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 for local degenerate parabolic equations (thus providing an alternative proof).

Introduction

In this paper we consider the following Cauchy problem:

(1.1)

∂ t u + divf (u) + (-△) α 2 ϕ(u) = 0 in Q T := R d × (0, T ), u(x, 0) = u 0 (x), in R d ,
where T > 0 is fixed, u = u(x, t) is the unknown function, div and △ denote divergence and Laplacian with respect to x, and (-△) α 2 , α ∈ (0, 2), is the fractional Laplacian e.g. defined as

(1.2) (-△) α 2 φ := F -1 (|2 π • | α F φ)
with the Fourier transform F φ(ξ) := R d e -2 i π x•ξ φ(x) dx. Notice that (1.2) is compatible with the formula -△φ = F -1 |2 π • | 2 F φ . Throughout the paper we assume that

u 0 ∈ L ∞ ∩ L 1 ∩ BV (R d ), (1.3) f ∈ W 1,∞ loc (R) d with f (0) = 0, (1.4) ϕ ∈ W 1,∞
loc (R) is nondecreasing with ϕ(0) = 0. (1.5) Remark 1.1. Subtracting constants from f and ϕ if necessary, there is no loss of generality in assuming that f (0) = 0 and ϕ(0) = 0.

The fractional Laplacian is the generator of the symmetric α-stable process, the most famous pure jump Lévy process. There is a large literature on Lévy processes, we refer to e.g. [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF] for more details, and they are important in many modern applications. Being very selective, we mention radiation hydrodynamics [START_REF] Rosenau | Extending hydrodynamics via the regularization of the Chapman-Enskog expansion[END_REF][START_REF] Schochet | Regularized Chapman-Enskog expansion for scalar conservation laws[END_REF][START_REF] Rohde | The nonrelativistic limit in radiation hydrodynamics. I. Weak entropy solutions for a model problem[END_REF], anomalous diffusion in semiconductor growth [56], over-driven gas detonations [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF], mathematical finance [START_REF] Cont | Financial modelling with jump processes[END_REF], and flow in porous media [START_REF] De Pablo | A fractional porous medium equation[END_REF][START_REF] De Pablo | A general fractional porous medium equation[END_REF].

Due to the second part of assumption (1.5), the term (-△) α 2 ϕ(u) is a nonlinear and nonlocal diffusion term. It formally converges toward ϕ(u) and -△ϕ(u) as α ↓ 0 and α ↑ 2 respectively. Hence, Equation (1.1) could be seen as a nonlocal "interpolation" between the hyperbolic equation (1.6) ∂ t u + divf (u) + ϕ(u) = 0, and the degenerate parabolic equation (1.7) ∂ t u + divf (u) -△ϕ(u) = 0.

Equation (1.1) is said to be supercritical if α < 1, subcritical if α > 1, and critical if α = 1. The diffusion function ϕ is said to be strongly degenerate if ϕ ′ vanishes on a nontrivial interval. Equation (1.1) can therefore be of mixed hyperbolic parabolic type depending on the choice of α and ϕ. Note that in the mathematical community, interest in nonlinear nonlocal diffusions is in fact very recent, and only few results exist; cf. e.g. [START_REF] Biler | Fractal porous medium equation[END_REF][START_REF] Biler | A nonlinear diffusion of dislocation density and selfsimilar solutions[END_REF][START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF][START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF][START_REF] De Pablo | A fractional porous medium equation[END_REF][START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF][START_REF] De Pablo | A general fractional porous medium equation[END_REF][START_REF] De Pablo | Classical solutions for a logarithmic fractional diffusion equation[END_REF] and the references therein.

Let us give the main references for the well-posedness of the Cauchy problems for (1.6) and (1.7). For a more complete bibliography, see the books [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF][START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics[END_REF][START_REF] Vázquez | The porous medium equation. Mathematical theory[END_REF] and the references in [START_REF] Karlsen | On the uniqueness and stability of entropy solutions of non-linear degenerate parabolic equations with rough coefficients[END_REF]. In the hyperbolic case where ϕ ′ ≡ 0, we get the scalar conservation law ∂ t u + divf (u) = 0. The solutions of this equation could develop discontinuities in finite time and the weak solutions of the Cauchy problem are generally not unique. The most famous uniqueness result relies on the notion of entropy solutions introduced in [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF]. In the pure diffusive case where f ′ ≡ 0, there is no more creation of shock and the initial-value problem for ∂ t u -△ϕ(u) = 0 admits a unique weak solution, cf. [START_REF] Brézis | Uniqueness of solutions of the initial-value problem for ut -△ϕ(u) = 0[END_REF]. Much later, the adequate notion of entropy solutions for mixed hyperbolic parabolic equations was introduced in [START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF]. This paper focuses on an initial-boundary value problem. For a general well-posedness result applying to both (1.6) and (1.7), see e.g. [START_REF] Karlsen | On the uniqueness and stability of entropy solutions of non-linear degenerate parabolic equations with rough coefficients[END_REF].

At the same time, there has been a large interest in nonlocal versions of these equations. The first work seems to be [START_REF] Cockburn | On convergence of entropy solutions to a single conservation law[END_REF] on nonlocal time fractional derivatives, cf. also [START_REF] Jakubowski | On a nonlinear elliptic/parabolic integro-differential equation with L 1 -data[END_REF]. The study of nonlocal diffusion terms has probably been initiated by [START_REF] Biler | Fractal Burgers Equations[END_REF]. Now, the well-posedness is quite well-understood in the nondegenerate linear case where ϕ(u) = u. Smooth solutions exist and are unique for subcritical equations [START_REF] Biler | Fractal Burgers Equations[END_REF][START_REF] Droniou | Global solution and smoothing effect for a nonlocal regularization of a hyperbolic equation[END_REF], shocks could occur [START_REF] Alibaud | Occurence and non-appearance of shocks in fractal Burgers equation[END_REF][START_REF] Kiselev | Blow up and regularity for fractal Burgers equation[END_REF] and weak solutions could be nonunique [START_REF] Alibaud | Non-uniqueness of weak solutions for the fractal Burgers equation[END_REF] for supercritical equations, entropy solutions exist and are always unique [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF][START_REF] Karlsen | Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations[END_REF]; cf. also [START_REF] Chan | Regularity of solutions for the critical N -dimensional Burgers equation[END_REF][START_REF] Chan | Eventual regularization of the slightly supercritical fractional Burgers equation[END_REF] for original regularizing effects. Very recently, the well-posedness theory of entropy solutions was extended in [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF] to cover the full problem (1.1), even for strongly degenerate ϕ. See also [START_REF] De Pablo | A fractional porous medium equation[END_REF][START_REF] De Pablo | A general fractional porous medium equation[END_REF] on fractional porous medium type equations, and [START_REF] De Pablo | Classical solutions for a logarithmic fractional diffusion equation[END_REF] on a logarithmic diffusion equation.

This paper is devoted to continuous dependence estimates for (1.1), i.e. explicit estimates on the difference of two entropy solutions u and v in terms of the difference of their respective data (α, u 0 , f, ϕ) and (β, v 0 , g, ψ). Let us point out that we investigate quantitative results which should be distinguished from qualitative ones. By qualitative, we mean stability results only stating that if (α n , u n 0 , f n , ϕ n ) converges toward (α, u 0 , f, ϕ), then the associated entropy solutions u n converge toward u. For scalar conservation laws, the first quantitative result on the continuous dependence on f appeared in [START_REF] Dafermos | Polygonal approximations of solutions of the initial value problem for a conservation law[END_REF] and also in [START_REF] Lucier | A moving mesh numerical method for hyperbolic conservation laws[END_REF] some years later. Roughly speaking, it states that for BV initial data u 0 = v 0 , (1.8) u(•, t) -v(•, t)

L 1 = O ( f ′ -g ′ ∞ )
, where throughout the L ∞ -norm is always taken over the range of u 0 . Next, the optimal error in √ ǫ for the parabolic regularization ∂ t u ǫ + divf (u ǫ ) -ǫ △u ǫ = 0 of scalar conservation laws was established in [START_REF] Kuznetsov | Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation[END_REF]. In that paper, the author has developed a general method of error estimation based on the Kruzhkov's device of doubling the variables [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF]. We use this method in the present paper. As far as degenerate parabolic equations are concerned, the continuous dependence on ϕ was first investigated in [START_REF] Bénilan | The continuous dependence on ϕ of solutions of ut -△ϕ(u) = 0[END_REF] for the equation ∂ t u -△ϕ(u) = 0. Here the motivation was to obtain qualitative results under very general assumptions. Quantitative results were obtained in [START_REF] Bouchut | Kružkov's estimates for scalar conservation laws revisited[END_REF][START_REF] Cockburn | Continuous Dependence on the nonlinearities of Solutions of Degenerate Parabolic Equations[END_REF] for the full equation (1.7). In [START_REF] Bouchut | Kružkov's estimates for scalar conservation laws revisited[END_REF], the authors established alternative estimates to (1.8) involving weaker norms, as roughly speaking an estimate in f -g
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∞ . They gave different estimates for the ϕ-dependence with ψ ≡ 0. An estimate for nontrivial ψ was given in [START_REF] Cockburn | Continuous Dependence on the nonlinearities of Solutions of Degenerate Parabolic Equations[END_REF]. Roughly speaking, it states that if u has the same data as v except for ϕ = ψ, then (1.9)

u(•, t) -v(•, t) L 1 = O ϕ ′ -ψ ′ ∞ .
Recently, Estimates (1.8) and (1.9) were extended in [START_REF] Karlsen | On the uniqueness and stability of entropy solutions of non-linear degenerate parabolic equations with rough coefficients[END_REF][START_REF] Chen | Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients[END_REF][START_REF] Chen | L 1 -framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations[END_REF] to anisotropic diffusions and (x, t)-dependent data; cf. also [START_REF] Andreianov | Well-posedness results for triply nonlinear degenerate parabolic equations[END_REF][START_REF] Lukkari | Stability of solutions to nonlinear diffusion equations[END_REF] for recent qualitative results on local equations. For nonlocal equations, a number of papers were concerned with convergence rates for vanishing viscosity methods [START_REF] Schochet | Regularized Chapman-Enskog expansion for scalar conservation laws[END_REF][START_REF] Cockburn | On convergence of entropy solutions to a single conservation law[END_REF][START_REF] Droniou | Vanishing non-local regularization of a scalar conservation law[END_REF][START_REF] Droniou | Fractal first order partial differential equations[END_REF][START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF]. To the best of our knowledge, the first estimate on the "general continuous dependence on the data" was given in [START_REF] Karlsen | Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations[END_REF]. It concerns the case of linear nondegenerate Lévy diffusions.

The main novelty was the explicit dependence in the Lévy measure, corresponding to the explicit dependence in α for the particular case of the fractional Laplacian.

In [START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF], the authors of the present paper established a continuous dependence estimates for general nonlinear degenerate Lévy diffusions. For a qualitative result in the spirit of [START_REF] Bénilan | The continuous dependence on ϕ of solutions of ut -△ϕ(u) = 0[END_REF], see the very recent work [START_REF] De Pablo | A general fractional porous medium equation[END_REF] on the fractional porous medium equation ∂ t u + (-△) α/2 (|u| m-1 u) = 0, m > 0. In that paper, the continuous dependence on (α, m, u 0 ) is established under more general assumptions.

Before explaining our main contributions, let us refer the reader to more or less related work. The theory of continuous dependence estimates for nonlocal equations was probably initiated in the context of viscosity solutions of fully nonlinear integro-PDEs, cf. [START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of integro-PDEs[END_REF] and the references therein. See also [START_REF] Imbert | A non-local regularization of first order Hamilton-Jacobi equations[END_REF][START_REF] Droniou | Fractal first order partial differential equations[END_REF] for error estimates for vanishing viscosity methods. The question of α-continuity has been raised earlier, e.g. when looking for a priori estimates that are robust or uniform as α ↑ 2. Such results can be found in e.g. [START_REF] Caffarelli | Regularity theory for fully nonlinear integro-differential equations[END_REF][START_REF] Caffarelli | The Evans-Krylov theorem for nonlocal fully nonlinear equations[END_REF], see also [START_REF] Kassmann | Regularity results for nonlocal parabolic equations[END_REF] and the references therein.

The starting point of the present paper is the general theory of [START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF]. It is worth mentioning that different estimates could be difficult to compare, as e.g (1.8) with the estimate in f -g
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∞ of [START_REF] Bouchut | Kružkov's estimates for scalar conservation laws revisited[END_REF]. Hence, a remarkable feature is that the estimates in (1.8) and (1.9) are optimal for linear equations, cf. the discussion of Section 8. A natural question is whether the estimates of [START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF] applied to (1.1) possess such a property. The answer is positive only in the supercritical case α < 1. In this paper, we obtain optimal estimates for all cases. To do so we restart the proofs from the beginning, by taking into account the homogeneity properties of the fractional Laplacian. The main ingredients are a new linearization argument a la Young measure theory/kinetic formulations, and for the linear case, a clever change of the (jump) z-variable in (2.1). This change of variable allows us to adapt ideas from viscosity solution theory developed in e.g. [START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of integro-PDEs[END_REF]. Let us also refer the reader to [START_REF] Sayah | Equations d'Hamilton-Jacobi du premier ordre avec termes intégro-différentiels, Parties I et II[END_REF] for other applications of this change of variable in the context of viscosity solutions. Roughly speaking, we prove that

(1.10) u(•, t) -v(•, t) L 1 =        O (ϕ ′ ) 1 α -(ψ ′ ) 1 α ∞ , α > 1, O ( ϕ ′ ln ϕ ′ -ψ ′ ln ψ ′ ∞ ) , α = 1, O ( ϕ ′ -ψ ′ ∞ ) , α < 1,
with uniform constants in the limits α ↓ 0 and α ↑ 2. Note well that just as in [START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF], our proofs work directly with the entropy solutions without needing tools like entropy defect measures, etc.. And even though these tools play a key role in the local second-order theory, the arguments here really seem to be less technical relying only on basic convex inequalities and integral calculus. Hence, it seems interesting to mention that we recover the result (1.9) rigorously from (1.10) by passing to the limit. Another remarkable feature is that a simple rescaling transforms the Kuznetsov type estimate (1.10) into the following time continuity estimate:

u(•, t) -u(•, s) L 1 =        O |t 1 α -s 1 α | , α > 1, O (|t ln t -s ln s|) , α = 1, O (|t -s|) , α < 1.
This result is optimal and strictly better than earlier results in [START_REF] Cifani | On numerical methods and error estimates for degenerate fractional convection-diffusion equations[END_REF], see Remark 3.7. E.g. for positive times, we get Lipschitz regularity in time with values in L 1 (R d ). This is a regularizing effect in time when α ≥ 1 and u not more than BV initially.

In the second main contribution of this paper, we focus on the continuous dependence on α. By stability arguments, it is possible to show that the unique entropy solution u =: u α is continuous in α ∈ [0, 2] with values in L 1 loc . In this paper, we prove that in the BV -framework, it is in fact locally Lipschitz continuous in α ∈ (0, 2) with values in C([0, T ]; L 1 ). To the best of our knowledge, such an α-regularity result has never been obtained before. More precisely, the theory of [START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF] implies the result for α ∈ (0, 1) but not for α ∈ [START_REF] Adams | Sobolev spaces[END_REF][START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF]. For the latter range of exponents, all the results cited above are either qualitative or suboptimal. The new ingredient to get the Lipschitz regularity is again a change of (the jump) variable. It seems interesting to recall that the type of Equation (1.1) could change from parabolic when α > 1 to hyperbolic when α < 1. As a consequence, quite different behaviors are observed in the ϕ-and t-continuity when α crosses 1, cf. the continuous dependence estimates above. A natural question is thus whether such kind of phenomena arises in the α-regularity? We prove that the answer is positive by carefully estimating the best Lipschitz constant of the function α → u α with respect to the position of α and the other data. More precisely, for λ ∈ (0, 2) we define

Lip α (u; λ) := lim sup α,β→λ u α -u β C([0,T ];L 1 )

|α -β| ,

and roughly speaking we prove that

Lip α (u; λ) =        O M 1 λ | ln M | , λ > 1, O M ln 2 M , λ = 1, O (M ) , λ < 1, for M := T ϕ ′ ∞ , and Lip α (u; λ) =        O (|u 0 | BV ) , λ > 1, O |u 0 | BV ln 2 u0 L 1 |u0|BV , λ = 1, O u 0 1-λ L 1 |u 0 | λ BV ln u0 L 1 |u0|BV , λ < 1.
We also exhibit an example of an equation for which these estimates are optimal in the regimes where M is sufficiently small or

u0 L 1
|u0|BV is sufficiently large. Another natural question is whether α → u α is Lipschitz continuous up to the boundaries α = 0 and α = 2. The answer is negative for α = 0 and remains open for α = 2. For the reader's convenience, more details and open questions are given at the end of Section 3.

To conclude, note that even if we adapt some ideas from viscosity solution theory, the definition of relevant generalized solution and the mathematical arguments are very different from the ones in e.g. [START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of integro-PDEs[END_REF]. Moreover we obtain optimal results here, and, in an a work in progress, we adapt ideas of this paper to obtain new results in the viscosity solution setting.

The rest of the paper is organized as follows. In Section 2, we recall the wellposedness theory for fractional degenerate parabolic equations. In Section 3, we state our main results: continuous dependence with respect to the nonlinearities and the order of the fractional Laplacian. In Section 4, we recall the general continuous dependence estimates of [START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF] along with a general Kuznetsov type of Lemma. Sections 5-7 are devoted to the proofs of our main results. In Section 8, we exhibit an example of an equation for which we rigorously show that our estimates are optimal. Finally, there is an appendix containing technical lemmas and computations from the different proofs.

