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been corrected and an incomplete reference on p. 22 has bagyeted. These
minor corrections are marked out in red. Results are unathng

Abstract

A modified Green operator is proposed as an improvement ofiétdoased numerical
schemes commonly used for computing the electrical or theresponse of heterogeneous
media. Contrary to other methods, the number of iterati@wessary to achieve conver-
gence tends to a finite value when the contrast of properéasden the phases becomes
infinite. Furthermore, it is shown that the method produceshmmore accurate local fields
inside highly conducting and quasi-insulating phases, el as in the vicinity of phase
boundaries. These good properties stem from the disdiietizaf Green’s function, which
is consistent with the pixel grid while retaining the locature of the operator that acts on
the polarization field. Finally, a fast implementation o tirect scheme’ of Moulineet

al. (1994) that allows for parsimonious memory use is proposed.

Key words: FFT methods; numerical homogenization; heterogeneousarnaldctrical
conductivity

1 Introduction

In recent years, Fourier-based methods, originally intoedl by Moulineet al.[1],
have become ubiquitous for computing numerically the pribgee of composite
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materials, with applications in domains ranging from lineksticity [2], visco-
plasticity [instead of ‘thermoplasticity[3], and crack propagation [4] to thermal
and electrical [5,6] and also optical properties [7]. Thecgss of the method re-
sides in its ability to cope with arbitrarily complex andexitvery large microstruc-
tures, supplied as segmented images of real materialsxdonge,multiscale [in-
stead of ‘multistage’hanocomposites [8], austenitic steel [9], granular mefja [
or polycrystals [instead of ‘polycrystal[[L0,11,12]. This technique allows maps of
the local fields to be computed in realistic microstructugagh fields are represen-
tative of the material behavior if the resolution is smalbegh, and if the system
size is large enough, compared with the typical length sufilee heterogeneities.
Contrary to finite-element methods (FEM) where matrix ppaditioning often ne-
cessitates additional memory occupation, fast-Fourarsform (FFT) methods are
limited only by the amount of RAM or fast-access computer mgmequired to
store the fields.

The use of an image and of its underlying equispaced grideliery comes with
drawbacks not seen in FEM. First, FFT methods will ultimate® less #icient
when dealing with highly porous media such as foams, whesveeed to be dis-
cretized. Second, interfaces are crudely rendered wheg usiel grids, although
smoothness can be somewhat recovered by introducing ietkate properties be-
tween phases [13,14]. This matter is the most important@ndéal microstructure
models where interfaces are completely known; less so whaling with experi-
mental images where such information is usually absentdTthe representation
of the fields in terms of harmonic functions introduces datidns around inter-
faces, which is akin to Gibbs’s phenomenon. High-frequeartjacts are conspic-
uous in many field maps where oscillations are visible. Fguhe Fourier repre-
sentation presupposes periodicity; that is, the microsiire is seen as the elemen-
tary cell of an infinite, periodic medium. However, finitesidtects associated to
periodic boundary conditions are generally smaller that ¢ uniform boundary
conditions used in FEM [15].

In the present work, use is made of an alternative disctetizaf the Green func-
tion, leading to a revisit of some previously developped Fligorithms. Specifi-
cally, their performances in terms of accuracy and speehagstigated. Our paper
is organized as follows: the numerical problem and FFT dtligmis are presented
in Secs. 2 and 3, respectively. An alternative discretirais introduced in Section
4. The accuracy of the local fields is investigated in Sedsi@md the convergence
properties of FFT schemes, using the modified and unmodifiedrZunctions, are
studied in Section 6. Finally, a specific implementationte EFT method using
the modified Green function is proposed in Section 7.



2 Problem setup and Lippmann-Schwinger’s equation

This work investigates the numerical computation of thetele field E;(x) and
currentJi(x) (i = 1, ...,d), in ad-dimensional cubic domaif = [-L/2,L/2]% of
width L for d = 2 or 3. The fields verify (chapter 2 in [16])

0iJi(x) =0, Ei(x) = =0, D(X), Ji(X) = 7ij(X)E;(X), 1)

where®(x) is the electric potential anat(x) is the local conductivity tensor of the
material phase at poimt. Thereafter, for simplicity, all media are locally linear
and isotropic so that; = o¢;j, with o(x) a scalar field. Only binary composite
media are considered in this study, in which inclusions her@able conductivity
o, and where conventionally,;=1 in the matrix. Edges aR are aligned with the
Cartesian axis of unit vectors ).<i<q. Periodic boundary conditions are employed,
in the form

JX)-n-# @Xx+Le)=d(X)-EL, x x+LeedQ, (2)

where—# denotes anti-periodicity is the outer normal along the bound#® of
Q andE is the applied electric field. They ensure that the curredtthe electric
field verify Equation (1) along the boundady2 of the periodic medium. Note that
E represents a macroscopic electric field so #&a(x)) = E;, where(.) is the
volume average ove.

