
HAL Id: hal-00840986
https://hal.science/hal-00840986v2

Submitted on 21 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fourier-based schemes with modified Green operator for
computing the electrical response of heterogeneous

media with accurate local fields
François Willot, Bassam Abdallah, Yves-Patrick Pellegrini

To cite this version:
François Willot, Bassam Abdallah, Yves-Patrick Pellegrini. Fourier-based schemes with modified
Green operator for computing the electrical response of heterogeneous media with accurate lo-
cal fields. International Journal for Numerical Methods in Engineering, 2014, 98 (7), pp.518-533.
�10.1002/nme.4641�. �hal-00840986v2�

https://hal.science/hal-00840986v2
https://hal.archives-ouvertes.fr


Fourier-based schemes with modified Green operator
for computing the electrical response of heterogeneous
media with accurate local fields

François Willot*b Bassam Abdallahb Yves-Patrick Pellegrinia

aCEA, DAM, DIF, F-91272 Arpajon, France.
bMINES ParisTech, PSL - Research university, CMM - Centre formathematical
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Abstract

A modified Green operator is proposed as an improvement of Fourier-based numerical
schemes commonly used for computing the electrical or thermal response of heterogeneous
media. Contrary to other methods, the number of iterations necessary to achieve conver-
gence tends to a finite value when the contrast of properties between the phases becomes
infinite. Furthermore, it is shown that the method produces much more accurate local fields
inside highly conducting and quasi-insulating phases, as well as in the vicinity of phase
boundaries. These good properties stem from the discretization of Green’s function, which
is consistent with the pixel grid while retaining the local nature of the operator that acts on
the polarization field. Finally, a fast implementation of the ‘direct scheme’ of Moulinecet
al. (1994) that allows for parsimonious memory use is proposed.

Key words: FFT methods; numerical homogenization; heterogeneous media; electrical
conductivity

1 Introduction

In recent years, Fourier-based methods, originally introduced by Moulinecet al.[1],
have become ubiquitous for computing numerically the properties of composite
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materials, with applications in domains ranging from linear elasticity [2], visco-
plasticity [instead of ‘thermoplasticity’][3], and crack propagation [4] to thermal
and electrical [5,6] and also optical properties [7]. The success of the method re-
sides in its ability to cope with arbitrarily complex and often very large microstruc-
tures, supplied as segmented images of real materials, for example,multiscale [in-
stead of ‘multistage’]nanocomposites [8], austenitic steel [9], granular media [5]
or polycrystals [instead of ‘polycrystal’][10,11,12]. This technique allows maps of
the local fields to be computed in realistic microstructures. Such fields are represen-
tative of the material behavior if the resolution is small enough, and if the system
size is large enough, compared with the typical length scaleof the heterogeneities.
Contrary to finite-element methods (FEM) where matrix pre-conditioning often ne-
cessitates additional memory occupation, fast-Fourier-transform (FFT) methods are
limited only by the amount of RAM or fast-access computer memory required to
store the fields.

The use of an image and of its underlying equispaced grid, however, comes with
drawbacks not seen in FEM. First, FFT methods will ultimately be less efficient
when dealing with highly porous media such as foams, where voids need to be dis-
cretized. Second, interfaces are crudely rendered when using voxel grids, although
smoothness can be somewhat recovered by introducing intermediate properties be-
tween phases [13,14]. This matter is the most important one for ideal microstructure
models where interfaces are completely known; less so when dealing with experi-
mental images where such information is usually absent. Third, the representation
of the fields in terms of harmonic functions introduces oscillations around inter-
faces, which is akin to Gibbs’s phenomenon. High-frequencyartifacts are conspic-
uous in many field maps where oscillations are visible. Fourth, the Fourier repre-
sentation presupposes periodicity; that is, the microstructure is seen as the elemen-
tary cell of an infinite, periodic medium. However, finite-size effects associated to
periodic boundary conditions are generally smaller than that of uniform boundary
conditions used in FEM [15].

In the present work, use is made of an alternative discretization of the Green func-
tion, leading to a revisit of some previously developped FFTalgorithms. Specifi-
cally, their performances in terms of accuracy and speed areinvestigated. Our paper
is organized as follows: the numerical problem and FFT algorithms are presented
in Secs. 2 and 3, respectively. An alternative discretization is introduced in Section
4. The accuracy of the local fields is investigated in Section5 and the convergence
properties of FFT schemes, using the modified and unmodified Green functions, are
studied in Section 6. Finally, a specific implementation of the FFT method using
the modified Green function is proposed in Section 7.
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2 Problem setup and Lippmann-Schwinger’s equation

This work investigates the numerical computation of the electric field Ei(x) and
currentJi(x) (i = 1, ...,d), in a d-dimensional cubic domainΩ = [−L/2, L/2]d of
width L for d = 2 or 3. The fields verify (chapter 2 in [16])

∂i Ji(x) = 0, Ei(x) = −∂iΦ(x), Ji(x) = σi j (x)E j(x), (1)

whereΦ(x) is the electric potential andσ(x) is the local conductivity tensor of the
material phase at pointx. Thereafter, for simplicity, all media are locally linear
and isotropic so thatσi j = σδi j , with σ(x) a scalar field. Only binary composite
media are considered in this study, in which inclusions havevariable conductivity
σ2, and where conventionallyσ1=1 in the matrix. Edges ofΩ are aligned with the
Cartesian axis of unit vectors (ei)1≤i≤d. Periodic boundary conditions are employed,
in the form

J(x) · n − #, Φ(x + Lei) ≡ Φ(x) − EiL, x, x + Lei ∈ ∂Ω, (2)

where−# denotes anti-periodicity,n is the outer normal along the boundary∂Ω of
Ω andE is the applied electric field. They ensure that the current and the electric
field verify Equation (1) along the boundary∂Ω of the periodic medium. Note that
E represents a macroscopic electric field so that〈Ei(x)〉 = Ei, where〈·〉 is the
volume average overΩ.

