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ABSTRACT 1 

 2 

Blending H2 with natural gas in spark ignition engines can increase for electric efficiency. In-situ H2 3 

production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and 4 

reformed exhaust gas recirculation (RGR) has been identified a potentially advantageous approach: RGR 5 

uses the steam and O2 contained in exhaust gases under lean combustion, for reforming natural gas and 6 

producing H2, CO, and CO2. In this paper, an alternative approach is introduced: air gas reforming circulation 7 

(AGRC). AGRC uses directly the O2 contained in air, rendering the chemical pathway comparable to partial 8 

oxidation. Formulations based on palladium and platinum have been selected as potential catalysts. With 9 

AGRC, the concentrations of the constituents of the reformed gas are approximately 25% hydrogen, 10% 10 

carbon monoxide, 8% unconverted hydrocarbons and 55% nitrogen. Experimental results are presented for 11 

the electric efficiency and exhaust gas (CO and HC) composition of the overall system (SI engine equipped 12 

with AGRC). It is demonstrated that the electric efficiency can increase for specific ratios of air to natural gas 13 

over the catalyst. Although the electric efficiency gain with AGRC is modest at around 0.2%, AGRC can be 14 

cost effective because of its straightforward and inexpensive implementation. Misfiring and knock were both 15 

not observed in the tests reported here. Nevertheless, technical means of avoiding knock are described by 16 

adjusting the main flow of natural gas and the additional flow of AGRC. 17 

 18 

Keywords: Hydrogen, CHP, natural gas, power,  19 

 20 

1. INTRODUCTION 21 

 22 

Efforts to improve the performance of internal combustion (IC) engines (e.g., brake mean effective pressure, 23 

specific fuel consumption) are nowadays limited by both stringent emissions regulations and abnormal 24 

combustion problems (knock, engine misfiring). These limitations are particularly important for lean burn natural 25 

gas engines that are used for combined heat and power (CHP) applications. Examples of such constraints are 26 

shown in Figure 1, where engine performance parameters are plotted against equivalence ratio. Improving the 27 

electric efficiency of stationary IC engines fuelled by natural gas should not cause any of the above noted 28 

constraints to be exceeded. The window between knock and combustion misfire is narrow, as shown in the left 29 

diagram of Figure 1, and can occur for an equivalence ratio in the range 1.7 to 2.0, common tuning for CHP 30 

applications. Nevertheless, specific emissions are relatively low in this equivalence ratio range, as shown in the 31 

right diagram of Figure 1, suggesting that a good compromise among these factors is attained by operating in 32 

this equivalence ratio range. 33 

 34 

Fig. 1. Variation of selected engine performance parameters with equivalence ratio, highlighting challenges 35 

(firing problems, emissions) in improving engine performance  36 

 37 

It has been demonstrated experimentally by Le Corre et al. [1] that the addition of H2 has a positive effect on IC 38 

engines fuelled by traditional fuels. Increased H2 content increases the mechanical efficiency of such IC 39 



  
 

engines without major increases in engine emissions. The main hindrance related to this measure is the 40 

requirement for H2 storage cylinders, especially for transport applications. 41 

 42 

To comply with emissions regulation two main approaches exist according to Einewall et al. [2]: operating under 43 

stoichiometric conditions with exhaust gas recirculation and a three-way catalyst, or operating under lean burn 44 

conditions.  45 

 46 

In-situ H2 production by steam reforming has been considered for IC engines fuelled by natural gas (e.g., Yap et 47 

al. [3]). Such applications are suitable for stationary CHP plants which are not subject to significant weight and 48 

volume constraints. In-situ steam reforming involves the following: 49 

 50 

1. The catalytic reforming device is located in the exhaust gases in order to keep it at high 51 

temperature (775 K). 52 

2. Part of the exhaust gases is used to supply the catalyst with water vapour, oxygen and carbon 53 

dioxide, 54 

3. Reformed gases (enriched in hydrogen) are then mixed with the intake air and gas line, as is 55 

done with exhaust gas recirculation (EGR) technology used in the car industry to reduce NOX 56 