All FFT methods proceed from Lippmann-Schwinger’s equa([@6] p. 251)

Ei=E-Gj*P;, Pj=J-0"E, (3)
whereo?® is an arbitrary reference conductivity,and G° are the associated po-
larization field and Green operator, respectively, anslthe convolution product.
An equivalent ‘dual’ formulation stems from writing the flem in terms of the
electric current as

J=J3-H«T;, Tj=E -p°, (4)

wherep® = 1/0° is the reference resistivity, artlis the prescribed macroscopic
current. The Green operator associated to the governingtiegufor the current
reads

HI(x) = o {[6(x) - 1] 6 — 0°GY (%)} (5)

whered(x) is Dirac’s distribution andj; is the Kronecker symbol. Thus, for il
HS Ty = 0°(Ti = (Tida — 0°G]) + T)). (6)
In particular,(Hi‘J? « Tj) = (Gﬂ + T;) = 0 and Equation (4) enforces= (J). The

FFT algorithms considered in this paper rest on evaluatiagbnvolution product
in Equation (3) or (4) in the Fourier domain, using FFT lileear



3 FFT methods

Although most of FFT methods have been introduced in theesomtf elasticity,
their adaptation to conductivity problems is straightfard: Hereafter, all FFT al-
gorithms are formulated in this setting. Equation (3) is llasis of the simplest
method, the ‘direct’ scheme [1]. Iterations consist in gpy the following recur-
sion:

E“' =E-G°«|(c - o”)EY|, (7)
whereEX is the electric field at iteratiok.
Over time, refined FFT algorithms with faster convergenamerties have been

devised, notably the ‘accelerated’ [17] and ‘augmentedraagian’ [18] schemes.
Both algorithms can be encapsulated in the formula [19,20]

o [E —(EXy — BG° (O'Ek)] — HO « EX

Ek+1 — Ek
" alo + BoO)

(8)

wherea = B = 1 for the augmented-Lagrangian scheme and -1/2,8 = -1

for the ‘accelerated’ one. Our formulafidirs from Equation (13) in [20] because
of a different definition ofr°. Another scheme, the so-called ‘polarization’ scheme
where(P) is prescribed instead gE), can be described by an equation similar to
(8) [19].

The alternative ‘variational’ algorithm [14] relies on twlistinct ideas. First, Equa-
tion (3) is written as:

| = o) '6(x)5; + G} | « P; = E.. 9)

Upon discretization, this equation is transformed intonadir systemv - P = E,

which is solved by conjugate-gradient descent. The operdts never computed.
Instead, FFTs are used to provigd - P for any P, which is suficient for ap-

plying the descent method. Second, the discretization @egl amounts to us-
ing constant-per-voxel trial polarization fields. Thisds&ao a rule for computing
(o — o°)7'P on voxels that lie on interfaces, and to a representatioh@fGreen
operator as a slowly converging series for which approxmnatare available [21].

Other FFT methods have been proposed, including an altegnednjugate-gradient’
scheme [22,23] diierent from the variational one, and yet another one in whieh t
convolution product is carried out in the direct space [Egt conciseness, these
and the ‘polarization’ scheme will not be considered furthe

The dual formulation (4) allows one to derive dual algorithior all FFT methods.
For instance, substituting, G°, ando® by J, H°, andp® in Equation (8), the dual



augmented-Lagrangian scheme reads:

po[j—<Jk>—Ho*(§Jk)]—GO*JK

Jk+l — Jk+
1/o + p°

(10)

All of these methods involve a reference conductivif; or a reference resistiv-
ity p°. Whereas the final result is in principle independent ofédlmsantities, their
values [instead of ‘value’have a dramatic influence on the convergence proper-
ties of the algorithms. Notably, optimal convergence of eeelerated’ scheme is
obtained with the choice [17]

00 = —\o107, (11)

where the use of a negative reference conductivity (devijhgsical meaning) is
warranted by the arbitrary character of the reference nmedin this connection,
we point out that in Ref. [20], which addresses the analogtasticity problem,
the reference dfiness moduli have their sign changed, which avoids dealitig wi
negative values.

For the “direct” scheme, optimal convergence propertiegwtidied in the context
of elasticity [25]. Adapting the method used in the lattéerence to the conduc-
tivity problem, it is straightforward to show that the capending optimal choice
is
o 1
o R E(O'l + 0'2), (12)

a result to be used extensively below.

