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Fourier-based schemes with modified Green operator for computing
the electrical response of heterogeneous media with accurate local fields

François Willot†1, Bassam Abdallah† and Yves-Patrick Pellegrini∗

† Mines ParisTech, Centre de Morphologie Mathématique, 35 rue Saint Honoré, 77305 Fontainebleau Cedex, France.
∗ CEA, DAM, DIF, F-91297 Arpajon, France.

A modified Green operator is proposed as an improvement of Fourier-based numerical schemes commonly used for computing
the electrical or thermal response of heterogeneous media.Contrary to other methods, the number of iterations necessary to
achieve convergence tends to a finite value when the contrastof properties between the phases becomes infinite. Furthermore, it is
shown that the method produces much more accurate local fields inside highly-conducting and quasi-insulating phases, as well as
in the vicinity of the phases interfaces. These good properties stem from the discretization of Green’s function, whichis consistent
with the pixel grid while retaining the local nature of the operator that acts on the polarization field. Finally, a fast implementation
of the “direct scheme” of Moulinec et al. (1994) that allows for parcimonious memory use is proposed.
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1. Introduction

In recent years, Fourier-based methods, originally intro-
duced by Moulinec et al. [1], have become ubiquitous for
computing numerically the properties of composite materi-
als, with applications in domains ranging from linear elas-
ticity [2], viscoplasticity [3], crack propagation [4] to ther-
mal and electrical [5, 6], but also optical properties [7]. The
success of the method resides in its ability to cope with ar-
bitrarily complex and often very large microstructures, sup-
plied as segmented images of real materials, e.g., multi-scale
nano-composites [8], austenitic steel [9], granular media[5]
or polycrystals [10–12]. This technique allows maps of
the local fields to be computed in realistic microstructures.
Such fields are representative of the material behavior if the
resolution is small enough, and if the system size is large
enough, compared with the typical length scale of the het-
erogeneities. Contrary to finite-element methods where ma-
trix pre-conditioning often necessitates additional memory
occupation, Fast-Fourier-Transform (FFT) methods are lim-
ited only by the amount of RAM or fast-access computer
memory required to store the fields.

The use of an image and of its underlying equispaced grid
however comes with drawbacks not seen in finite-element
methods. First, FFT methods will ultimately be less effi-
cient when dealing with highly porous media like foams,
where voids need to be discretized. Second, interfaces are
crudely rendered when using voxel grids, although smooth-
ness can be somewhat recovered by introducing intermedi-
ate properties between the phases [13, 14]. This matter is
most important for ideal microstructure models where inter-
faces are completely known; less so when dealing with ex-
perimental images where such information is usually absent.
Third, the representation of the fields in terms of harmonic
functions introduce oscillations around interfaces, which is
akin to Gibbs’s phenomenon. High-frequency artifacts are
conspicious in many field maps where oscillations are visi-
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ble. Fourth, the Fourier representation presupposes period-
icity, i.e., the microstructure is seen as the elementary cell
of an infinite, periodic medium. However, finite-size ef-
fects associated to periodic boundary conditions are gener-
ally smaller than that of uniform boundary conditions used
in finite-element methods [15].

In the present work, use is made of an alternative dis-
cretization of the Green function leading to a revisit of pre-
viously developped FFT algorithms. Specifically, their per-
formances in terms of accuracy and speed are investigated.
Our paper is organized as follows: the numerical problem
and FFT algorithms are presented in Secs. 2 and 3, respec-
tively. An alternative discretization is introduced in Sec. 4.
The accuracy of the local fields is investigated in Sec. 5 and
the convergence properties of FFT schemes, using the mod-
ified and unmodified Green functions, are studied in Sec. 6.
Finally, a specific implementation of the FFT method using
the modified Green function is proposed in Sec. 7.