Notation. The symbols ∇ and ∇ 2 denote the x-gradient and x-Hessian. The symbols • and | • | are used for norms and semi-norms, respectively. The symbol ∼ is used for asymptotic equality "up to a constant." The symbols ∧ and ∨ are used for the minimum and maximum between two reals. For any a, b ∈ R, we use the shorthand notation co{a, b} to design the interval (a ∧ b, a ∨ b). The surface measure of the unit sphere of R d is denoted by S d .

Preliminaries

In this section we recall some basic facts on the fractional Laplacian and fractional degenerate parabolic equations. We start by a Lévy-Khinchine type representation formula. For α ∈ (0, 2) and all φ ∈ C ∞ c (R d ), x ∈ R d , and r > 0,

-(-△) α 2 φ(x) = G d (α) |z|<r φ(x + z) -φ(x) -∇φ(x) • z |z| d+α dz + G d (α) |z|>r φ(x + z) -φ(x) |z| d+α dz =: L α r [φ](x) + L α,r [φ](x), (2.1) 
where

G d (α) := 2 α-1 α Γ d+α 2 π d 2 Γ 2-α 2 .
The result is standard, see e.g. [START_REF] Landkof | Foundations of modern potential theory[END_REF][START_REF] Imbert | A non-local regularization of first order Hamilton-Jacobi equations[END_REF][START_REF] Droniou | Fractal first order partial differential equations[END_REF] and the references therein. Here are some properties on the coefficient that will be needed later:

(2.2) G d (α) > 0 is smooth (and analytic) with respect to α ∈ (0, 2);

lim α↓0 S d G d (α) α = 1 and lim α↑2 S d G d (α) d (2-α) = 1
, where S d is the surface measure of the unit sphere of R d .

We then proceed to define entropy solutions of (1.1). For each k ∈ R, we consider the Kruzhkov [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF] entropy u → |u -k| and entropy flux

u → q f (u, k) := sgn(u -k) (f (u) -f (k)),
where throughout this paper we always consider the following everywhere representation of the sign function:

(2.3) sgn(u) := ±1 if ±u > 0, 0 if u = 0.
By monotonicity (1.5) of ϕ,

(2.4) sgn(u -k) (ϕ(u) -ϕ(k)) = |ϕ(u) -ϕ(k)|,
and then we formally deduce from (2.1) that for any function u = u(x, t),

sgn(u -k) (-(-△) α 2 ) ϕ(u) ≤ L α r [|ϕ(u) -ϕ(k)|] + sgn(u -k) L α,r [ϕ(u)
]. This Kato type inequality is the starting point of the entropy formulation from [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF].

Definition 2.1 (Entropy solutions). Let α ∈ (0, 2), u 0 ∈ L ∞ ∩ L 1 (R d ), and (1.4)- (1.5) hold. We say that u ∈ L ∞ (Q T ) ∩ L ∞ 0, T ; L 1 is an entropy solution of (1.1) provided that for all k ∈ R, r > 0, and all nonnegative φ ∈ C ∞ c (R d × [0, T )), QT |u -k| ∂ t φ + q f (u, k) • ∇φ dx dt + QT |ϕ(u) -ϕ(k)| L α r [φ] + sgn(u -k) L α,r [ϕ(u)] φ dx dt + R d |u 0 (x) -k| φ(x, 0) dx ≥ 0.
(2.5)

Remark 2.1. Under our assumptions, the entropy solutions are continuous in time with values in L 1 (R d ) (cf. Theorem 2.2 below). Hence we get an equivalent definition if we take φ ∈ C ∞ c (R d+1 ) and add the term -R d |u(x, T ) -k| φ(x, T ) dx to (2.5); see [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF] for more details.

Here is the well-posedness result from [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF].

Theorem 2.2. (Well-posedness) Let α ∈ (0, 2), u 0 ∈ L ∞ ∩ L 1 (R d ), and (1.4)- (1.5) hold. Then there exists a unique entropy solution u ∈ L ∞ (Q T ) ∩ C [0, T ]; L 1 of (1.1), satisfying (2.6)      ess inf u 0 ≤ u ≤ ess sup u 0 , u C([0,T ];L 1 ) ≤ u 0 L 1 , |u| L ∞ (0,T ;BV ) ≤ |u 0 | BV . Moreover, if v is an entropy solution of (1.1) with v(•, 0) = v 0 (•) ∈ L ∞ ∩ L 1 (R d ), then (2.7) u -v C([0,T ];L 1 ) ≤ u 0 -v 0 L 1 .

The main results

We state our main results in this section. They compare the entropy solution u of (1.1) to the entropy solution v of (3.1)

∂ t v + divg(v) + (-△) β 2 ψ(v) = 0, v(•, 0) = v 0 (•),
under the assumptions that

(3.2)            α, β ∈ (0, 2), u 0 ∈ L ∞ ∩ L 1 ∩ BV (R d ), v 0 ∈ L ∞ ∩ L 1 (R d ), f, g ∈ W 1,∞ loc (R) d with f (0) = 0 = g(0), ϕ, ψ ∈ W 1,∞ loc (R) are nondecreasing with ϕ(0) = 0 = ψ(0).
From now on, we will use the shorthand notation

f ′ -g ′ ∞ := ess sup I(u0) |f ′ -g ′ |, ϕ ′ -ψ ′ ∞ := ess sup I(u0) |ϕ ′ -ψ ′ |,
where I(u 0 ) := (ess inf u 0 , ess sup u 0 ). We will also define

(3.3) E i (u 0 ) := |u 0 | BV 1 + ln u 0 L 1 |u 0 | BV i 1 u 0 L 1 |u 0 | BV >1 , with the convention that E i (u 0 ) = 0 if |u 0 | BV = 0 (i = 1, 2)
. These quantities will appear when computing the optimal constants in our main estimates. Notice that we always have 0

≤ E i (u 0 ) ≤ u 0 L 1 .
Here is our first main result. Then we have

u -v C([0,T ];L 1 ) ≤ u 0 -v 0 L 1 + T |u 0 | BV f ′ -g ′ ∞ + C E ϕ-ψ T,α,u0 , (3.4) with C = C(d, α) and E ϕ-ψ T,α,u0 =                        T 1 α |u 0 | BV (ϕ ′ ) 1 α -(ψ ′ ) 1 α ∞ , α ∈ (1, 2), T E 1 (u 0 ) ϕ ′ -ψ ′ ∞ +T (1 + | ln T |) |u 0 | BV ϕ ′ -ψ ′ ∞ +T |u 0 | BV ϕ ′ ln ϕ ′ -ψ ′ ln ψ ′ ∞ , α = 1, T u 0 1-α L 1 |u 0 | α BV ϕ ′ -ψ ′ ∞ , α ∈ (0, 1). (3.5)
The proof of this result can be found in Sections 5 and 6.

Remark 3.2. We emphasize that this result is optimal with respect to the modulus in ϕ. In the regimes where T is sufficiently small or

u0 L 1
|u0|BV is sufficiently large, it is also optimal with respect to the dependence of T and u 0 . See the discussion of Section 8 for more details. In particular, see Proposition 8.1 and Remark 8.2.

Note that our result is robust in the sense that the constant C = C(d, α) in Theorem 3.1 has finite limits as α ↓ 0 or α ↑ 2. This will be seen during the proof, cf. Remarks 5.1(1) and 6.2 [START_REF] Adams | Sobolev spaces[END_REF]. Hence, we can recover the known continuous dependence estimates of the limiting cases α = 0 and α = 2 (cf. (1.9)), i.e. for Equations (1.6) and (1.7).

To show this we start by identifying the limits of the solutions u α of (1.1) as α ↓ 0 and α ↑ 2. (1.4)-(1.5) hold, and for each α ∈ (0, 2), let u α denote the entropy solution of (1.1). Then u α converges in C([0, T ]; L 1 loc ), as α ↓ 0 (resp. α ↑ 2), to the unique entropy solution u ∈ L ∞ (Q T ) ∩ C([0, T ]; L 1 ) of (1.6) (resp. (1.7)) with initial condition u 0 .

Theorem 3.3 (Limiting equations). Let u 0 ∈ L ∞ ∩ L 1 (R d ),
Let us recall that under our assumptions there are unique entropy solutions of (1.6) and (1.7) with initial data u 0 ; cf. [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF][START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF][START_REF] Karlsen | On the uniqueness and stability of entropy solutions of non-linear degenerate parabolic equations with rough coefficients[END_REF]. The proof of Theorem 3.3 can be found in Section 7, as well as the definitions of entropy solutions of [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF][START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF][START_REF] Karlsen | On the uniqueness and stability of entropy solutions of non-linear degenerate parabolic equations with rough coefficients[END_REF]. Now we prove that the estimates hold in the limiting cases α = 0 and α = 2. Proof. We only do the proof for α = 2, the case α = 0 being similar. Let u and v denote the entropy solutions of (1.1) and (3.1) with α = 2 respectively. Moreover, for each α ∈ (0, 2), we denote by u α and v α the entropy solutions of (1.1) and (3.1) respectively, and E(α) the right-hand side of (3.4). Then

u -v = (u -u α ) + (u α -v α ) + (v α -v),
and the triangle inequality and Theorems 3.1 and 3.3 imply that for all R > 0,

(u -v) 1 |x|<R C([0,T ];L 1 ) ≤ o(1) + E(α) + o(1)
as α ↑ 2 and R is fixed. By the monotone convergence theorem, Remark 6.2(1), and α-continuity of E ϕ-ψ T,α,u0 at α = 2, the result follows by first sending α ↑ 2 and then sending R → +∞. Remark 3.5. By our results for α = 2, we get back the modulus of [START_REF] Cockburn | Continuous Dependence on the nonlinearities of Solutions of Degenerate Parabolic Equations[END_REF],

E ϕ-ψ T,α=2,u0 = √ T |u 0 | BV ϕ ′ -ψ ′ ∞ .
Our approach also gives an alternative proof of this result.

Optimal time regularity for (1.1) is another corollary of Theorem 3.3. Let u be the entropy solution of (1.1). Then for all t, s ≥ 0,

u(•, t) -u(•, s) L 1 ≤ |u 0 | BV f ′ ∞ |t -s| + C E t-s α,u0,ϕ , (3.6) with C = C(d, α), E t-s α,u0,ϕ =                        |u 0 | BV (ϕ ′ ) 1 α ∞ |t 1 α -s 1 α |, α ∈ (1, 2], E 1 (u 0 ) ϕ ′ ∞ |t -s| +|u 0 | BV ϕ ′ ∞ (1 + ln ϕ ′ ∞ ) |t -s| +|u 0 | BV ϕ ′ ∞ |t ln t -s ln s|, α = 1, u 0 1-α L 1 |u 0 | α BV ϕ ′ ∞ |t -s|, α ∈ [0, 1),
and where E 1 (u 0 ) is defined in (3.3).

Remark 3.7. This result is optimal with respect to the modulus in time, and also with respect to the dependence of ϕ and u 0 in the regimes where ϕ ′ ∞ is sufficiently small or the ratio

u0 L 1
|u0|BV is sufficiently large, cf. Remark 8.5. The result improves earlier results by the two last authors in [START_REF] Cifani | On numerical methods and error estimates for degenerate fractional convection-diffusion equations[END_REF] where the modulus was given as

E t-s α,u0,ϕ = C(α, u 0 , ϕ)    |t -s| 1 α , α > 1, |t -s| (1 + | ln |t -s||) , α = 1, |t -s|, α < 1.
The optimal new results give a strictly better modulus of continuity when α ∈ [START_REF] Adams | Sobolev spaces[END_REF][START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF] at the initial time 1 and for positive times u ∈ W 1,∞ loc ((0, +∞]; L 1 ). The Lipschitz in time result is a regularizing effect when the solution is no more than BV initially.

Proof. We fix t, s > 0 and introduce the rescaled solutions v(x, τ ) := u(x, t τ ) and w(x, τ ) := u(x, s τ ). These are solutions of (1.1) with initial data u 0 , new respective fluxes t f and s f , and new respective diffusion functions t ϕ and s ϕ. The result immediately follows from the preceding corollary applied at time τ = 1.

Next we consider the continuous dependence on α. Given λ ∈ (0, 2), we define "the best Lipschitz constant" of α → u α at the position α = λ as follows:

(3.7) Lip α (u; λ) := lim sup α,β→λ u α -u β C([0,T ];L 1 )

|α -β| ,

where u α denotes the unique entropy solution of (1.1).

Theorem 3.8. (Lipschitz continuity in α) Let λ ∈ (0, 2) and (1.3)-(1.5) hold. Then

(3.8) Lip α (u; λ) ≤ C              M 1 λ (1 + | ln M |) |u 0 | BV , λ ∈ (1, 2), M E 2 (u 0 ) + M (1 + ln 2 M ) |u 0 | BV , λ = 1, M u 0 1-λ L 1 |u 0 | λ BV 1 + ln u0 L 1 |u0|BV
, λ ∈ (0, 1),

where C = C(d, λ), M := T ϕ ′ ∞ and E 2 (u 0 ) is defined in (3.3). In particular, the function α ∈ (0, 2) → u α ∈ C([0, T ]; L 1 ) is locally Lipschitz continuous.
The proof of Theorem 3.8 can be found in Sections 5 and 6.

1 Since lim inf t,s↓0

|t 1 α -s 1 α | |t-s| 1 α = 0 = lim inf t,s↓0
|t ln t-s ln s| |t-s| | ln |t-s|| (take tn, sn ↓ 0 and tn sn → 1).

Remark 3.9. This result is optimal with respect to the dependence of M and u 0 in the regimes where M is sufficiently small or u0 L 1

|u0|BV is sufficiently large. An example is given in Section 8, cf. Proposition 8.3 and Remark 8.4.

Remark 3.10. With Theorem 3.1, Corollary 3.6 and Theorem 3.8 in hands, we can easily get an explicit continuous dependence estimate of u with respect to the quintuplet (t, α, u 0 , f, ϕ) under (3.2).

Further comments and open problems.

A. Robustness of the Lipschitz estimates in α as α ↓ 0 or α ↑ 2. In Theorem 3.8, C = C(d, λ) blows up as λ ↓ 0 or λ ↑ 2, and we do not get Lipschitz regularity in α up to the boundaries α = 0 and α = 2.

At α = 0, we can do no better because the entropy solutions of (1.1) may not even converge toward the entropy solution of (1.7) in L 1 as α ↓ 0. The reason is that the mass preserving property could be lost at the limit. This was already observed in Section 11 of [START_REF] De Pablo | A general fractional porous medium equation[END_REF] for the fractional porous medium equation (3.9) below. Note that the convergence always holds in L 1 loc by Theorem 3.3, so that an interesting question is whether it holds in L p for any p ∈ (1, +∞). To the best of our knowledge, this problem is still open at least for the full equation (1.1).

At α = 2, it is an open problem whether α → u α is Lipschitz with values in L 1 or not. This problem is related to the following problems: Do the entropy solutions of (1.1) converge toward the entropy solution of (1.7) in L 1 or L p as α ↑ 2? If yes, what is the optimal rate of convergence? Note that here again the convergence holds in L 1 loc by Theorem 3.3, and it moreover holds in L 1 for Equation (3.9) by [START_REF] De Pablo | A general fractional porous medium equation[END_REF]. B. Implications for the fractional porous medium equation. In [START_REF] De Pablo | A general fractional porous medium equation[END_REF], the following Cauchy problem is studied:

(3.9) ∂ t u + (-△) α/2 (|u| m-1 u) = 0 and u(•, 0) = u 0 (•),
where α ∈ (0, 2) and m > 0. The authors prove that if u 0 ∈ L 1 (R d ), there exists a unique mild solution which under further assumptions (m ≥ 1 is sufficient) is the (unique) strong solution. By Theorems 10.1 and 10.3 of [START_REF] De Pablo | A general fractional porous medium equation[END_REF], this solution is continuous in the data (α, m, u 0 )

∈ D × L 1 (R d ) with values in C([0, +∞); L 1 )
, where

D := (α, m) : 0 < α ≤ 2, m > (d -α) + d .
We will now show that this dependence is locally Lipschitz in some cases.

Let us first establish the equivalence between entropy and strong solutions.

Lemma 3.11. Let u 0 ∈ L ∞ ∩ L 1 (R d ), m ≥ 1,
and u be the unique entropy solution of (3.9) given by Theorem 2.2 (with T = +∞). Then u coincides with the unique strong solution of (3.9) (cf. Definition 3.5 in [START_REF] De Pablo | A general fractional porous medium equation[END_REF]).

Proof. Note that u ∈ L ∞ (R d × (0, +∞)) ∩ C([0, +∞); L 1 ). By Lemma 7.4, we also have |u| m-1 u ∈ L 2 (0, +∞; H α 2 ). Here H α 2 (R d
) is the usual fractional Sobolev space defined in (7.5). Let us also recall that u satisfies the equation in D ′ (R d × (0, +∞)) and the initial condition u(•, 0) = u 0 (•) almost everywhere, cf. [START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF]. It follows that u is a weak solution in the sense of Definition 3.1 in [START_REF] De Pablo | A general fractional porous medium equation[END_REF]. Since u is bounded, Corollary 8.3 of [START_REF] De Pablo | A general fractional porous medium equation[END_REF] completes the proof. Theorems 3.1 and 3.8 and Lemma 3.11 then imply the following result: Corollary 3.12. For all T > 0, the unique strong solution u to (3.9

) is lo- cally Lipschitz continuous in (α, m, u 0 ) ∈ D × L ∞ ∩ L 1 ∩ BV (R d ) with values in C([0, T ]; L 1 ), where D := {(α, m) : 0 < α < 2, m > 1} . If u 0 / ∈ L ∞ ∩ BV (R d )
, it is possible to find an explicit (non-Lipschitz) modulus of continuity for the function (α, m) ∈ D → u ∈ C([0, T ]; L 1 ). To do so, it suffices to use an approximation argument and the L 1 -contraction principle. It is an open problem whether this would give an optimal modulus or not. It is also an open problem to find an explicit modulus when (α, m) / ∈ D.

