many structural effects related to the fatigue loadings still requires 

further research despite the fact that first works of Palmgren [1] and Miner [2] concerning the linear 

rule of fatigue damage growth were presented almost one hundred years ago. The investigations 

which have been carried out until nowadays were focused mainly on prediction of the structure 

lifetime on the basis of stress or strain magnitude and number of cycles [3-5]. Very comprehensive 

review of various methods of CFD estimation may be found in another paper [6]. 

On the contrary, instead of lifetime prediction, in this work attention has been focused on 

analysis of the effect of fatigue damage growth on the constitutive relation describing mechanical 

properties of AISI 1045 steel. The presented approach may be very important for the purposes of 

numerical simulation of structures behavior under extreme loading conditions i.e. energy absorbing 

structures [7]. Currently, FEM analysis are usually carried out applying viscoplastic material 

properties determined for the as-received material state [8]. Therefore, the influence of operational 

loads applied to the structure in normal use are not taken into account. This kind of simplification may 

lead to discrepancy between the simulation results and real behavior of the structure. Incorporating 

into calculation of the cyclic loadings influence on the evolution of elastoplastic material behavior 

may lead to increase accuracy of FEM modeling. 

The number of papers concerning influence of the fatigue loadings on the visco-plastic material 

properties is very narrow despite practical importance of this phenomenon. According to the 

researches that have been carried out [9] the influence of fatigue loadings on the evolution of stress-

strain characteristics may be different depending on the material microstructure. For the 6061-T6 

aluminium alloy the influence of cyclic loadings on the characteristics determined at quasi-static and 

dynamic loading conditions may be neglected whereas the test carried out under the same loading 

conditions for AISI 4140T steel shows clearly visible effects of flow stress lowering.  
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Similar analysis has been done for 2017A-T3 and 5454-O aluminium alloys [10]. The 

specimens pre-strained under the high cycle fatigue loading conditions were subsequently subjected to 

tensile loadings at high strain rate equal to 300s
-1

. For the 2XXX series alloy a very significant drop of 

tensile force has been found, whereas the second alloy was insensitive to initial fatigue. The authors 

conclude that tensile curve is determined by microstructure of a given material since the pre-strain 

loading parameters has no results on the tensile curve.    

In order to estimate the influence of the localization of Ti-6Al-4V alloy micro damages on the 

tensile characteristic the research composed of two stages has been carried out [11]. At the first phase 

the pre-fatigued specimens were subjected to tensile test. Subsequently, in the phase two, material 

after the same initial loadings like for the phase one was machined in order to remove surface layer. 

Afterwards the machined specimens were tested at tensile conditions. On the basis of comparison 

between tensile test carried out in the phases one and two, the authors conclude that the surface layer 

has a crucial importance in the phenomenon of mechanical properties degradation.  

This work presents the results of analysis of the influence of initial tensile cyclic loadings on 

the constitutive relation estimated on the basis of stress-strain curves obtained at strain rates within the 

range from 10
-4

s
-1

 to 10
0
s

-1
. Proposed methodology of hybrid loadings was applied on the example of 

AISI 1045 steel. The chemical composition of the tested material is presented in Table 1. The 

specimens were fabricated by machining from a drawn rod of 1045 AISI steel. The shape of 

specimens was cylindrical with tangentially blending fillets between the test section and the ends. The 

gauge length and diameter were equal to 12 mm and 4 mm respectively. The surface was polished 

after machining. 

 
Table 1. Chemical composition of AISI 1045 steel 

C Mn Si P S Cr Ni Cu Mo 

0.43 0.71 0.25 0.015 0.017 0.07 0.08 0.22 0.018 

 

The research procedure consists of the following stages: 

- determining of the stress-strain curves of AISI 1045 steel in the as-received state at wide 

range of strain rates; 

- estimation of Wöhler chart of steel under cyclic tensile loading conditions; 

- introducing initial fatigue damage into specimens; 

- determining the stress-strain curves of pre-fatigued material; 

- calibration of coefficients of the Johnson-Cook’s constitutive equation on the basis of stress-

strain curves [12]. 

 

1.  Tensile test of AISI 1045 steel at wide range of strain rates 

The tensile stress-strain curves of AISI 1045 steel in the as-received state were determined 

using the Instron servohydraulic testing machine. The strain of specimen was measured using electro-

mechanical extensometer with a length of 10 mm. In order to obtain the true stress and strain values 

the axial strain was recalculated using the final diameter of the neck near the fragmentation zone. The 

characteristics obtained at three various strain rates equal to10
-4

s
-1

, 10
-2

s
-1

 and 10
0
s

-1
 are presented in 

Fig.1a. The strain rate sensitivity chart of AISI 1045 steel is shown in Fig. 1b. The tested material 

shows clearly visible effects of work hardening and strain rate hardening as well.   

 

a) b)  
Figure 1. Mechanical properties of 1045 steel in the as-received state a) stress-strain curves; 

b) strain rate sensitivity chart 
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2.  Fatigue tests  

The next stage of analysis has been made in order to determine the S-N curve of AISI 1045 

steel. The fatigue tests were carried out under the tensile loading conditions (R=0) at various stress 

amplitudes σa within the range from 550MPa to 750MPa. Obtained characteristic is presented in Fig. 

2. Subsequently, initial fatigue loadings of two selected amplitudes i.e. 550MPa and 750 MPa have 

been introduced into specimens. Using the following formula: 

 

   �
�

�
k

i i

i

N

n
CFD

1

       (1) 

 

the number of cycles was selected in order to obtain CFD value, estimated using Miner’s linear rule 

equal to 25%, 50% and 75%. The number of cycles was equal to 98 000, 196 000 and 294 000 for 

fatigue stress amplitude equal to 550MPa and 10 750, 21 500 and 32 250 for fatigue stress amplitude 

equal to 750 MPa.  

 

 
Figure 2. S-N curve of the 1045 steel  

 

3.  Tensile tests of pre-fatigued specimens  

The tensile stress-strain curves recalculated to true values are presented in Fig. 3 and Fig. 4 for 

pre-fatigue amplitude equal to 550MPa and 750 MPa, respectively.  

The tests were carried out at various strain rates. The limited material softening effect may be 

observed at CFD equal to 75% for specimens pre-strained at amplitude equal to 550MPa. The effect 

of material softening at the same CFD value is stronger at pre-strain amplitude equal to 750MPa. 

Moreover, after the initial hardening at CFD equal to 25% and 50% the clearly visible lowering of the 

flow stress due to fatigue damage growth may be observed.  

The increase in work hardening modulus at strain rate equal to 10
0
s

-1 
may be found for both pre-

fatigue stress amplitudes. The effect is clearly visible at CFD=25% and 50%. The further increase of 

initial fatigue cycles to CFD=75% reduces the effect, however it still may be observed. 
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a)  

b) c)  
Figure 3. Stress strain curves of 1045 steel, after given number of pre-fatigue loadings cycles of 

magnitude equal to 550 MPa; a)
14

10
��� sD�    ; b) 

12
10

��� sD�  ; c) 
10

10
�� sD�  . 

 

The strain rate sensitivity chart is presented in Fig. 5. For the pre-fatigue stress amplitude equal 

to 550 MPa the effect of flow stress lowering may be found at strain rate equal 10
-2

s
-1

 whereas at 

strain rate equal to 10
0
s

-1
 flow stress has higher value in comparison to as received material. The 

phenomenon influence of CFD on the strain rate sensitivity disappears for pre-strain amplitude equal 

to 750 MPa.    