All FFT methods proceed from Lippmann-Schwinger’s equation ([16] p. 251)

Ei = Ei −G0
i j ∗ P j , P j = Jj − σ0E j , (3)

whereσ0 is an arbitrary reference conductivity,P andG0 are the associated po-
larization field and Green operator, respectively, and∗ is the convolution product.
An equivalent ‘dual’ formulation stems from writing the problem in terms of the
electric current as

Ji = Ji − H0
i j ∗ T j , T j = E j − ρ0Jj , (4)

whereρ0 = 1/σ0 is the reference resistivity, andJ is the prescribed macroscopic
current. The Green operator associated to the governing equation for the current
reads

H0
i j (x) = σ0

{
[δ(x) − 1] δi j − σ0G0

i j (x)
}
, (5)

whereδ(x) is Dirac’s distribution andδi j is the Kronecker symbol. Thus, for allT,

H0
i j ∗ T j = σ

0
(
Ti − 〈Ti〉Ω − σ0G0

i j ∗ T j

)
. (6)

In particular,〈H0
i j ∗ T j〉 = 〈G0

i j ∗ T j〉 = 0 and Equation (4) enforcesJ = 〈J〉. The
FFT algorithms considered in this paper rest on evaluating the convolution product
in Equation (3) or (4) in the Fourier domain, using FFT libraries.
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3 FFT methods

Although most of FFT methods have been introduced in the context of elasticity,
their adaptation to conductivity problems is straightforward. Hereafter, all FFT al-
gorithms are formulated in this setting. Equation (3) is thebasis of the simplest
method, the ‘direct’ scheme [1]. Iterations consist in applying the following recur-
sion:

Ek+1 = E − G0 ∗
[
(σ − σ0)Ek

]
, (7)

whereEk is the electric field at iterationk.

Over time, refined FFT algorithms with faster convergence properties have been
devised, notably the ‘accelerated’ [17] and ‘augmented-Lagrangian’ [18] schemes.
Both algorithms can be encapsulated in the formula [19,20]

Ek+1 = Ek +
σ0
[
E − 〈Ek〉 − βG0 ∗ (σEk)

]
− H0 ∗ Ek

α(σ + βσ0)
(8)

whereα = β = 1 for the augmented-Lagrangian scheme andα = −1/2, β = −1
for the ‘accelerated’ one. Our formula differs from Equation (13) in [20] because
of a different definition ofσ0. Another scheme, the so-called ‘polarization’ scheme
where〈P〉 is prescribed instead of〈E〉, can be described by an equation similar to
(8) [19].

The alternative ‘variational’ algorithm [14] relies on twodistinct ideas. First, Equa-
tion (3) is written as:

[
(σ − σ0)−1δ(x)δi j +G0

i j

]
∗ P j = Ei. (9)

Upon discretization, this equation is transformed into a linear systemM · P = E,
which is solved by conjugate-gradient descent. The operatorM is never computed.
Instead, FFTs are used to provideM · P for any P, which is sufficient for ap-
plying the descent method. Second, the discretization employed amounts to us-
ing constant-per-voxel trial polarization fields. This leads to a rule for computing
(σ − σ0)−1P on voxels that lie on interfaces, and to a representation of the Green
operator as a slowly converging series for which approximations are available [21].

Other FFT methods have been proposed, including an alternative ‘conjugate-gradient’
scheme [22,23] different from the variational one, and yet another one in which the
convolution product is carried out in the direct space [24].For conciseness, these
and the ‘polarization’ scheme will not be considered further.

The dual formulation (4) allows one to derive dual algorithms for all FFT methods.
For instance, substitutingE, G0, andσ0 by J, H0, andρ0 in Equation (8), the dual
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augmented-Lagrangian scheme reads:

Jk+1 = Jk +
ρ0
[
J − 〈Jk〉 − H0 ∗

(
1
σ
Jk
)]
− G0 ∗ Jk

1/σ + ρ0
. (10)

All of these methods involve a reference conductivityσ0, or a reference resistiv-
ity ρ0. Whereas the final result is in principle independent of these quantities, their
values [instead of ‘value’]have a dramatic influence on the convergence proper-
ties of the algorithms. Notably, optimal convergence of the’accelerated’ scheme is
obtained with the choice [17]

σ0 = −√σ1σ2, (11)

where the use of a negative reference conductivity (devoid of physical meaning) is
warranted by the arbitrary character of the reference medium. In this connection,
we point out that in Ref. [20], which addresses the analogouselasticity problem,
the reference stiffness moduli have their sign changed, which avoids dealing with
negative values.