4. Two general results from [START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF] In this section we recall two key results developed in [START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF] for the more general case where the diffusion operator can be the generator of an arbitrary pure jump Lévy process. First we state the Kuznetsov type lemma of [START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF] that measures the L 1 -distance between u and an arbitrary function v. From now on, let ǫ and ν be positive parameters and φ ǫ,ν ∈ C ∞ (R 2d+2 ) denote the test function

φ ǫ,ν (x, t, y, s) := θ ν (t -s) ρ ǫ (x -y) := 1 ν θ t -s ν 1 ǫ d ρ x -y ǫ , (4.1) where θ ∈ C ∞ c (R), θ ≥ 0, supp θ ⊆ [-1, 1], θ = 1, ρ ∈ C ∞ c (R d ), ρ ≥ 0, and ρ = 1. We also let m u (ν) denote the modulus of continuity in time of u ∈ C [0, T ]; L 1 . Lemma 4.1 (Kuznetsov type Lemma). Let α ∈ (0, 2), u 0 ∈ L ∞ ∩ L 1 ∩ BV (R d ),
and let us assume (1.4)-(1.5). Let u be the entropy solution of (1.1)

and let v ∈ L ∞ (Q T ) ∩ C [0, T ]; L 1 be such that v(•, 0) = v 0 (•). Then for all r, ǫ > 0 and T > ν > 0, u(•, T ) -v(•, T ) L 1 ≤ u 0 -v 0 L 1 + C ρ |u 0 | BV ǫ + 2 m u (ν) ∨ m v (ν) - Q 2 T |v(x, t) -u(y, s)| ∂ t φ ǫ,ν (x, t, y, s) dw - Q 2 T q f (v(x, t), u(y, s)) • ∇ x φ ǫ,ν (x, t, y, s) dw + Q 2 T |ϕ(v(x, t)) -ϕ(u(y, s))| L α r [φ ǫ,ν (x, t, •, s)](y) dw - Q 2 T sgn(v(x, t) -u(y, s)) L α,r [ϕ(u(•, s))](y) φ ǫ,ν (x, t, y, s) dw + R d ×QT |v(x, T ) -u(y, s)| φ ǫ,ν (x, T, y, s) dx dy ds - R d ×QT |v 0 (x) -u(y, s)| φ ǫ,ν (x, 0, y, s) dx dy ds (4.2)
where dw := dx dt dy ds and the constant C ρ only depends on ρ.

Proof. This is Lemma 3.1 of [START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF] with the particular diffusion operator (2.1).

In the setting of this paper, the general continuous dependence estimates of [4] take the following form: Theorem 4.2. Let us assume (3.2) and let u and v be the respective entropy solutions of (1.1) and (3.1). Then for all r > 0,

u -v C([0,T ];L 1 ) ≤ u 0 -v 0 L 1 + T |u 0 | BV f ′ -g ′ ∞ + E α-β,ϕ-ψ T,α,β,u0,ϕ,r with E α-β,ϕ-ψ T,α,β,u0,ϕ,r =                    T |z|>r u 0 (• + z) -u 0 (•) L 1 dµ α (z) ϕ ′ -ψ ′ ∞ +c d √ T |u 0 | BV |z|<r |z| 2 dµ α (z) ϕ ′ -ψ ′ ∞ , α = β, M |z|>r u 0 (• + z) -u 0 (•) L 1 d|µ α -µ β |(z) +c d √ M |u 0 | BV |z|<r |z| 2 d|µ α -µ β |(z), ϕ = ψ, (4.3 
)

where dµ α (z) = G d (α) |z| d+α dz, M = T ϕ ′ ∞ and c d = 4 d 2 d+1 .
Proof. This is Theorems 3.3 and 3.4 of [START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF] with the special choice of diffusion (2.1) and Lévy measure G d (α) |z| d+α dz.

Continuous dependence in the supercritical case

In this section we use Theorem 4.2 to prove Theorems 3.1 and 3.8 for supercritical diffusions.

Proof of Theorem 3.1 when α < 1. We use Estimate (4.3) with β = α. The worst term |z|<r |z| 2 dµ α (z) ϕ ′ -ψ ′ ∞ vanishes when r ↓ 0, and hence

E α-β,ϕ-ψ T,α,β,u0,ϕ,r -→ r↓0 I := T u 0 (• + z) -u 0 (•) L 1 dµ α (z) ϕ ′ -ψ ′ ∞ .
To estimate this integral, we consider separately the domains |z| > r and |z| < r for arbitrary r > 0. In the second domain, we use the inequality

u 0 (•+ z)-u 0 (•) L 1 ≤ |u 0 | BV |z|.
A direct computation using the fact that α < 1, then leads to

I ≤ 2 T u 0 L 1 ϕ ′ -ψ ′ ∞ S d G d (α) α r-α + T |u 0 | BV ϕ ′ -ψ ′ ∞ S d G d (α) 1 -α r1-α
(where S d is the surface measure of the unit sphere of R d ). We complete the proof by taking r = u 0 L 1 |u 0 | -1 BV .

Remark 5.1.

(1) From the proof, we have

C ≤ S d 2 G d (α) α + G d (α) 1-α in (3.4) when α < 1. By (2.2), lim α↓0 C(d, α) is finite and independent of d. (2) We also have C ≤ S d 2 G d (α) α + G d (α) 1-α when α < 1 in (3.6
), since we have seen that this estimate is a simple rewriting of the preceding one by rescaling the time variable.

Proof of Theorem 3.8 when λ ∈ (0, 1). Given α, β ∈ (0, 2), we use Theorem 4.2 with u = u α and v = u β , i.e. with (u 0 , f, ϕ) = (v 0 , g, ψ). As in the preceding proof, we pass to the limit as r ↓ 0 in (4.3) and we cut the remaining integral in two parts. We find that

u α -u β C([0,T ];L 1 ) ≤ 2 M u 0 L 1 |z|>r d|µ α -µ β |(z) =:J1 +M |u 0 | BV |z|<r |z| d|µ α -µ β |(z) =:J2 . (5.1)
In the rest of the proof we use the letter C to denote various constants C = C(d, λ).

We have

J 1 = |z|>r |G d (α) |z| -d-α -G d (β) |z| -d-β | dz (5.2) ≤ |G d (α) -G d (β)| max σ=α,β |z|>r dz |z| d+σ + (G d (α) ∨ G d (β)) |z|>r |z| -d-α -|z| -d-β dz =: J1 , where J1 ≤ S d r-α α - r-β β + 2 S d 1 α -1 β 1 r<1 .
We have estimated J1 using the fact that |z| -d-α -|z| -d-β has a sign both inside and outside the unit ball. By (2.2) and a simple passage to the limit under the integral sign, lim sup α,β→λ

J 1 |α -β| ≤ C (r -λ + 1 r<1 ) ≤C r-λ +C lim sup α,β→λ 1 |α -β| r-α α - r-β β =: J1
.

By the Taylor formula with integral remainder,

J1 = lim sup α,β→λ 1 0 α τ r-ατ ln r + r-ατ α 2 τ dτ ≤ C r-λ (1 + | ln r|),
where

α τ := τ α + (1 -τ ) β.
We deduce the following estimate:

(5.3) lim sup α,β→λ J 1 |α -β| ≤ C r-λ (1 + | ln r|).
Let us notice that this estimate works for all λ ∈ (0, 2). By similar arguments, we also have lim sup

α,β→λ J 2 |α -β| ≤ C r1-λ (1 + | ln r|),
but this time we have to use that λ < 1. Inserting these inequalities into (5.1), we find that for all r > 0,

Lip α (u; λ) ≤ C M (1 + | ln r|) ( u 0 L 1 r-λ + |u 0 | BV r1-λ ).
To conclude we take r = u 0

L 1 |u 0 | -1 BV . Remark 5.2. ( 1 
) When α ≥ 1, the estimate in ϕ -ψ of Theorem 4.2 is not optimal. Indeed, let α = β, u 0 be such that u 0 (• + z) -u 0 (•) L 1 ∼ |z| as z → 0, and ω ϕ-ψ := inf r>0 E α-β,ϕ-ψ
T,α,β,u0,ϕ,r be the best modulus given by Theorem 4.2. Then

ω ϕ-ψ ∼ ϕ ′ -ψ ′ 1 α ∞ , α > 1, ϕ ′ -ψ ′ ∞ |ln ϕ ′ -ψ ′ ∞ | , α = 1, as ϕ ′ -ψ ′ ∞ → 0, thanks to the minimization giving r ∼ ϕ ′ -ψ ′ 1 α ∞ .
These moduli are strictly worse than those in (3.5) e.g. when ϕ ′ ≡ a, ψ ′ ≡ b, a, b > 0. (2) Theorem 4.2 does not imply the local Lipschitz continuity in α ∈ [START_REF] Adams | Sobolev spaces[END_REF][START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF].

Indeed, let ϕ = ψ be nontrivial and u 0 be as above. Then the modulus ω α-β := inf r>0 E α-β,ϕ-ψ T,α,β,u0,ϕ,r is worse than any Lipschitz modulus since lim α,β→λ ω α-β |α-β| = +∞ for all λ ∈ [1, 2). 3 6. Continuous dependence in the critical and subcritical cases Since we can not use Theorem 4.2 any more, we start from Lemma 4.1 and take advantage of the homogeneity of the fractional Laplacian. We thus use the Kruzhkov type doubling of variables techniques introduced in [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF] along with ideas from [START_REF] Kuznetsov | Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation[END_REF]; see also [START_REF] Schochet | Regularized Chapman-Enskog expansion for scalar conservation laws[END_REF][START_REF] Cockburn | On convergence of entropy solutions to a single conservation law[END_REF][START_REF] Droniou | Vanishing non-local regularization of a scalar conservation law[END_REF][START_REF] Jakubowski | On a nonlinear elliptic/parabolic integro-differential equation with L 1 -data[END_REF][START_REF] Droniou | Fractal first order partial differential equations[END_REF][START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF][START_REF] Rohde | The nonrelativistic limit in radiation hydrodynamics. I. Weak entropy solutions for a model problem[END_REF][START_REF] Cifani | Entropy formulation for degenerate fractional order convectiondiffusion equations[END_REF][START_REF] Karlsen | Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations[END_REF][START_REF] Alibaud | Continuous dependence estimates for nonlinear fractional convection-diffusion equations[END_REF][START_REF] Cifani | On numerical methods and error estimates for degenerate fractional convection-diffusion equations[END_REF] for other applications of this technique to nonlocal equations. We recall that the idea is to consider v to be a function of (x, t), u to be a function of (y, s), and use the approximate unit φ ǫ,ν (x, t, y, s) in (4.1) as a test function. For brevity, we do not specify the variables of u, v, and φ ǫ,ν when the context is clear. Finally, we recall that dw = dx dt dy ds. 6.1. A technical lemma. In order to adapt the ideas of [START_REF] Kuznetsov | Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation[END_REF] to the nonlocal case, we need the following Kato type of inequality. The reader could skip this technical subsection at the first reading. Lemma 6.1. Let α ∈ (0, 2), c, c ∈ R, γ, γ ∈ R and I be a real interval with a positive lower bound. Let u, v ∈ L 1 (Q T ), ϕ satisfy (1.5) and φ ǫ,ν be the test function in (4.1). Then

E := Q 2 T |z|∈I sgn(v(x, t) -u(y, s)) • ϕ v(x + c |z| γ-1 z, t) -ϕ u(y + c |z| γ-1 z, s) -{ϕ(v(x, t)) -ϕ(u(y, s))} |z| d+α • φ ǫ,ν (x, t, y, s) dz dw ≤ Q 2 T |z|∈I |ϕ(v(x, t)) -ϕ(u(y, s))| θ ν (t -s) ρ ǫ (x -y + h(z)) -ρ ǫ (x -y) |z| d+α dz dw, with h(z) := (c |z| γ-1 -c |z| γ-1 ) z.
In particular, if c = c and γ = γ, then E ≤ 0.

Proof. Note that E is well-defined as "convolution-like integral of L 1 -functions." Indeed, φ ǫ,ν (x, t, y, s) = θ ν (t -s) ρ ǫ (x -y), where θ ν and ρ ǫ are approximate units, 3 If not, there are αn, βn → λ and rn → r * ∈ [0, +∞] such that lim ω αn-βn |αn-βn| < +∞ and

ω αn-βn |αn -βn| = o(1)+ |z|>rn u 0 (• + z) -u 0 (•) L 1 d|µ αn-µ βn |(z) |αn -βn| =:In + |z|<rn |z| 2 d|µ αn-µ βn |(z) |αn -βn| 2 =:Jn (M = c d √ M |u 0 | BV = 1 to simplify). By Fatou's lemma lim inf J 2 n ≥ |z|<r * |z| 2 (+∞) dz and lim inf In ≥ |z|>r * u 0 (• + z) -u 0 (•) L 1 |G ′ d (λ) -G d (λ) ln |z|| |z| -d-λ
dz. This is not possible since these integrals can not be both finite at the same time. so that by Fubini,

Q 2 T |z|∈I φ ǫ,ν • ϕ v(x + c |z| γ-1 z, t) -ϕ u(y + c |z| γ-1 z, s) -{ϕ(v) -ϕ(u)} |z| d+α dz dw ≤ 2 ϕ(u) L 1 (QT ) + ϕ(v) L 1 (QT ) |z|∈I dz |z| d+α < +∞, since u and v are L ∞ ∩ L 1 , ϕ is W 1,∞
loc with ϕ(0) = 0, and inf I > 0. Then by (2.4) and the nonnegativity of φ ǫ,ν ,

E ≤ Q 2 T |z|∈I φ ǫ,ν • ϕ v(x + c |z| γ-1 z, t) -ϕ u(y + c |z| γ-1 z, s) -|ϕ(v) -ϕ(u)| |z| d+α dz dw = Q 2 T |z|∈I |ϕ(v) -ϕ(u)| • φ ǫ,ν (x + c |z| γ-1 z, t, y + c |z| γ-1 z, s) -φ ǫ,ν =θν (t-s){ρǫ(x-y+(c |z| γ-1 -c |z| γ-1 ) z)-ρǫ(x-y)} dz |z| d+α dw;
the last line has been obtained by splitting the integral in two pieces and using the change of variable (x + c |z| γ-1 z, t, y + c |z| γ-1 z, s, -z) → (x, t, y, s, z). The proof is complete. 6.2. Proof of Theorem 3.1. During the proof we freeze the nonlinear diffusion functions and use a sort of linearization procedure. The techniques could look a little bit like the ones in Young measure theory and kinetic formulations [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related local equations[END_REF][START_REF] Bouchut | Kružkov's estimates for scalar conservation laws revisited[END_REF][START_REF] Chen | L 1 -framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations[END_REF].

Proof of Theorem 3.1. 1. Initial reduction. We first reduce the proof to the case where (6.1) v 0 = u 0 , ϕ ′ and ψ ′ vanish outside I(u 0 ) and take values in [ Λ, Λ ],

with I(u 0 ) = (ess inf u 0 , ess sup u 0 ) and for some Λ ≥ Λ > 0. Let us justify that we can do this without loss of generality. Since u takes its values in I(u 0 ) by (2.6), we can redefine ϕ to be constant outside this interval without changing the solutions of the initial-value problem (1.1). Hence Λ could be taken as a Lipschitz constant of ϕ on I(u 0 ). In a similar way, we could also modify ψ outside I(u 0 ) if v 0 = u 0 . The last assumption is no restriction. Indeed, by (2.7),

u -v C([0,T ];L 1 ) ≤ u -w C([0,T ];L 1 ) + w -v C([0,T ];L 1 ) ≤ u0-v0 L 1
for the entropy solution w of (3.1) with initial data u 0 ; hence, (3.4) of Theorem 3.1 holds for u -v whenever it does for u -w. Finally, if Λ does not exist, we can always consider sequences ϕ n (ξ) := ϕ(ξ) + ξ n and ψ n (ξ) := ψ(ξ) + ξ n for which it does. The associated entropy solutions u n and v n respectively converge to u and v in C([0, T ]; L 1 ) by e.g. Theorem 4.2. Consequently, if we could prove (3.4) for u n -v n , it would follow for u -v by going to the limit.

In the rest of the proof we always assume (6.1).

Applying Kuznetsov.

Let us use the entropy inequality (2.5) for v = v(x, t) with k = u(y, s) fixed and φ(x, t) := φ ǫ,ν (x, t, y, s). By Remark 2.1 and an integration of (y, s) over Q T , we find that

Q 2 T |v -u| ∂ t φ ǫ,ν + q g (v, u) • ∇ x φ ǫ,ν dw + Q 2 T |ψ(v) -ψ(u)| L α r [φ ǫ,ν (•, t, y, s)](x) dw + Q 2 T sgn(v -u) L α,r [ψ(v(•, t))](x) φ ǫ,ν dw - R d ×QT |v(x, T ) -u(y, s)| φ ǫ,ν (x, T, y, s) dx dy ds + R d ×QT |v 0 (x) -u(y, s)| φ ǫ,ν (x, 0, y, s) dx dy ds ≥ 0.
Inserting this inequality into the Kuznetsov inequality (4.2), we obtain for all r, ǫ > 0 and T > ν > 0,

u(•, T ) -v(•, T ) L 1 ≤ C(d) |u 0 | BV ǫ + 2 (m u (ν) ∨ m v (ν)) + Q 2 T (q g -q f )(v, u) • ∇ x φ ǫ,ν dw =:E1 + Q 2 T |ψ(v) -ψ(u)| L α r [φ ǫ,ν (•, t, y, s)](x) + |ϕ(v) -ϕ(u)| L α r [φ ǫ,ν (x, t, •, s)](y) dw =:E2 + Q 2 T sgn(v -u) (L α,r [ψ(v(•, t))](x) -L α,r [ϕ(u(•, s))](y)) φ ǫ,ν dw =:E3 (6.2)
where C(d) = C ρ from (4.2). During the proof, C(d) will denote various constant depending only on d.

3.