 

a)  

b) c)  
Figure 4. Stress strain curves of 1045 steel, after given number of pre-fatigue loadings cycles of 

magnitude equal to 750 MPa; a)
14

10
��� sD�    ; b) 

12
10

��� sD�  ; c) 
10

10
�� sD�  . 
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a) b)  
Figure 5. Strain rate sensitivity of 1045 steel after given number of pre-fatigue loadings cycles of 

magnitude equal to a) 550 MPa; b) 750 MPa  
 

4.  Constitutive modeling using Johnson-Cook’s equation 

Coefficient A, B and n of the Johnson-Cook’s constitutive model of ASISI 1045 steel were 

calibrated on the basis of tensile curves determined at quasi-static loading conditions i.e. strain rate 

equal to 10
-4

s
-1

. The analyses were carried out for as-received and pre-strained material. The 

comparison between measured and calculated stress-strain characteristics presented in shown in 

Fig. 6. A good agreement between experimental and model based curves has been achieved. The 

influence of strain rate on the flow stress is presented in Fig. 6. It may be stated that pre-fatigue 

introduces a large discrepancy between experimental and numerical predictions, especially for the 

case of pre-fatigue stress amplitude equal to 550 MPa. 

 

a) b)  
Figure 6. Quasi static stress-strain curves of 1045 steel calculated using JC model after given 

number of pre-fatigue loadings cycles of magnitude equal to a) 550 MPa; b) 750 MPa 

 

a) b)  
Figure 7. JC model of 1045 steel after given number of pre-fatigue loadings cycles of magnitude 

equal to a) 550 MPa; b) 750 MPa 
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Table 2. JC Coefficients 

Max. Stress 
[MPa] 

CFD 
[%] 

JC coefficients 

A B n C 

As-received 
material 

0 679 723 0.33 0.009 

550 

25 750 734 0.41 0.010 

50 735 736 0.40 0.009 

75 750 673 0.41 0.009 

750 

25 852 1102 0.70 0.008 

50 860 1085 0.43 0.007 

75 738 652 0.39 0.006 

 

Conclusions 

The tensile fatigue loadings influence on the stress strain characteristics of AISI 1045 steel. 

Therefore the coefficients of constitutive equation describing mechanical properties of the material 

are also affected. 

For both pre-fatigue stress amplitudes for CFD equal to 25% and 50% the increase of flow 

stress in comparison to as-received material may be found. The further increase in the number of 

cycles up to CFD=75% induces opposite effect i.e. material softening due to fatigue damage growth. 

Comparable effect may be found in both pre-fatigue cases, however for the initial stress amplitude 

equal to 750 MPa the phenomenon is much more intensive.  

Some changes in the strain rate hardening curves may be also found for the material pre-

fatigued by stress amplitude equal to 550 MPa. In comparison to as-received material, the initial 

loadings results in lowering of flow stress at a strain rate equal to 10
-2

s
-1

, and increase of the flow 

stress a strain rate equals to 10
0
s

-1
. The comparable phenomenon, however diminished, may be 

observed for the specimens, which are initially loaded at amplitude is equal to 750 MPa. 
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Abstract

A polycrystal unit cell is simulated and investigated under creep conditions within the framework of

continuum micromechanics. Geometrical 3D model of a polycrystalline microstructure is represented

as a unit cell with grains of random crystallographical orientation and shape. Thickness of the planes,

separating neighboring grains in the unit cell, has non-zero value. Obtained geometry assigns a

special zone in the vicinity of grain boundaries, possessing unordered crystalline structure and used

to represent grain boundary sliding. Within the grain interior crystalline structure is ordered, what

prescribes cubic symmetry of a material. According to this the anisotropic material model with the

cubic symmetry is implemented in ABAQUS and used to assign elastic and creep behavior of a

grain interior. Material parameters are identified from creep tests for single crystals copper. Material

behavior of the grain boundary region allows sliding within the grain boundary plane and disables

deformation in the normal direction. Overall behavior of the unit cell with the grain boundary region

is analyzed and verified according to the experiments under the polycrystalline copper.
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Introduction

The main mechanisms leading to the creep fracture are found to be dislocation creep within the grain,

diffusion transport of matter from the grain boundaries or interior and grain boundary sliding (GBS).

A lot of constitutive models exist, which enable good description of overall inelastic deformation of a

polycrystal. But they are not able to account processes occurring on the level of grain boundaries, such

as sliding or cavitation, which influence significantly macroproperties of material. The current work is

dedicated to the detailed simulation of a polycrystalline geometry and its mechanical behavior during

primary and secondary creep stages.

For the geometrical representation of polycrystalline material Voronoi tessellations [1] are widely used,

which allow to generate the geometry of a random grain microstructure. Elastic analysis of a 3D Voronoi

unit cell with a periodic mesh is performed in [2]. As one of the results isotropic elastic constants for

polycrystalline copper, gold and nickel are evaluated from the statistical analysis of the unit cells with

different number of grains. The 3D polycrystalline representation with detailed simulation of grain

boundaries is done in [3]. The grain boundaries are represented by additional layer of cohesive finite

elements which reproduce cracking. The layer of grain boundary elements is used to describe grain

boundary sliding and opening due to corrosion processes. In the current work grain boundaries as

separate geometrical objects are introduced. The mechanical behavior of this objects is assumed to

describe sliding. The cavitation model implementation is planned in future.

The grain boundary sliding in a polycrystalline material is not an independent process and does not occur

in the pollycrystalline material instantly after applying of loading. It occurs owing to the intergranular

deformation and in this way contributes to the total creep strain. Hence grain boundary sliding can be

caused by diffusion [4] or dislocation creep [5] deformation within the grains or by interaction of both

these mechanisms. Different grain boundary sliding models are presented in the literature [6].
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Dislocation based creep leads to the so called Rachinger type of sliding [7], which is characterized by

increase of the grains number along the specimen, but mostly does not influence the grain shape. The

slip within the grain interior leads to accumulation of dislocations on the grain boundaries. And the

sliding occurs because the continuity between the mutual grains should be held. As a consequence the

high–angle boundaries have a higher tendency to sliding, because the dislocations within low–angle

boundaries can freely slide under applied stress, not causing the displacement of grain boundaries.

Widely used way of a polycrystalline geometry representation is a 2 dimensional massive of equal size

hexagons. Such geometry is used, for example, in [8] in order to simulate grain boundary sliding. The

problem is solved with assumptions of a plane strain under applied shear stress. Grain elements are

prescribed to deform inelastically by the power law. The grains are connected by the thin layer of grain

boundary elements, which are prescribed to shear in a Newtonian viscous manner. The different ways

of viscosity coefficient are proposed depending on the grain boundary geometry. The similar approach

is used in the current work.

1. CAE model of a polycrystal

The microstructure of many polycrystalline materials can be presented by the Voronoi tessellation with a

random distribution of grain cores. An example of the grained unit cell constructed with the help of the

Voronoi tessellation is described in [2]. Within the current work the Python script is developed, which

allows us to design an analogous unit cell in ABAQUS. In the developed model the following input

parameters are defined: number of grains, average grain size, material properties, and grain boundary

thickness. The grain boundary thickness corresponds to the thickness of a plane, separating the neigh-

boring grains. The unit cell consisting of 50 grains with zero grain boundary thickness is depicted in Fig.