emissions for diesel engines. 57 

 58 

Le Corre et al. [1] highlighted the effect of air-fuel ratio on the H2 production for a CHP plant. The higher the air-59 

fuel ratio, the greater is the H2 content in the reformed gases. For example, Le Corre et al. [1] reported that the 60 

difference of H2 content is 2% for air-fuel ratios of 1.5 and 1.4. This observation implies that the O2 content limits 61 

reactions where it is a reactant. Two such reactions are the complete oxidation of methane and the partial 62 

oxidation of methane: 63 

 64 

Complete oxidation of methane: CH4 + 2O2 � CO2 + 2H2O ( 1
298 molkJ890 −−=∆ KH )   (1) 65 

Partial oxidation of methane: CH4 + ½O2 � CO + 2H2 ( 1
298 molkJ6.35 −−=∆ KH )    (2) 66 

 67 

The individual reactions that contribute to the overall reaction consist of the reforming of CO2 into CO 68 

(equation 3), the steam reforming of methane into CO (equation 4), the water gas shift reaction (equation 5), 69 

the oxidation of hydrogen (equation 6) and the oxidation of carbon monoxide (equation 7): 70 

 71 

CH4 + CO2 � 2CO + 2H2           (3) 72 

CH4 + H2O � CO + 3H2           (4) 73 

CO + H2O � CO2 + H2            (5) 74 

2H2 + O2 � 2H2O            (6) 75 

2CO + O2 � 2CO2            (7) 76 

 77 

For a CHP plant fuelled by natural gas, the O2 content in the exhaust gases is around 7-8% by vol. In this 78 

configuration for H2 production, hydrogen makes up around 10-14% by vol. of dry reformed gases. Then, O2 79 

content should be an important reactant. 80 



  
 

 81 

Note that the exhaust gases from natural gas CHP plant typically contain three times less than the O2 82 

concentration in the air. This circumstance raises a question: Could the system be modified in a way that allows 83 

the exhaust gases to be substituted for some of the additional air provided at the reformer inlet?  84 

 85 

The partial oxidation of methane has many advantages compared to steam reforming of methane for hydrogen 86 

production. An exothermic reaction, the partial oxidation of methane produces syngas with a H2/CO volumetric 87 

ratio of about two, which is ideal for further methanol and Fischer-Tropsch syntheses, according to Hadj-Sadok 88 

Ouaguenouni et al. [4]. Many precious metals, such as Ru, Rh and Pt, have been tested as catalysts for the 89 

partial oxidation of methane reaction (see Torniainen et al. [5]; Schmidt and Huff [6]). Schmidt et al. [7] and 90 

Deutschmann and Schmidt [8] have proposed a model to understand the complex interaction between transport 91 

and kinetics involved in the partial oxidation of methane. Some authors have tested a commercial nickel-based 92 

catalyst, but this approach was rejected due to activation difficulties. Pd and Pt have been identified as 93 

advantageous potential catalysts, and are considered here. 94 

 95 

The main objective of this paper are to investigate the use of partial oxidation of methane as a means of 96 

improving H2 production in CHP plant applications, and to examine how the process occurs in the presence of 97 

two group VIII metal catalysts (Pt and Pd). It is recognized that this approach must be cost effective for it to be 98 

adopted in real applications. 99 

 100 

The concept considered here, which is referred to as air gas reforming circulation (AGRC), is shown in 101 

Figure 2. A catalytic reforming device is placed in the exhaust gas flow, but the catalysts do not come into 102 

contact with the exhaust gas, as it is used only to heat the catalyst. A chemically active blend of air and 103 

natural gas is located over the catalyst. The reformed gases are then mixed with the fresh mixture of fuel 104 

and air at the engine inlet.  The results are reported in this paper of experimental studies in which two DCL© 105 

catalysts are examined: one based on Pt and one on Pd. 106 

 107 

 108 

Legend: (10) air flow meter, (11) air filter, (12) carburetor, (13) turbocharger, (14) intercooler, (15) actuator, 109 

(16) engine, (17) catalyst device, (18) exhaust heat exchanger, (20) natural gas flow meter, (21) Methane 110 