4 Classical and modified Green operators

In practice, the domaiQ is discretized as a two-dimensional (2D) pixel image,
or three-dimensional (3D) voxel image. The convolutionc#nm:tGin * Pjin (3) is
evaluated in the Fourier domain as

fg d!X' G (x - X)Pj(x') ~ % > Gl (@P;(@)e*, (13)
q

where the Fourier mode components take on vadpes(2r/L)(-L/2,...,L/2 — 1)
(i =1, ..,d), andL is measured in pixgloxel size units. The vectd?;(q) is the
Fourier transform

Pi(@) = ) Pi(e ™, (14)



where the sum is over all pix¢loxelsx in Q. Classically, the Fourier transform of
the Green operator used in (13) is approximated by its contimexpression

G(q) = f ok GO (x)e i = (15)

o%q?’

where the integration is over the infinite domain dojc= +/c0x. We call hereafter
this version of the Green operator the ‘continuous’ Greeerafor. This name is
choosen as a matter of convenience as the opeBatisronly the discretization, on
a regular grid, in the Fourier domain, of the continuum Greperator.

On the other hand, intrinsically discrete schemes can bsidered. For instance,
in the context of continuum mechanics, modified Green opesdtave been intro-
duced, where partial derivatives are approximated by cedt@6] or forward [27]
differences. In the conductivity problem, the latter discegiim amounts to solving
a resistor network problem [28]

9J(x) = J(x) - Ji(x-e),  HD(X) = D(x+e)—D(X), (16)

whereJ;(x) represents the current along the bond pointing in the tiee, from
pointx, and®(x) is the potential at node The same fields are used as approxima-
tions of the exact solution in a continuous medium. The nadlése network are
mapped to the corners of each voxel and the bonds are mappleel ¢nlges (see
Figure 1). In this setting, the electric field and currentesemated at edge centers,
which turns (16) into the centered scheme

6300~ 3 (x+3)-3(x=3).  -E(x+3)=a0(x+ )~ opxra)-0().

2 2 2
17)
Here again, derivatives are approximated bijedlences over points separated by
one voxel size, unlike in [26]. Discretizations (17) and)(&46e equivalent up to a
translation ofJ; andE; by a vectorg /2, provided thatr is constant in each voxel
(see Figure 1). For simplicity, we use (16) hereafter. Theciete’ Green operator
GO entering the corresponding Lippmann-Schwinger equatads [28,27]

*

]
o9k2’

Go(k) = k = €% — 1 = 2isin(g/2)d%/?, (18)
wherelk| = \/W and* is the complex conjugate. In the Fourier domain, the ‘dis-
crete’ gradient, divergence and Laplacian operators atoumultiplications by

ki, =k and|k?, respectively, instead ofji, ig; and|g|? when using the continuum
Green operato@. Likewise, the terms ‘divergence-free’ and ‘compatiblepend

on the employed discretization. In the long-wavelengthtlgn— 0, these dter-
ences disappear and equation (18) reduces to (15). In theeltiag, the discrete
Green operator associated to the current is defined, mutatiandis, as in Equa-
tion (5). Hereafter, the operat@® is referred to as the ‘discrete’ Green operator.
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Figure 1. 2D pixel at poink with superimposed resistor network (see Equation 16); here
e is oriented from top to bottom ared left to right.

The representation of the problem in terms of a resistor otwesult in several
useful properties. First, contrary to the variational aildpon [14], the solution dges
not depend on the choice for the reference matetfalSecond, the operatdz®

is a smooth periodic function, where contrary@®, high-frequencies are cut out
in the Fourier domain. This is expected to result in bettewveogence properties.
Third, the discretization in (16) enforces local currenhgervation, which makes
Kirchhoff’s law hold at each node. Consequently, the outward flow afong a
closed surface, defined as a sum of currents over the boridsi¢hee the surface,
is zero.

As long as they converge, all numerical schemes must delieesame results for
a given choice of Green operator. Conversely, choosing aeerGoperator will
select one particular approximation to the solution of thebjem considered. It is
the purpose of this work to assess the advantages, from thermal viewpoint, in

the context of electrical conductivity, of usirti@f in place ofG°.

In this paper, the direct (DS), accelerated (AS), augmehgggtangian (AL), and
variational (VAR) schemes are investigated. We also canglte dual versions of
DS and AL, denoted by Dssand Alp, respectively. All of these make use of the
continuous Green operatGf. Same algorithms, but with traiscreteGreen oper-
ato@omstqu g@o are also examined. They are referred to with a ‘tilde’ notati
asDS,AS, AL, VAR, DSy, andAL p. We emphasize that the results presented here
for the variational approaches VAR aMAR make use of the Green operat@i$
andG?O rather than of the more complex discretization proposeii4h JAlso, in the
latter approaches, definite-positiveness of matrlXsee Sec. 3) is not guaranteed
in the conjugate-gradient procedure. This specific issisenoa been considered
further as numerical experiments that we performed inditizdt the latter schemes
nevertheless converge.



5 A stiff case: fields in the four-cell microstructure

The ‘four-cell’ microstructure is one of the few periodicisttures for which an ex-
act solution [29] is available. We consider the special cag@esented in Figure 2,
where the elementary cell is made of a single square inclusicurface fraction
25%. Because of the presence of corners, fields are singuae infinite-contrast
limit, which makes this case a good benchmark for numeriehods. In this Sec-
tion, numerical results for the current computed with eitie continuous Green
operatorG® or the discrete operatadt® are compared with the exact solution. The
inclusion is highly conducting, with a contrast ratig/o, = 2 x 10°.