2. Problem setup and L ippmann-Schwinger’s
equation

This work investigates the numerical computation of the
electrical fieldEi(x) and current fieldJi(x) (i = 1, ..., d),
in ad-dimensional cubic domainΩ = [−L/2, L/2]d of width
L for d = 2 or 3. The fields verify (chap. 2 in [16])

∂i Ji(x) = 0, Ei(x) = −∂iΦ(x), Ji(x) = σi j (x)E j(x), (1)

whereΦ(x) is the electric potential andσ(x) is the local con-
ductivity tensor of the material phase at pointx. Thereafter,
for simplicity, all media are locally linear and isotropic so
thatσi j = σδi j , with σ(x) a scalar field. Only binary com-
posite media are considered in this study, in which inclu-
sions have variable conductivityσ2, and where convention-
ally σ1=1 in the matrix. Edges ofΩ are aligned with Carte-
sian axis of unit vectors (ei)1≤i≤d. Periodic boundary condi-
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tions are employed, in the form

J(x)·n−#, Φ(x+Lei) ≡ Φ(x)−EiL, x, x+Lei ∈ ∂Ω, (2)

where−# denotes anti-periodicity,n is the outer normal
along the boundary∂Ω of Ω andE is the applied electric
field. They ensure that the current flux and the electrical
field verify Eq. (1) along the boundary∂Ω of the periodic
medium. Note thatE represents a macroscopic electric field
so that〈Ei(x)〉 = Ei , where〈·〉 is the volume average overΩ.

All FFT methods proceed from Lippmann-Schwinger’s
equation ([16] p. 251)

Ei = Ei −G0
i j ∗ P j , P j = J j − σ0E j , (3)

whereσ0 is an arbitrary reference conductivity,P andG0

are the associated polarization field and Green operator, re-
spectively, and∗ is the convolution product. An equivalent
“dual” formulation stems from writing the problem in terms
of the electric current, as

Ji = Ji − H0
i j ∗ T j, T j = E j − ρ0J j , (4)

whereρ0 = 1/σ0 is the reference resistivity andJ is the pre-
scribed macroscopic current. The Green operator associated
to the governing equation for the current reads

H0
i j (x) = σ0

{
[δ(x) − 1] δi j − σ0G0

i j (x)
}
, (5)

whereδ(x) is Dirac’s distribution andδi j is the Kronecker
symbol. Thus, for allT,

H0
i j ∗ T j = σ

0
(
Ti − 〈Ti〉Ω − σ0G0

i j ∗ T j

)
. (6)

In particular〈H0
i j ∗ T j〉 = 〈G0

i j ∗ T j〉 = 0 and Eq. (4) enforces

J = 〈J〉. The FFT algorithms considered in this paper rest on
evaluating the convolution product in Eqs. (3) or (4) in the
Fourier domain, using FFT libraries.

3. FFT methods

Although most of FFT methods have been introduced in the
context of elasticity, their adaptation to conductivity prob-
lems is straightforward. Hereafter all FFT algorithms are
formulated in this setting. Equation (3) is the basis of the
simplest method, the “direct” scheme [1]. Iterations consist
in applying:

Ek+1 = E −G0 ∗
[
(σ − σ0)Ek

]
(7)

whereEk is the electrical field at iterationk.
Over time, refined FFT algorithms with faster conver-

gence properties have been devised, notably the “accelera-
ted” [17] and “augmented-Lagrangian” [18] schemes. Both
algorithms can be encapsulated in the formula [19, 20]

Ek+1 = Ek +
σ0
[
E − 〈Ek〉 − βG0 ∗ (σEk)

]
− H0 ∗ Ek

α(σ + βσ0)
(8)

whereα = β = 1 for the “accelerated” scheme andα =
−1/2,β = −1 for the “augmented-Lagrangian”one. Another
scheme, the so-called “polarization” scheme where〈P〉 is
prescribed instead of〈E〉, can be described by an equation
similar to (8) [19].