Number sensor, (30) additional air flow meter, (40) additional natural gas flow meter, (50) methane number 111 

sensor. 112 

 113 

Fig. 2. Engine system incorporating the air gas reforming circulation (AGRC) concept. 114 

 115 

2. EXPERIMENTAL APPARATUS AND PROCEDURE 116 

 117 

The test bench is a spark ignition (SI) engine fuelled by natural gas (see Figure 3). This installation is a 118 

combined heat and power plant operating at a fixed engine speed, as specified in Table 1. 119 

 120 

Table 1. Engine specifications. 121 

 122 



  
 

Fig. 3. Reforming device installation (at left) on a 210 kWe CHP gas engine (orange). 123 

 124 

The engine generates a constant electrical power of 210 kW during operation. This power output is kept 125 

constant by a control loop that acts on a butterfly valve which adjusts the air-gas flow entering the cylinders. 126 

The air-fuel ratio is controlled manually by acting on the output of pressure reducer upstream of the 127 

carburetor using the Venturi effect [9]. The engine spark advance is kept constant throughout the testing, at 128 

14 CA BTDC. 129 

 130 

The test bench is equipped with various experimental sensors, corresponding to low frequency 131 

measurements (1 Hz). Measurement ranges are shown in parentheses. 132 

 133 

• Thermocouples to measure the catalyst inlet and outlet temperature, and exhaust gas inlet and 134 

outlet temperature in the catalyst housing. 135 

• A mass flow rate meter for the main natural gas SI engine feed line (0-1200 Nm3/h), and a 136 

mass flow rate meter for the additional natural gas at the catalyst inlet (0-600 Nm3/h). 137 

• A mass flow rate meter for the intake air (0-1500 kg/h). 138 

• Two dry-basis gas analysers: 139 

o Engine exhaust gases are analysed with the following: 140 

� HORIBA VA300 analyser: O2 (0-25%), CO2 (0-20%) CO (0-1%), NO (0-2000 ppm) 141 

� COSMA Cristal 500 analyser: HC (0-5000 ppm) 142 

o Catalyst outlet gases are analysed with the following: 143 

� ROSEMOUNT NGA2000: H2 (0-30%), O2 (0-30%), CH4 (0-30%), CO (0-30%), 144 

CO2 (0-30%) 145 

� SIEMENS H3-600: CO2 (0-16%) 146 

• A wattmeter (ENERNIUM-CFG1). 147 

• A mass flow rate meter for the water cooling flow rate of SI engine (0-50 m3/h). 148 

• PT sensors to measure the temperatures at several points in water cooling circuit of the engine 149 

(PT100, 0-200°C). 150 

 151 

All data were averaged over a period of 15 minutes once steady state operation was achieved. The H2-152 

enhanced engine electrical efficiency eη  is defined as follows: 153 

 154 

( )NGRNG

e
e qqLHV

W
+

=η            (8) 155 

 156 

Here, NGq  denotes the natural gas flow rate (main stream), NGRq  the natural gas flow rate for reforming, and 157 

LHV  the lower heating value of natural gas. The two natural gas flows are shown in Figure 2. 158 

 159 

The catalytic reforming device is illustrated in Figure 4. 160 

 161 

The following experimental procedure was used for the catalytic reforming device shown in Figure 4: 162 



  
 

 163 

1. The additional air flow rate over the catalytic reforming device was set. 164 

2. The additional natural gas flow rate at catalyst inlet was set. Consequently, part of natural gas is 165 

not converted; this is not a disadvantage of the system since the main natural gas flow rate is 166 

decreased correspondingly. 167 

3. The equivalence ratio of the SI engine is kept constant by modifying the air flow rate in the main 168 

stream. Note that the O2 content in the exhaust line is measured, and provides a straightforward 169 

means of maintaining the same condition during the combustion phase. 170 

 171 

Fig. 4. Schematic of catalytic device. UHC denotes unburned hydrocarbons. 172 

 173 

 174 

Two commercial honey-comb catalysts of DCL© are tested. These are made of formulations based on Pd 175 

and Pt, which are proprietary information of DCL©. Selected features of the catalysts are listed in Table 2. 176 