1(a). As it known from the literature [9] grain boundaries are not planes, but nonplanar regions which

(a) (b)

Figure 1. Polycrystal unit cell models with zero grain boundary thickness (a) and non-zero grain

boundary thickness (b)

in contrast to grains possess an unordered crystalline structure. Origins of such structure are the lattices

incompatibilities of neighboring grains, accumulated defects, obstacles, etc. Therefore it is necessary

to determine special material behavior for the grain boundary. For this purpose the unit cell with grain

boundary region is constructed, as it presented in Fig. 1(b). An important step in the simulation of the

polycrystalline body is the set of material orientations. For this purpose local coordinate systems are

used. In every grain the local coordinate system is specified, which is rotated by random angles rela-

tively to the global coordinate system of the unit cell. With this random crystallographical orientation is

reflected, which is observed in a polycrystal. For the grain boundary sliding representation one should

distinguish between the shear and the normal deformation of the grain boundary. Therefore an individual

local coordinate system is determined for every plane region of the grain boundary region. An example

of such coordinate system one can see in Fig. 2. In this case the direction ggg3 is set as a normal to the

grain boundary and other two directions ggg1 and ggg2 lie in the grain boundary plane. In the regions of
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X

Y

Z

ggg1

ggg2

ggg3

Figure 2. Grain boundary region with discrete material orientation.

grain boundaries junction the smooth transition from one coordinate system to another is automatically

performed by ABAQUS.

2. Constitutive model

The developed unit cell possesses two types of material: grain interior and grain boundary region. These

materials have different symmetry types and should represent different material response for elasticity

and creep. Material of the grain interior possesses ordered crystalline structure, which in the case of

phenomenological modeling is represented by the material with the cubic symmetry. In the vicinity

of a grain boundary crystal lattice is distorted and symmetry type of this region is determined not by

physical structure, but by its mechanical behavior. In the current model this region should allow sliding.

With respect to the directions given in Fig. 2 the sliding shear strains are: ε13, ε23. The strain in the

normal direction to the grain boundary ε33 should be neglected. For this purpose constitutive equations

for the material with orthotropic symmetry are formulated, which allow to distinguish between normal

and shear strain tensor components. Thus, orthotropic material model describes both faces: orthotropic

grain boundary region and after appropriate parameters set grain interior with cubic symmetry type.

2.1 Elasticity

In the case of elasticity the dependence between stresses and elastic strains for both regions is represented

through the material with orthotropic symmetry:

σσσ = (α1ε11 +α2ε22 +α3ε33)(α1ggg1ggg1 +α2ggg2ggg2 +α3ggg3ggg3)

+ [β1(ε11 − ε22)+β2(ε11 − ε33)]ggg1ggg1 +[β1(ε22 − ε11)+β3(ε22 − ε33)]ggg2ggg2

+ [β2(ε33 − ε11)+β3(ε33 − ε22)]ggg3ggg3

+ 2β12ε12(ggg1ggg2 +ggg2ggg1)+2β13ε13(ggg1ggg3 +ggg3ggg1)+2β23ε23(ggg2ggg3 +ggg3ggg2).

One can see in above formula 9 independent material parameters. With the following material parame-

ters set we transit to the material with the cubic symmetry, which characterizes the grain interior:

α2
1 = α2

2 = α2
3 = 353.3 MPa, β1 = β2 = β3 = 12333 MPa, β12 = β13 = β23 = 62300 MPa.

The values are taken from the tests under single crystal copper [10]. The physical meaning of every

coefficient is explained in details in the previous work [11]. For the grain boundary region the elastic

parameters are assumed to be the same except the relation α2
1 = α2

2 = α2
3 = 600 MPa, which allows us

to reduce the value of the bulk deformation.

2.2 Creep

In the case of plasticity crystal slip occurs on the crystallographical planes, which have the most prefer-

able orientation to the applied load. Under high temperatures and activation of the viscous processes in

the material one can observe a switching of one slip system to another, and also simultaneous operation
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of several systems. A well known approach for the description of the creep behavior of a crystalline

body is the crystal creep theory, which directly express the total creep strain rate through the shear rates

on different slip systems [12, 13]. Such approach leads to the determination of a big number of material

microparameters. In order to avoid this problem and receive the first estimation of the creep for the poly-

crystal unit cell an Odqvist–von Mises type anisotropic creep model based on the existence of the creep

potential is applied [14]. The creep strain rate tensor for the incompressible material with orthotropic

symmetry has the following form:

ε̇εεc =
1

2
aσn−1

eq

{
(µ1(σ11 −σ22)+µ3(σ11 −σ33))(ggg1ggg1 −

1

3
III)

+ (µ2(σ22 −σ33)+µ1(σ22 −σ11))(ggg2ggg2 −
1

3
III)

+ (µ3(σ33 −σ11)+µ2(σ33 −σ22))(ggg3ggg3 −
1

3
III)

+ 6 [µ12τ12(ggg1ggg2 +ggg2ggg1)+µ13τ13(ggg1ggg3 +ggg3ggg1)+µ23τ23(ggg2ggg3 +ggg3ggg2)]

}
.

where the expression for the equivalent stress is:

σ2
eq =

1

2

[
µ1 (σ11 −σ22)

2 +µ2 (σ22 −σ33)
2 +µ3 (σ33 −σ11)

2
]
+3

[
µ12τ2

12 +µ23τ2
23 +µ13τ2

13

]
.

Material parameters for the grain interior are evaluated from the creep tests under crystalline copper at

800 K 1 and they are:

a = 8.96 ·10−15(MPa)−n/h, n = 9.4, µ12 = µ13 = µ23 = 0.026.

µ1 = µ2 = µ3 = 1 are taken due to the assumption of the cubic symmetry of the grain material.

The shear strains in the grain boundary region are assumed to develop by the power law. The creep ex-

ponent ngb = 4 is reported in the literature [15]. Parameters µgb
1 = µgb

2 = µgb
3 = 1 ·10−7 are taken close

to zero in order to reduce the deformation in the normal direction. Other parameters should be obtained

from the numerical tests and comparison with the experimental data of the grain boundary sliding in a

polycrystalline copper with the average grain size 210 µm [16].

3. Results

The creep response of the unit cell varies depending on the number of grains and the thickness of the

grain boundary layer. With the less number of grains averaged stiffness of the unit cell decreases. This

occurs due to the fact, that deformation of an individual grain as a crystalline solid becomes more es-

sential. Also stress concentrations on the grain boundaries are significant. At the same time when the

number of grains increases, individual grains becomes constrained by others, possessing different orien-

tation. This leads to the stress redistribution and more homogeneous deformation of the unit cell.

Within the current work unit cells are tested with the same boundary conditions. Symmetric boundary

conditions are applied on three side faces of the cube in order to decrease boundary effects and to avoid

artificial displacements in the corners. On the forth face a uniform tensile stress is applied. Other two

faces are left free. Unit cells with 40, 80 and 120 grains and grain size 210 µm are tested under tensile

pressure of 40 MPa. The thickness of the grain boundary layer is set as a fraction of the grain size. The

fractions 0 (corresponds to the unit cell without grain boundary layer), 5 and 10 % are investigated. The

average creep curves in the loading direction are presented in Fig. 3. If to compare the creep curves

of the unit cells with 80 and 120 grains and equal grain boundary layer thickness, one can see that they

almost coincide in contrast to the creep curve of the unit cell with 40 grains, which lies much higher.