The alternative “variational” algorithm [14] relies on two
distinct ideas. First, Eq. (3) is written as:

[
(σ − σ0)−1δ(x)δi j +G0

i j

]
∗ P j = Ei . (9)

Other FFT methods have been proposed, including an
alternative “conjugate-gradient” scheme [21, 22] different
from the “variational” one, and yet another one in which the
convolution product is carried out in the direct space [23].
For conciseness, these and the “polarization” scheme alluded
to above will not be considered further.

The dual formulation (4) allows one to derive dual algo-
rithms for all FFT methods. For instance, substitutingE,
G

0 andσ0 by J, H0 andρ0 in Eq. (8) the dual “augmented-
Lagrangian” scheme reads:

Jk+1 = Jk +
ρ0
[
J − 〈Jk〉 − H0 ∗

(
1
σ

Jk
)]
− G0 ∗ Jk

1/σ + ρ0
. (10)

All of the above methods involve a reference conductivity
σ0, or a reference resistivityρ0. Whereas the final result is
in principle independent of these quantities, their value have
a dramatic influence on the convergence properties of the al-
gorithms. Notably, optimal convergence of the “accelerated”
scheme is obtained with the choice [17]

σ0 = −
√
σ1σ2, (11)

where the use of a negative reference conductivity (devoid of
physical meaning) is warranted by the arbitrary character of
the reference medium. In this connection, we point out that
in Ref. [20], which addresses the analogous elasticity prob-
lem, the reference stiffness moduli have their sign changed,
which avoids dealing with negative values.

For the “direct” scheme, optimal convergence properties
were studied in the context of elasticity [24]. Adapting the
method used in the latter reference to the conductivity prob-
lem, it is straightforward to show that the corresponding op-
timal choice is

σ0 =
1
2

(σ1 + σ2), (12)

a result that we use extensively below.

4. Classical and modified Green operators

In practice, the domainΩ is discretized as a two-dimensional
(2D) pixel image, or three-dimensional (3D) voxel image.
The convolution productG0

i j ∗ P j in (3) is evaluated in the
Fourier domain as
∫

Ω

dd x′G0
i j (x − x′)P j(x′) ≈

1
Ld

∑

q

G0
i j (q)P j(q)eiq·x, (13)
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where the Fourier mode components take on valuesqi =

(2π/L)(−L/2, ..., L/2− 1) (i = 1, ...,d), andL is measured in
pixel/voxel size units. The vectorP j(q) is the Fourier trans-
form

P j(q) =
∑

x

P j(x)e−iq·x, (14)

where the sum is over all pixels/voxelsx in Ω. Classically,
the Fourier transform of the Green operator used in (13) is
approximated by its continuum expression

G0
i j (q) =

∫
ddx G0

i j (x)e−iq·x =
qiq j

σ0|q|2 , (15)

where the integration is over the infinite domain and|q| =√
qkqk. We call hereafter this version of the Green operator

the “continuum” Green operator.
On the other hand, intrinsically discrete schemes can be

considered. For instance, in the context of continuum me-
chanics, modified Green operators have been introduced,
where partial derivatives are approximated by centered [25]
or forward [26] differences. In the conductivity problem,
the latter discretization amounts to solving a resistor network
problem [27]:

∂i Ji(x) ≈ Ji(x)−Ji(x−ei), ∂iΦ(x) ≈ Φ(x+ei)−Φ(x), (16)

whereJi(x) represents the current along the bond pointing
in the directionei from point x andΦ(x) is the potential at
nodex. The “discrete” Green operator̃G0 entering the cor-
responding Lippmann-Schwinger equation reads [26, 27]

G̃0
i j (k) =

kik∗j
σ0|k|2 , ki = eiqi − 1 = 2i sin(qi/2)eiqi/2, (17)

where|k| =
√

kik∗i and ∗ is the complex conjugate. Equa-
tion (17) reduces to (15) in the long-wavelength limitq→ 0.
In the dual setting, the discrete Green operator associatedto
the current is defined, mutatis mutandis, as in Eq. (5). The
discretization employed in (16) locally enforces current con-
servation, which is not the case in FFT schemes based on
Eq. (15).