 177 

Table 2. Features of tested catalysts 178 

 179 

For safety reasons, the following measures were adopted: 180 

 181 

• The system is operated at 80% of its nominal electric power output. This engine operation is 182 

less demanding than operation with a full fuel charge. 183 

• Some part of additional natural gas flow rate over catalyst does not react. That is, oxygen is 184 

completely consumed at the catalyst outlet. This operational condition for the catalyst is safer 185 

since it permits auto-ignition of H2 to be avoided. 186 

 187 

The volumetric flow rate over the honey-comb catalyst is a blend of additional air and natural gas for 188 

reforming, denoted NGR. Two flow rates for “additional air” are used: 3 and 5 Nm3/h. The range of the 189 

volumetric ratio NGR/O2 is bounded between 0.3 and 1.6, regardless of the catalyst, as shown in Figure 5. 190 

This volumetric ratio represents the ratio of the volumetric flow rate of natural gas for reforming to the 191 

volumetric flow rate of oxygen, in the overall gas flow. It is noted that, in the literature on steam reforming of 192 

natural gas, results are typically based on the ratio NGR/H2O (e.g., Peucheret et al. [10]). Nonetheless, in 193 

this paper, the significant ratio is NGR/O2. 194 

 195 

 196 

Fig. 5. Experimental design of flow rates of additional air over the catalyst in the feed line of the SI engine, 197 

for various NGR/O2 ratios and catalysts. 198 

 199 

3. RESULTS AND DISCUSSION 200 

 201 

3.1 Catalyst performance in AGRC 202 

 203 



  
 

The first results presented concern exclusively the catalyst performance when Air Gas Reforming Circulation 204 

(AGRC) is used. All results are given on dry basis. Natural gas and air react chemically over the catalyst; N2 205 

is the constituent with the highest concentration at the catalyst input and output. We provide results for H2, 206 

CO and unconverted natural gas. To avoid H2 auto-ignition, as explained previously, the experiment is 207 

designed to ensure there is no O2 at the catalyst output. The CO2 concentration is around of 6-7% at the 208 

catalyst output. 209 

 210 

The primary gases at the exit of the catalyst are shown in Figure 6. In the top two graphs of Figure 6, H2 211 

production is seen to depend on the catalyst formulation, and to result in hydrogen concentrations of 212 

approximately 26% for the Pd catalyst and 21% for Pt. H2 production also depends on the air flow rate, 213 

indicating that fluid dynamic effects are very significant. In the configuration with reformed exhaust gas 214 

recirculation (denoted RGR), where exhaust gas is blended with additional natural gas before entering the 215 

reformer, Le Corre et al. [1] have shown that H2 production yields a concentration in the reformed gas of only 216 

10-14%. The AGRC improves significantly H2 production by promoting the partial oxidation of methane, at 217 

temperatures around 775 K. This temperature is not the most favorable for H2 production (the ideal 218 

temperature for H2 production is around 1000 K); but the exhaust gases exiting the turbocharger are 219 

available at 775 K for use and are otherwise emitted as wastes. 220 

 221 

In Figure 6 (middle two graphs), CO production is observed to be significant, leading to a CO concentration 222 

of around 11% for the Pd catalyst and 8% for Pt. Such amounts are not a major problem in IC engines, 223 

contrary to fuel cell applications. As for H2 production, CO production also depends on the air flow rate, 224 

indicating that fluid dynamic effects are very significant, as is the chemical pathway, denoted by equations 1-225 

6, over the catalyst. 226 

 227 

In Figure 6 (bottom two graphs), the concentration of unconverted natural gas content is shown, 228 

demonstrating that O2 (from additional air) is totally consumed, avoiding the risk of H2 auto-ignition. When 229 

the additional air flow rate is 3 Nm3/h, the experimental facilities are not capable of measuring a NGR/O2 ratio 230 

lower than 0.3. Clearly, however, the unconverted natural gas concentration is more important at an 231 

additional air flow rate of 3 Nm3/h than 5 Nm3/h. 232 

 233 

Figure 7 illustrates the variation in H2 concentration with CO concentration for the two catalysts and two air 234 

flow rates, and shows the role of catalyst composition (Pd and Pt). In Figure 5, ratios of reformed exhaust 235 

gas recirculation (NGR) to O2 ranging between 0.3 and 1.6 are considered for the two air flow rates and the 236 

two catalysts. The concentrations of H2 and CO, respectively, depend on air flow rate, achieving values over 237 

the Pd catalyst of about 26% and 11% at an air flow rate of 3 Nm3/h and 20% and 8% at an air flow rate of 5 238 