For the “direct” scheme, optimal convergence properties were studied in the context
of elasticity [25]. Adapting the method used in the latter reference to the conduc-
tivity problem, it is straightforward to show that the corresponding optimal choice
is

σ0 ≈ 1
2

(σ1 + σ2), (12)

a result to be used extensively below.

4 Classical and modified Green operators

In practice, the domainΩ is discretized as a two-dimensional (2D) pixel image,
or three-dimensional (3D) voxel image. The convolution productG0

i j ∗ P j in (3) is
evaluated in the Fourier domain as

∫

Ω

dd x′G0
i j (x − x′)P j(x′) ≈

1
Ld

∑

q

G0
i j (q)P j(q)eiq·x, (13)

where the Fourier mode components take on valuesqi = (2π/L)(−L/2, ..., L/2 − 1)
(i = 1, ...,d), andL is measured in pixel/voxel size units. The vectorP j(q) is the
Fourier transform

P j(q) =
∑

x

P j(x)e−iq·x, (14)
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where the sum is over all pixels/voxelsx in Ω. Classically, the Fourier transform of
the Green operator used in (13) is approximated by its continuum expression

G0
i j (q) =

∫
ddx G0

i j (x)e−iq·x =
qiq j

σ0|q|2 , (15)

where the integration is over the infinite domain and|q| = √qkqk. We call hereafter
this version of the Green operator the ‘continuous’ Green operator. This name is
choosen as a matter of convenience as the operatorG

0 is only the discretization, on
a regular grid, in the Fourier domain, of the continuum Greenoperator.

On the other hand, intrinsically discrete schemes can be considered. For instance,
in the context of continuum mechanics, modified Green operators have been intro-
duced, where partial derivatives are approximated by centered [26] or forward [27]
differences. In the conductivity problem, the latter discretization amounts to solving
a resistor network problem [28]

∂i Ji(x) ≈ Ji(x) − Ji(x − ei), ∂iΦ(x) ≈ Φ(x + ei) − Φ(x), (16)

whereJi(x) represents the current along the bond pointing in the direction ei from
pointx, andΦ(x) is the potential at nodex. The same fields are used as approxima-
tions of the exact solution in a continuous medium. The nodesin the network are
mapped to the corners of each voxel and the bonds are mapped tothe edges (see
Figure 1). In this setting, the electric field and current areestimated at edge centers,
which turns (16) into the centered scheme

∂i Ji(x) ≈ Ji

(
x +

ei

2

)
−Ji

(
x − ei

2

)
, −Ei

(
x +

ei

2

)
= ∂iΦ

(
x +

ei

2

)
≈ Φ(x+ei)−Φ(x).

(17)
Here again, derivatives are approximated by differences over points separated by
one voxel size, unlike in [26]. Discretizations (17) and (16) are equivalent up to a
translation ofJi andEi by a vectorei/2, provided thatσ is constant in each voxel
(see Figure 1). For simplicity, we use (16) hereafter. The ‘discrete’ Green operator
G̃0 entering the corresponding Lippmann-Schwinger equation reads [28,27]

G̃0
i j (k) =

kik∗j
σ0|k|2 , ki = eiqi − 1 = 2i sin(qi/2)eiqi/2, (18)

where|k| =
√

kik∗i and∗ is the complex conjugate. In the Fourier domain, the ‘dis-
crete’ gradient, divergence and Laplacian operators amount to multiplications by
ki, −k∗i and |k|2, respectively, instead of iqi, iqi and |q|2 when using the continuum
Green operatorG0. Likewise, the terms ‘divergence-free’ and ‘compatible’ depend
on the employed discretization. In the long-wavelength limit q → 0, these differ-
ences disappear and equation (18) reduces to (15). In the dual setting, the discrete
Green operator associated to the current is defined, mutatismutandis, as in Equa-
tion (5). Hereafter, the operator̃G0 is referred to as the ‘discrete’ Green operator.
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Figure 1. 2D pixel at pointx with superimposed resistor network (see Equation 16); here
e1 is oriented from top to bottom ande2 left to right.

The representation of the problem in terms of a resistor network result in several
useful properties. First, contrary to the variational algorithm [14], the solution does
not depend on the choice for the reference materialσ0. Second, the operator̃G0

is a smooth periodic function, where contrary toG0, high-frequencies are cut out
in the Fourier domain. This is expected to result in better convergence properties.
Third, the discretization in (16) enforces local current conservation, which makes
Kirchhoff’s law hold at each node. Consequently, the outward flow ofJ along a
closed surface, defined as a sum of currents over the bonds that pierce the surface,
is zero.

As long as they converge, all numerical schemes must deliverthe same results for
a given choice of Green operator. Conversely, choosing one Green operator will
select one particular approximation to the solution of the problem considered. It is
the purpose of this work to assess the advantages, from the numerical viewpoint, in
the context of electrical conductivity, of using̃G0 in place ofG0.