As long as they converge, all numerical schemes must de-
liver the same numerical results for a given choice of Green
operator. Conversely, making a choice of Green operator
will select one particular approximation to the solution of
the problem considered. It is the purpose of this work to
assess the advantages, from the numerical viewpoint, in the
context of electrical conductivity, of using̃G0 in place ofG0.

In this paper, the “direct” (DS), “accelerated” (AS),
“augmented-Lagrangian” (AL), and “variational” (VAR)
schemes are investigated. We also consider the dual ver-
sions of the “direct” and “augmented-Lagrangian” schemes,
denoted by DSD and ALD, respectively. All of these make
use of the continuum Green operatorG0. Same algorithms,
but with thediscreteGreen operator̃G0 instead ofG0 are
also examined. They are referred to with a “tilde” notation
asD̃S, ÃS, ÃL, ṼAR, D̃SD, andÃLD.

In the “variational” approaches VAR and̃VAR definite-
positiveness of matrixM (see Sec. 3) is not guaranteed in
the conjugate-gradient procedure. This specific issue has not
been considered further as numerical experiments we per-
formed indicate that these schemes nevertheless converge.

5. A stiff case: fields in the four-cell
microstructure

The “four-cell” microstructure is one of the few periodic
structures for which an exact solution [28] is available. We
consider the special case, represented in Fig. (1), where the
elementary cell is made of a single square inclusion of sur-
face fraction 25%. Due to the presence of corners, fields
are singular in the infinite-contrast limit, which makes this
case a good benchmark for numerical methods. In this Sec-
tion, numerical results for the current computed with either
the continuous Green operatorG0 or the discrete operator
G̃

0, are compared with the exact solution. The inclusion is
highly conducting, with a contrast ratioσ2/σ1 = 2× 103.

Figure 1: Elementary periodic domainΩ = (−L/2,+L/2)2 with
four-cell microstructure. The inclusion has conductivityσ2 and the
matrix has conductivityσ1.

The behavior of the electrical current near the singular
corner at point (x, y) = (0, 0) is illustrated in Fig. (2). Maps
of the vertical componentJ1(x, y) obtained withG0 (top)
and G̃0 (bottom) are displayed for increasing resolutions
(left to right). Only the small region−5.10−2L ≤ x, y ≤
5.10−2L around the corner is shown. Numerical artifacts
in the highly-conducting phase are conspicuous when using
the continuous Green operatorG0. They consist of high-
frequency oscillations all over the conducting region, par-
ticularly near the horizontal interface [29] where the repre-
sented field component should be continuous. Such oscilla-
tions are almost absent when usingG̃0.

Figure (3) displays plots of the horizontal component
J2(x, y) versusx at y = 10−3L, i.e., close to the inclusion
boundary. Negative values ofx correspond to the interior of
the inclusion. Numerical results computed with both Green
operators are compared with the exact solution. To draw
meaningful graphs, data points obtained withG0 were post-
processed prior to plotting by convolution over a window of
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L = 1024 L = 2048 L = 4096 L = 8192

Figure 2: Four-cell microstructure of Fig. 1. Maps of the vertical
current componentJ1(x, y) in the region−0.05L ≤ x, y ≤ 0.05L, for
increasing resolutionL (as indicated). Top: with continuous Green
operatorG0. Bottom: with discrete operator̃G0.

2× 2 adjacent pixels. This crude filtering device greatly re-
duces oscillations. Results obtained withG̃0 have not been
modified. Given sufficient resolution all methods converge
to the exact solution. However, while all methods lead to al-
most identical solutions in the matrix, results strongly differ
in the highly-conducting region. The figure, which repre-
sents calculations carried out for various resolutions, shows
that employingG̃0 makes convergence notably easier. In-
deed, data points obtained with̃G0 at moderate resolution
L = 1024 are much closer to the exact solution than those
obtained fromG0 at the highest resolutionL = 32768.