That means that the average stiffness of the unit cell has tendency to converge to a certain value with the

1Experimental data are furnished by courtesy of Dr.-Ing. Frederik Otto from Institute of Materials, Ruhr-University

Bochum
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Figure 3. Normalized averaged creep strain.

increase of number of grains.

So far as we would like to introduce the grain boundary sliding through the shear deformation of the

grain boundary region, the overall creep response of the unit cell is assumed to be more compliant in

contrast to the unit cell, where grains are glued. Therefore, unit cells with bigger volume of the grain

boundary region will exhibit higher creep rates.

In the real polycrystal there is no visible borders between grain boundary and grain interior. This region

can be described as a zone influenced by the lattices mismatch and accumulation of vacancies or inclu-

sions. Hereupon the thickness of the grain boundary region cannot be measured exactly. In the current

work we assume, that this value should be as less as possible and at the same time be numerically admis-

sible - too small value will lead to element’s distortion and a divergence of analysis.

In the experiment on the grain boundary sliding the vertical offset of the grains on the specimen sur-

face after creep loading is measured. From averaged value of the offsets the sliding strain is obtained,

which contributes to the total creep strain around 10 %. In order to reproduce this numerically, the unit

cells consist of 80 grains with the the average grain size 210 µm are constructed with and without grain

boundary layer. They are tested under constant tension with the stress magnitude of 40 MPa until the av-

eraged creep strain reaches the level 1.5 times higher than the averaged elastic strain. The sliding strain

is obtained as a difference of the average creep strain of the unit cell with the grain boundary layer and

without it. With the following model material parameters grain boundary sliding strain reached value of

10% from the total strain, predicted by experiments:

agb = 4 ·10−8(MPa)−ngb

/h, ngb = 4, µgb
12 = µgb

13 = µgb
23 = 0.2

The influence of the grain boundary region on the stress state of the unit cell is investigated. The grains

start to slide relatively to each other in that regions, where resulting shear stress is high enough. The

stress state within the grains is almost not affected by the presence of grain boundary region. However

high stresses within the grain boundary region are observed, especially in triple points and junctions

of grains. After loading positive normal stresses in the grain boundary region are 2.5 times greater

than averaged stresses in the grain interior. this can be explained by that fact, that the regions, where

shear stress is moderate, do not slide and thereby constrain sliding of neighboring grain boundaries and

produce stresses increase. This normal stress concentrators will be used as driving forces for the creep

cavity radius growth as it discussed in [17].

4. Conclusions and Outlook

In this study the creep behavior of the polycrystalline material is investigated. The phenomenological

power law creep model is used to assign grains material behavior within the unit cell. The assumption
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is made for the interaction between grains by introducing the grain boundary region. The constitutive

model within this region characterizes grain boundary sliding. The values of the elastic and creep model

parameters for the grain material are identified for copper from available experimental data. An approach

to determine material parameters for the grain boundary region is proposed. It is based on the numerical

testing and validation with the experimental data. Unit cells with and without grain boundary region

are analyzed. The unit cell with the 80 grains is assumed to be representative. From the numerical

considerations grain boundary thickness should be set to 5 % of the grain size. The local analysis of an

individual unit cell with recommended number of grains and thickness of boundary layer shows within

it stress concentrations in the normal direction. These stresses will be used as driving forces in future

simulation of the creep cavitation.
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Abstract 
Two-level models of different polycrystalline metal’s inelastic deformation based on crystal plasticity 
and describing viscoplastic intragranular dislocations slip, grain boundary sliding, twinning (for HCP
metals), lattice rotation with an explicit consider of dislocation slip incompatibility in neighboring
grains, and fragmentation of crystallites are developed. The homogenization of constitutive equations 
at various scale levels is used, which allows to connect the same type of characteristics of different 
scale levels and leads to an unambiguous description of geometric nonlinearity on the macro level by 
specifying the form of corotation derivative of Cauchy stress tensor. An algorithm for solving 
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Introduction 

Numerous theoretical and experimental studies show that the performance of the internal 

material  structure determines the behavior of the material at the macro level and its performance 

characteristics. During intensive plastic deformation the internal structure of the material is 

significantly restructured: the grain and dislocation structures are changing, crystallites lattice is 

rotated; it is widely used to produce materials with unique properties: submicrocrystalline, 

nanocrystalline, textured materials and materials, which are capable of superplastic deformation. 

At the time, the construction of models capable of describing the change of the internal 

structure of polycrystalline materials, a growing acceptance of the approach based on an explicit 

introduction to the structure of the constitutive relations parameters reflecting the state and evolution 

of meso- and microstructure evolution and the kinetic equations for these parameters (so-called 

internal variables) [1]. In particular, recent decades, a very wide development of crystal plasticity 

based models, which built in the framework of this approach and explicitly describing the material 

structure and the mechanisms of inelastic deformation at the crystallite level, is observed; this models  

allows a natural way to describe the structure evolution at deep plastic strain. 

Based on the crystal plasticity models can be divided into three classes [2,3]: statistics, self-

consistent and direct. Models of the last two classes require inaccessible currently computing 

resources, so for modeling of real processes statistical constitutive model are more popular. 

The article briefly discusses the general structure of the two-level models of polycrystalline 

metals inelastic deformation developed by the authors, explains how to homogenize the constitutive 

equations on different levels of scale, describes the algorithm for applying models of the material in 

the boundary value problems solution and obtaines the results.  

1.  The structure of two-level model of polycrystalline metals 
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In the simulation of polycrystalline metal’s inelastic deformation scale levels hierarchy can be 

defined as follows: the macro level – meso level (the level of crystallite – grains, subgrains, fragment) 

– micro level (the dislocation structure) (Fig. 1). Currently, the two-level models (macro-meso) are 

most commonly used for the analysis of polycrystalline metals deformation.   

 

 
Figure 1. Schematic representation of the scale levels hierarchy in the simulation  

of polycrystalline metals (from left to right: the macro-level, meso, micro) 

 

A representative volume of a polycrystalline metal, consisting of a set of crystallites (meso-

level elements) is considered at the macro level . The constitutive equations system at the macro level 

is [1]: 
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where Σ  is the Cauchy stress tensor, С is the  elastic properties 4
th
-range tensor, D, 

e in,cD D  are the 

strain rate, its elastic and inelastic parts, the index «r» means derivative independent of the choice of 

reference system, Ω  is the tensor describing the motion of the moving coordinate system, which 

defines itself in relation to deformational movement [4] on the macro level. To determine Ω  the 

homogenization condition for constitutive equations on different scale levels is proposed. Thus, the 

inelastic strain rate 
in

D , the effective anisotropic elastic properties C and describing the motion of the 

moving frame tensor Ω  are explicit internal variables in the macro-level model, at any moment 

depends on the structure at the lower scale levels (and through it depends on the loading history) and  

determined by meso-level model, used for each crystallite (number of meso level items N should be 

sufficient for a statistical description of a representative volume at the macro level).  