In this paper, the direct (DS), accelerated (AS), augmented-Lagrangian (AL), and
variational (VAR) schemes are investigated. We also consider the dual versions of
DS and AL, denoted by DSD and ALD, respectively. All of these make use of the
continuous Green operatorG0. Same algorithms, but with thediscreteGreen oper-
atorG̃0 instead ofG0 are also examined. They are referred to with a ‘tilde’ notation
asD̃S,ÃS, ÃL, ṼAR, D̃SD, andÃLD. We emphasize that the results presented here
for the variational approaches VAR and̃VAR make use of the Green operatorsG0

andG̃0 rather than of the more complex discretization proposed in [14]. Also, in the
latter approaches, definite-positiveness of matrixM (see Sec. 3) is not guaranteed
in the conjugate-gradient procedure. This specific issue has not been considered
further as numerical experiments that we performed indicate that the latter schemes
nevertheless converge.
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5 A stiff case: fields in the four-cell microstructure

The ‘four-cell’ microstructure is one of the few periodic structures for which an ex-
act solution [29] is available. We consider the special case, represented in Figure 2,
where the elementary cell is made of a single square inclusion of surface fraction
25%. Because of the presence of corners, fields are singular in the infinite-contrast
limit, which makes this case a good benchmark for numerical methods. In this Sec-
tion, numerical results for the current computed with either the continuous Green
operatorG0 or the discrete operator̃G0 are compared with the exact solution. The
inclusion is highly conducting, with a contrast ratioσ2/σ1 = 2× 103.

Figure 2. Elementary periodic domainΩ = (−L/2,+L/2)2 with four-cell microstructure.
The inclusion has conductivityσ2 and the matrix has conductivityσ1.

The behavior of the electric current near the singular corner at point (x, y) = (0, 0)
is illustrated in Figure 3. Maps of the vertical componentJ1(x, y) obtained with
G

0 (top) andG̃0 (bottom) are displayed for increasing resolutions (left toright).
Only the small region−5.10−2L ≤ x, y ≤ 5.10−2L around the corner is shown.
Numerical artifacts in the highly-conducting phase are conspicuous when using
the continuous Green operatorG0. They consist of high-frequency oscillations all
over the conducting region, particularly near the horizontal interface [30], where
the represented field component should be continuous. Such oscillations are almost
absent when using̃G0.

Figure 4 displays plots of the horizontal componentJ2(x, y) versusx at y = 10−3L,
close to the inclusion boundary. Negative values ofx correspond to the interior of
the inclusion. Numerical results computed with both Green operators are compared
with the exact solution. To draw meaningful graphs, data points obtained withG0
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L = 1024 L = 2048 L = 4096 L = 8192

Figure 3. Four-cell microstructure of Figure 2. Maps of the vertical current component
J1(x, y) in the region−0.05L ≤ x, y ≤ 0.05L, for increasing resolutionL (as indicated).
Top: with continuous Green operatorG0. Bottom: with discrete operator̃G0.

were post-processed prior to plotting by convolution over awindow of 2× 2 adja-
cent pixels. This crude filtering device greatly reduces oscillations. Results obtained
with G̃0 have not been modified. Given sufficient resolution all methods converge
to the exact solution. However, although all methods lead toalmost identical so-
lutions in the matrix, results strongly differ in the highly conducting region. The
figure, which represents calculations carried out for various resolutions, shows that
employingG̃0 makes convergence notably easier. Indeed, data points obtained with
G̃

0 at moderate resolutionL = 1024 are much closer to the exact solution than those
obtained fromG0 at the highest resolutionL = 32 768.

In a previous study involving porous media [27], the continuous Green operator
was already observed to induce awkward aliasing effects at high contrast. They
usually take place near interfaces involving a region wherethe field considered is
not uniquely defined in the infinite-contrast limit (e.g., the strain in a pore, or the
electric current in an infinitely conducting inclusion).

6 Convergence rate

This Section further examines for a few selected microstructures the convergence
properties of FFT schemes. Algorithmic convergence being harder in the case of
strongly contrasted composites, the quantity of interest here is the number of itera-
tions as a function of the contrast ratioσ2/σ1.
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Figure 4. Four-cell microstructure of Figure 2. Values of the horizontal current component
J2(x, y = 10−3L) vs. x, for various resolutionsL (as indicated). Solid black: exact solution.
Markers∗, × and+ (red): FFT results with discrete Green operatorG̃0. Other markers and
colors: FFT results with continuous Green operatorG0.

6.1 Convergence criteria

Convergence criteria can be written either in the direct or Fourier representations.
The most compelling ones are those that include high Fourierfrequency behav-
ior [20]. In relation to FFT algorithms, the following criteria are considered:

η1= ‖J‖−1 max
x

∣∣∣FT−1 {k∗i (q)Ji(q); x
}∣∣∣ ≤ ǫ, (19a)

η2= ‖E‖−1 max
i, j,x

∣∣∣∣FT−1
{
ki(q)E j(q) − kj(q)Ei(q); x

}∣∣∣∣ ≤ ǫ, (19b)

whereǫ ≪ 1 is the required precision and FT−1 is the backward Fourier transform.
Criterion (19a) puts emphasis on the current conservation,whereas (19b) imposes
compatibility; apart from a difference in the norm used, they are akin to those used
in [20]. These equations refer to the discrete Green operator G̃0. Current conser-
vation and compatibility are enforced differently when using the continuous Green
operatorG0. In the latter case,k(q) andk∗(q) are replaced byq in Equation (19).