-0.002 0 0.002 x/L

-8

-6

-4

-2

0

J
2
(x,y)y=10

-3
L

continuous L=4096
continuous L=8192
continuous L=16384
continuous L=32768
exact
discrete L=1024
discrete L=2048
discrete L=4096

Figure 3: Four-cell microstructure of Fig. 1. Values of the hori-
zontal current componentJ2(x, y = 10−3L) vs. x, for various reso-
lutions L (as indicated). Solid black: exact solution. Markers∗, ×
and+ (red): FFT results with discrete Green operatorG̃0. Other
markers and colors: FFT results with continuous Green operator
G

0.

In a previous study involving porous media [26] the con-
tinuous Green operator was already observed to induce awk-
ward aliasing effects at high contrast. They usually take
place near interfaces involving a region where the field con-
sidered is not uniquely defined in the infinite-contrast limit

(e.g., the strain in a pore, or the electric current in an
infinitely-conducting inclusion).

6. Convergence rate

This Section further examines for a few selected microstruc-
tures the convergence properties of FFT schemes. Algo-
rithmic convergence being harder in the case of strongly-
contrasted composites, the quantity of interest here is the
number of iterations as a function of the contrast ratioσ2/σ1.

6.1. Convergence criteria

Convergence criteria can be written either in the direct or
Fourier representations. The most compelling ones are those
that include high Fourier-frequency behavior [20]. In rela-
tion to FFT algorithms, the following criteria are considered:

η1 =
1

‖J‖
max

x

∣∣∣FT−1 {ki(q)Ji(q); x}
∣∣∣ ≤ ǫ, (18a)

η2 =
1

‖E‖
max
i, j,x

∣∣∣∣FT−1
{
ki(q)E j(q) − k j(q)Ei(q); x

}∣∣∣∣ ≤ ǫ,

(18b)

whereǫ ≪ 1 is the required precision and FT−1 is the back-
ward Fourier transform. Criterion (18a) put emphasis on cur-
rent conservation while (18b) imposes compatibility; apart
from a difference in the norm used, they are akin to those
used in [20]. The above writings refer to the discrete Green
operatorG̃0. The quantityk(q) should be replaced byq
when the continuous Green operatorG0 is used instead.

Among the computational schemes introduced in Sec. 4,
the “direct” (DS andD̃S) and “augmented-Lagrangian” (AL
and ÃL) schemes enforce compatibility at each iteration,
which trivially guarantees thatη2 = 0. Instead, electric
current conservation in the form of the equalityη1 = 0 is
enforced by the dual schemes DSD, D̃SD, ALD and ÃLD.
On the other hand, the remaining schemes in general lead to
nonzero values ofη1 andη2. This suggests using as a con-
vergence criterion the inequalityη ≤ ǫ whereη = η1 for
the primary (non-dual) schemes DS,̃DS, AL, ÃL, AS, ÃS,
VAR, and whereη = η2 for the dual ones DSD, D̃SD, ALD,
ÃLD.

6.2. Test microstructures

Convergence rates are monitored for three microstructures,
periodic in all directions, whose unit cellsΩ are represented
in Fig. (4). The leftmost 2D cell, of sizeL = 1024 pixels,
contains a single circular disk-shaped inclusion of surface
fraction 25%. This system is simply referred to as the “2D-
periodic” medium hereafter. The middle cell is a random 2D
Boolean model of sizeL = 1024 built from disks of diameter
80 pixels, of overall surface fraction 30%. The rightmost
cell is a random 3D Boolean model of sizeL = 256, made
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Figure 4: Elementary cellΩ of the “2D-periodic” microstructure
(left), and the 2D (center) and 3D (right) random periodic Boolean
models. Surface and volume fractions of the inclusions are,respec-
tively, 25, 30 and 20%.

of spherical inclusions of diameter 20 voxels, with overall
volume fraction 20%.