Estimates of E 1 and E 2 . A standard estimate shows that [START_REF] Dafermos | Polygonal approximations of solutions of the initial value problem for a conservation law[END_REF][START_REF] Lucier | A moving mesh numerical method for hyperbolic conservation laws[END_REF][START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics[END_REF]. Let us estimate E 2 . By Taylor's formula,

E 1 ≤ T |u 0 | BV f ′ -g ′ ∞ , (6.3) see e.g.
ρ ǫ (x + z) -ρ ǫ (x) -∇ρ ǫ (x) • z = 1 0 (1 -τ ) ∇ 2 ρ ǫ (x + τ z) • z 2 dτ for all x, z ∈ R d . Since ρ ǫ ∈ C ∞ c (R d ), we infer that L α r [ρ ǫ ] ∈ L 1 (R d ) with L α r [ρ ǫ ] L 1 ≤ G d (α) |z|<r 1 0 (1 -τ ) |z| -d+2-α R d |∇ 2 ρ ǫ (x + τ z)| dx dτ dz = C(d, α, ǫ) r 2-α .
Moreover, by Definitions (2.1) and (4.1),

L α r [φ ǫ,ν (•, t, y, s)](x) = θ ν (t -s) L α r [ρ ǫ ](x -y).
By Fubini and the convolution like structure of the integral, it follows that

Q 2 T |ψ(v(x, t)) -ψ(u(y, s))| L α r [φ ǫ,ν (•, y, t, s)](x) dw ≤ ψ(v) L 1 (QT ) + ψ(u) L 1 (QT ) C(d, α, ǫ) r 2-α , since θ ν = 1.
In a similar way we can estimate the ϕ-integral and conclude that

E 2 ≤ C ǫ r 2-α . (6.4)
From now on C ǫ will denote various constants depending among other things on ǫ, but not on r, ν. For later use we note that E 2 → 0 as r, ν ↓ 0 and ǫ is fixed.

4.

Estimate of E 3 -the linear case. We consider the case ϕ ′ ≡ a and ψ ′ ≡ b for a, b > 0. In this case

E 3 = G d (α) Q 2 T |z|>r sgn(v -u) φ ǫ,ν • a (v(x + z, t) -v) -b (u(y + z, s) -u) |z| d+α dz dw. (6.5)
By the change of variables z → b

1 α z, we see that b L α,r [v(•, t)](x) = G d (α) |z|>r v(x + z, t) -v(x, t) |b -1 α z| d+α b -d α dz = G d (α) |z|>b -1 α r v(x + b 1 α z, t) -v(x, t) |z| d+α dz,
and similarly that

a L α,r [u(•, s)](y) = G d (α) |z|>a -1 α r u(y + a 1 α z, s) -u(y, s) |z| d+α dz.
It follows that

E 3 = G d (α) Q 2 T (a∨b) -1 α r<|z|<(a∧b) -1 α r . . . dz |z| d+α + G d (α) Q 2 T |z|>(a∧b) -1 α r sgn(v -u) • v(x + b 1 α z, t) -u(y + a 1 α z, s) -(v -u) |z| d+α φ ǫ,ν dz dw =: E 3,1 + E 3,2 , (6.6) 
where E 3,1 contains only the u-terms if a ≥ b, or only the v-terms in the other case.

In the u-case, e.g.,

E 3,1 = G d (α) Q 2 T a -1 α r<|z|<b -1 α r sgn(u -v) u(y + a 1 α z, s) -u |z| d+α φ ǫ,ν dz dw.
The estimates for E 3,1 are similar in both cases, and we only detail the u-case. As in the proof of Lemma 6.1, we use that sgn(u(y, s) -v(x, t)) u(y + a

1 α z, s) -u(y, s) ≤ u(y + a 1 α z, s) -v(x, t) -|u(y, s) -v(x, t)| , to deduce that E 3,1 ≤ G d (α) Q 2 T a -1 α r<|z|<b -1 α r u(y + a 1 α z, s) -v(x, t) -|u -v| |z| d+α φ ǫ,ν dz dw = G d (α) Q 2 T |u -v| • a -1 α r<|z|<b -1 α r φ ǫ,ν (x, t, y + a 1 α z, s) -φ ǫ,ν =θν (t-s) ρǫ(x-y-a 1 α z)-ρǫ(x-y)
|z| -d-α dz dw.

We continue as in the derivation of (6.4), and use a Taylor expansion with integral remainder of ρ ǫ . Since the first order term contains the factor

a -1 α r<|z|<b -1 α r z |z| d+α dz = 0,
we find an estimate similar to (6.4), namely (6.7)

E 3,1 ≤ C ǫ u L 1 (QT ) + v L 1 (QT ) r 2-α .
We emphasize that C ǫ can be chosen to be independent of a and b by (6.1) (more precisely C ǫ = C(d, α, ǫ, Λ, Λ); this will be important in the next step.

5.

Estimate of E 3,2 . Note that a, b are arbitrary reals such that (6.1) holds, i.e. Λ ≥ a, b ≥ Λ, and let r 2 ≥ r 1 > 0. Since Λ > 0 and r will be sent to zero, we assume without loss of generality that

r 1 > Λ -1 α r. In particular, r 1 > (a ∧ b) -1 α r. Then E 3,2 = 3 i=1 G d (α) Q 2 T |z|∈Ii sgn(v -u) • v(x + b 1 α z, t) -u(y + a 1 α z, s) -(v -u) |z| d+α
φ ǫ,ν dz dw =:

3 i=1 E 3,2,i , (6.8) 
where I 1 = (r 2 , +∞), I 2 = (r 1 , r 2 ) and I 3 = ((a ∧ b) -1 α r, r 1 ). By adding and subtracting sgn(v-u) u(y+b 1 α z, s) and using Lemma 6.1 with c = c = b 1 α and γ = γ = 1, we find that

E 3,2,i ≤ G d (α) Q 2 T |z|∈Ii sgn(v -u) u(y + b 1 α z, s) -u(y + a 1 α z, s) |z| d+α φ ǫ,ν dz dw.
By the BV -regularity of u, we then immediately deduce that

E 3,2,2 ≤ G d (α) |u| L 1 (0,T ;BV ) |a 1 α -b 1 α | r1<|z|<r2 |z| dz |z| d+α .
Moreover, going back to the original variables a

1 α z → z and b 1 α z → z, we find that Q 2 T |z|>r2 sgn(v -u) u(y + a 1 α z, s) |z| d+α φ ǫ,ν dz dw = a Q 2 T |z|>a 1 α r2 sgn(v -u) u(y + z, s) |z| d+α φ ǫ,ν dz dw,
and a similar formula for the b-term. Hence we find that

E 3,2,1 ≤ G d (α) (b -a) Q 2 T |z|>(a∨b) 1 α r2 sgn(v -u) u(y + z, s) |z| d+α φ ǫ,ν dz dw + G d (α) sgn(a -b) (a ∧ b) Q 2 T (a∧b) 1 α r2<|z|<(a∨b) 1 α r2 . . . ,
where the integrands are the same. Since φ ǫ,ν is an approximate unit,

E 3,2,1 ≤ C(d) G d (α) α u L 1 (QT ) |a -b| a ∨ b r -α 2 ,
where

C(d) = 2 S d .
It remains to estimate E 3,2,3 in (6.8). By Lemma 6.1, with c = a

1 α and c = b 1 α , E 3,2,3 ≤ G d (α) Q 2 T (a∧b) -1 α r<|z|<r1 |v -u| θ ν (t -s) • {ρ ǫ (x -y + h(z)) -ρ ǫ (x -y)} |z| -d-α dz dw (6.9) with h(z) := (b 1 α -a 1 α ) z.
After a Taylor expansion of ρ ǫ with integral remainder, we find that

E 3,2,3 ≤ G d (α) Q 2 T (a∧b) -1 α r<|z|<r1 1 0 (1 -τ ) |v -u| θ ν (t -s) |z| -d-α • ∇ 2 ρ ǫ (x -y + τ h(z)) • h(z) 2 dτ dz dw.
Remember that the integral of the first order term in z is zero by symmetry. By a standard argument, |v -u| is BV in y as composition of a BV with a Lipschitz function (cf. e.g. [START_REF] Bouchut | Kružkov's estimates for scalar conservation laws revisited[END_REF]). Hence, by an integration by parts with respect to y,

E 3,2,3 ≤ G d (α) T 0 QT (a∧b) -1 α r<|z|<r1 1 0 (1 -τ ) θ ν (t -s) |z| -d-α • R d ∇ρ ǫ (x -y + τ h(z)) • h(z) h(z) • d∇ y |v(x, t) -u(•, s)|(y)
dτ dz dx dt ds.

We use the notation d∇ y |v(x, t) -u(•, s)|(y) in case ∇ y |v -u| is a measure. Then |∇ y |v -u|| ≤ |∇u| in the sense of measures since y is the space variable of u. It follows that

E 3,2,3 ≤ G d (α) T 0 QT |z|<r1 1 0 (1 -τ ) θ ν (t -s) |z| -d-α |h(z)| 2 • R d |∇ρ ǫ (x -y + τ h(z))| d|∇u(•, s)|(y) dτ dz dx dt ds.
By Fubini 4 we integrate with respect to (x, t) before (y, s), and then we use that

h(z) = (b 1 α -a 1 α ) z and |∇ρ ǫ | = 1 ǫ |∇ρ| = C(d) ǫ
(by (4.1)), to see that

E 3,2,3 ≤ G d (α) T 0 |z|<r1 1 0 (1 -τ ) |z| -d-α • |h(z)| 2 |u(•, s)| BV dτ dz ds QT θ ν |∇ρ ǫ | dx dt ≤ C(d) G d (α) 2 -α |u| L 1 (0,T ;BV ) (a 1 α -b 1 α ) 2 r 2-α 1 ǫ .
(6.10)

4 applied for fixed s, so that d|∇u(•, s)|(y) dz dx dt is a tensor product of σ-finite measures!

6.

Estimate of E 3 -conclusion in the linear case. By the estimates of 4 and 5, (6.6), (6.8), etc., we can then conclude that

E 3 ≤ E 3,1 + E 3,2,1 + E 3,2,2 + E 3,2,3 ≤ C ǫ u L 1 (QT ) + v L 1 (QT ) r 2-α + C(d) G d (α) 1 α u L 1 (QT ) |a -b| a ∨ b r -α 2 + |u| L 1 (0,T ;BV ) |a 1 α -b 1 α | r1<|z|<r2 |z| dz |z| d+α + 1 2 -α |u| L 1 (0,T ;BV ) (a 1 α -b 1 α ) 2 r 2-α 1 ǫ , (6.11) 
for arbitrary r 2 ≥ r 1 > Λ -1 α r. Note that the 1 a∨b -term has to be handled with care since it could be large in the general case when ϕ ′ and ψ ′ can be degenerate.

We conclude the estimate of E 3 by choosing the values of constants r 1 and r 2 . In the critical case where α = 1, we take r 1 = T ∧ 1 and r 2 = 1 ∨ u0 L 1 (a∨b) |u0|BV . Notice that if |u 0 | BV = 0, then u 0 ≡ 0 as constant integrable function, and (3.4) reduces to (2.6). In the sequel, we thus assume without loss of generality that |u 0 | BV = 0. Note then that +∞ > r 2 ≥ r 1 = T ∧ 1 > Λ -1 α r for r small enough (r ↓ 0 in the end). By easy computation and Lemma B.1 of the Appendix,

|a -b| r1<|z|<r2 |z| dz |z| d+1 = C |a -b| (ln r 2 -ln r 1 ) ≤ C |a -b| | ln T | + 1 u 0 L 1 |u 0 | BV >1 ln u 0 L 1 |u 0 | BV + (-ln(a ∨ b)) + ≤ C 1 + | ln T | + |u 0 | -1 BV E 1 (u 0 ) |a -b| + |a ln a -b ln b| , where C = C(d)
and where E 1 (u 0 ) is defined in (3.3). We finally deduce from (6.11) that, when α = 1,

E 3 ≤ C ǫ u L 1 (QT ) + v L 1 (QT ) r + C(d) u L 1 (QT ) |u 0 | BV u 0 L 1 |a -b| + 1 + | ln T | + |u 0 | -1 BV E 1 (u 0 ) |u| L 1 (0,T ;BV ) |a -b| + |u| L 1 (0,T ;BV ) |a ln a -b ln b| + T |u| L 1 (0,T ;BV ) (a -b) 2 1 ǫ , (6.12) 
for all T ∧ 1 > Λ -1 r. To divide by u 0 L 1 , we have assumed without loss of generality that we are not in the case where u 0 L 1 = 0, for which (3.4) also reduces to (2.6). When α > 1, we simply choose r 2 = +∞ in (6.11) and we get

E 3 ≤ C ǫ u L 1 (QT ) + v L 1 (QT ) r 2-α + C(d) G d (α) 1 α -1 |u| L 1 (0,T ;BV ) |a 1 α -b 1 α | r 1-α 1 + 1 2 -α |u| L 1 (0,T ;BV ) (a 1 α -b 1 α ) 2 r 2-α 1 ǫ , (6.13) 
for all r 1 > Λ -1 α r.

7.

Estimate of E 3 -the general case via linearization. The idea is now to reduce to the linear case in step 4 by freezing the "diffusion coefficients" ϕ ′ (ξ) and ψ ′ (ξ). To do so, we introduce the function

(6.14) χ b a (ξ) := sgn(b -a) 1 (a∧b,a∨b) (ξ),
for ξ, a, b ∈ R. By (6.2), we then find that

E 3 = G d (α) Q 2 T |z|>r sgn(v -u) • v(x+z,t) v(x,t) ψ ′ (ξ) dξ - u(y+z,s) u(y,s) ϕ ′ (ξ) dξ |z| d+α φ ǫ,ν dz dw = G d (α) Q 2 T |z|>r sgn(v -u) • χ v(x+z,t) v(x,t) (ξ) ψ ′ (ξ) -χ u(y+z,s) u(y,s) (ξ) ϕ ′ (ξ)
|z| d+α φ ǫ,ν dξ dz dw.

(6.15)

Let us notice that this integral is well-defined, since e.g. |χ b a (ξ)| dξ = |b -a| and, ϕ ′ and ψ ′ are assumed bounded by (6.1).

For each δ > 0, we define a regularized version of E 3 as

E 3 (δ) := G d (α) Q 2 T |z|>r sgn(v -u) • χ v(x+z,t) v(x,t) (ζ) ψ ′ (ξ) -χ u(y+z,s) u(y,s) (ζ) ϕ ′ (ξ) |z| d+α φ ǫ,ν ω δ (ξ -ζ) dζ dξ dz dw, (6.16) 
where the approximate unit ω δ (ξ) := 1 δ ω ξ δ , and

ω ∈ C ∞ b ∩ L 1 (R), ω > 0, ω = 1. For each ζ, ξ ∈ R, let Ω ξ (ζ) := ζ -∞ ω δ (ξ -w) dw - 0 -∞ ω δ (ξ -w) dw, and note that χ v(x+z,t) v(x,t) (ζ) ω δ (ξ -ζ) dζ = v(x+z,t) v(x,t) Ω ′ ξ (ζ) dζ = Ω ξ (v(x + z, t)) -Ω ξ (v(x, t)). Moreover, sgn(v-u) = sgn (Ω ξ (v) -Ω ξ (u)) since Ω ξ (•)
is increasing, and since Ω ξ (•) is smooth and vanishes at zero, Ω ξ (u) and Ω ξ (v) have similar boundedness, integrability, and regularity properties as u and v. It follows that

E 3 (δ) = G d (α) Q 2 T |z|>r sgn (Ω ξ (v) -Ω ξ (u)) φ ǫ,ν • ψ ′ (ξ) (Ω ξ (v(x + z, t)) -Ω ξ (v)) -ϕ ′ (ξ) (Ω ξ (u(y + z, s)) -Ω ξ (u)) |z| d+α dz dw dξ.
This integrand has similar form and properties as the one in (6.5) for fixed ξ!

We continue in the critical case when α = 1. We argue as in step 4 with a = ϕ ′ (ξ) and b = ψ ′ (ξ). By (6.12) we get that for all T ∧ 1 > Λ -1 r,

E 3 (δ) ≤ C ǫ Ω ξ (u) L 1 (QT ) + Ω ξ (v) L 1 (QT ) r dξ + C(d) Ω ξ (u) L 1 (QT ) |u 0 | BV u 0 L 1 |ϕ ′ (ξ) -ψ ′ (ξ)| + 1 + | ln T | + |u 0 | -1 BV E 1 (u 0 ) |Ω ξ (u)| L 1 (0,T ;BV ) |ϕ ′ (ξ) -ψ ′ (ξ)| + |Ω ξ (u)| L 1 (0,T ;BV ) |ϕ ′ (ξ) ln ϕ ′ (ξ) -ψ ′ (ξ) ln ψ ′ (ξ)| + T |Ω ξ (u)| L 1 (0,T ;BV ) (ϕ ′ (ξ) -ψ ′ (ξ)) 2 1 ǫ dξ ≤ C ǫ r Ω ξ (u) L 1 (QT ) + Ω ξ (v) L 1 (QT ) dξ + C(d) A |u 0 | BV u 0 L 1 ϕ ′ -ψ ′ ∞ + 1 + | ln T | + |u 0 | -1 BV E 1 (u 0 ) B ϕ ′ -ψ ′ ∞ + B ϕ ′ ln ϕ ′ -ψ ′ ln ψ ′ ∞ + T B ϕ ′ -ψ ′ 2 ∞ 1 ǫ , with A = Ω ξ (u) L 1 (QT ) dξ, B = |Ω ξ (u)| L 1 (0,T ;BV ) dξ, and 
ϕ ′ -ψ ′ ∞ = ess sup I(u0) |ϕ ′ -ψ ′ |.
The supremum above can be taken only on I(u 0 ), since ϕ ′ and ψ ′ are assumed to vanish outside this interval by (6.1). Note also that C ǫ = C(d, α, ǫ, Λ, Λ) can be chosen independent of ϕ ′ (ξ) and ψ ′ (ξ) as discussed below (6.7). A standard argument, see Appendix A, then reveals that Ω ξ (u) L 1 (QT ) dξ = u L 1 (QT ) , (6.17) |Ω ξ (u)| L 1 (0,T ;BV ) dξ = |u| L 1 (0,T ;BV ) , (6.18) and hence that A ≤ T u 0 L 1 and B ≤ T |u 0 | BV by (2.6).