Among the computational schemes introduced in Section 4, DSandD̃S enforce
compatibility, at each iteration, which trivially guarantees thatη2 = 0. Instead,
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Figure 5. Elementary cellΩ of the “2D-periodic” microstructure (left), and the 2D (cen-
ter) and 3D (right) random periodic Boolean models. Surfaceand volume fractions of the
inclusions are, respectively, 25, 30 and 20%.

electric current conservation in the form of the equalityη1 = 0 is enforced by the
dual schemes DSD andD̃SD. On the other hand, the remaining schemes in general
lead to nonzero values ofη1 andη2. This suggests using as a convergence criterion
the inequalityη ≤ ǫ whereη = η1 for the primary (non-dual) schemes DS,̃DS, AL,
ÃL, AS, ÃS, VAR, and whereη = η2 for the dual ones DSD, D̃SD, ALD, ÃLD.

6.2 Test microstructures

Convergence rates are monitored for three microstructures, periodic in all direc-
tions, whose unit cellsΩ are represented in Figure 5. The leftmost 2D cell, of size
L = 1024 pixels, contains a single circular disk-shaped inclusion of surface fraction
25%. This system is simply referred to as the ‘2D-periodic’ medium hereafter. The
middle cell is a random 2D Boolean model of sizeL = 1024 built from disks of
diameter 80 pixels, of overall surface fraction 30%. The rightmost cell is a random
3D Boolean model of sizeL = 256, made of spherical inclusions of diameter 20
voxels, with overall volume fraction 20%.

6.3 2D periodic medium

Figure (6) illustrates for some of the algorithms introduced in Section 4 applied
to the ‘2D-periodic’ medium how the indicatorη tends to zero as the number of
iterations increases. The contrast ratio is fixed atσ2/σ1 = 2× 103. For exploratory
purposes, quadruple precision was used in these calculations to allow for tiny val-
ues ofη. Prior to drawing the plots, the quantitiesσ0 andρ0 were optimized man-
ually to minimize the number of iterations needed to reach the arbitrary threshold
η < ǫ = 10−12. For all methods,η decreases exponentially with the number of it-
erations down to some constant value determined by machine precision. Roughly,
algorithms separate in two classes. The first one comprises the continuous schemes,
namely, DS, AL and AS, which are the slowest converging ones.However, in this
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class and for the microstructure considered, Eyre and Milton’s AS is clearly supe-
rior. The simple DS is by far the worst, and the AL scheme is intermediate. The
other class encompasses the ‘discrete’ schemes (primary and dual). They all make
η saturate in less than 300 iterations, which is another hint at the good behavior
of the discrete Green operator. In that class, Eyre and Milton’s method (̃AS) again
proves the fastest converging one.

1 400 800 1200 iterations

10
-36

10
-24

10
-12

1

η

AL

DS

AS

AL

AS

DS
D

AL
D

~ ~

~
~

~

2D periodic

DS

Figure 6. “2D-periodic” medium. Convergence indicatorη vs. number of iterations in log-
arithmic-linear scale, for various FFT schemes: using the continuous Green operator (DS,
AS, and AL), and the discrete Green operator (D̃S,D̃SD, ÃS, ÃL and ÃLD).

The optimal reference conductivityσ0 and resistivityρ0 used in Figure 6 are sum-
marized in the second column of Table 1. The integer number inbrackets is the
number of iterations needed to reach the thresholdη < ǫ = 10−8, which in prac-
tice is a good trade-off between speed and accuracy. As already mentionned, Equa-
tion (12) optimizes the DS with the continuous Green operator. It givesσ0 = 1000.5
and —this is an empirical finding— also optimizes̃DS with the discrete Green op-
erator. Introducing phase resistivities asρ1,2 = 1/σ1,2, an analogous formula (easy
to demonstrate in the continuum) holds for the optimal resistivity in the continuous
dual ‘direct’ scheme DSD, namely,

ρ0 =
1
2

(ρ1 + ρ2), (20)

which gives hereρ0 ≃ 0.5. Again empirically, we find that this value optimizes
as well the discrete dual ‘direct’ schemẽDSD. As expected, the optimumσ0 ≃
−44.7 reported for AS matches Eyre and Milton’s result, Equation(11). However,
although negative, the optimumσ0 found forÃS isnotconsistent with this formula.
Finally, the values reported for the primary augmented-Lagrangian schemes AL and
ÃL and their dual versions do not match any of the previous analytical estimates.
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σ0

“2D-periodic” 2D Boolean 3D Boolean

DS 1000.5 (15621) (σ1 + σ2)/2 (σ1 + σ2)/2

AL 76 (1556) 3. 10−3σ1 + 1.8
√
σ1σ2 1.7

√
σ1σ2

AS −44.7 (663) −√σ1σ2 −√σ1σ2

VAR N/A 0.50(σ1 + σ2) N/A

D̃S 1000.5 (46) 0.50(σ1 + σ2) 0.53σ1 + 0.50σ2

ÃL 1855 (95) 0.30(σ1 + σ2) 0.56σ1 + 0.26σ2

ÃS −1390 (46) −0.30(σ1 + σ2)
−(1/3.6)σ1 (σ2/σ1 ≪ 1)