Nm3/h. But H2 and CO concentrations are not too sensitive to the ratio NGR/O2 for an air flow rate of 3 239 

Nm3/h. Conversely, over the Pt and Pd catalysts, the H2 and CO concentrations increase approximately 240 

linearly with the NGR/O2 ratio. This observation suggests that chemical pathway is dependent on the catalyst 241 

choice. 242 

 243 

 244 



  
 

Fig. 6. Variations in concentrations of main gases with the ratio NGR/O2 of at the exhaust of catalyst for two 245 

catalysts and air flow rates. 246 

 247 

 248 

 249 

Fig. 7. Variation of H2 concentration with CO concentration for two catalysts and air flow rates. 250 

 251 

3.2 Effects of catalysts on CHP system 252 

 253 

The basic system (the CHP plant) has two inputs: natural gas and air in the main stream. The modified 254 

system (the CHP plant equipped with a catalyst device) is similar, except that the one natural gas stream is 255 

separated in two lines: one to the engine and the other to the catalyst. The absolute difference in electric 256 

efficiency is defined as the difference between the electric efficiencies of the modified and basic systems, 257 

with a positive absolute difference meaning that the catalyst device increases the electric efficiency and a 258 

negative value meaning that the catalyst device decreases the electric efficiency. 259 

 260 

In Figure 8, the variation in the absolute difference of CHP electric efficiency with the ratio NGR/O2 is shown 261 

for both Pd and Pt catalysts and for two air flow rates. In the left graph of Figure 8 for which the additional air 262 

flow rate is 3 Nm3/h, the absolute difference is positive when the NGR/O2 ratio is less than 1.3. In that figure, 263 

values for Pd (dotted spline line) and Pt (solid spline line) catalysts are seen to improve electric efficiency by 264 

similar amounts. In the left graph of Figure 8 for which the additional air flow rate is 5 Nm3/h, the absolute 265 

difference of electric efficiency is approximately zero for low values of the ratio NGR/O2 (< 0.8) and negative 266 

for high values of that ratio (> 0.8). Note that the results in Figure 8 and the related observations correspond 267 

with H2 production concentrations of 26% at 3 Nm3/h and of 20% at 5 Nm3/h.  268 

 269 

The benefit in electrical efficiency is directly attributable to the ability of H2 to promote the combustion 270 

process. Several benefits of hydrogen combustion are described by Bauer and Forest [11]: 271 

� The laminar flame speed for a stoichiometric hydrogen/air mixture (2.65-3.25 m/s) is about seven 272 

times higher than for methane or gasoline in air. This property of hydrogen leads to decreases the 273 

wall heat transfer to 17-25% of the primary fuel energy for hydrogen, compared to 22-33% for 274 

natural gas or 30-42% for gasoline. 275 

� The “quenching distance” defined as the distance from the cylinder wall at which the flame quenches 276 

due to heat losses, characterizes the flame quenching property of a fuel in internal combustion 277 

engines. The quenching distance of hydrogen (0.064 cm at standard conditions) is approximately 278 

three times lower than that of other fuels, such as gasoline (0.2 cm at standard conditions) or 279 

methane (0.203 cm at standard conditions). 280 

� Emissions from hydrogen fuelled engines are neither toxic nor photochemically reactive. 281 

 282 

 283 

 284 

Fig. 8. Absolute difference of electric efficiency. 285 

 286 



  
 

The uncertainty in the determined electric efficiency for the basic system (when there is no flow over the 287 

catalyst) is obtained by noting that the electric power eW , the low heating value LHV  and the mass flow rate 288 

of natural gas NGq  are three independent measures (measured by a wattmeter, a gas chromatograph and a 289 

mass flow meter, respectively): 290 

 291 
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e
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W
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1 −−=η      (9) 292 