Figure 2. Elementary periodic domai = (—L/2, +L/2)? with four-cell microstructure.
The inclusion has conductivity, and the matrix has conductivity;.

The behavior of the electric current near the singular aoane@oint ,y) = (0, 0)

is illustrated in Figure 3. Maps of the vertical componéi(x, y) obtained with
G° (top) andG° (bottom) are displayed for increasing resolutions (leftigit).
Only the small region-5.102L < x,y < 5.107L around the corner is shown.
Numerical artifacts in the highly-conducting phase arespocuous when using
the continuous Green operatGf. They consist of high-frequency oscillations all
over the conducting region, particularly near the horiabiriterface [30], where
the represented field component should be continuous. Swdkations are almost
absent when using®.

Figure 4 displays plots of the horizontal componésfik, y) versusx aty = 1073L,
close to the inclusion boundary. Negative values cbrrespond to the interior of
the inclusion. Numerical results computed with both Greeerators are compared
with the exact solution. To draw meaningful graphs, datatsobbtained withz°



L =1024 L = 2048 L = 4096 L =8192

Figure 3. Four-cell microstructure of Figure 2. Maps of trestical current component
Ji(x,y) in the region-0.05L < x,y < 0.05L, for increasing resolutioih (as indicated).
Top: with continuous Green operat@F. Bottom: with discrete operatdz®.

were post-processed prior to plotting by convolution ovesirgdow of 2x 2 adja-
cent pixels. This crude filtering device greatly reducedllasions. Results obtained
with G° have not been modified. Givenffuaient resolution all methods converge
to the exact solution. However, although all methods leadltwost identical so-
lutions in the matrix, results stronglyfiir in the highly conducting region. The
figure, which represents calculations carried out for wesi@solutions, shows that
gmployingGo makes convergence notably easier. Indeed, data poinisedtaith

GP at moderate resolutidn = 1024 are much closer to the exact solution than those
obtained fromG° at the highest resolution = 32 768.

In a previous study involving porous media [27], the contiusi Green operator
was already observed to induce awkward aliasifigots at high contrast. They
usually take place near interfaces involving a region wlieeefield considered is
not uniquely defined in the infinite-contrast limit (e.g.etbtrain in a pore, or the
electric current in an infinitely conducting inclusion).

6 Convergence rate

This Section further examines for a few selected microsiines the convergence
properties of FFT schemes. Algorithmic convergence bearglér in the case of
strongly contrasted composites, the quantity of interest s the number of itera-
tions as a function of the contrast ratig/o .
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Figure 4. Four-cell microstructure of Figure 2. Values @& tforizontal current component
Jo(x,y = 1073L) vs. x, for various resolutions (as indicated). Solid black: exact solution.
Markerss, x and+ (red): FFT results with discrete Green operaidr Other markers and
colors: FFT results with continuous Green operaitr

6.1 Convergence criteria

Convergence criteria can be written either in the directaurker representations.
The most compelling ones are those that include high Fotneguency behav-
ior [20]. In relation to FFT algorithms, the following criie are considered:

n1 =117 max|FT {k' (@) 3(a); x}| < e. (19a)

1= IEI max|FT* {k (@ (@) — ki @Ei(@)i x| < e. (19b)

wheree < 1 is the required precision and FTis the backward Fourier transform.
Criterion (19a) puts emphasis on the current conservatibeyeas (19b) imposes
compatibility; apart from a dierence in the norm used, they are akin to those used
in [20]. These equations refer to the discrete Green opetzEtoCurrent conser-
vation and compatibility are enforcedfi@irently when using the continuous Green
operatorGP. In the latter casek(q) andk*(q) are replaced by in Equation (19).

Among the computational schemes introduced in Section 4aBfDS enforce
compatibility, at each iteration, which trivially guaraet that;, = 0. Instead,

10



L1 <

Figure 5. Elementary cefl of the “2D-periodic” microstructure (left), and the 2D (een
ter) and 3D (right) random periodic Boolean models. Surfaog volume fractions of the
inclusions are, respectively, 25, 30 and 20%.

electric current conservation in the form of the equality= 0 is enforced by the
dual schemes DssandDS,. On the other hand, the remaining schemes in general
lead to nonzero values gf andr,. This suggests using as a convergence criterion
the inequality; < e wheren = 1, for the primary (non-dual) schemes DSS AL,

AL, AS, AS, VAR, and where) = n, for the dual ones D§ DS, ALp, ALp.