At the meso level the system uses the following relations (for the description of each crystallite, 

the index number of the crystallite is omitted): 
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where σ  is the Cauchy stress tensor, с is the  fourth-rank elastic properties tensor of the crystallite, 
e in, ,c cd d d  are the strain rate, the elastic and inelastic strain rate, γ ,i i

Cc  are accumulated slip and the 
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critical shear stress on the i-th slip system, 
i

m  is the orientation tensor of i-th slip system, 

1/ 2( )i i i i i�m = b n n b , 
i i

b , n is the unit vectors in the direction of the Burgers vector and the normal 

to the sliping plane; bedding planes and orientation of the Burgers vector along the translational 

motion (slip) of edge dislocations are known, they are the most densely packed planes and directions, 

so, in fcc metals sliding edge dislocations are in the planes of  81119 in directions �110�, 0γ ,n0γ ,0 n  are 

the сonstants of the material: the characteristic shear rate and strain rate sensitivity of the material [1], 
i  is the shear stress in the i-th slip systemие, :i i i � b n σ , / 0H �  is the Heaviside function, K  is  

the number of slip systems for considered type lattice, о is the tensor current orientation of the 

crystallographic coordinate system relative to the fixed grain laboratory system. 

As constitutive relation at the meso level Hooke's law in the  rate form is used (21), the 

geometric nonlinearity is takes into account: quasi-solid movement [4] associated with the rotation of 

the lattice (in crystallographic coordinates); spin tensor ω  in corotation derivative Cauchy stress 

tensor 
r

σ  characterizes the crystal lattice rotation. Thus, stress is characterized the elastic bonds in 

grain and determined by lattice distortions. 

Equation (22) is kinematic equation, according to which the inelastic deformation of the 

crystallite is define by sliding to slip systems. If other intragranular deformation mechanisms, such as 

grain boundary sliding or twinning in the (22) to the modes of intragrain dislocation glide mechanisms 

are added to the appropriate mode for shear rates that determine the kinetic equations.  

To determine inelastic deformation rate of polycrystalline metals can be used [2,3]: 

elastoplastic model based on the Lin model [5], or the elastoviscoplastic model used here (23), where 
in

d  (and ω ) associated with implicit internal meso-level variables characterizing dislocation slip – 

shear rates on slip systems γiγi
, the critical stress τi

C , tensor о of the crystallographic orientation of the 

current coordinate system of grain relative to a fixed laboratory system coordinates. Specification of 

equation (24), describing the evolution of the critical shear stress on the slip system, is in the paper [6].  

Taylor's hypothesis is applied for scale transition implemented at the macro level to the lowest 

levels in the scale model d = D .  

Relations (25) for the determination of the spin system the following ratio are used: 
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The first component 1ω  describes the rotation of the lattice with the grain material during the 

imposed kinematic effects (material associated with the orthogonal rotation tensor accompanying 

elastic deformation). The second component 2ω  describes the rotation of the actual crystallite lattice 

due to the interaction with the environment. To do this, the model (3) introduced the couple stresses 

μ  acting on the crystal, the critical moment stress μC  and set the normal to the crystallite 

, 1,...,m m Mc �q  ( M - number of neighboring crystallites).  Additivity of the  velocity moments of 

interaction with all neighboring grains is assumed in (34). The evolution of the vector-momentum 
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associated with the couple stress tensor and determines from the analysis of the incompatibility of 

dislocation motion on the boundary of the crystallites by equation (35). Based on the input of the 

couple stresses may be used for description of fragmentation [7]. 

  

2.  The homogenization procedure of constitutive equations for scale transition 

One of the keynote questions in the multilevel models construction is the issue of constitutive 

equations homogenization at various scale levels. The logical understanding of the problem is 

follows: macro level equations should be defining from meso level constitutive equations with a priori 

relations of the macro- and meso level parameters [1]; specific type of relations associated with the 

aggregation hypothesis (combining elements of meso level to the macro level element). For statistical 

crystal plasticity models a priori relation is the equality of velocity gradient, stresses and the effective 

elastic properties tensor at the macro level average the corresponding meso level characteristics (for 

the velocity gradient this conditions are automatically done due Taylor's hypothesis).  

The constitutive equations homogenization procedure for the proposed model are as the  

following:  

1) represent the quantities in the description of the stress-strain state at meso-level as the sum of 

average representative volume of macro-level variables and deviations from these averages; 

2) substitute this representation in the meso-level of the defining equation (21), the obtained 

relations are averaged; 

3) finding the form obtained in step 2 averaged meso-level constitutive equation running the 

macro-level (11), defining the necessary connections. 

For the proposed models the connections are  

=< >Ω ω ,   
1 1< > + : : ( < > < > )in in in� �� � � � � �� �c c � � �D d C < c :d > C ω σ σ ω (5) 

Thus, the proposed approach results in more focused form of the defining relations on the 

macro level (and in particular – the type of independent of the reference system choice derivative). 

Proposed method is easy to apply for other forms of constitutive relations for meso- and macro-levels 

for a wide range of constitutive models with internal variables. 

  

3.  Algorithm for solving boundary value problems using constitutive model and the 
simulation results 

The algorithm to use developed model for solving boundary value problems in FEM package 

ABAQUS is made. To do this, we use standard package – implementation of the proposed models in 

the custom procedure UMAT, including the integration of the constitutive equations of the model 

(determination of the stresses and internal variables at the end of step in the UMAT) and the definition 

of the current cutting modulus matrix 
{ }

[ ]
{ }

ep � �
�

� �
Σ

C
E

, where �Σ  is the  increment of stress on the 

step, �E  is the increment deformation step. The analysis was carried out, resulting in an analytical 

expression for 
ep

C  connecting it with the internal meso-scale variables. 

It should be note that many existing models [2,3] are not considered in the explicit level the 

constitutive equations at the macro level, but at numerical implementation in FEM-package Abaqus is 

the (implicity) introduction is macro-scale level is done, there are Jauman derivative of Cauchy stress 

tensor is used in Abaqus, which violates the consistency of the two-level constitutive model. It is 

shown that this approach can lead to physically incorrect. 

Using the developed software (other than computational module the post-processor for the 

analysis of results characterizing the changing internal structure was created) simulated for cyclic 

loading of samples from various polycrystalline metals is done. Figure 2 shows the characteristic pole 

figures for the [110]-direction under cyclic compression-tension. This one can note the good 

agreement between the results (for the parts of the sample away from the fixed boundaries) with 

experimental data. 
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Figure 2. Pole figures for the [111]-direction, projecting from OX3, from left to right: when 33ε 1� �   

(after compression), 33ε 1�  (after tension), 33ε 1� �  (after re-compression) 

 

Conclusions 

To describe the deformation processes of polycrystalline materials with the evolution of its 

meso-structure two-level constitutive model based on the crystal plasticity is developed. Approach to 

the homogenization of constitutive relations at different scale levels, allowing precise constitutive 

relations form ratio at the macro level (and in particular independent of the choice of the reference 

system derivative of stress tensor), proposed and applied. 