−3.6σ1 (σ2/σ1 ≫ 1)

ṼAR N/A 0.50(σ1 + σ2) N/A

ρ0

DSD 0.5 (14616) (ρ1 + ρ2)/2 (ρ1 + ρ2)/2

ALD 0.033 (1336) 3 10−3ρ1 + 1.8
√
ρ1ρ2 1.7

√
ρ1ρ2

D̃SD 0.5 (46) 0.50(ρ1 + ρ2) 0.48ρ1 + 0.52ρ2

ÃLD 1.09 (93) 0.30(ρ1 + ρ2) 0.40ρ1 + 0.55ρ2

Table 1
Optimal reference conductivitiesσ0 and resistivitiesρ0 determined for the indicated FFT
schemes. Values given for the “2D-periodic” microstructure correspond to the contrast ratio
σ2/σ1 = 2× 103, with the number of iterations indicated in brackets. For Boolean models,
the formulas given are consistent with the behavior observed at high contrast, although
the low-contrast behavior may slightly differ. Those for schemes DS, AS and DSD are
exact ones. Missing entries (N/A) indicate that the corresponding schemes have not been
investigated.

6.4 2D and 3D Boolean media: reference conductivity or resistivity

A more thorough study was carried out for the Boolean models,in which the op-
timal reference conductivityσ0 or resistivityρ0 was measured as a function of the
contrast.

In order to avoid unnecessary long computations, the reference was first manually
optimized on a low-resolution grid of sizeL = 64 (in 2D) orL = 32 (in 3D). The
optimized reference was then tested on a full-resolution grid of sizeL = 1024 (2D)
or L = 256 (3D). In all but a few cases, the number of iterations to convergence
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found with the low-resolution and high-resolution grids was nearly the same. The
number of iterations found on the full-resolution grid was kept if the difference was
less than 10%; otherwise, the reference was optimized again, this time on the full-
resolution grid, to provide a definitive number of iterations. Manual optimization of
the reference parameters was carried out following a rough dichotomy procedure,
disregarding for simplicity the possibility of concurrentlocal optima. The conver-
gence criterion was set toη ≤ ǫ = 10−8 in these calculations.

Our findings are summarized in the third and fourth columns ofTable 1, where
the formulas given essentially represent high-contrast behaviors in the regimes
σ2/σ1 ≪ 1 orσ2/σ1 ≫ 1. Indeed, in some cases, the low-contrast behavior may
differ from that given (see succeeding text).

At the exception of schemẽAS in the 3D Boolean medium, for whichσ0/σ1 tends
to a constant at high contrast —notice the symmetry between both high-contrast
regimes, the behaviors we observed are of the following types:

σ0/σ1 = α1 + α2 r, (21a)

or σ0/σ1 = β1 + β2 r1/2, (21b)

wherer = σ2/σ1, andα1,2 andβ1,2 are numerical constants of various signs (see
Table I). These forms generalize Equations (11) and (12). They apply to the ‘pri-
mary’ schemes, and similar ones hold for the ‘dual’ schemes with σ substituted by
ρ. When nonzero, the coefficientβ1, of order 10−3, is of unclear origin. The coeffi-
cients reported in the table were determined by nonlinear least-square fitting on our
data. Additional fitting attempts with functional forms other than (but related to)
those retained indicate that the first digit of the coefficients is significative, whereas
the error on the second one is hard to evaluate. Different coefficientsα1 andα2 are
provided when our results do not support an equalityα1 = α2. However, our results
strongly suggest thatα1 = α2 for the 2D Boolean system whenever Equation (21a)
applies, while this symmetry does not carry over to the 3D case, except for the DS,
whereα1 = α2 = 1/2 (exact) in two and three dimensions.

Although the optimum may in some cases be of the same form withthe continuous
and discrete Green operators, there are other cases such as with AS andÃS, for
which the optimal forms look strongly dissimilar. Moreover, comparing columns 2
and 3 of the table for the contrastσ2/σ1 = 2× 103 indicates that the optima found
somewhat depend on the microstructure.

The behaviors gathered in the table are supported by Figure 7, which presents plots
of our 2D and 3D data and the corresponding fitting curves. The‘primary’ and
‘dual’ schemes are addressed in separate plots. The signs indicated in the Table
cannot be read from the figures, where absolute values are displayed in logarithmic
scale. In the 2D Boolean model, the data for the primary schemes and for their dual
are numerically quite close in this mode of representation,so that the left and right
plots superimpose almost exactly. Interestingly, the plots reveal the unique non-
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trivial behavior of the discrete schemes̃AL and ÃLD in the low-contrast region
0.1 ≤ σ2/σ1 ≤ 10, where they behave as

√
σ2/σ1 even though the linear behavior

reported in Table 1 takes place at higher contrasts. On the other hand, the continu-
ous schemes AL andALD [ instead of ‘ALD’ ] essentially behave as a square root
for all contrasts (up to a small corrective term in 2D cases).As already noticed in
the discussion of the table, the discrete 3D ‘accelerated’ schemeÃS with its in-
triguing asymptotic behavior (constant on both sides of thecontrast range) stands
as an outlier. For it no fit has been attempted. We emphasize that in all cases exam-
ined with the ‘accelerated’ schemes, the optimal square-root estimate (11) —exact
in scheme AS— yields poor convergence when applied toÃS.
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Figure 7. 2D (top) and 3D (bottom) Boolean models. Absolute value of the normalized op-
timal conductivity|σ0/σ1| vs.σ2/σ1 (left), and optimal resistivity|ρ0/ρ1| vs.ρ2/ρ1 (right),
for the schemes indicated. Symbols: FFT results. Solid: numerical fits (see Table 1).

