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All the remaining unknowns   1 T f λ in (Eq.3.) are then introduced in a typical static optimisation procedure [START_REF] Erdemir | Model-based estimation of muscle forces exerted during movements[END_REF] using a weighted criterion (i.e., weighted sum of forces squared). In this study, all these forces are predicted using the data from the "Second Grand Challenge Competition to Predict in Vivo Knee Loads" [START_REF] Fregly | Grand challenge competition to predict in vivo knee loads[END_REF].

Results and Discussion

The patterns of the predicted musculo-tendon forces are generally in accordance with the envelopes of the main peaks of the subject's EMG signals (Fig. 2.). The amplitudes and patterns of the predicted knee contact forces (Fig. 3.) are comparable to the subject's in vivo measurements (root mean square error: 0.45 BW and correlation coefficient R: 0.89). The predicted hip and ankle contact forces, the ACL ligament, and femur force are also in good agreement with the literature [START_REF] Pandy | Muscle and joint function in human locomotion[END_REF][START_REF] Bergmann | Hip contact forces and gait patterns from routine activities[END_REF][START_REF] Lu | Influence of muscle activity on the forces in the femur: an in vivo study[END_REF]. 

Conclusion

The musculo-skeletal model used in this study allows to predict simultaneously musculo-tendon, joint contact, ligament and bone forces in line with the subject's measurements and the literature. The possibility to introduce other forces than the musculo-tendon forces in the static optimisation opens new horizons in order to better model the human physiology (e.g., joint pain). However, in this perspective, the minimisation of a weighted criterion may be seen as a limit of the current approach. 
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