The quadratic uncertainty )( eu η  is defined based on the uncertainties of these three variables with its norm: 293 

 294 

2

2

2

2

2
2 )()()(

1
)(

�
�

�

�

�
�

�

�
+

�
�

�

�

�
�

�

�
+�

�
�

�
�
�
�

�
= NG

NG

e

NG

e
e

NG
e qu

qLHV

W
LHVu

qLHV

W
Wu

qLHV
u η    (10) 295 

 296 

2222
)()()()(
�
�
�

�
�
�
�

�
+�

�

�
�
�

�+�
�
�

�
�
�
�

�
=�

�
�

�
�
�
�

�

NG

NG

e

e

e

e

q
qu

LHV
LHVu

W
Wuu

η
η

      (11) 297 

 298 

This is the classical law of uncertainty propagation see [12]. Substituting numerical values shows that the 299 

relative uncertainty of efficiency 
e

eu
η
η )(

 is about 2.5%, with %2)( =ee WWu , %1)( =LHVLHVu  and 300 

%1)( =NGNG qqu . So the value of the electric efficiency eη  is 35% ± 1.0%. 301 

 302 

In this investigation, the main instrumentation is shared between the basic system and the modified system 303 

(wattmeter, gas chromatograph for natural gas, and mass flow meter for natural gas in the main stream). 304 

The only difference is a second mass flow meter for the additional natural gas entering the catalyst. The 305 

uncertainty between these two configurations is evaluated, denoting the electric efficiency 0
eη  in the basic 306 

configuration and NGR
eη  when the catalyst device is active. The difference ( )0

e
NGR
e ηη −  has been measured 307 

to be about 0.2%, which is equivalent to stating that the ratio 199.0
0

<≈
NGR
e

e

η
η

. Here, 308 

 309 
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        (12) 310 

 311 

Where 
0NGq  is the mass flow rate of natural gas in the basic configuration required to produce the electric 312 

power eW , and 
1NGq  is the mass flow rate of natural gas in the main stream of the modified configuration. 313 

Rearranging this equation yields 314 

 315 
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 317 

where 
0NGq  and 

1NGq  are measured by the same mass flow meter. As previously, the ratio 
NGR
e

e

η
η 0

 is 318 

obtained by two independent measurements: 319 
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The fact that only one gas flow meter is used in the main stream implies that NG

not

NGNG dqdqdq == 10
. Thus, 321 
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and its uncertainty is given by its norm: 323 
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 325 

Substituting numerical values gives 
�
�

�

�

�
�

�

�

NGR
e

eu
η

η 0

=5.04E-4. That means that the difference ( )0
e

NGR
e ηη −  has an 326 

uncertainty of about 2.0E-4 and this difference is 0.2% ±  2.0E-4. 327 

 328 

A time recording of electric efficiency and H2 content is plotted on Figure 9 for the following conditions: spark 329 

timing advance 14CA BTDC, 7% O2 content in the exhaust gases, 80% full load, ambient temperature 21°C 330 

and relative humidity around 21%. Two gaps exist around 100 s and 1450 s. The first corresponds to turning 331 

off the additional natural gas flow, and the second one to turning it on. It is clear that uncertainties in the 332 

wattmeter or the gas chromatograph are not notable. Only the uncertainties of the two mass flow meters are 333 

important, as seen in equation 15. 334 

 335 

Fig. 9. Time recording of electric efficiency and H2 production. 336 

 337 

 338 

An increase of electric efficiency is beneficial, but may not be acceptable if it increases exhaust gases 339 

emissions. In Figure 10, the variation in CO and HC emission concentrations in exhaust line of the CHP 340 

plant with the ratio NGR/O2 are shown for the Pd catalyst and two air flow rates. It can be seen in the figure 341 

that the effect of the catalyst device is not significant on CO and HC emission concentrations, regardless of 342 

the additional air flow rate and the ratio NGR/O2. Thus the increase of electric efficiency with the catalyst 343 

device does not appear to come at the expense of increased emissions, so a retrofit to achieve the absolute 344 

difference of electric efficiency is worth considering. 345 

 346 

 347 



  
 