6.2 Test microstructures

Convergence rates are monitored for three microstructpesodic in all direc-
tions, whose unit cell are represented in Figure 5. The leftmost 2D cell, of size
L = 1024 pixels, contains a single circular disk-shaped inctusf surface fraction
25%. This system is simply referred to as the ‘2D-periodiedim hereafter. The
middle cell is a random 2D Boolean model of size= 1024 built from disks of
diameter 80 pixels, of overall surface fraction 30%. Thétmgost cell is a random
3D Boolean model of sizé = 256, made of spherical inclusions of diameter 20
voxels, with overall volume fraction 20%.

6.3 2D periodic medium

Figure (6) illustrates for some of the algorithms introdidi@e Section 4 applied
to the ‘2D-periodic’ medium how the indicatgrtends to zero as the number of
iterations increases. The contrast ratio is fixea-ao, = 2 x 10°. For exploratory
purposes, quadruple precision was used in these calaudaticallow for tiny val-
ues ofy. Prior to drawing the plots, the quantitie§ andp® were optimized man-
ually to minimize the number of iterations needed to reaehatitrary threshold

n < € = 1072, For all methodsy decreases exponentially with the number of it-
erations down to some constant value determined by machéwoispn. Roughly,
algorithms separate in two classes. The first one comphgsaintinuous schemes,
namely, DS, AL and AS, which are the slowest converging oHesvever, in this

11



class and for the microstructure considered, Eyre and Md8tAS is clearly supe-
rior. The simple DS is by far the worst, and the AL scheme isrmiediate. The
other class encompasses the ‘discrete’ schemes (primdrgiuat). They all make
n saturate in less than 300 iterations, which is another hitteagood behavior
of the discrete Green operator. In that class, Eyre and Mdtmethod AS) again
proves the fastest converging one.

10™4

10—24

10°% | 2D periodic

T 7200 800 1200

AS

iterations
Figure 6. “2D-periodic” medium. Convergence indicators. number of iterations in log-

arithmic-linear scale, for various FFT schemes: using ti@iouous Green operator (DS,
AS, and AL), and the discrete Green operaf()S(DSD AS, AL and AL D).

The optimal reference conductivity’ and resistivityo® used in Figure 6 are sum-
marized in the second column of Table 1. The integer numbérackets is the
number of iterations needed to reach the thresholde = 1078, which in prac-

tice is a good tradefbbetween speed and accuracy. As already mentionned, Equa-
tion (12) optimizes the DS with the continuous Green oper#tgiveso® = 10005

and —this is an empirical finding— also optimiZe$ with the discrete Green op-
erator. Introducing phase resistivities@s = 1/, an analogous formula (easy

to demonstrate in the continuum) holds for the optimal tesig in the continuous

dual ‘direct’ scheme D§ namely,

Po = :—ZL(Pl +p2), (20)

which gives herg® ~ 0.5. Again empirically, we find that this value optimizes
as well the discrete dual ‘direct’ schermssy. As expected, the optimum® ~
—44.7 reported for AS matches Eyre and Milton’s result, Equagiil). However,
although negative, the optimus? found forAS is not consistent with this formula.
Finally, the values reported for the primary augmentedraagian schemes AL and
AL and their dual versions do not match any of the previousydical estimates.

12



o9

“2D-periodic” 2D Boolean 3D Boolean
DS 10005 (15621) 01+ 02)/2 01+ 02)/2
AL 76 (1556) 3107304 + 1.8+/o10> 1.7+Jo107
AS —44.7 (663) — o102 — o102
VAR N/A 0.50(1 + 070) N/A
DS 10005 (46) Q50(c1 + o2) 0.530; + 0.500,
AL 1855 (95) 030(c1 + 02) 0.5601 + 0.2607
— —(1/3.6)01 (02/01 < 1
AS  —1390 (46) ~0.30(1 + 02) (1/3.6)7s (72/or < 1)

-3.601 (02/01>1)
VAR N/A 0.50(01 + o2) N/A
o°
DSy,  0.5(14616) b1 +p2)/2 (o1 +p2)/2
ALp 0033 (1336) 310%0; + 1.8pip2 1.7\pipz
DS 0.5 (46) Q50(p1 + p2) 0.4801 + 0.520,
ALp 1.09 (93) 030(p1 + p2) 0.40p1 + 0.550
Table 1

Optimal reference conductivitias® and resistivities? determined for the indicated FFT
schemes. Values given for the “2D-periodic” microstruetaorrespond to the contrast ratio
op/o1 = 2x 10%, with the number of iterations indicated in brackets. FooBan models,

the formulas given are consistent with the behavior obskatehigh contrast, although
the low-contrast behavior may slightlyftér. Those for schemes DS, AS and P&re
exact ones. Missing entries (N indicate that the corresponding schemes have not been
investigated.

6.4 2D and 3D Boolean media: reference conductivity or testy

A more thorough study was carried out for the Boolean modielahich the op-
timal reference conductivity° or resistivityp® was measured as a function of the
contrast.