By standard computations given in Appendix A, (6. [START_REF] Chen | Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients[END_REF])

lim δ↓0 E 3 (δ) = E 3 ,
and it follows after going to the limit in the estimate above, that

E 3 ≤ C ǫ r + C(d) T E 1 (u 0 ) ϕ ′ -ψ ′ ∞ + T (1 + | ln T |) |u 0 | BV ϕ ′ -ψ ′ ∞ + T |u 0 | BV ϕ ′ ln ϕ ′ -ψ ′ ln ψ ′ ∞ + T 2 |u 0 | BV ϕ ′ -ψ ′ 2 ∞ 1 ǫ , (6.20) 
for all T ∧ 1 > Λ -1 r when α = 1.

When α > 1, similar arguments using (6.13) show that for all r 1 > Λ -1 α r,

E 3 ≤ C ǫ r 2-α + C(d) G d (α) α -1 T |u 0 | BV (ϕ ′ ) 1 α -(ψ ′ ) 1 α ∞ r 1-α 1 + G d (α) 2 -α T |u 0 | BV (ϕ ′ ) 1 α -(ψ ′ ) 1 α 2 ∞ r 2-α 1 ǫ .
(6.21)

Conclusion.

We have to insert the estimates of the three preceding steps into (6.2). Let us begin by the case where α = 1. By (6.3), (6.4) and (6.20),

u(•, T ) -v(•, T ) L 1 ≤ 2 (m u (ν) ∨ m v (ν)) + C ǫ r + T |u 0 | BV f ′ -g ′ ∞ + C(d) |u 0 | BV ǫ + T E 1 (u 0 ) ϕ ′ -ψ ′ ∞ + T (1 + | ln T |) |u 0 | BV ϕ ′ -ψ ′ ∞ + T |u 0 | BV ϕ ′ ln ϕ ′ -ψ ′ ln ψ ′ ∞ + T 2 |u 0 | BV ϕ ′ -ψ ′ 2 ∞ 1 ǫ ,
for all r, ǫ > 0 and T > ν > 0 such that T ∧ 1 > Λ -1 r. We complete the proof by sending r and ν to zero, and taking ǫ = T ϕ ′ -ψ ′ ∞ . When α > 1, we find using (6.21) that

u(•, T ) -v(•, T ) L 1 ≤ 2 (m u (ν) ∨ m v (ν)) + C ǫ r 2-α + T |u 0 | BV f ′ -g ′ ∞ + C(d) |u 0 | BV ǫ + G d (α) α -1 T |u 0 | BV (ϕ ′ ) 1 α -(ψ ′ ) 1 α ∞ r 1-α 1 + G d (α) 2 -α T |u 0 | BV (ϕ ′ ) 1 α -(ψ ′ ) 1 α 2 ∞ r 2-α 1 ǫ ,
for all r, ǫ > 0, T > ν > 0 and r 1 > Λ -1 α r. We conclude by choosing ǫ = T

1 α (ϕ ′ ) 1 α -(ψ ′ ) 1 α ∞ and r 1 = T 1 α . The proof of Theorem 3.1 is complete. Remark 6.2.
(1) From the proof, we find that

C ≤ C(d) 1 + G d (α) α-1 + G d (α) 2-α in (3.4) when α > 1. By (2.2), lim α↑2 C(d, α) is finite and only depends on d. (2) In particular, C ≤ C(d) 1 + G d (α) α-1 + G d (α) 2-α
when α > 1 also in (3.6).

6.3. Proof of Theorem 3.8. Here no linearization procedure is needed since ϕ = ψ. The new difficulty comes from the fact that the two Lévy measures are different.

A key idea is to change variables to work with only one measure.

Proof of Theorem 3.8. We argue as in the preceding proof with u = u α and v = u β , i.e. (u 0 , f, ϕ) = (v 0 , g, ψ). To simplify references to similar computations, we still use the letters u and v for a while.

1. Applying Kuznetsov, initial estimates. As in step 1 in the proof of Theorem 3.1, we apply Lemma 4.1 and estimate the L r -terms. We obtain estimates similar to (6.2), and (6.4), and conclude that for all α, β ∈ (0, 2), r, ǫ > 0 and T > ν > 0,

u(•, T ) -v(•, T ) L 1 ≤ C(d) |u 0 | BV ǫ + 2 (m u (ν) ∨ m v (ν)) + C ǫ (r 2-α + r 2-β ) + Q 2 T sgn(v -u) L β,r [ϕ(v(•, t))](x) -L α,r [ϕ(u(•, s))](y) φ ǫ,ν dw =:E3 . (6.22)
The new r 2-β -term comes from the new L β r -term in the estimate corresponding to E 2 . Note that the terms in E 3 only involve one function ϕ, but different α, β. Most of the remaining proof consists in estimating E 3 .

2.

Change of variables and first estimate of E 3 . We perform several changes of variables to move the differences between L α,r and L β,r from the Lévy measure to the z-translations. This is similar in spirit to what we did in the preceding proof to obtain (6.6). First we let z = |z| γ -1 -1 z (γ > 0), and note that dz = γ -1 |z| d (γ -1 -1) dz 5 so that |z| -d-β dz = γ |z| -d-β γ dz. Take γ = γ β := α β , and check that -d -β γ = -d -√ α β and

L β,r [ϕ(v(•, t))](x) = G d (β) γ β |z|>r γ -1 β ϕ v(x + |z| γ β -1 z, t) -ϕ(v(x, t)) |z| d+ √ α β
dz.

Then we use the change of variable

z → (G d (β)γ β ) 1 √
αβ z and get that 

L β,r [ϕ(v(•, t))](x) = |z|>r β ϕ v(x + c β |z| γ β -1 z, t) -ϕ(v(x, t)) |z| d+
:= (G d (α) γ α ) -1 √ α β r γ -1 α . Hence E 3 = Q 2 T rα∧r β <|z|<rα∨r β . . . dz |z| d+ √ α β + Q 2 T |z|>rα∨r β sgn(v -u) • ϕ v(x + c β |z| γ β -1 z, t) -ϕ u(y + c α |z| γα-1 z, s) -{ϕ(v) -ϕ(u)} |z| d+ √ α β • φ ǫ,ν dz dw =: E 3,1 + E 3,2 ,
where the integrand of E 3,1 only contains either u-terms or v-terms. As in the preceding proof, cf. (6.6) and (6.7), we find that (6.23)

E 3,1 ≤ C ǫ o r (1), 5 Indeed, dz = F (z) dz for F (z) = |det (D (|z| γ -1 -1 z))| and D (|z| γ -1 -1 z) = (γ -1 -1) |z| γ -1 -3 z ⊗ z + |z| γ -1 -1 Id.
Hence F is positive, F (λ z) = |λ| d (γ -1 -1) F (z) for all λ ∈ R, and radial since

F (R e) = det (γ -1 -1) R e (R e) t + R R t = det R ((γ -1 -1) e e t + Id) R t = γ -1 ,
for all orthogonal matrices R ∈ R d×d and column vectors e of the canonical basis.

where o r (1) = max σ=α,β (r α ∨ r β ) 2 γσ - √ α β → 0 as r ↓ 0 and α, β are fixed. Most of the remaining proof consists in estimating E 3,2 . Before continuing, let us list the following properties that will be needed: for any d ∈ N and λ ∈ (0, 2), (6.24)

           lim α,β→λ γ α = lim α,β→λ γ β = 1, lim α,β→λ c α = lim α,β→λ c β = G d (λ) 1 λ > 0, lim α,β→λ |γα-γ β | |α-β| = 1 λ , lim sup α,β→λ |cα-c β | |α-β| < +∞.
In particular, the limsup is a constant of the form C = C(d, λ) (note also that this limsup is in fact a limit but this is will not be needed). These properties are immediate consequences of (2.2).

3. First estimate of E 3,2 . We introduce parameters r 2 ≥ r 1 > 0. Notice that r 1 > r α ∨ r β for sufficiently small r (r ↓ 0 in the next step). Let us define

E 3,2 = 3 i=1 E 3,2,i := 3 i=1 Q 2 T |z|∈Ii sgn(v -u) • ϕ v(x + c β |z| γ β -1 z, t) -ϕ u(y + c α |z| γα-1 z, s) -{ϕ(v) -ϕ(u)} |z| d+ √ α β
• φ ǫ,ν dz dw for I 1 = (r 2 , +∞), I 2 = (r 1 , r 2 ) and I 3 = (r α ∨r β , r 1 ). An application of Lemma 6.1 with c = c = c β and γ = γ = γ β , shows that

E 3,2,i ≤ Q 2 T |z|∈Ii sgn(v -u) φ ǫ,ν • ϕ u(y + c β |z| γ β -1 z, s) -ϕ u(y + c α |z| γα-1 z, s) |z| d+ √ α β
dz dw.

(6.25)

We now estimate these terms.

Let us begin with E 3,2,1 . Going back to the original variables, c α |z| γα-1 z → z,

Q 2 T |z|>r2 sgn(v -u) ϕ u(y + c α |z| γα-1 z, s) |z| d+ √ α β φ ǫ,ν dz dw = G d (α) Q 2 T |z|>cα r γα 2 sgn(v -u) ϕ (u(y + z, s)) |z| d+α φ ǫ,ν dz dw.
Let us continue by assuming that c α r γα 2 ≥ c β r γ β 2 . By the above identity and a similar one for the β-term, we then find that

E 3,2,1 ≤ Q 2 T |z|>cα r γα 2 sgn(v -u) ϕ(u(y + z, s)) φ ǫ,ν G d (β) |z| d+β - G d (α) |z| d+α dz dw + G d (β) Q 2 T c β r γ β 2 <|z|<cα r γα 2 sgn(v -u) ϕ(u(y + z, s)) φ ǫ,ν dz dw |z| d+β .
By (1.5) and (2.6), ϕ(u) L 1 (QT ) ≤ M u 0 L 1 for M = T ess sup I(u0) |ϕ ′ |, and then by Fubini,

E 3,2,1 ≤ M u 0 L 1 |z|>cα r γα 2 G d (β) |z| d+β - G d (α) |z| d+α dz + G d (β) c β r γ β 2 <|z|<cα r γα 2 dz |z| d+β .
Doing the same reasoning when c α r γα 2 < c β r γ β 2 and taking the maximum, we finally get

E 3,2,1 ≤ M u 0 L 1 |z|>(cα r γα 2 )∧(c β r γ β 2 ) G d (β) |z| d+β - G d (α) |z| d+α dz + C(d) M u 0 L 1 max σ=α,β |z|∈co{cα r γα 2 ,c β r γ β 2 } dz |z| d+σ , (6.26) where C(d) = max [0,2] G d is finite by (2.
2) and from now on co{a, b} designs the interval (a ∧ b, a ∨ b).

Next, by (1.5) and (2.6), |ϕ(u)| L 1 (0,T ;BV ) ≤ M |u 0 | BV . Hence by integrating first with respect to y in (6.25), we find that

E 3,2,2 ≤ M |u 0 | BV r1<|z|<r2 |c α |z| γα -c β |z| γ β | dz |z| d+ √ α β . (6.27)
Finally, by Lemma 6.1

E 3,2,3 ≤ Q 2 T rα∨r β <|z|<r1 |ϕ(v) -ϕ(u)| θ ν (t -s) • {ρ ǫ (x -y + h(z)) -ρ ǫ (x -y)} dz dw |z| d+ √ α β , with h(z) := (c β |z| γ β -1 -c α |z| γα-1 ) z.
This estimate is similar to (6.9), but with a new displacement, new functions ϕ(u) and ϕ(v), and the new power √ α β. By arguing as before, we find that

E 3,2,3 ≤ C(d) ǫ T 0 |z|<r1 1 0 (1 -τ ) |z| -d- √ α β |h(z)| 2 |ϕ(u(•, s))| BV dτ dz ds,
instead of (6.10). Since |ϕ(u)| L 1 (0,T ;BV ) ≤ M |u 0 | BV , we get that

E 3,2,3 ≤ C(d) M |u 0 | BV 1 ǫ |z|<r1 |c β |z| γ β -c α |z| γα | 2 dz |z| d+ √ α β . (6.28)
4. The general estimate. Let us resume the preceding estimates. By (6.22), (6.23), (6.26), (6.27), (6.28) and the fact that E 3 = E 3,1 + E 3,2,1 + E 3,2,2 + E 3,2,3 , we have proved that for all α, β ∈ (0, 2), ǫ > 0, T > ν > 0, r 2 ≥ r 1 > 0 and r > 0 small enough,

u α (•, T ) -u β (•, T ) L 1 ≤ 2 (m u (ν) ∨ m v (ν)) + C ǫ (r 2-α + r 2-β + o r (1)) + C(d) |u 0 | BV ǫ + M u 0 L 1 |z|>(cα r γα 2 )∧(c β r γ β 2 ) G d (β) |z| d+β - G d (α) |z| d+α dz + C(d) M u 0 L 1 max σ=α,β |z|∈co{cα r γα 2 ,c β r γ β 2 } dz |z| d+σ + M |u 0 | BV r1<|z|<r2 |c α |z| γα -c β |z| γ β | dz |z| d+ √ α β + C(d) M |u 0 | BV 1 ǫ |z|<r1 |c β |z| γ β -c α |z| γα | 2 dz |z| d+ √ α β .
Now, we pass to the limit as r, ν ↓ 0, thanks to (6.23). Next, we replace the L 1 -norm at time T by the C([0, T ]; L 1 )-norm, which can be done without loss of generality since t ϕ ′ ∞ ≤ T ϕ ′ ∞ = M , for all t ≤ T . Finally, we replace ǫ by ǫ |α -β|, which can also be done since ǫ is arbitrary. We deduce that for all α, β ∈ (0, 2), ǫ > 0, and r 2 ≥ r 1 > 0,

u α -u β C([0,T ];L 1 ) ≤ C(d) |u 0 | BV ǫ |α -β| + M u 0 L 1 |z|>(cα r γα 2 )∧(c β r γ β 2 ) G d (β) |z| d+β - G d (α) |z| d+α dz =:J1 + C(d) M u 0 L 1 max σ=α,β |z|∈co{cα r γα 2 ,c β r γ β 2 } dz |z| d+σ =:J2 + M |u 0 | BV r1<|z|<r2 |c α |z| γα -c β |z| γ β | dz |z| d+ √ α β =:J3 + C(d) M |u 0 | BV ǫ 1 |α -β| |z|<r1 |c β |z| γ β -c α |z| γα | 2 dz |z| d+ √ α β =:J4 . (6.29)
The rest of proof consists in estimating lim sup α,β→λ Ji |α-β| (i = 1, . . . , 4). We will use the letter C to denote various constants C = C(d, λ).

The case

λ ∈ (1, 2). We first let r 2 → +∞ so that (c α r γα 2 ) ∧ (c β r γ β
2 ) → +∞, since all these coefficients are positive (cf. step 2). We get at the limit (6.30)

J 1 = J 2 = 0 and J 3 = |z|>r1 c α |z| -d-σα -c β |z| -d-σ β dz, with σ α := √ α β -γ α and σ β := √ α β -γ β .
Let us estimate J 3 . We recognize a term of the same form than in (5.2) with the new "locally Lipschitz" coefficients c α , c β and powers σ α , σ β . Arguing as before,

J 3 ≤ |c α -c β | max σ=σα,σ β |z|>r1 dz |z| d+σ + (c α ∨ c β ) |z|>r1 |z| -d-σα -|z| -d-σ β dz =: J3 , where J3 ≤ S d r -σα 1 σα - r -σ β 1 σ β + 2 S d 1 σα -1 σ β 1 r1<1 . By (6.24), lim sup α,β→λ J 3 |α -β| ≤ C (r 1-λ 1 + 1 r1<1 ) ≤C r 1-λ 1 if λ > 1 +C lim sup α,β→λ 1 |α -β| r -σα 1 σ α - r -σ β 1 σ β =: J3
, where a Taylor expansion with integral remainder shows that

J3 = lim sup α,β→λ |σ α -σ β | |α -β| 1 0 σ τ r -στ 1 ln r 1 + r -στ 1 σ 2 τ dτ ≤ C r 1-λ 1 (1 + | ln r 1 |),
with σ τ := τ σ α + (1 -τ ) σ β . We deduce the following estimate:

(6.31) lim sup α,β→λ J 3 |α -β| ≤ C r 1-λ 1 (1 + | ln r 1 |).
Let us notice that this estimate fails when λ = 1, because σ α , σ β → λ -1 = 0 as α, β → 1.

Let us now estimate J 4 . By adding and subtracting terms,

J 4 ≤ 1 2 ± |c α ∓ c β | 2 |α -β| |z|<r1 ||z| γα ± |z| γ β | 2 dz |z| d+ √ α β =:J4,±
.

By expanding the squares and integrating,

J 4,± = S d r 2 γα- √ α β 1 2 γ α - √ α β + r 2 γ β - √ α β 1 2 γ β - √ α β ± 2 r γα+γ β - √ α β 1 γ α + γ β - √ α β .
By (6.24), the limit of J 4,+ is easy to compute and we get lim sup α,β→λ

J 4 |α -β| ≤ C r 2-λ 1 + C lim sup α,β→λ J 4,- (α -β) 2 =: J4,- .
We estimate J4,by multiplying and dividing by (γ α -γ β ) 2 and changing the variables by a := γ α -

√ α β 2 and b := γ β - √ α β 2 . We get J4,-≤ lim sup α,β→λ (γ α -γ β ) 2 |α -β| 2 • lim sup a,b→c 1 |a -b| 2 r 2 a 1 2 a + r 2 b 1 2 b - 2 r a+b 1 a + b ,
where c := 1 -λ 2 > 0 is the limit of a, b as α, β → λ. By (6.24) and the estimation of the last limit in Lemma B.2(ii) in appendix, J4,-≤ C r 2-λ 1 (1 + ln 2 r 1 ).