In 2D, the formulaσ0 = 0.5(σ1 + σ2) indifferently optimizes the discrete and
continuousṼAR and VAR schemes. We observed similar convergence rates,up to
3% difference in the number of iterations, for these algorithms within the range
0.4 ≤ σ0/(σ1 + σ2) ≤ 0.9. However, outside of this range, the convergence of
the VAR scheme deteriorates. The small sensitivity with respect to the reference
materialσ0 in this method is supported by other studies [31].
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We also investigated the sensitivity to the choice ofσ0 in the ‘direct’ discrete
schemes. In the 2D Boolean model and for the discrete schemeD̃S, the choice
σ0 = 0.50(σ1 + σ2) proves optimal, which matches the exact result relative to
DS. However, withD̃S, nearly optimal 2D results are also obtained with choices
σ0 < (σ1 + σ2)/2. By contrast, in 3D, the number of iterations may be extremely
sensitive to the choice ofσ0. Figure 8 illustrates this. It represents the number of
iterations versusσ0 for D̃S in the 3D Boolean model, with contrastσ2/σ1 = 10−5.
No convergence is observed forσ0 < 0.5(σ1+σ2), and the optimal choice is about
σ0 ≈ 0.53σ1.
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Figure 8. 3D Boolean model. Number of iterations vs. reference conductivityσ0 for the
direct scheme with discrete Green operator (D̃S). The contrast ratio isσ2/σ1 = 10−5. The
convergence criterion isη ≤ ǫ = 10−8. The valueσ0 = (σ1 + σ2)/2 is represented by the
vertical dotted line. The solid line between data points is aguide to the eye.

6.5 2D and 3D Boolean media: convergence properties

This Section examines convergence performance for the 2D and 3D Boolean mod-
els, expressed by the number of iterationsN as a function of the contrast ratio
r = σ2/σ1. Figure (9) illustrates the performance of the various FFT schemes con-
sidered, in calculations optimized by using the reference conductivity or resistivity
discussed in the previous section. Schemes usingG

0 are represented by filled sym-
bols and the+marker, whereas discrete schemes usingG̃0 are represented by empty
symbols and the×marker.

We recover known results of linear scalingN ∼ r for DS and DSD, and of square-
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Figure 9. 2D and 3D Boolean models (top and bottom). Number ofiterations vs. contrast
for various FFT algorithms. The convergence criterion isη ≤ ǫ = 10−8. Solid lines between
data points are guides to the eye.

root scalingN ∼ r1/2 for AS [17]. Similar convergence rates are observed for AL
and ALD, andfor VAR [instead of ‘for the VAR’]. As a rule, given the FFT method,
the ‘primary’ scheme always converges better than the ‘dual’ one whenr < 1, while
the opposite holds whenr > 1. For instance, at very strong contrast ratior > 107,
the convergence of the dual ‘augmented-Lagrangian’ schemeALD is much faster
than that of the primary one AL.
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As to discrete schemes, they are much more efficient than their continuous counter-
parts. For discrete schemes,N(r) is either a bounded or slowly increasing function
of r, which shows that using the discrete Green operatorG̃

0 definitely provides a
dramatic improvement of convergence. By optimizing the choice between the ‘pri-
mary’ or ‘dual’ versions of the discrete algorithm at hand depending on whether
r < 1 or r > 1, one can even achieveconvergence in a finite number of iterationsin
the infinite-contrast limit.

Overall, the figure shows that among all schemes the discreteversionÃS of the AS
is the better converging one in 2D and 3D.

7 Optimizing the “direct” scheme with discrete Green operator

In applications dealing with large microstructures (typically, multiscale materials)
fast and memory-efficient implementations of FFT methods are required. One com-
mon way of minimizing both CPU speed and memory storage is to recompute the
Green operator at each iteration. As long as the Green operator is easy to compute,
this strategy is usually faster than storing a very large tensor field. This is used in
the CraFT [32] and morph-Hom [33] softwares. As an example, alow-cost imple-
mentation of DS is as follows:

Initialization: setAi(x) ≡ 0.

(i) SetAi(x) := [σ(x) − σ0]Ai(x);
(ii) Set Ai(q) := FFT(Ai(x); q);
(iii) Set Ai(q) := G0

i j (q)A j(q) for q , 0 andAi(q = 0) := Ei;
(iv) SetAi(x) := FFT−1(Ai(x); q);
(v) Compute convergence criterion; if convergence is reached, setEi = Ai and

STOP; otherwise GOTO (i).