In order to avoid unnecessary long computations, the neferavas first manually
optimized on a low-resolution grid of size= 64 (in 2D) orL = 32 (in 3D). The
optimized reference was then tested on a full-resolutiahajrsizeL = 1024 (2D)
or L = 256 (3D). In all but a few cases, the number of iterations toveayence

13



found with the low-resolution and high-resolution gridssweearly the same. The
number of iterations found on the full-resolution grid wapkif the diference was
less than 10%; otherwise, the reference was optimized aipggrtime on the full-
resolution grid, to provide a definitive number of iterasoManual optimization of
the reference parameters was carried out following a rougitotbomy procedure,
disregarding for simplicity the possibility of concurrdotal optima. The conver-
gence criterion was set ip< € = 1078 in these calculations.

Our findings are summarized in the third and fourth column3aidle 1, where

the formulas given essentially represent high-contrabb¥ers in the regimes
oy/oy < loroy/op > 1. Indeed, in some cases, the low-contrast behavior may
differ from that given (see succeeding text).

At the exception of schem&S in the 3D Boolean medium, for whieh’/o; tends
to a constant at high contrast —notice the symmetry betwedm figh-contrast
regimes, the behaviors we observed are of the followingsype

oo =ay + anr, (21a)
or ooy =p1+pBr"2 (21b)

wherer = o,/0, anday, andg;, are numerical constants of various signs (see
Table I). These forms generalize Equations (11) and (123y&pply to the ‘pri-
mary’ schemes, and similar ones hold for the ‘dual’ schem#savsubstituted by

p. When nonzero, the céicient,, of order 103, is of unclear origin. The cdg-
cients reported in the table were determined by nonlineatiequare fitting on our
data. Additional fitting attempts with functional forms etithan (but related to)
those retained indicate that the first digit of thefti@eents is significative, whereas
the error on the second one is hard to evaluat&eBsnt coéficientse; anda, are
provided when our results do not support an equality: a,. However, our results
strongly suggest that; = a, for the 2D Boolean system whenever Equation (21a)
applies, while this symmetry does not carry over to the 3[2 cascept for the DS,
wherea; = a, = 1/2 (exact) in two and three dimensions.

Although the optimum may in some cases be of the same formthgthontinuous
and discrete Green operators, there are other cases sudthasShandAS, for
which the optimal forms look strongly dissimilar. Moreoyeomparing columns 2
and 3 of the table for the contrast/o1 = 2 x 10° indicates that the optima found
somewhat depend on the microstructure.

The behaviors gathered in the table are supported by FiguvkiZh presents plots
of our 2D and 3D data and the corresponding fitting curves. bhmary’ and
‘dual’ schemes are addressed in separate plots. The siditated in the Table
cannot be read from the figures, where absolute values griawgésl in logarithmic
scale. In the 2D Boolean model, the data for the primary selseand for their dual
are numerically quite close in this mode of representasorthat the left and right
plots superimpose almost exactly. Interestingly, thespleveal the unique non-
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trivial behavior of the discrete schema& and KI:D in the low-contrast region
0.1 < /01 < 10, where they behave ago,/o;, even though the linear behavior
reported in Table 1 takes place at higher contrasts. On tiex band, the continu-
ous schemes AL andL, [ instead of ‘ALP’ | essentially behave as a square root
for all contrasts (up to a small corrective term in 2D casas)already noticed in
the discussion of the table, the discrete 3D ‘accelerateldgesmeAS with its in-
triguing asymptotic behavior (constant on both sides ofcihr@rast range) stands
as an outlier. For it no fit has been attempted. We emphasatéthll cases exam-
ined with the ‘accelerated’ schemes, the optimal squaoéestimate (11) —exact
in scheme AS— yields poor convergence when appliediSo

lojo,| lpy/P,l
I I I 2DI Boollean I I I I I 2DI Booléan I I
. o il: 4 A ALD
0T * A 0,0.3(0,+0,) i 107 « AL, PoD-3(p,*P) i

A

10°

2

107 0,810 +1.8(0,0,)"2 1 162 P, B 10 p,+1.8(p,p,)" i
I_6 I_4 I_2 i I2 1 3 1 I_6 I-4 I_2 i 1 1 3 1
10° 10 10 100 10 10" 10 10 102 10
02/01 p2/p1
lo /o, lpg/P,
x AS " 3DBoolean | + ALy 3D Boolean
it :% 0,00.560,+0.260, o DS,
o AL 0,0.530,+0.50, o AL,
10° 10°F
p,[P-48p,+0.52p,
1 -/,
P, 0.4p,+0.55p,
-2 1 1 -2 1 1 1 1 1
10 - - B 10 7 - 5
10° 10* 10° 1 1080 10 10° 10 10° 1 108 1

P,/P;

Figure 7. 2D (top) and 3D (bottom) Boolean models. Absolate® of the normalized op-
timal conductivity|c®/o 1| vs. oo /o1 (left), and optimal resistivityog/p1| VS. p2/p1 (right),
for the schemes indicated. Symbols: FFT results. Solid:erigal fits (see Table 1).