An algorithm for solving boundary value problems using the Finite Element Method was 

implemented in the Abaqus package. With the use of modeling software system obtained results 

during cyclic loading of samples from various polycrystalline metals, including the evolution of the 

internal structure: the shape, size and orientation of the crystallographic axes of the structural 

elements of the polycrystalline aggregates (grains, subgrains, fragments), effective macroscopic 

elastic and plastic properties of polycrystalline materials, the results are in good agreement with 

experimental data. 
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Two-level Polycrystal Models and Investigation 
Influence of Hardening Laws on the Macro 
Effects of Complex and Cyclic Loading 

Pavel S. Volegov1*, Peter V. Trusov1, Anton Yu. Yanz1, Alexey I. Shveykin1   

Abstract 
The problem of constructing a physically based hardening laws of mono- and polycrystalline samples 
in multi-level theories using crystal plasticity is considered. These hardening laws should allow
describing the process of the defect structure evolution of the material due to the intensive inelastic 
strains. It is also should be applicable to the description of complex and cyclic loading. An approach 
to the construction of a general and a particular form of hardening law is proposed, which takes into 
account the interaction of full and split dislocations with each other, forming and destruction of 
dislocation barriers, annihilation of dislocations during reverse loading, the interaction of intragranular 
and grain boundary dislocations. Using the obtained hardening law, the known experimental effects 
of complex and cyclic loading are described.  

Keywords 
Crystal plasticity, polycrystals, complex cyclic loading, dislocation slipping, hardening, grain 
boundaries, mechanisms of inelastic deformation.  
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Introduction 

Changes in the physical and mechanical properties of the specimen during deformation by 

complex cyclic path is a consequence of a substantial restructuring of the micro- and mesostructure of 

the material, mainly a consequence of a significant evolution of the dislocation (wider - defective) 

structure of the material [1]. Describing of such processes without studying and establishing the 

appropriate mathematical models that explicitly take into account the physical root causes of the 

material’s microstructure evolution at large strains is practically impossible. Directly into the structure 

of crystal plasticity relations description of the microstructure evolution is introduced through specific 

relationships that determine the change of the critical shear stress on the slip systems on a set of 

parameters defined on the basis of physical analysis (shears, temperature, stacking fault energy etc.), 

which are commonly called hardening law [2-4]. The above explains the considerable attention in 

crystal plasticity theories, which is paid to the modification of hardening law, in particular  in 

connection with the new experimental data obtained with the use of high-resolution equipment (in 

particular an electron microscope) [4]. 

The aim is to study the effects produced by polycrystalline representative macro volume of 

material under complex and cyclic loading (and the transition from one to another type of loading) as 

a consequence of changes occurring at the level of the dislocation structure in the process of loading, 

and attempt to modify the laws hardening so way that they can physically transparently describe these 

changes and effects. In particular, the unresolved issue is to justify and describe the known 

experimental effects, such as the dependence of additional cyclic hardening of the degree of 

disproportionality of loading, cyclic softening the transition from non-proportional to proportional 

loading, transverse reinforcement, which manifests itself when, after proportional loading in one 

direction is followed by proportional loading in the other direction. 
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1.  Two-level constitutive model for inelastic defprmation of polycrystals 

This paper uses a model based on the developed by a team of the Department of mathematical 

modeling of systems and processes PNRPU two-level approach to the consideration of inelastic 

deformation of polycrystalline metals [1]. As a top (macro-) level, we consider representative volume 

of the material, and the lower level means the level of the individual crystallites. Next, to simplify the 

upper level (macro-representative) will be called the macro level, and the lower (separate single 

crystals with ideal crystal lattice) will be called as meso level. 

The constitutive model of the macro-level is the following set of equations (hereinafter macro-

parameters are indicated in capital letters, the similar meso parameters – in lower case): 
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here Σ  is the Cauchy stress tensor, Π  is the elastic moduli tensor, D, 
e in,cD D are strain rate tensor, its 

elastic and inelastic parts, index «R» means independent of reference system choice derivative [1], Ω  

is the tensor describing the motion of the moving coordinate system with respect to which the strain is 

determined at the macro-level; 
in

( ) ( ) ( ) ( ) ( ), , , ,i i i i iσ d ω oπ  are elastic constant tensor, stress tensor, elastic 

and inelastic parts of strain rate tensor, spin and the orientation of i-crystallite, N is the number of 

crystallites forming a representative macro-level.  
At the meso level (the level of the crystallite) in the two-level model using the following system 

of relations (crystallite number is omitted): 
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where σ  is the Cauchy stress tensor, π  is the crystallite elastic moduli tensor, e in, ,c cd d d  are strain rate 

tensor, its elastic and inelastic parts, 
( ) ( )γ , τi i

cc  are the accumulated shear and the critical shear stress on 

the i-th slip system, 
( )

( )

i
Sm  is the symmetric part of the orientation tensor of the i-th slip system, 

( ) ( ) ( ) ( ) ( )

( ) 1/ 2( )i i i i i
S �m = b n n b , 

( ) ( )i i
b , n are unit vectors in the direction of the Burgers vector and the 

normal to the slip plane; 0γ ,n0γ ,0 n  are  material constants: the characteristic shear rate and rate sensitivity 

of the material, 
( )i  is the acting slip system shear stress, 

( ) ( ) ( ) :i i i � b n σ , / 0H �  is the Heaviside 

function, K  is the number of slip systems for this type of crystal lattice, о is  tensor of the current 

orientation of the crystallographic coordinate system to the fixed laboratory system. 

As the defining relation (equation of state) at the mesolevel plays rate form of Hooke's law (21), 

taking into account the geometric nonlinearity: quasi-solid movement on the mesolevel is associated 
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with the rotation of the lattice (crystallographic coordinate system); in the corotation derivative of the 

Cauchy stress tensor appears spin tensor, characterizes the crystal lattice rotation rate. 

For scale transition we used generalized Voigt hypothesis, according to which the velocity 

gradient of movement for each crystallite is equal to the macro-velocity gradient ˆ ˆJ �Jv V .  

In [1], the problem of different scale levels defining relations homogenization in the two-level 

model of inelastic deformation is considered, one of making results is to determine the quasi-solid 

movement on the macro level Ω  and the inelastic part of the strain rate tensor at the macro level in
D  

to ensure homogenization conditions: 

 

=< >, =< >, =< >П п Σ σ D d .                                         (3) 

 

It is shown that for (3) in conjunction with the systems of equations (1) and (2) the spin Ω  and 

inelastic strain rate tensor 
in

D should be determined by the relations 

 

=< >Ω ω ,                                         (4) 

 

1 1< > + : :( < > < > )in in in� �� � � � � �� �c c � � �D d < :d > ω σ σ ωπΠ Π ,                       (5) 

 

where the prime denotes the deviation of the corresponding values from their average values at 

representative macto-volume. 

In the numerical implementation of the mathematical model (1) - (5) is proposed to use the 

Adams-Moulton scheme ("predictor-corrector"), which can significantly improve the accuracy of the 

calculations without significantly increasing computing time [5]. 

 

2.  Hardening description 

The correct description of hardening, which is an essential mechanism of the plastic 

deformation, allows obtain the dependence between the numerical experiments with corresponding 

experiments, on the other hand, in the hardening laws it is inherent the description of the 

microstructure of the material and the laws of its evolution. 

Hardening is divided into "non-oriented" and "oriented". The first describes the hardening 

regardless of the direction of deformation (under this definition, processes such as the formation of 

the intersection of dislocations, plaits, braids, dislocation barriers), and a hardening increases the 

critical shear stress at once on many slip systems (or even all at once). The second is related to the 

accumulation of elastic energy to "pursed dislocations" (at different barrier) and this energy may be  

released (fully or partially) at the change the direction of deformation. The second type, in general, 

can be described by the kinematic hardening, or due to simultaneous changes in the critical shear 

stress on the opposite slip systems. 