We conclude that (6.32) lim sup α,β→λ

J 4 |α -β| ≤ C r 2-λ 1
(1 + ln 2 r 1 ).

Note that this estimate works even if λ = 1.

We are now ready to conclude the proof and show (3.8) when λ ∈ (1, 2). Recall that we estimate Lip α (u; λ) using (6.29) with r 2 = +∞. The limsups of the terms on the right-hand side are estimated by (6.30), (6.31) and (6.32). We get for all ǫ > 0 and r 1 > 0,

Lip α (u; λ) ≤ C |u 0 | BV ǫ + M r 1-λ 1 (1 + | ln r 1 |) + r 2-λ 1 ǫ (1 + ln 2 r 1 ) .
We complete the proof by taking ǫ = M

1 λ (1 + | ln M |) and r 1 = M 1 λ .
6. The case λ = 1. We have to estimate again J i in (6.29) (i = 1, . . . , 4). This time, we do not let r 2 → +∞.

For J 1 , we recognize again a term of the form (5.2) and we argue in the same way to estimate it. The only difference is that the fixed cutting parameter r is replaced by a moving one (c α r γα 2 )∧(c β r γ β

2 ). But, by (6.24) it follows that lim α,β→1 (c α r γα 2 )∧ (c β r

γ β 2 ) = G d (1) r 2 with G d (1)
> 0, and we leave it to the reader to verify that this is sufficient to extend the proof of (5.3) to the current case. Now, this estimate becomes (6.33) lim sup α,β→1

J 1 |α -β| ≤ C (G d (1) r 2 ) -1 (1 + | ln(G d (1) r 2 )|) ≤ C r -1 2 (1 + | ln r 2 |).
For J 2 , we use that

J 2 = S d max σ=α,β 1 σ (c α r γα 2 ) -σ -(c β r γ β 2 ) -σ = S d max σ=α,β |c α r γα 2 -c β r γ β 2 | 1 0 τ c α r γα 2 + (1 -τ ) c β r γ β 2 -σ-1 dτ.
By (6.24) and a simple passage to the limit under the integral sign, lim sup α,β→1

J 2 |α -β| ≤ C r -2 2 lim sup α,β→1 |c α r γα 2 -c β r γ β 2 | |α -β| .
To estimate the last limit, we write

|c α r γα 2 -c β r γ β 2 | ≤ |c α -c β | (r γα 2 ∨ r γ β 2 ) + (c α ∨ c β ) |r γα 2 -r γ β 2 |,
where

|r γα 2 -r γ β 2 | = |γ α -γ β | | ln r 2 | 1 0 r τ γα+(1-τ ) γ β 2
dτ . Hence, again by (6.24), (6.34) lim sup α,β→1

J 2 |α -β| ≤ C r -1 2 (1 + | ln r 2 |).
We have to do again the estimate of J 3 , since the preceding one (6.31) fails.

J 3 ≤ |c α -c β | max σ=α,β r1<|z|<r2 |z| γσ dz |z| d+ √ α β + (c α ∨ c β ) r1<|z|<r2 ||z| γα -|z| γ β | dz |z| d+ √ α β =: J3
, so that by (6.24) and a simple passage to the limit under the integral sign, (6.35) lim sup α,β→1

J 3 |α -β| ≤ C (| ln r 1 | + | ln r 2 |) + C lim sup α,β→1 J3 
|α -β| .

To estimate J3 , we first assume that α, β = 1, so that γ α -√ α β = (1 -α) γ α = 0 and γ β -√ α β = 0. Hence, J3 = S d (

1 r1 • • • + r2 1 .
. . ) in polar coordinates, and

J3 ≤ S d i=1,2 r γα- √ α β i -1 γ α - √ α β - r γ β - √ α β i -1 γ β - √ α β . By Lemma B.2(i) in the appendix, J3 ≤ 2 S d |γ α -γ β | max i=1,2 max σ=α,β (1 ∨ r γσ - √ α β i ) ln 2 r i .
By sending α or β → 1, we see that this inequality holds also when α or β = 1. Hence, by (6.24) and (6.35), (6.36) lim sup α,β→1

J 3 |α -β| ≤ C (| ln r 1 | ∨ ln 2 r 1 + | ln r 2 | ∨ ln 2 r 2 ).
Finally, for J 4 , we use (6.32) which is still valid and we are ready to show (3.8) in the critical case. By (6.29), (6.33), (6.34), (6.36) and (6.32), we have for all ǫ > 0, and

r 2 ≥ r 1 > 0, Lip α (u; 1) ≤ C |u 0 | BV ǫ + C M u 0 L 1 r -1 2 (1 + | ln r 2 |) + C M |u 0 | BV (| ln r 1 | ∨ ln 2 r 1 + | ln r 2 | ∨ ln 2 r 2 ) + C M |u 0 | BV r 1 ǫ (1 + ln 2 r 1 ).
We complete the proof by taking

ǫ = M (1 + | ln M |), r 1 = M ∧ 1, r 2 = 1 ∨ u0 L 1
|u0|BV , and noting that u 0

L 1 ≤ |u 0 | BV if r 2 = 1.

Proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3. Let us first recall the notions of entropy solutions of (1.6) and (1.7) introduced in [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF][START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF]. For (1.7), we use an equivalent definition introduced in [START_REF] Karlsen | On the uniqueness and stability of entropy solutions of non-linear degenerate parabolic equations with rough coefficients[END_REF].

Definition 7.1 (Entropy solutions). Let u 0 ∈ L ∞ ∩ L 1 (R d ) and (1.4)-(1.5) hold. Let u ∈ L ∞ (Q T ) ∩ L ∞ (0, T ; L 1 ). (1) u is an entropy solution of (1.6) if, for all k ∈ R and all nonnegative φ ∈ C ∞ c (R d × [0, T )), QT |u -k| ∂ t φ + q f (u, k) • ∇φ -sgn(u -k) ϕ(u) φ dx dt + R d |u 0 (x) -k| φ(x, 0) dx ≥ 0.
(2) u is an entropy solution of

(1.7) if, (a) ϕ(u) ∈ L 2 (0, T ; H 1 ), (b) and for all k ∈ R and all nonnegative φ ∈ C ∞ c (R d × [0, T )), QT |u -k| ∂ t φ + q f (u, k) • ∇φ + |ϕ(u) -ϕ(k)| ∆φ dx dt + R d |u 0 (x) -k| φ(x, 0) dx ≥ 0.
To prove Theorem 3.3, we need to establish some technical lemmas. Let us begin by a compactness result. (1.4)-(1.5) hold, and for each α ∈ (0, 2), let u α be the unique entropy solution to (1.1). Then, there exist u, w ∈ L ∞ (Q T ) ∩ C([0, T ]; L 1 ) such that u = lim α↓0 u α and w = lim α↑2 u α , up to subsequences, in C([0, T ]; L 1 loc ) and almost everywhere in Q T . Proof. We only do the proof for w, the proof for u being similar. Let us consider a sequence α m ↑ 2 and let us define E := {u αm } m . We will show that E is relatively compact in C([0, T ]; L 1 loc ). First we take a sequence

Lemma 7.1. Let u 0 ∈ L ∞ ∩ L 1 (R d ),
{u n 0 } n ⊂ L ∞ ∩ L 1 ∩ BV (R d ) that converges to u 0 in L 1 (R d ),
and let E n denote the family {u αm n } m of entropy solutions to (1.1) with α = α m and u n 0 as initial data. We begin by showing that

E n is relatively compact in C([0, T ]; L 1 loc ).
The family E n is equicontinuous in C([0, T ]; L 1 ) by Corollary 3.6, and Remark 6.2 [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF].

For each t ∈ [0, T ], {u αm n (•, t)} m is relatively compact in L 1 loc (R d ) by the L 1 ∩ BV -bound (2.6
) and Helly's theorem. By the Arzela-Ascoli theorem, E n is relatively compact in C([0, T ]; L 1 loc ) for any n ∈ N. The relative compactness of E, and thus the existence of w ∈ C([0, T ]; L 1 loc ), is now a consequence of the L 1 -contraction principle since (7.1) sup

m∈N u αm -u αm n C([0,T ];L 1 ) ≤ u 0 -u n 0 L 1 → 0 as n → +∞.
Taking a subsequence if necessary, we can assume that u αm converges to w in C([0, T ]; L 1 loc ) and almost everywhere in Q T . In particular, by the a priori estimate (2.6), we infer that w ∈ L ∞ (Q T ). To prove that w ∈ C([0, T ]; L 1 ), we observe that E is equicontinuous in C([0, T ]; L 1 ) by the triangle inequality, the convergence estimate (7.1), and the equicontinuity of E n . Hence, for any R > 0, m ∈ N, and t, s ∈ [0, T ],

(w(•, t) -w(•, s)) 1 |x|<R L 1 ≤ u αm (•, t) -u αm (•, s) L 1 + (w(•, t) -u αm (•, t)) 1 |x|<R L 1 + (u αm (•, s) -w(•, s)) 1 |x|<R L 1 ≤ o(1) + 2 (w -u αm ) 1 |x|<R C([0,T ];L 1 ) ,
where o(1) → 0 as |t -s| → 0 uniformly in R and m. We then conclude that

(w(•, t) -w(•, s)) L 1 ≤ o(1) as |t -s| → 0
by first sending m → +∞ and then R → +∞ using Fatou's lemma.

Let us now verify that these limits satisfy the entropy inequalities of the preceding definition.

Lemma 7.2. Under the assumptions of Lemma 7.1, u and w satisfy the entropy inequalities of Definition 7.1( 1) and (2b) respectively.

In the proof we need the following lemma:

Lemma 7.3. A function u ∈ L ∞ (Q T )∩L ∞ (0, T ; L 1 ) is an entropy solution of (1.1) (cf. Definition 2.

1) if and only if for all convex

η ∈ C 1 (R), all r > 0 and all nonnegative φ ∈ C ∞ c (R d × [0, T )), QT η(u) ∂ t φ + q η f (u) • ∇φ dx dt + QT q η ϕ (u) L α r [φ] + η ′ (u) L α,r [ϕ(u)] φ dx dt + R d η(u 0 (x)) φ(x, 0) dx ≥ 0, (7.2) 
where q η g (u) := u 0 η ′ (τ ) g ′ (τ ) dτ (for g = f, ϕ). This result is well-known for (local) conservation laws, see e.g. [36, p. 27]. Because of the presence of the discontinuous sign function in the Kruzhkov formulation (2.5), any proof will be more technical than in the local case and we therefore provide one in Appendix C.

Proof of Lemma 7.2. We begin with the proof for w which is easier.

1. Entropy inequalities for w. Using the definition of L α r and L α,r in (2.1), we send r → +∞ in the entropy inequality (2.5) and find that

QT |u α -k| ∂ t φ + q f (u α , k) • ∇φ -|ϕ(u α ) -ϕ(k)| (-△) α 2 φ dx dt + R d |u 0 (x) -k| φ(x, 0) dx ≥ 0. (7.3) Since (-△) α 2 φ = F -1 (|2 π • | α F φ) and -△φ = F -1 |2 π • | 2 F φ , by Plancherel -(-△) α 2 φ → △ φ in L 2 (Q T ) as α ↑ 2. (7.4)
To get the entropy inequalities of Definition 7.1(2b), we must pass to the limit in (7.3). This is straightforward for the local terms due to Lemma 7.1 and (2.6).

For the nonlocal term, we first observe that

- QT |ϕ(u α ) -ϕ(k)| (-△) α 2 φ dx dt = QT |ϕ(u α ) -ϕ(k)| -|ϕ(k)| =:q(u α ) △φ -△φ -(-△) α 2 φ dx dt ≤ QT q(u α ) △φ dx dt + q(u α ) L 2 (QT ) △φ + (-△) α 2 φ L 2 (QT ) .
By (7.4), the second term tends to zero since q(u α ) L 2 (QT ) is bounded independently of α. The boundedness follows from (2.6) and an (L 1 , L ∞ )-interpolation argument since q ∈ W 1,∞ loc (R) and q(0) = 0. By the C([0, T ]; L 1 loc )-convergence of u α (up to a subsequence), the first term converges as α ↑ 2 to

QT |ϕ(w) -ϕ(k)| △φ dx dt.
This completes the proof for w.

2.

Entropy inequalities for u. Let us fix r > 0 for the duration of this proof and start from the entropy inequalities (7.2), written for convex and C 1 -entropies η.

There is again no difficulty to pass to the limit as α ↓ 0 in the local terms of (7.2). For the first nonlocal term, we use that L α r [φ] → 0 uniformly on Q T . This is readily seen from (2.1) and (2.2). Let us also notice that q η ϕ , defined just below (7.2), satisfies q η ϕ ∈ W 1,∞ loc (R) and q η ϕ (0) = 0. Hence

QT q η ϕ (u α ) L α r [φ] dx dt → 0, since q η ϕ (u α ) is bounded in C([0, T ]; L 1
). For the remaining nonlocal term, we split the integral and get

QT η ′ (u α ) L α,r [ϕ(u α )] φ dx dt ≤ -G d (α) |z|>r dz |z| d+α =:I QT η ′ (u α ) ϕ(u α ) φ dx dt + C G d (α) r d+α =:J ϕ(u α ) C([0,T ];L 1 ) φ L 1 (QT ) ,
where C is an L ∞ -bound on η ′ (u α ). Notice that for all fixed r, lim α↓0 I = 1 and lim α↓0 J = 0 by (2.2). Since η ′ is continuous, we can pass to the limit as α ↓ 0 in the inequality above, thanks to (2.6), the almost everywhere convergence of u α (up to a subsequence), and the dominated convergence theorem. The limit in (7.2) then implies that

QT η(u) ∂ t φ + q η f (u) • ∇φ -η ′ (u) ϕ(u) φ dx dt + R d η(u 0 (x)) φ(x, 0) dx ≥ 0, for all convex C 1 -entropies η and fluxes q η f (u) = u 0 η ′ (τ ) f ′ (τ ) dτ .
It is then classical to get the desired Kruzhkov entropy inequalities of Definition 7.1(1) from these inequalities, see e.g. the if part of the proof in Appendix C.

To prove that w satisfies (2a) of Definition 7.1, we need to derive an H α 2 -estimate on u α . In the sequel,

H α 2 (R d ) denotes the fractional Sobolev space of u ∈ L 2 (R d ) such that R 2d (u(x)-u(y)) 2
|x-y| d+α dx dy < +∞. The H α 2 -semi-norm can be defined in both the following equivalent ways:

(7.5) |u| 2 H α 2 := G d (α) 2 R 2d (u(x) -u(y)) 2 |x -y| d+α dx dy = R d |2 π ξ| α |F u| 2 dξ. The H α 2 -norm is defined as u 2 H α 2 := u 2 L 2 + |u| 2 H α 2 .
The equality in (7.5) is standard, cf. e.g. [START_REF] Adams | Sobolev spaces[END_REF]. In the sequel, the knowledge of the precise constants will be important to get estimates uniform in α ↑ 2. For the sake of completeness, we therefore provide a short computation of them in Appendix C. (1.4)-(1.5) hold, and u α be the unique entropy solution to (1.1). Then

Lemma 7.4. Let α ∈ (0, 2), u 0 ∈ L ∞ ∩ L 1 (R d ),
R d Φ(u α (x, T )) dx + |ϕ(u α )| 2 L 2 (0,T ;H α 2 ) ≤ R d Φ(u 0 (x)) dx,
where Φ(u) := u 0 ϕ(τ ) dτ for all u ∈ R. Remark 7.5. Note that Φ is nonnegative, convex, and 0 at 0. Proof. We can take η = Φ in (7.2), since it is C 1 and convex by (1.5). Using also Lemma 7.3 and the continuity of u α in time with values in

L 1 (R d ), as in Remark 2.1, we find that for all φ ∈ C ∞ c (R d+1 ), QT Φ(u α ) ∂ t φ + q Φ f (u α ) • ∇φ dx dt + QT q Φ ϕ (u α ) L α r [φ] + ϕ(u α ) L α,r [ϕ(u α )] φ dx dt + R d Φ(u 0 (x)) φ(x, 0) dx ≥ R d
Φ(u α (x, T )) φ(x, T ) dx. (7.6) Then take φ(x, t) = γ R (x), where R > 0 and γ R is an approximation of

1 |x|<R such that γ R ∈ C ∞ c (R d ), {γ R } R>0 is bounded in W 2,∞ (R d ), γ R → 1 in W 2,∞ loc (R d ) as R → +∞.
It is obvious that the ∇-and L α r -terms in (7.6) vanish as R → +∞, since q Φ g ∈ W 1,∞ loc (R) and q Φ g (0) = 0 for g = f, ϕ. For the L α,r -term, a standard computation shows that for all u, v ∈ L 2 (R d ) and r > 0, Hence, by the dominated convergence theorem,

- R d u L α,r [v] dx = -G d (α) |z|>r u(x) v(x + z) -v(x) |z| d+α dz dx = G d (α) 2
QT ϕ(u α ) L α,r [ϕ(u α )] γ R dx dt = G d (α) 2 T 0 |x-y|>r (ϕ(u α (x, t)) -ϕ(u α (y, t))) • (ϕ(u α (x, t)) γ R (x) -ϕ(u α (y, t)) γ R (y)) dx dy |x -y| d+α dt → G d (α) 2 T 0 |x-y|>r (ϕ(u α (x, t)) -ϕ(u α (y, t))) 2
|x -y| d+α dx dy dt as R → +∞. Going to the limit in (7.6), we then find that

R d Φ(u α (x, T )) dx + G d (α) 2 T 0 |x-y|>r (ϕ(u α (x, t)) -ϕ(u α (y, t))) 2 |x -y| d+α dx dy dt ≤ R d Φ(u 0 (x)) dx.
The proof is complete by sending r ↓ 0 and using the monotone convergence theorem.