6.3. 2D periodic medium

Figure (5) illustrates for some of the algorithms introduced
in Sec. 4 applied to the “2D-periodic” medium how the indi-
catorη tends to zero as the number of iterations increases.
The contrast ratio is fixed atσ2/σ1 = 2 × 103. For ex-
ploratory purposes, quadruple precision was used in these
calculations to allow for tiny values ofη. Prior to drawing
the plots, the quantitiesσ0 and ρ0 were optimized manu-
ally to minimize the number of iterations needed to reach
the arbitrary thresholdη < ǫ = 10−12. For all methodsη
decreases exponentially with the number of iterations down
to some constant value determined by machine precision.
Roughly, algorithms separate in two classes. The first one
comprises the “continuous” schemes, namely, DS, AL and
AS, which are the slowest-converging ones. However, in
this class and for the microstructure considered, Eyre and
Milton’s AS method is clearly superior. The simple “di-
rect” scheme DS is by far the worst, and the “augmented-
Lagrangian” AL scheme is intermediate. The other class en-
compasses the “discrete” schemes (primary and dual). They
all makeη saturate in less than 300 iterations, which is an-
other hint at the good behavior of the discrete Green oper-
ator. In that class, Eyre and Milton’s method (̃AS) again
proves the fastest-converging one.

The optimal reference conductivityσ0 and resistivityρ0

used in Fig. (5) are summarized in the second column of
Tab. (1). The integer number in brackets is the number of
iterations needed to reach the thresholdη < ǫ = 10−8, which
in practice is a good trade-off between speed and accuracy.
With the “direct” scheme, Eq. (12) optimizes scheme DS
with the continuous Green operator. It givesσ0 = 1000.5
and —this is an empirical finding— optimizes also scheme
D̃S with the discrete Green operator. Introducing the phase
resistivities asρ1,2 = 1/σ1,2 an analogous formula (easy to
demonstrate in the continuum) holds for the optimal resistiv-
ity in the continuous dual “direct” scheme DSD, namely,

ρ0 =
1
2

(ρ1 + ρ2), (19)

1 400 800 1200 iterations

10
-36

10
-24

10
-12

1

η

AL

DS

AS

AL

AS

DS
D

AL
D

~ ~

~
~

~

2D periodic

DS

Figure 5: “2D-periodic” medium. Convergence indicatorη vs.
number of iterations in logarithmic-linear scale, for various FFT
schemes: using the continuum Green operator (DS, AS, and AL),
and the discrete Green operator (D̃S,D̃SD, ÃS, ÃL and ÃLD).

which provides here the valueρ0 ≃ 0.5. Again empir-
ically, we find that this value optimizes as well the dis-
crete dual “direct” schemẽDSD. As expected, the optimum
σ0 ≃ −44.7 reported for scheme AS matches Eyre and Mil-
ton’s result, Eq. (11). However, although negative, the opti-
mumσ0 found for the discrete schemẽAS is not consistent
with this formula. Finally, the values reported for the pri-
mary augmented-Lagrangian schemes AL and̃AL and their
dual versions do not match any of the previous analytical
estimates.

6.4. 2D and 3D Boolean media: reference conductivity
or resistivity

A more thorough study was carried out for the Boolean mod-
els, in which the optimal reference conductivityσ0 or resis-
tivity ρ0 was measured as a function of the contrast.