By using the formalism of constitutive models with internal variables and two-level 

mathematical model of polycrystals inelastic deformation, based on the crystal elastoviscoplastic 

model at meso level, we received both general and particular form of hardening laws of mono- and 

polycrystalline, allows to describe the formation and destruction of dislocation barriers, the 

annihilation of dislocations (and so describes Bauschinger effect), and additional hardening, resulting 

from the interaction of intragranular and grain boundary dislocations [1]. 

As the basic law a power hardening law is considered in type of: 
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which takes into account the interaction of forest dislocations and modified to reflect the complexity 

of the previous loading. 

Assuming additivity of the critical shear stress rates on the slip system due to different 

mechanisms of hardening, the power law (6) is supplemented by terms that take into account the basic 

mechanisms of obstacles during plastic deformation, left out the first (power) term: 
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the term describes additional hardening due to reactions to the split dislocations, and  
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βm,β  allows to consider a decrease of the critical shear stress for reverse slip 

through dislocation annihilation. 
An additional hardening function ( )i

barf  is taken in the form of: 
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where γSFE is the stacking fault energy (SFE) of the material, *γSFE  is  critical SFE, beyond which this 

mechanism relies insignificant for this material, *N  is the number of slip systems, coupled to given, 
/ 0

τ
i

c  is current (full) critical stress, 
/ 0

τ
i

с fr  is critical stress for barrier destruction, 0γb  is the small 

constant, ξ ik  are the material constants, taking into account the strength of each of the six types of 

barriers. Equation (8) is explicitly take into account the differences in the known types of dislocation 

barriers and different energies of destruction (or bypass) of these barriers (with the optional parameter 
/ 0

τ
i

с fr ). 

Oriented hardening, which is realized by "pursed" by obstacles dislocation annihilation, due to 

the changing the deformation direction is also considered; detail the physics of the annihilation 

process and factors affecting the decrease of the critical shear stress on the slip systems as a result of 

the annihilation of dislocations is considered [7]. To account for the released elastic energy in relation 

for ( )i
annihf  puts an additional factor that takes into consideration the complexity of the loading on all of 

the slip systems (here is an example for the for fcc lattice): 
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where  0γa  is a small constant, 2ξ  is the material constant. 

 

3.  Numerical results 

The diagram of the cyclic uniaxial loading of polycrystalline aggregate using modified relations 

(6) – (9) is shown in Fig. 1. The physical and mechanical parameters of the model correspond to the 

technically pure copper. Nonlinear effects associated with the formation and destruction of dislocation 

barriers, there do not appear in the smallness of strains; clearly visible out on the stationary trajectory 

of deformation. 

It is noticeable that the hardening law of in the form (6) can only describe the effects of 

hardening associated with linear (or weakly nonlinear, depending on the 	  value) interaction of 
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dislocations (in the first time  the interaction of individual dislocations with various point obstacles, as 

well as the interaction of dislocations each own elastic stress fields). Mathematically it is possible to 

determine the parameters of the law (6) considering a substantially nonlinear form of the loading 

curve, but such description cannot be considered physically correct if we try to base model on the 

physical separation of hardening mechanisms. 

 

 
Fugure 1. The stress - strain diagram during cyclic deformation of polycrystalline aggregate, 20 

cycles total 
 

 
а)                                                                    b) 

Figure 2. The stress – strain diagram under uniaxial compression of polycrystalline aggregate, 

а) 
( )

0 1,05if � , 
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Fig. 2 shows the dependence of various stress-strain diagram for polycrystalline aggregate for 

the case of using the additional term in the form (8) in the hardening law, with the values specified in 

the caption. Clearly visible nonlinearities appearing in the diagram due to the effect of "blocking" slip 

systems by sessile dislocation when accumulated to a certain critical value, and accordingly releasing 

these systems from the deformation process. As long as there is a slip system (or set of slip systems), 

where the dislocation slip activate criteria is fulfilled, the material during plastic deformation will be 

forced to use a smaller number of slip systems than it is necessary in order to complete choose the 

prescribed deformation. So, in the moments of one system closing and before the activation of  

another systems the share of elastic deformation in full deformation rises, resulting in a steep increase 

in stress on the diagram. 

In addition, interesting question is the consideration of the term, which reflects the formation of 

sessile dislocations, depending on the concrete slip system. Figure 3, on the left, shows a typical 

dependence of the critical additional stress due to (8), at all slip systems randomly selected grain, on 

the intensity of deformation. It may be noted very different from other systems rate of accumulation 

of barriers on two slip systems, which are symmetrically oriented with respect to the loading 

direction, in addition, a noticeable phenomenon connected associated deactivate and activate of slip 

systems process. Sharp bend at the diagram for some systems due not so much the shear rates in these 

systems as the accumulation of split dislocations in a pair of conjugated systems with the highest 

increase of additional stresses. When activating these systems, even small shear rate on them leads to 

an abrupt increase in the critical stress due to the large accumulated shift in their conjugate systems. 

In turn, such a high increase in the critical stress leads to a rapid shutdown of the system from the 

plastic deformation, and the process repeats. 
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Figure 3, on the right, shows stress-strain diagram for polycrystalline aggregate when the term 

(9) is considered, which describes the decreasing of the critical stress on the slip system, due to the 

annihilation of dislocations during pursed reverse loading. The calculations were performed for two 

cycles in tension-compression. Clearly visible reduction of the yield strength when the sign change of 

deformation: from 32 MPa initially to 28 MPa after the first change of deformation direction, and 

from 34 MPa to 30 MPa in the second cycle. 

 

 
Figure 3. Left: typical dependence of the critical additional stress due to (8) for the slip systems 

of any grain; Right: the stress - strain diagram for cyclic deformation of polycrystalline aggregate with 
terms (8) and (9) 

 

Conclusions 

Thus, in the paper a general and a particular form of hardening law for mono-and 

polycrystalline were proposed, allowing describing the formation and destruction of dislocation 

barriers, and the annihilation of dislocations. The analysis of the possible mechanisms of interaction 

between carriers and the plastic deformation of the crystal lattice defects is executed; hardening laws 

which discovers a good agreement with experimental data are proposed. The study also attempted to 

justify and describe the known experimental effects, such as the dependence of additional cyclic 

hardening of the degree of disproportionality of loading, cyclic softening the transition from non-

proportional to proportional loading, transverse reinforcement. The results of these studies are 

currently in the process of being published in scientific periodicals. 
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Active vibration control of seismic excitation
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Abstract
Seismic wave control is very important both in civil and mechanical engineering. Common passive

methods for isolating a building or a device include Base Isolators (BI) and Tuned Mass Dampers

(TMD). In the present paper, a time varying controllable spring is considered as a vibration isolator

for a linear mechanical system. The controller works as follows: when the seismic movement is

active, the velocity of the moving mass is monitored as the reference velocity. When such reference

velocity is positive, the stiffness is reduced; when it is negative, the stiffness is increased. Numerical

investigations show that the controller is capable to filter seismic excitation close to the natural

frequency of the controlled system, and to reduce the total seismic energy transfer up to 5 times. The

role played by the gravity in the active vibration filtering is pointed out by showing that no filtering action

can be observed in gravity-free simulations. Even though the controlled system is linear, the controller

presents a non-smooth fluctuation of the stiffness, so that a limit cycle occur within the system.
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Active control, Seismic wave isolation
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Introduction

The problem of seismic wave isolation has been faced by many authors, both using passive and active

control methods [1]. Seismic waves act on a building as a transient external forcing, so that they can

be very dangerous if the harmonic content of the seismic forcing matches one of the system natural

frequencies [2]. Passive isolation methods include Base Isolators (BI) [3], which are low-pass filters

designed in order to cut out the frequencies containing most of the seismic energy. Another approach is

to reduce the amplitude of oscillations in the structure by means of Tuned Mass Damper (TMD). The

archetype of TMD has been described by Den Hartog [4] and is capable to cancel a resonance of the

system. More recently, Non-linear Energy Sinks (NES) [5] and Tuned Liquid Dampers (TLD) [6] have

been proposed as passive as passive seismic energy absorbers. Mohtat et al. [7] developed an active

Tuned Mass Damper for controlling a seismically excited beam.