In 2D, the formulacy = 0.5(c; + o) indifferently optimizes the discrete and
continuousvAR and VAR schemes. We observed similar convergence raget

3% difference in the number of iterations, for these algorithmsiwithe range
0.4 < oo/(01 + 02) < 0.9. However, outside of this range, the convergence of
the VAR scheme deteriorates. The small sensitivity witlpees to the reference
materialo in this method is supported by other studies [31].
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We also investigated the sensitivity to the choiceodfin the ‘direct’ discrete
schemes. In the 2D Boolean model and for the discrete scliEnehe choice

o° = 0500, + o) proves optimal, which matches the exact result relative to
DS. However, withDS, nearly optimal 2D results are also obtained with choices
00 < (01 + 0)/2. By contrast, in 3D, the number of iterations may be exttgme
sensitive to the choice~Qf°. Figure 8 illustrates this. It represents the number of
iterations versus? for DS in the 3D Boolean model, with contrast/o; = 107°.

No convergence is observed fof < 0.5(c; + 0»), and the optimal choice is about
0% ~ 0.5307;.

iterations

103_V 3D Boolean |

ISé, 02/01:10_5
410V .

2.102'i T

06 08 10 12 14
O-0

Figure 8. 3D Boolean model. Number of iterations vs. refeeeconductivityc for the
direct scheme with discrete Green operaﬁSI. The contrast ratio is»/01 = 10°. The
convergence criterion ig < € = 1078, The values® = (o1 + 05)/2 is represented by the
vertical dotted line. The solid line between data pointsdsiide to the eye.

6.5 2D and 3D Boolean media: convergence properties

This Section examines convergence performance for the al3BrBoolean mod-
els, expressed by the number of iteratidthisas a function of the contrast ratio
r = o,/o;. Figure (9) illustrates the performance of the various Féiiesnes con-
sidered, in calculations optimized by using the referemmelactivity or resistivity
discussed in the previous section. Schemes l;GPﬁ@Le represented by filled sym-
bols and the- marker, whereas discrete schemes usifigre represented by empty
symbols and the marker.

We recover known results of linear scaliNg~ r for DS and D$, and of square-
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Figure 9. 2D and 3D Boolean models (top and bottom). Numbéerdtions vs. contrast
for various FFT algorithms. The convergence criterion ise = 1078, Solid lines between
data points are guides to the eye.

root scalingN ~ r/? for AS [17]. Similar convergence rates are observed for AL
and Alp, andfor VAR [instead of ‘for the VAR’]. As a rule, given the FFT method,
the ‘primary’ scheme always converges better than the *du& whenr < 1, while

the opposite holds when> 1. For instance, at very strong contrast ratis 10/,

the convergence of the dual ‘augmented-Lagrangian’ sch&lngeis much faster
than that of the primary one AL.
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As to discrete schemes, they are much mdiieient than their continuous counter-
parts. For discrete schemeéd(r) is either a bounded or slowly increasing function
of r, which shows that using the discrete Green oper@fodefinitely provides a
dramatic improvement of convergence. By optimizing theiahbetween the ‘pri-
mary’ or ‘dual’ versions of the discrete algorithm at hangeleding on whether

r <1lorr > 1, one can even achiegenvergence in a finite number of iteratians
the infinite-contrast limit.

Overall, the figure shows that among all schemes the disgeestonAS of the AS
is the better converging one in 2D and 3D.

7 Optimizing the “direct” scheme with discrete Green operabr

In applications dealing with large microstructures (tygb, multiscale materials)
fast and memory4{&cient implementations of FFT methods are required. One com-
mon way of minimizing both CPU speed and memory storage istompute the
Green operator at each iteration. As long as the Green a@pésatasy to compute,
this strategy is usually faster than storing a very largedefield. This is used in
the CraFT [32] and morph-Hom [33] softwares. As an examplewacost imple-
mentation of DS is as follows:

Initialization: setAj(x) = O.

(i) SetA(x) = [o(x) - 1 A(X);
(i) SetAi(q) := FFT(A(X); a); B
(i) SetA(q) := G}(a)Aj(q) for g # 0 andAi(q = 0) = E;;
(iv) SetAi(x) := FFT (A (x); q);
(v) Compute convergence criterion; if convergence is red¢clietE; = A and
STOP; otherwise GOTO (i).

In this algorithm FFTs are computéa-place Step (iii) consists of a loop over all
modesq with Gi"j (q) computed on-the-fly. In total, memory space is allocated fo
one vector fieldA plus the microstructure. Vect@ successively stores the polar-
ization field in the real space [step (i)] and in the Fouriemam [step (ii)] and

the electric fielde in the Fourier domain [step (iii)] and real space [step (iT}je
convergence criterion in step (v) must be modified, as clngcfor current con-
servation by computing criteriop with in-place computations is now impractical.
Monitoring the diterences over two iterations of the first and second moments of
the electric and current fields provides practical criehiat tare less accurate, but
easier to compute.