From this energy type of estimate, we have the following result:

Lemma 7.6. Under the assumptions of Lemma 7.1, ϕ(w) ∈ L 2 (0, T ; H 1 ).

Proof. Recall first that by (2.6) and a (L 1 , L ∞ )-interpolation argument, {u α } α∈(0,2) is bounded in L 2 (0, T ; L 2 ). Using in addition the preceding lemma, we find a constant C such that for all α ∈ (0, 2), ϕ(u α ) L 2 (0,T ;H α 2 ) ≤ C. Using the Fourier formula in (7.5),

QT (1 + |2 π ξ| α ) |F ϕ(u α )| 2 dξ dt ≤ C
(recall that F is the Fourier transform in space). Now we use the following inequalities: for all 1 ≤ β ≤ α and all ξ ∈ R d ,

(1 + |2 π ξ| β ) ≤ (1 + |2 π ξ|) β ≤ (1 + |2 π ξ|) α ≤ 2 α-1 (1 + |2 π ξ| α ).
We deduce that

QT (1 + |2 π ξ| β ) |F ϕ(u α )| 2 dξ dt ≤ 2 α-1 C.
Going back to the integral formula in (7.5),

ϕ(u α ) 2 L 2 (0,T ;L 2 ) + G d (β) 2 T 0 R 2d (ϕ(u α )(x, t) -ϕ(u α )(y, t)) 2 |x -y| d+β dx dy dt ≤ 2 α-1 C.
By Fatou's lemma, applied for α ↑ 2 with fixed β,

ϕ(w) 2 L 2 (0,T ;L 2 ) + G d (β) 2 T 0 R 2d (ϕ(w)(x, t) -ϕ(w)(y, t)) 2 |x -y| d+β dx dy dt ≤ 2 C.
Finally, Fatou's lemma applied to the Fourier formula shows that

2 C ≥ lim inf β↑2 QT (1 + |2 π ξ| β ) |F ϕ(w)| 2 dξ dt ≥ QT (1 + |2 π ξ| 2 ) |F ϕ(w)| 2 dξ dt.
The proof is complete.

We end by the proof of Theorem 3.3.

Proof of Theorem 3.3. Let u, w ∈ L ∞ (Q T ) ∩ C([0, T ]; L 1 ) be defined in Lemma 7.1. By previous lemmas, they are entropy solutions of (1.6) and (1.7), respectively. By uniqueness (cf. [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF][START_REF] Carrillo | Entropy Solutions for nonlinear Degenerate Problems[END_REF][START_REF] Karlsen | On the uniqueness and stability of entropy solutions of non-linear degenerate parabolic equations with rough coefficients[END_REF]), the whole sequences converge and the proof is complete.

Optimal example

In this last section, we exhibit an example of an equation for which Theorems 3.1 and 3.8 are optimal. Note that the modulus in f is the same than in [START_REF] Dafermos | Polygonal approximations of solutions of the initial value problem for a conservation law[END_REF][START_REF] Lucier | A moving mesh numerical method for hyperbolic conservation laws[END_REF]. This modulus is optimal for linear fluxes, i.e. for equations of the form ∂ t u + F • ∇u = 0 where F ∈ R d . This is readily seen by the formula u(x, t) = u 0 (x -t F ). Here, we focus on the new fractional diffusion term. The proofs work for α = 2 and our example is also optimal for the results in [START_REF] Cockburn | Continuous Dependence on the nonlinearities of Solutions of Degenerate Parabolic Equations[END_REF]. Let us finally mention that this example is motivated by Remark 2.1 of [START_REF] Droniou | Vanishing non-local regularization of a scalar conservation law[END_REF] and similar remarks in [START_REF] Imbert | A non-local regularization of first order Hamilton-Jacobi equations[END_REF][START_REF] Droniou | Fractal first order partial differential equations[END_REF][START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF].

Let us consider, for every α ∈ [0, 2] and γ, a > 0, (

∂ t u + a (-△) α 2 u = 0, u(x, 0) = γ 1 Q (γ -1 x), 8.1) 
where Q := [-1, 1] d . This is (1.1) with u 0 as above, f ≡ 0 and ϕ ′ ≡ a. Notice that (8.2)

       u 0 L 1 = 2 d γ d+1 , |u 0 | BV = d 2 d γ d , E i (u 0 ) = d 2 d γ d 1 + ln γ d i 1 γ>d , (i = 1, 2),
where E i (u 0 ) is defined in (3.3). 

     |a 1 α -b 1 α |, α > 1, |a ln a -b ln b|, α = 1, |a -b|, α < 1, σ T :=      T 1 α , α > 1, T | ln T |, α = 1, T, α < 1, σ γ :=      γ d , α > 1, γ d ln γ, α = 1, γ d+1-α , α < 1.
We also introduce the best Lipschitz constant of a → u a at a = c: (ii) For all γ > 0, lim inf T ↓0

Lip ϕ (u;c) σT > 0.

(iii) For all T > 0, lim inf γ→+∞ Lip ϕ (u;c) σγ > 0.

Remark 8.2. This result shows that the modulus of continuity in ϕ -ψ derived in (3.5) is optimal for linear diffusion functions. It also shows that the T -and u 0 -dependencies of this modulus are optimal in the limits T ↓ 0 or

u0 L 1 |u0|BV → +∞ (recall that u0 L 1
|u0|BV ∼ γ by (8.2)). 8.2. Optimality of Theorem 3.8. Let us now use the notation u =: u α to emphasize the dependence on α. Given λ ∈ (0, 2), we define

σM :=      M 1 λ | ln M |, λ > 1, M ln 2 M, λ = 1, M, λ < 1, σγ :=      γ d , λ > 1, γ d ln 2 γ, λ = 1, γ d+1-λ ln γ, λ < 1,
where M := T a. We also consider the best Lipschitz constant of α → u α at α = λ defined in (3.7). Then, Theorem 3.8 and (8.2) imply that for all λ ∈ (0, 2),

Lip α (u; λ) = O (σ M ) as M ↓ 0, Lip α (u; λ) = O (σ γ ) as γ → +∞,
while all the respective remaining parameters are fixed. The result below states that these estimates are optimal.

Proposition 8.3. Let T, a > 0, M = T a, and λ ∈ (0, 2). There exist M 0 , γ 0 > 0 such that:

(i) For all γ 0 ≥ γ > 0, lim inf M↓0 Lip α (u;λ) σM > 0. (ii) For all M 0 ≥ M > 0, lim inf γ→+∞ Lip α (u;λ) σγ > 0.
Remark 8.4. This result shows that the M -and u 0 -dependencies in (3.8) are optimal at the limits M = T ϕ ′ ∞ ↓ 0 or 1. Item (i). Let us first assume that T = γ = 1. The general case will follow from a rescaling argument given at the end of the proof. Let us define

E Q := Q u a (x, 1) dx - Q u b (x, 1) dx. (8.3) Since u a -u b C([0,1];L 1 ) ≥ u a (•, 1) -u b (•, 1) L 1 ≥ |E Q |, it suffices to show that lim inf a,b↓0 |EQ| ω a-b > 0. It is well-known that u a (x, t) = F -1 (e -t a |2 π•| α ) * 1 Q (x). A short computation shows that E Q = F -1 (e -a |2 π•| α -e -b |2 π•| α ) (1 Q * 1 Q ) dx = (e -a |2 π ξ| α -e -b |2 π ξ| α ) (F 1 Q ) 2 dξ = 2 d π d (e -a |ξ| α -e -b |ξ| α ) d i=1 sinc 2 (ξ i ) dξ = 2 d π d 1 0 (b -a) |ξ| α e -(τ a+(1-τ ) b) |ξ| α d i=1 sinc 2 (ξ i ) dτ dξ, (8.4) 
where ξ =: (ξ 1 , . . . , ξ d ) and sinc(ξ i ) := sin ξi ξi . To get the third line, we have used the formula

F 1 Q (ξ) = d i=1 sin(2 π ξi) π ξi
and the change of variable 2 π ξ → ξ. We now give separate arguments for the cases α < 1, α = 1, and α > 1.

a. The case α < 1. This is obvious since 0

< |ξ| α d i=1 sinc 2 (ξ i ) dξ < +∞. b. The case α > 1. Note that |ξ| α ≤ d α-1 d i=1 |ξ i | α . Hence, by (8.4), (8.5 
)

|E Q | ≥ I a,b 1 0 |a -b| |ξ 1 | α e -d α-1 (τ a+(1-τ ) b) |ξ1| α sinc 2 (ξ 1 ) dτ dξ 1
where

I a,b = 2 d π d d i=2
e -d α-1 (a∨b) |ξi| α sinc 2 (ξ i ) dξ i .

Since e -d α-1 (a∨b) |ξi| α → 1 as a, b ↓ 0, (8.6)

I a,b ≥ C 0 := 2 d-1 π d d i=2 sinc 2 (ξ i ) dξ i > 0,
for all a, b > 0 sufficiently small. Hence, assuming e.g. that a > b, we get

|E Q | ≥ C 0 a |ξ 1 | α-2 e -d α-1 a |ξ1| α sin 2 (ξ 1 ) dξ 1 =:Ia -C 0 b |ξ 1 | α-2 e -d α-1 b |ξ1| α sin 2 (ξ 1 ) dξ 1 . (8.7) 
Before continuing, notice that this estimate is valid for α = 1; this is will be useful later. Let us continue the case α > 1 by changing variables,

I a = a 1 α |ξ 1 | α-2 e -d α-1 |ξ1| α sin 2 (a -1 α ξ 1 ) dξ 1 .
Doing the same for the b-integral and adding and subtracting term,

|E Q | ≥ C 0 (a 1 α -b 1 α ) |ξ 1 | α-2 e -d α-1 |ξ1| α sin 2 (a -1 α ξ 1 ) dξ 1 + C 0 b 1 α |ξ 1 | α-2 e -d α-1 |ξ1| α sin 2 (a -1 α ξ 1 ) -sin 2 (b -1 α ξ 1 ) dξ 1 =: C 0 (a 1 α -b 1 α ) I 1 + C 0 b 1 α I 2 . (8.8) 
By a Taylor expansion and an integration by parts,

|I 2 | ≤ (a 1 α -b 1 α ) 1 0 a -2 α,τ |ξ 1 | α-2 ξ 1 e -d α-1 |ξ1| α =:f (ξ1) • 2 sin a -1 α,τ ξ 1 cos a -1 α,τ ξ 1 =sin(2 a -1 α,τ ξ1) dξ 1 dτ ≤ 1 2 b -1 α (a 1 α -b 1 α ) 1 0 f ′ (ξ 1 ) cos 2 a -1 α,τ ξ 1 dξ 1 dτ ,
where a α,τ := τ a 1) as a, b ↓ 0, since for fixed τ , cos 2 a -1 α,τ • converges to its zero mean value in L ∞ -weak-⋆. By a similar argument sin 2 (a -1 α •) also weakly-⋆ converges to its positive mean value m and hence lim a,b↓0

1 α + (1 -τ ) b 1 α and f ′ is integrable when α > 1. We deduce that C 0 b 1 α I 2 = (a 1 α -b 1 α ) o(
I 1 = m |ξ 1 | α-2 e -d α-1 |ξ1| α dξ 1 > 0.
We thus conclude the result from (8.8).

c. The case α = 1. We restart from (8.7) assuming again that a > b, a, b small. This time we cut I a into three pieces.

I a = 1<|ξ1|<a -1 • • • + |ξ1|<1 • • • + |ξ1|>a -1 . . . .
We do the same for the b-integral and we get 

|E Q | ≥ C 0 1<|ξ1|<a -1 a |ξ 1 | -1 e -a |ξ1| sin 2 (ξ 1 ) dξ 1 -C 0 1<|ξ1|<b -1 b |ξ 1 | -1 e -b |ξ1| sin 2 (ξ 1 ) dξ 1 + C 0 |ξ1|<1 • • • - |ξ1|<1 . . . + C 0 |ξ1|>a -1 • • • - |ξ1|>b -1 . . . .
I = C 0 1<|ξ1|<a -1 |ξ 1 | -1 (a e -a |ξ1| -b e -b |ξ1| ) sin 2 (ξ 1 ) dξ 1 -C 0 a -1 <|ξ1|<b -1 b |ξ 1 | -1 e -b |ξ1| sin 2 (ξ 1 ) dξ 1 =: I 1 + I 2 .

Note that

|I 2 | ≤ C 0 a -1 <|ξ1|<b -1 b |ξ 1 | -1 dξ 1 = 2 C 0 b (ln a -ln b) ≤ 2 C 0 (a -b) = (b ln b -a ln a) o(1)
1 0 {1 -(τ a + (1 -τ ) b) |ξ 1 |} e -(τ a+(1-τ ) b) |ξ1| dτ ≥ e -1 2 (a -b) for all |ξ 1 | ≤ a -1 2 , 0 for all |ξ 1 | ≤ a -1 ,
we find that

I 1 ≥ C 0 e -1 2 (a -b) 5 π 4 <|ξ1|< a -1 2 |ξ 1 | -1 sin 2 (ξ 1 ) dξ 1 ≥ C 0 4 e -1 2 (a -b) 5 π 4 <|ξ1|< a -1 2 |ξ 1 | -1 dξ 1 .
To get the last line, we have used that since sin

2 (•) ≥ 1 2 on E := [ π 4 , 3 π 4 ] + π Z, with R \ E = E + π 2 , 5 π 4 <|ξ1|< a -1 2 |ξ 1 | -1 sin 2 (ξ 1 ) dξ 1 = 5 π 4 <|ξ1| |ξ 1 | -1 1 |ξ1|< a -1 2 =:g(|ξ1|) sin 2 (ξ 1 ) dξ 1 ≥ 1 2 E∩{ 5 π 4 <|ξ1|} g(|ξ 1 |) dξ 1 ≥ 1 4 5 π 4 <|ξ1| g(|ξ 1 |) dξ 1 , (8.9) 
by translation and since g is nonincreasing. It follows that For general T, γ > 0 fixed, the result follows from rescaling. Let w(x, t) := γ -1 u(γ x, T t) and note that

w t + T γ -α a (-△) α 2 w = 0, w(x, 0) = 1 Q (x).
Set µ := T γ -α and w =: w µ a to emphasize the dependence on the new "nonlinearity" µ a. Then by the results of the T = γ = 1 case above, lim inf a,b↓0

w µ a -w µ b C([0,1];L 1 ) ω µ a-µ b > 0,
where ω •-• is defined on page 35. By a simple change of variables,

u a -u b C([0,T ];L 1 ) = γ d+1 w µ a -w µ b C([0,1];L 1 ) ,
and since ω µ a-µ b ∼ ω a-b as a, b ↓ 0 (µ is fixed!), (i) holds for any T, γ > 0.

2. Item (ii). Let us adapt the preceding arguments. We only give the proof for the case γ = 1 and c = 1, noting that the general result then easily follows from the rescaling w(x, t) = γ -1 u(γ x, γ α c -1 t). We have

Lip ϕ (u; 1) ≥ lim a,b→1 Q u a (x, T ) dx -Q u b (x, T ) dx a -b = 2 d π d T |ξ| α e -T |ξ| α d i=1
sinc 2 (ξ i ) dξ, (8.10) thanks to (8.4) written for time T . At this stage, the case α < 1 follows from a direct passage to the limit. For the other ones, we argue as in (8.5)-(8.6), and find that there exists C 0 > 0 such that for all sufficiently small T ,

Lip ϕ (u; 1) ≥ C 0 T |ξ 1 | α e -d α-1 T |ξ1| α sinc 2 (ξ 1 ) dξ 1 =:I .
It remains to prove that lim inf T ↓0 I σT > 0. The case α > 1 follows, as before, from the change of variable T 1 α ξ 1 → ξ 1 and the L ∞ -weak-⋆ convergence of sin 2 (T -1 α •). For the α = 1 case, we again split I into three parts, 1) as T ↓ 0, and the remaining integral can be bounded below as in (8.9) by C0

I = 1<|ξ1|<T -1 • • • + |ξ1|<1 • • • + |ξ1|>T -1 . . . . As in case (i), the two last terms are O (T ) = T | ln T | o(
5 π 4 <|ξ1|<T -1 T |ξ 1 | -1 dξ 1 ≥ C0 T | ln T | + T | ln T | o(1) as T ↓ 0,
where C0 > 0 is another constant independent of T small enough. The proof is complete.

3. Item (iii). We assume that T = c = 1, and note that the general case follows from the rescaling w(x, t) = u(T 1 α c 1 α x, T t). We start as in the preceding case, considering this time integrals on γ Q in (8.3). Arguing as in (8.4) by replacing Q by γ Q, we find that

E γ Q = γ Q u a (x, 1) dx - γ Q u b (x, 1) dx = 2 d π d γ 2 d+1 1 0 (b -a)|ξ| α e -(τ a+(1-τ ) b) |ξ| α d i=1 sinc 2 (γ ξ i ) dτ dξ, and hence Lip ϕ (u; 1) ≥ lim a,b→1 E γ Q a -b = 2 d π d γ 2 d+1 |ξ| α e -|ξ| α d i=1 sinc 2 (γ ξ i ) dξ.
After changing variables γ ξ → ξ, we then get that

Lip ϕ (u; 1) ≥ 2 d π d γ d+1 γ -α |ξ| α e -γ -α |ξ| α d i=1 sinc 2 (ξ i ) dξ.
This is the same expression as in (8.10) with γ -α in place of T . Note that

γ d+1 σ T T =γ -α = σ γ
according to the definitions of σ T and σ γ on page 35, and hence by the proof of (ii)

we have that lim inf γ→+∞ Lip ϕ (u;1) σγ > 0. The proof of (iii) is complete.