The recent literature include many papers about active isolation methods. In 2011, Fujita et al. [8]

proposed a method for activating an air bearing isolating support upon earthquake occurrence. Recently,

some works [9, 10] have shown, by numerical simulations, the effectiveness of an active switch of the

stiffness of the base in seismic isolation. In the present paper, the active stiffness control of a system

under seismic excitation is investigated.

1. Dynamic model

In the present work, a simple 2 dof model is considered, see Figure 1(a). The model consists of a mass

m1, which represents the base of the building, and of a suspended mass m2, connected to the base by a

spring having constant stiffness k2, and by a viscous damper c2. The base is connected to the ground by

means of a spring having time varying stiffness k1 and a viscous damper c1. The maximum value of the

varying stiffness is k̄1. The system is under the effect of the weight force, and of the seismic base forcing

y1. The motion equations are the following:

{

m1ẍ1 + k1(x1 − y1)+ k2(x1 − x2)+ c1(ẋ1 − ẏ1)+ c2(ẋ1 − ẋ2) =−m1g

m2ẍ2 + k2(x2 − x1)+ c2(ẋ2 − ẋ1) =−m2g
(1)
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c2
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y

(a)
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y1 HmL

(b)

Figure 1. (a) Model of the two dof system; (b) external forcing y1

The forcing displacement y1 is a sine function of frequency f and maximum acceleration amplitude ag

enveloped by a half sine wave having duration T , see eq. (2).

y1(t) =
agsin(2π f t)sin

(

πt
T

)

(2π f )2
(2)

The simple model proposed can simulate the dynamic behavior of a building or an equipment or a

shipping container. In these three cases, the model parameters and the exciting base vibration are different.

In the present paper, simulations are performed referring to a seismic loading of a building: Table 1

collects the equivalent parameters used in numerical computations.

m1(kg) m2(kg) k̄1(
N
m
) k2(

N
m
) T (s) a(g) fc(Hz)

8.0 ·103 8.0 ·103 1.05 ·109 1.05 ·109 30 0.2 100

Table 1. Parameters used in the numerical simulations

k1 is time varying due to the control activation: it changes during the simulation according to the

following control strategy:

1. the control is activated if the overall base vibration (i.e. maximum base acceleration within a period

of the exciting oscillation) exceeds a certain fraction of 1g, namely ψ

2. when the control is activated, base velocity is checked at control frequency fc: if the system base

has positive velocity at the k− th control instant tc,k, then the stiffness k̄1 is reduced of a fraction φ .

Provided that the first condition is matched, at the k− th control instant, k1 is switched as follows:

for tc,k < t ≤ t k1 =

{

ϕk1 if ẋ1(tc,k)> 0

k̄1 otherwise
(3)

2. Results and Discussion

2.1 Control effectiveness

In order to show how the proposed method can be effective in controlling seismic vibrations, Figure 2(a)

displays the results of a run without control (case A) along with a run having velocity control activated

(case B). In both cases, the external forcing frequency f matches the fundamental frequency of the system

f1. The control parameters are ϕ = 0.5 and ψ = 0.01, i.e. stiffness is reduced by one half for positive

base velocity and the control works only if the overall vibration exceeds 0.01g. The control is capable

to reduce by 88% the maximum acceleration of the suspended mass m2: from 1.9g to 0.2g. In the same

picture, case D represents the solution obtained using the same control parameters, but for a system which
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is not loaded by any weight force (g = 0 in eq. (1)). For case D, the maximum acceleration is cut by 44%

only, thus suggesting that an important role in the proposed active control method is played by the weight

force. Indeed, reducing the stiffness when the the base is going upwards (positive ẋ1) means having a

longer stroke for the weight force, when it is doing negative work over the system.

Figure 2(b) shows what happens if no check of the overall vibration is performed (case C, ψ = 0). The

static equilibrium position is unstable, and the controlled system presents a limit cycle in the aftershock,

oscillating around a new equilibrium position. In order to overcome such limit cycle arising, numerical

simulations have proven that ψ = 0.01 is sufficient; moreover, an higher value of ψ would introduce

higher vibrations when the control activates, due to the abrupt change in the system when it is already

oscillating.
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Figure 2. Effectiveness of the control: (a) A − no control, B − controlled, D − controlled without gravity;

(b) A − no control; C − control with ψ = 0

2.2 Optimal parameters

In this section, a parametric analysis is performed: the maximum acceleration of the top mass a2 is chosen

as the objective function, and its relationship with the forcing frequency f and the stiffness parameter ϕ

is investigated (Figure 3). If the stiffness k1 is reduced by a small amount, the acceleration is still high; if

k1 is reduced a lot, than the varying stiffness excites the system more than the seismic load itself. The

best value for ϕ is 0.5: for such value the proposed control strategy is effective broadband, both below

and over the fundamental frequency of the system.
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Figure 3. Maximum top mass acceleration for varying control parameters

Figures 4 and 5 clarify the behavior of the system with/without control. Control activation changes

the center around which the system oscillates: this is due to the reduced average stiffness. In terms of
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acceleration, when the control is active the top mass acceleration is much lower than in the no control

case, nonetheless the base presents a certain acceleration for all the seismic duration. Figure 5(b) clarifies

this feature: each time the velocity v1 reaches a zero, the corresponding acceleration a2 has a jump, which

is due to the sudden stiffness variation. The energy for this change, which cannot be instantaneous in the

real application, must be provided by the control actuator. Figure 6(b) shows the isolation effect due to

the control: the total energy of the system has a maximum of 4700J without control, 1040J with optimal

control.
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Figure 4. Positions of the oscillating masses: case A − without control, case B − with ϕ = 0.5
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Figure 5. Accelerations of the oscillating masses: case A − without control, case B − with ϕ = 0.5

3. Conclusions

A control method for seismic isolation of buildings or equipments has been theoretically investigated.

The control consists in changing the stiffness of the building base when its velocity has opposite sign

with respect to the weight force. The role of the weight force has been pointed out by means of numerical

simulations, as well as the importance of setting a further control condition in terms of the overall

acceleration, so that instabilities are prevented. A parametrical study has shown that the best control for

all the forcing frequencies can be obtained for a base stiffness reduction of one half. For such value, the

top mass acceleration is cut by 88% with respect to the uncontrolled case, nonetheless the base vibrates

at constant amplitude for a longer time, due to effect of the actuator.
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