On the other hand, the use of the discrete Green ope@tailows for a more
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efficient implementation of the DS. Consider the rewriting otigtipn (7) as
1 _
k+1 _ . 0 ki
¢ = m(hv [(O’ - )(E - grad¢ )] (22)

where¢ is the periodic part of the potential associatedEtp so thatEk — E =
—gradg®, and where ]A is, symbolically, the inverse Laplacian. Equation (22) de-
fines¢*+! as a unique periodic function up to an irrelevant constartedk — oo,

#* converges to the potential up to a linear correctiifx) = ®(x)—E;x. The elec-
tric field and current follow fromd. In the discrete setting, equivalent to a resistor
network, knowledge of a field on adjacent nodes or bondsftgnt to compute
its local divergence or gradient. Thus, the action of die and grad operators

in Equation (22) can be computed in the real space. This stggee following
alternative implementation of the discrete direct scheldf®){

Initialization: setA(x) = 0.

(i) Ateach pointx, setA(x) := div P(x) where
Pi(x) = [o(x) — ¢°][E - grad A(xX)]; computer; as defined in (19);
(i) SetA(q) := FFT{AX); q};
(iii) Set A(q) := —sxb for g # 0 andA(q = 0) = 0 otherwise;
(iv) SetA(x) := FFT-HA(q); x};

(v) If ny < esete =E —-grad A, J = cE and STOP; otherwise GOTO (i).

This algorithm exactly implements tHaS scheme. However, only a scalar field,
rather than a vector field, is now allocated in memory. Laplaénversion is the
sole computation performed in the Fourier domain. It takesform of a division
by |ki? in step (iii). The fieldA successively stores the divergence of the polarization
field divP in the real space [step (i)] and Fourier domain [step (iiYl,adater on,
the periodic part of the potentialin the Fourier domain [step (iii)] and in the real
space [step (iv)]. Multithreading parallelization in s{@mecessitates some care as
this step is non-local. Nevertheless, this new implementaeduces the number of
FFTs per iteration from 4 (in 2D) or 6 (in 3D) down to 2. Furtimare, the amount
of storage is also reduced by a factbflL? floats instead ofiLY), if we neglect the
storage required for the microstructure.

The total CPU time spent using ‘direct’, ‘augmented-Lagiian’ and ‘accelerated’
schemes is plotted in Figure 10 as a function of contrasg¢themeDS) being im-
plemented as outlined earlier. These tests were carriedittutonvergence crite-
rionn < 1078, on the previously considered 3D Boolean microstructuserdtized
on a grid of sizeL = 256 (16.8 million points). Computations were performed in
double precision, on a 12-core Intel Xeon machine, eachrcomgéng at 200 GHz
with 5800 bogomips and 15360 Kb of L2 cache. Best performanaehieved for
the DS scheme whenr,/o; < 1, and withAS wheno,/o; > 1. Using these op-
timal schemes at infinite contrast, convergence is conglet@9 s for insulating
inclusions, and in 53 s for infinitely-conducting incluss i his strategy has been
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implemented in the multithreaded Fortran caderph-hom developped at Mines
ParisTech [33].

CPU time (s)

10" Boolean 3D vy DS -
+4 DSy

3 oo AS
10T vv DS 7
a-a DS

A A / /& G—OAS
10T T VE o o3 wahl
G I H&_D

za AL
10 HALD-

10° 10° 1 100 1 oo,

Figure 10. CPU time vs. contrast raticp/o; for various FFT algorithms, on the 3D
Boolean microstructure. The convergence criteriom 4se with e = 1078,

8 Conclusion

Use of a modified Green operator in FFT-based schemes hasteecated, in the
context of the electrical response of heterogeneous céndunedia. The modi-
fication consists in making the operator consistent withuthaerlying voxel grid,

which requires only a very simple adaptation of previousiging algorithms but
leads to two major improvements.

First, employing the modified operator leads to much moreirate local fields,
particularly in the highly conducting or insulating incloss and in the vicinity of
interfaces. Second, the convergence rate is found to be fagtdr compared with
previous methods, in particular for highly-contrasted rme@Quite remarkably the
‘direct’ scheme —usually considered to be the worst-cagyingr one— improves
tremendously, as far as CPU time is concerned, by formg#tia problem in terms
of iterations on the electrostatic potential rather thatharelectric field. However,
using the modified Green operator requires carefully amjgshe reference con-
ductivity o°, since the latter has a strong influence on convergence ipiegeAp-
proximate expressions fer® have been derived numerically, and studied, for the
Boolean models of microstructure considered in this work.
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It has already been noticed in the past that using ‘discrvetesions of Green opera-
tors leads to promising methods [14,34,27]. Demonstratiagdramatic speed-up
improvements follow, the present work strongly supporis tiew. Based on pre-
vious experience [27], it is expected that our conclusiarsycover to continuum

mechanics.
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