Fig. 10. Variation with NGR/O2 ratio of the exhaust emission concentrations of the CHP plant equipped with 348 

a Pd catalyst device, for two air flow rates. 349 

3.3 Discussion 350 

Several processes used to improve the performance of engines are compared in Table 3. In this table, an SI 351 

engine fuelled by natural gas under lean conditions (taken to be an equivalence ratio of 1.4) equipped with a 352 

two-way catalyst (CO and unburned hydrocarbon UHCs oxidations) in the exhaust line is referred to as the 353 

Base case. Exhaust emissions of UHC, CO are considered after the two-way catalyst in the exhaust line. 354 

The modified engine cases considered include the Base case with exhaust gas recirculation (EGR), the 355 

Base case with reformed gas recirculation (RGR), and the Base case with air gas reforming circulation 356 

(AGRC). It is seen that the use of EGR and RGR processes improves engine environmental performance 357 

(especially NOX emissions) but lowers energetic performance in terms of efficiency. However, the application 358 

of the AGRC concept to the GUASCOR engine increases the energy efficiency of the engine by around 0.2-359 

0.4%, with little change in environmental performance. The results in Table 3 need to be validated on other 360 

types of engines having different control loops.     361 

 362 

 363 

Table 3. Comparison of impact on technical and environmental performance of various engine modifications 364 

relative to a base case engine. 365 

 366 

3.4 Engine knock issues and resolutions 367 

 368 

The main risk of adding H2 in internal combustion engines is the occurrence of knock associated with 369 

abnormal combustion. IC engines used for CHP installations usually run under strict operating conditions, 370 

usually based on achieving maximum electricity output while maintaining emissions at acceptable levels, as 371 

outlined in the Introduction. Hydrogen addition to natural gas decreases its relative methane content and is 372 

known to increase its ability to detonate. Hence, the knock tendency of an engine must be closely monitored 373 

when adding H2 to increase engine efficiency. 374 

 375 

Knock, which has been a concern since the invention of the IC engine, is caused by a local auto-ignition of 376 

gases under specific thermodynamic conditions, can seriously damage an engine (see Figure 11). 377 

Consequently, design and operating conditions are often limited by knock conditions. 378 

 379 

 380 

Fig. 11. Piston damage from engine knock.  381 

 382 

 383 

For knock problems, the methane number MN is commonly used to represent the gas quality, i.e. its ability 384 

to resist auto-ignition. It is usually equal to 100 for pure methane and 0 for pure hydrogen. This indicator is 385 

the equivalent of the Research Octane Number (RON) used for liquid fuels such as gasoline. 386 

 387 

SI engines used as CHP plant can produce more than 1 MWe. Then, it is better to conceive a preventive 388 

protection instead of a curative one, as described by Le Corre et al. [13] and Saikaly et al. [14-16]. This is 389 



  
 

especially true for applications involving hydrogen, where it is more advantageous to avoid knock rather than 390 

to detect it. 391 

 392 

Knock conditions can be avoided by using AGRC, not to maximize the electric production but to protect the 393 

engine. Note that the methane number of reformed gas is calculated on the same basis as for natural gas, 394 

i.e., without inert gases. Since natural gas and reformed gas have two different methane numbers, it is 395 

possible to adjust the setting for the CHP plant to avoid knock conditions. This approach can form the basis 396 

of a preventive control mechanism. 397 

 398 

A recent patent (number WO 2011010069) by Rahmouni and Le Corre [17] aims to avoid the occurrence of 399 

knock by using two methane number sensors (labeled 21 and 50 in Figure 1) to control the natural gas flow 400 

rates (both the main stream and the additional stream) to maintain an acceptable value entering the SI 401 

engine. These sensors are described in detail by Rahmouni et al. [18-20] and Loubar et al. [21].  402 