In this algorithm FFTs are computedin-place. Step (iii) consists of a loop over all
modesq with G0

i j (q) computed on-the-fly. In total, memory space is allocated for
one vector fieldA plus the microstructure. VectorA successively stores the polar-
ization field in the real space [step (i)] and in the Fourier domain [step (ii)] and
the electric fieldE in the Fourier domain [step (iii)] and real space [step (iv)]. The
convergence criterion in step (v) must be modified, as checking for current con-
servation by computing criterionη1 with in-place computations is now impractical.
Monitoring the differences over two iterations of the first and second moments of
the electric and current fields provides practical crieria that are less accurate, but
easier to compute.

On the other hand, the use of the discrete Green operatorG̃
0 allows for a more
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efficient implementation of the DS. Consider the rewriting of Equation (7) as

φk+1 =
1
σ0∆

div
[
(σ − σ0)(E − gradφk)

]
(22)

whereφk is the periodic part of the potential associated toEk, so thatEk − E =
−gradφk, and where 1/∆ is, symbolically, the inverse Laplacian. Equation (22) de-
finesφk+1 as a unique periodic function up to an irrelevant constant. Whenk→ ∞,
φk converges to the potential up to a linear correctionφ∞(x) = Φ(x)−Ei xi. The elec-
tric field and current follow fromΦ. In the discrete setting, equivalent to a resistor
network, knowledge of a field on adjacent nodes or bonds is sufficient to compute
its local divergence or gradient. Thus, the action of thediv and grad operators
in Equation (22) can be computed in the real space. This suggests the following
alternative implementation of the discrete direct scheme (D̃S):

Initialization: setA(x) ≡ 0.

(i) At each pointx, setA(x) := div P(x) where
Pi(x) = [σ(x) − σ0][E − grad A(x)]; computeη1 as defined in (19);

(ii) Set A(q) := FFT{A(x); q};
(iii) Set A(q) := − A(q)

σ0|k(q)|2 for q , 0 andA(q = 0) := 0 otherwise;
(iv) SetA(x) := FFT−1{A(q); x};
(v) If η1 < ǫ setE = E − grad A, J = σE and STOP; otherwise GOTO (i).

This algorithm exactly implements thẽDS scheme. However, only a scalar field,
rather than a vector field, is now allocated in memory. Laplacian inversion is the
sole computation performed in the Fourier domain. It takes the form of a division
by |k|2 in step (iii). The fieldA successively stores the divergence of the polarization
field div P in the real space [step (i)] and Fourier domain [step (ii)] and, later on,
the periodic part of the potentialφ in the Fourier domain [step (iii)] and in the real
space [step (iv)]. Multithreading parallelization in step(i) necessitates some care as
this step is non-local. Nevertheless, this new implementation reduces the number of
FFTs per iteration from 4 (in 2D) or 6 (in 3D) down to 2. Furthermore, the amount
of storage is also reduced by a factord (Ld floats instead ofdLd), if we neglect the
storage required for the microstructure.

The total CPU time spent using ‘direct’, ‘augmented-Lagrangian’ and ‘accelerated’
schemes is plotted in Figure 10 as a function of contrast, thescheme (̃DS) being im-
plemented as outlined earlier. These tests were carried outwith convergence crite-
rion η < 10−8, on the previously considered 3D Boolean microstructure discretized
on a grid of sizeL = 256 (16.8 million points). Computations were performed in
double precision, on a 12-core Intel Xeon machine, each corerunning at 2.90 GHz
with 5800 bogomips and 15360 Kb of L2 cache. Best performanceis achieved for
theD̃S scheme whenσ2/σ1 < 1, and withÃS whenσ2/σ1 > 1. Using these op-
timal schemes at infinite contrast, convergence is completed in 29 s for insulating
inclusions, and in 53 s for infinitely-conducting inclusions. This strategy has been
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implemented in the multithreaded Fortran codemorph-hom developped at Mines
ParisTech [33].
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Figure 10. CPU time vs. contrast ratioσ2/σ1 for various FFT algorithms, on the 3D
Boolean microstructure. The convergence criterion isη ≤ ǫ with ǫ = 10−8.

8 Conclusion

Use of a modified Green operator in FFT-based schemes has beenadvocated, in the
context of the electrical response of heterogeneous conducting media. The modi-
fication consists in making the operator consistent with theunderlying voxel grid,
which requires only a very simple adaptation of previously existing algorithms but
leads to two major improvements.

First, employing the modified operator leads to much more accurate local fields,
particularly in the highly conducting or insulating inclusions and in the vicinity of
interfaces. Second, the convergence rate is found to be muchfaster compared with
previous methods, in particular for highly-contrasted media. Quite remarkably the
‘direct’ scheme —usually considered to be the worst-converging one— improves
tremendously, as far as CPU time is concerned, by formulating the problem in terms
of iterations on the electrostatic potential rather than onthe electric field. However,
using the modified Green operator requires carefully adjusting the reference con-
ductivityσ0, since the latter has a strong influence on convergence properties. Ap-
proximate expressions forσ0 have been derived numerically, and studied, for the
Boolean models of microstructure considered in this work.

20



It has already been noticed in the past that using ‘discrete’versions of Green opera-
tors leads to promising methods [14,34,27]. Demonstratingthat dramatic speed-up
improvements follow, the present work strongly supports this view. Based on pre-
vious experience [27], it is expected that our conclusions carry over to continuum
mechanics.
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