Remark 8.5. In the proof of Corollary 3.6, a rescaling in time transformed the continuous dependence estimate (3.4) into the time continuity estimate (3.6). Hence, we leave it to the reader to verify that the same rescaling allows us to prove that (8.1) is also an example for which Corollary 3.6 is optimal.

Proof of Proposition 8.3. We adapt the arguments of the proof of Proposition 8.1(i).

1. Item (i). To avoid confusion with the proof of (ii) below, we denote the fixed parameter γ by γ. We consider the new difference

E Q := γ Q u α (x, T ) dx - γ Q u β (x, T ) dx
with moving powers α, β ∈ (0, 2) and time T . We let M = T a and argue as in (8.4) to see that Since sinc(0) = 0, lim γ↓0 I γ = +∞, and we see that (i) holds for γ small enough.

E Q = 2 d π d γ2 d+1 (e -M |ξ| α -e -M |ξ| β ) d i=1 sinc 2 (γ ξ i ) dξ = 2 d π d γ2 d+1 1 0 (β -α) (ln |ξ|) M |ξ| τ α+(1-τ ) β • e -M |ξ| τ α+(1-τ ) β d i=1 sinc 2 (γ ξ i ) dτ dξ, so that (8.11) Lip α (u; λ) ≥ 2 d π d γ2 d+1 (ln |ξ|) M |ξ| λ e -M |ξ| λ
In the other two cases we split I in two, 1) as M ↓ 0, by a direct passage to the limit. Arguing as in the preceding proof (cf. (8.5)-(8.6)), the last integral can be bounded from below by

I = |ξ|<1 • • • + |ξ|>1 . . . . The first integral is of order O (M ) = σM o(
|ξ1|>1 (ln |ξ 1 |) M |ξ 1 | λ-2 e -d λ-1 M |ξ1| λ sin 2 (γ ξ 1 ) dξ 1 =: J,
up to some positive multiplicative constant C 0 independent of M small enough. Note that C 0 will also depend on γ > 0 which is constant in this proof. Hence it suffices to show that lim inf M↓0 J σM > 0. 1) as M ↓ 0 by the change of variables argument of the λ > 1 case. For the remaining term, we argue as in (8.9), using this time that sin 2 (γ •) is bounded below by 1 2 on γ-1 E. Taking N so large that the new function g (defined below) is nonincreasing on ((4 N + 1) π The proof of (i) is now complete. Let us now see that I 2 is the dominant term provided that the fixed parameter M is chosen sufficiently small. We have b. The case λ < 1. We restart from (8.12), change the variables γ ξ → ξ, and pass to the limit as γ → +∞. The result follows. Here C0 is another positive constant independent of γ large enough. The proof is complete.

Item (ii)

Appendix A. Proofs of (6.17), (6.18) and (6.19)

Proof of (6.17 Proof of (6.19). Recall that E 3 and E 3 (δ) are defined in (6.2) and (6.16), respectively. See also the original assumption (3.2) of the theorem, and the simplifying assumption (6.1). First we define 
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 81 Lip ϕ (u; c) := lim sup a,b→c u a -u b C([0,T ];L 1 ) |a -b| . Theorem 3.1 and (8.2) imply that the function a ≥ 0 → u a ∈ C([0, T ]; L 1 ) is continuous at a = 0 and locally Lipschitz continuous for a > 0 with for all c > 0, u a -u b C([0,T ];L 1 ) = O (ω a-b ) as a, b ↓ 0, Lip ϕ (u; c) = O (σ T ) as T ↓ 0, Lip ϕ (u; c) = O (σ γ ) as γ → +∞, while all the respective remaining parameters are fixed. The result below states that these estimates are optimal. Let α ∈ [0, 2] and c > 0. (i) For all T, γ > 0, lim inf a,b↓0 ua-u b C([0,T ];L 1 ) ω a-b > 0.

u0 L 1 |u0|BV → +∞. 8 . 3 .

 183 Proofs.Proof of Proposition 8.1. Let us prove each items in order.

  The last two terms are O(a -b) = (b ln b -a ln a) o(1) as a, b ↓ 0. To show this, we follow line by line the arguments of a and b respectively, noting that all integrals are well-defined because of the new domains of integration. Let now I denote the remaining term. Recalling that a > b,

  as a, b ↓ 0. Hence it remains to show that lim inf a,b a>b>0 → 0 I1 b ln b-a ln a > 0. Since a e -a |ξ1| -b e -b |ξ1| = (a -b)

I 1 ≥

 1 C0 (b -a) ln a + O (a -b) ≥ C0 (b ln b -a ln a) + (b ln b -a ln a) o(1) as a, b ↓ 0, where C0 = C0 4 e > 0. Here we have used that b ln a ≥ b ln b, and since b ln b -a ln a > 0 for small a > b > 0, the proof of (i) is complete under the assumption that T = γ = 1.

.

  To complete the proof, we must show that lim inf M↓0 |I| σM > 0. a. The case λ < 1. Now lim M↓0 I M = (ln |ξ|) |ξ| λ d i=1 sinc 2 (γ ξ i ) dξ =: I γ .

b. 1 λ ξ 1 → ξ 1 ,( 1 -λ - 1 M 1 λ 1 λ ) = M 1 λ

 11111111 The case λ > 1. By the change of variables M ln|ξ 1 |) |ξ 1 | λ-2 e -d λ-1 |ξ1| λ sin 2 (M -1 λ γ ξ 1 ) dξ (ln M ) |ξ1|>M 1 λ |ξ 1 | λ-2 e -d λ-1 |ξ1| λ sin 2 (M -1 λ γ ξ 1 ) dξ 1 .It is clear that the first term is O(M | ln M | o(1) as M ↓ 0, and that the second one has the expected behavior due to L ∞ -weak-⋆ convergence arguments.c. The case λ = 1. We writeJ = |ξ1|>M -1 • • • + 1<|ξ1|<M -1 . . . . The first term is O(M | ln M |) = M (ln 2 M ) o(

4 γ- 1 , 1 ( 1 ≥ e - 1 M( 4 N +1) π 4 γ- 1 1 ≥ e -1 4 M( 4 N +1) π 4 γ-1 <|ξ1|<M - 1 ( 1 = e -1 4 M

 411114411444114 +∞), we get a lower bound of the form1<|ξ1|<M -ln |ξ 1 |) M |ξ 1 | -1 e -M |ξ1| sin 2 (γ ξ 1 ) dξ <|ξ1| (ln |ξ 1 |) |ξ 1 | -1 1 |ξ|<M -1 =:g(|ξ1|) sin 2 (γ ξ 1 ) dξ ln |ξ 1 |) |ξ 1 | -1 dξ ln 2 M + M (ln 2 M ) o(1) as M ↓ 0.

|.

  To avoid confusion with the preceding proof, we denote the fixed parameter M = T a by M . Then, by(8.11),(8.12) Lipα (u; λ) ≥ 2 d π d M γ 2 d+1 (ln |ξ|) |ξ| λ e -M |ξ| λd i=1 sinc 2 (γ ξ i ) dξ =:I and it suffices to show that lim inf γ→+∞ |I| σγ > 0. a. The case λ > 1. Since ln |ξ| has different signs inside and outside the unit ball, we split the integral I in two,I = |ξ|<1 • • • + |ξ|>1 • • • =: I 1 + I 2 .By the inequality | ln |ξ|| |ξ|λ ≤ d λ-1 d i=1 | ln |ξ i || |ξ i | λ for |ξ| < 1and the change of variables γ ξ j → ξ j for j = i, we find that|I 1 | ≤ d λ-1 γ 2 d+1 d i=1 |ξ|<1 | ln |ξ i || |ξ i | λ d j=1 sinc 2 (γ ξ j ) dξ ≤ d λ-1 γ ln |ξ i || |ξ i | λHere we also have used that sin 2 (γ ξ i ) ≤ 1. It follows that lim sup γ→+∞ |I1| γ d ≤ C(d, λ), a constant that does not depend on M .

I 2 ≥sinc 2

 22 γ 2 d+1 (ln |ξ 1 |) |ξ 1 | λ e -M |ξ| λ d i=1 sinc 2 (γ ξ i ) dξ,and then, letting ξ γ := (ξ 1 , γ -1 ξ 2 , . . . , γ -1 ξ d ) and changing variables γ ξ i → ξ i for i = 1, we find thatI 2 ≥ γ d (ln |ξ 1 |) |ξ 1 | λ-2 e -M |ξγ | λ d i=2 sinc 2 (ξ i ) dξ 2 . . . dξ d sin 2 (γ ξ 1 ) dξ 1 . By L ∞ -weak-⋆ convergence arguments, lim inf γ→+∞ I2 γ d ≥ m I M , (ξ i ) dξ i > 0 and I M := (ln |ξ 1 |) |ξ 1 | λ-2 e -M |ξ1| λ dξ 1 .Since lim M↓0 I M = +∞, it suffices to fix M > 0 small to get (ii) in the λ > 1 case.

.|sinc 2 π 4 < |ξ 1 | < 1 2 γ 2 -| ξ| 2 and ǫ 2 <J 1 ≥ -C 0 γ d ǫ 2 <| ξ|<ǫ 5 π 4 <|ξ1|< 1 2 √ γ 2 -| ξ| 2 ln(γ - 1 2 <| ξ|<ǫ 5 π 4 <|ξ1|< 1 2 √ γ 2 -J 1 ≥ C0 γ d ǫ 2 <| ξ|<ǫ ln 2 γ -1 5 π 4 - 2 |

 242212222122212242 c. The case λ = 1. Let us rewrite I in (8.12) asI = γ 2 d+1 γ -1 <|ξ|<1By the arguments of the λ < 1 case, the last integral is of order O(γd ln γ) = γ d (ln 2 γ) o(1) as γ → +∞. For J 2 , we use that |ξ|>1 . . . | by symmetry of the I-integrand (cf. (8.12)). We then bound | ln |ξ|| |ξ| e -M|ξ| by some constant C, change the variables γ ξ i → ξ i for i = 1, get|J 2 | ≤ d C γ d (ξ i ) dξ i and conclude that J 2 = O(γ d ) = γ d (ln 2 γ) o(1) as γ → +∞.Since J 1 > 0, it remains to show that lim inf γ→+∞ J1 γ d ln 2 γ > 0. It will be convenient to use the notation ξ := (ξ 2 , . . . , ξ d ). By the change of variables γ ξ → ξ and the inequality |ξ| ξ -21 ≥ |ξ| -1 , J 1 ≥ -γ d 1<|ξ|<γ ln(γ -1 |ξ|) |ξ| f ( ξ) sin 2 (ξ 1 ) dξ,where f ( ξ) := e -M d i=2 sinc 2 (ξ i ). Let us restrict to the domain of integrationA := (ξ 1 , ξ) s.t. 5 | ξ| < ǫ ,where ǫ > 0 is fixed and so small that A ⊂ {1 < |ξ| < γ} andC 0 := min A f ( ξ) > 0. Then, |ξ|) |ξ| sin 2 (ξ 1 ) dξ 1 d ξ.Arguing as in (8.9),J 1 ≥ -C0 γ d ǫ | ξ| 2 ln(γ -1 |ξ|) |ξ| dξ 1 d ξ, where C0 = C0 4 > 0. If γ is large enough, then for all ξ ∈ A, γ -1 |ξ| ≤ γ -1 (|ξ 1 | + | ξ|) < 1. We can then use that ln(γ -1 |ξ|) |ξ| ≥ -ln γ -1 (|ξ 1 | + | ξ|) |ξ 1 | + | ξ| ,and by integrating the right-hand side, we get ξ| 2 + γ -1 | ξ| d ξ ≥ C0 γ d ln 2 γ + γ d (ln 2 γ) o(1) as γ → +∞.

6 6

 6 ) and(6.18). Recall that Ω ξ (•) is defined on page 21 and χ b a in(6.14). For A, we use thatΩ ξ (u) L 1 (QT ) dξ = QT χ u(x,t) 0 (ζ) ω δ (ξ -ζ) dζ dx dt dξ = QT χ u(x,t) 0 (ζ) ω δ (ξ -ζ) dξ dx dt dζ = u L 1 (QT ) .For B, we consider{u n } n ⊂ C([0, T ]; W 1,1 ) converging to u in C([0, T ]; L 1 ) and such that QT |∇u n | → |u| L 1 (0,T ;BV ) . Then QT |∇Ω ξ (u n )| dx dt dξ = QT ω δ (ξ -u n (x, t)) |∇u n (x, t)| dx dt dξ = QT |∇u n |, so that |Ω ξ (u)| L 1 (0,T ;BV ) dξ ≤ T 0 lim inf n→+∞ R d |∇Ω ξ (u n )| dx dt dξ ≤ lim n→+∞ QT |∇Ω ξ (u n )| dx dt dξ = |u| L 1 (0,T ;BV ) ,due to the lower semi-continuity of the BV -semi-norm with respect to the L 1 -norm and to Fatou's lemma. For the reverse inequality, we use that, at all fixed time and for all Φ∈ C 1 c (R d , R d ) such that |Φ| ≤ 1, |Ω ξ (u)| BV dξ ≥ R d Ω ξ (u) divΦ dx dξ = R d χ u 0 (ζ) ω δ (ξζ) divΦ dζ dx dξ = R d u divΦ dx,and next we take the supremum with respect to Φ.

F 2 T( 1 + 1 a-x b - 1 b 1 0 1 0 1 0fτ

 2111111 v (x, t, y, s, z, ξ) := sgn(v -u) χ v(x+z,t) v(x,t) (ξ)|z| d+α φ ǫ,ν . Let us recall that F v is integrable on Q 2 T × {|z| > r} × R since |χ b a (ξ)| dξ = |b -a|. Hence, by Fubini the function G v (ξ) := Q |z|>r F v (x, t, y, s, z, ξ) dz dwis integrable with respect to ξ ∈ R. But, by (6.15),(6.16),E 3 = G d (α) G v (ξ) ψ ′ (ξ) -G u (ξ) ϕ ′ (ξ) dξ and E 3 (δ) = G d (α) ψ ′ (ξ) G v * ω δ (ξ)-ϕ ′ (ξ) G u * ω δ (ξ) dξ,where * is the convolution product in R. Since ω δ is an approximate unit, the convolution products inside the integral respectively converge to G v and G u in L 1 (R) as δ ↓ 0. Using in addition that ϕ ′ and ψ ′ are bounded by (6.1), lim δ↓0 E 3 (δ) = E 3 . Appendix B. Some technical lemmas Lemma B.1. For all a, b > 0, |a -b| (-ln(a ∨ b)) + ≤ |a -b| + |a ln a -b ln b|. Proof. We assume without loss of generality that a ∨ b = a and that a ≤ e -1 (the result is trivial otherwise). Then |a ln a -b ln b| = -a b ln τ ) dτ = -|a -b| -a b (ln τ ) dτ, since 1 + ln τ is negative, and hence |a -b| + |a ln a -b ln b| ≥ -|a -b| ln a, since the logarithm is nondecreasing. This completes the proof. Lemma B.2. For all x > 0, a, b = 0 and c > 0,(i) x a -≤ |a -b| (1 ∨ x a ∨ x b ) ln 2 x, (ii) lim a,b→c 1 (a-b) 2 x 2 a 2 a + x 2 b 2 b -2 x a+b a+b ≤ C x 2 c (1 + ln 2 x),where C = C(c).Proof. (i) Let f (a) = x a -1 a . Observe that (ln x) x τ a dτ = f (a) by a Taylor expansion of x a at a = 0. It then follows that by differentiating under the integral sign that f ′ (a) = (ln 2 x) τ x τ a dτ andf (a) -f (b) = (a -b) ′ (τ a + (1 -τ ) b) dτ = (a -b) (ln 2 x) x τ (τ a+(1-τ ) b) dτ dτ.Since x τ (τ a+(1-τ ) b) ≤ 1 ∨ x a∨b ∨ x a∧b , we find that |f (a) -f (b)| ≤ |a -b| (ln 2 x) (1 ∨ x a ∨ x b ), and the proof of (i) is complete.
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≤ A 2 + B 2 , we find that the second term is bounded by

The proof now follows from these two inequalities.

Appendix C. 

The functions η n (•) and η ′ n (•) are locally uniformly bounded and converge pointwise to | • -k| and the everywhere representative of its weak derivative given by (2.3). Hence, if a function u = u(x, t) is bounded and such that η n (u) satisfies (7.2), we can use the dominated convergence theorem to pass to the limit and find that |u-k| satisfies (2.5).

To prove the only if part, we note that we may approximate (locally uniformly) any convex entropy η ∈ C 1 (R) by a family of piecewise linear functions ηn of the form

where a, b, k i ∈ R, c i ≥ 0, and m ∈ N. See e.g. [36, p. 27] for a proof. We need to refine this construction to ensure everywhere convergence of the derivatives η′ n . Consider the everywhere defined representative of η′ defined by

where the sign function is everywhere defined by (2.3). Since η ′ is continuous, it can be approximated uniformly on compact sets by piecewise constant functions of the form (C.2). Take such a sequence {η ′ n } n that converges locally uniformly on R and redefine {η n } n to be the primitives such that ηn (0) = η(0), i.e. functions of the form (C.1). It follows that both ηn and η′ n converge locally uniformly towards η and η ′ .

Consider next the entropy solution u = u(x, t) of (1.1) and note that the lefthand side of the entropy inequality (7.2) is linear with respect to η, that (7.2) holds with η(u) = a + b u since u is a weak (distributional) solution of (1.1), and that (7.2) holds with η(u) = c i |u -k i | by the Kruzhkov inequality (2.5) since c i ≥ 0. The reader may then check that (7.2) also holds with η = η and the everywhere representative of η′ given by (C.2).

Since u is bounded, we may use the dominated convergence theorem to pass to the limit in (7.2) with η = ηn to find that (7.2) holds also for the η in the limit. The proof is complete.

Proof of (7.5). Combining (1.2) and (2.1),

|x -y| d+α dx dy, thanks to (7.7) with v = u to get the last line.
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