 403 

 404 

Table 4. Methane number of natural gas and reformed gas 405 

 406 

4. CONCLUSIONS 407 

 408 

In this paper, air gas reforming circulation (AGRC) is proposed as a solution for in situ H2 production for 409 

spark ignition engines fuelled by natural gas. Several important conclusions can be drawn from the results: 410 

 411 

• With AGRC, the concentrations of the constituents of the reformed gas are approximately 25% 412 

H2, 10% CO, 8% unburned hydrocarbons and 55% N2. The AGRC reformed gas is blended with 413 

the main flow of natural gas and air, so unconverted natural gas is mixed with natural gas and is 414 

not problematic. The low heating value of CO is counterbalanced by the effect of H2 during 415 

combustion in the cylinder of SI engine. 416 

• The overall electric efficiency of an engine increases by 0.2% when the AGRC system is 417 

applied. Although the increase is not large, it is balanced by the fact that the AGRC system is 418 

simple to setup and cost effective.  419 

• Equipping an SI engine with AGRC does not change significantly exhaust emissions (CO and 420 

HC) in comparison with the original configuration. 421 

• AGRC appears to be advantageous compared to reformed gas recirculation because RGR 422 

decreases the electric efficiency of the overall system compared to an SI engine without 423 

reforming, while AGRC improves the electric efficiency. 424 

• No knock or misfiring occurred during experimental tests. But, if abnormal conditions appear for 425 

some operating conditions, it is possible to adjust the natural gas main flow and the AGRC flow 426 

to avoid the problematic conditions by measuring and controlling the relative methane content 427 

of the combustion mixture so that it remains in the correct operating window, as defined by the 428 

engine manufacturer. 429 

 430 
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Table 1. Engine specifications. 

 

Parameter Value/Description 

Engine manufacturer GUASCOR FGLD 180 

Number of cylinders  6 

Bore 152 mm 

Stroke 165 mm 

Displaced volume by cylinder / total 2,994 / 17,964 cm3 

Clearance volume 300 cm3 

Compression ratio 11:1 

Number of suction valves/exhaust 

valves 
2 / 2 per cylinder 

Valve train*: IO/IC/EO/EC 25 CA ATDC/ 45 CA ABDC/ 60 CA BBDC/ 15 CA BTDC 

Turbo-charger pressure 1.8 bar 

Engine speed 1,500 RPM 

Ignition timing 14 CA BTDC 

* CA: crankshaft angle; ATDC: after top dead center; BBDC: before bottom dead center; ABDC: after bottom dead center; 

BTDC: before top dead center; IO: inlet opens before TDC; IC: inlet closes after BDC; EO: exhaust opens before BDC; EC: 

exhaust closes after TDC. 
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Table 2. Features of tested catalysts 

Parameter Value 

Catalyst reference code  DC10LQ-1W10-21 

Hourly space velocity (HSV)   28,000 h-1 

Length of honey-comb catalyst   9 cm 

Diameter of honey-comb catalyst  21.7 cm 

 

 

Table 2



Table 3. Comparison of impact on technical and environmental performance of various engine 

modifications relative to a base case engine. 

Modified engine cases Performance 

parameter Base case with EGR  Base case with RGR  Base case with AGRC  

Electrical 

efficiency 

Decrease by 2% 

absolute  

Decrease by about 

1.5% absolute  

Increase by 0.2-0.4% absolute 

NOx 

emissions 

Decrease Same effect as EGR  No important effect 

CO 

emissions 

Increase Same effect as EGR No important effect 

UHC 

emissions 

Increase Same effect as EGR Slight decrease 

Valve fouling EGR valve fouling 

problem  

RGR valve fouling 

problem  

No fouling problem (no valve on 

exhaust line; standard valve on air 

line) 
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Table 4. Methane number of natural gas and reformed gas 

Content (vol.  %) Natural gas Reformed gas 

with AGRC 

O2 0  0 

CO2 0.54  6.28 

N2 2.85  56.25 

H2 0  21.17 

H2S 0  0 

CO 0  8.14 

CH4 87.68  8.16 

C2H6 3.04  0 

C3H8 5.6  0 

C4H10 0.29  0 

MN* 71.8 78.8 

* Methane number is calculated based on the definition of Leiker et al. [22]. 
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