In order to avoid unnecessary long computations, the ref-
erence was first manually optimized on a low-resolution grid
of sizeL = 64 (in 2D) or L = 32 (in 3D). The optimized
reference was then tested on a full-resolution grid of size
L = 1024 (2D) orL = 256 (3D). In all but a handful of cases,
the numbers of iterations to convergence found with the low-
and high-resolution grids were nearly the same. The num-
ber of iterations found on the full-resolution grid was kept
if the difference was less than 10%; otherwise, the reference
was optimized again, this time on the full-resolution grid,to
provide a definitive number of iterations. Manual optimiza-
tion of the reference parameters was carried out following a
rough dichotomy procedure, disregarding for simplicity the
possibility of concurrent local optima. The convergence cri-
terion was set toη ≤ ǫ = 10−8 in these calculations.

Our findings are summarized in the third and fourth
columns of Tab. (1), where the formulas given essen-
tially represent the high-contrast behaviors, i.e., the regimes
σ2/σ1 ≪ 1 orσ2/σ1 ≫ 1. Indeed, in some cases the low-
contrast behavior may differ from that given (see below).

At the exception of schemẽAS in the 3D Boolean
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σ0

“2D-periodic” 2D Boolean 3D Boolean

DS 1000.5 (15621) (σ1 + σ2)/2 (σ1 + σ2)/2
AL 76 (1556) 3. 10−3σ1 + 1.8

√
σ1σ2 1.7

√
σ1σ2

AS −44.7 (663) −√σ1σ2 −√σ1σ2

VAR N/A 0.50(σ1 + σ2) N/A

D̃S 1000.5 (46) 0.50(σ1 + σ2) 0.53σ1 + 0.50σ2

ÃL 1855 (95) 0.30(σ1 + σ2) 0.56σ1 + 0.26σ2

ÃS −1390 (46) −0.30(σ1 + σ2)
−(1/3.6)σ1 (σ2/σ1 ≪ 1)
−3.6σ1 (σ2/σ1 ≫ 1)

ṼAR N/A 0.50(σ1 + σ2) N/A

ρ0

DSD 0.5 (14616) (ρ1 + ρ2)/2 (ρ1 + ρ2)/2
ALD 0.033 (1336) 3 10−3ρ1 + 1.8

√
ρ1ρ2 1.7

√
ρ1ρ2

D̃SD 0.5 (46) 0.50(ρ1 + ρ2) 0.48ρ1 + 0.52ρ2

ÃLD 1.09 (93) 0.30(ρ1 + ρ2) 0.40ρ1 + 0.55ρ2

Table 1: Optimal reference conductivitiesσ0 and resistivitiesρ0 determined for the indicated FFT schemes. Values given for the “2D-
periodic” microstructure correspond to the contrast ratioσ2/σ1 = 2 × 103, with the number of iterations indicated in brackets. For Boolean
models, the formulas given are consistent with the behaviorobserved at high contrast, although the low-contrast behavior may slightly differ.
Those for schemes DS, AS and DSD are exact ones. Missing entries (N/A) indicate that the corresponding schemes have not been investigated.

medium, for whichσ0/σ1 tends to a constant at high contrast
—notice the symmetry between both high-contrast regimes,
the behaviors we observed are of the following types

σ0/σ1 = α1 + α2 r, (20a)

or σ0/σ1 = β1 + β2 r1/2, (20b)

wherer = σ2/σ1, andα1,2 andβ1,2 are numerical constants
of various signs (see Table). These forms generalize Eqs.
(11) and (12). They apply to the “primary” schemes, and
similar ones hold for the “dual” schemes withσ substituted
by ρ. When nonzero, the coefficientβ1, of order 10−3, is of
unclear origin. The coefficients reported in the Table were
determined by non-linear least-square fitting on our data.
Additional fitting attempts with functional forms other than
(but related to) those retained indicate that the first digitof
the coefficients is significative, while the error on the sec-
ond one is hard to evaluate. Different coefficientsα1 and
α2 are provided when our results do not support an equal-
ity α1 = α2. However, our results strongly suggest that
α1 = α2 for the 2D Boolean system whenever Eq. (20a) ap-
plies, while this symmetry does not carry over to the 3D case,
except for the “direct” scheme whereα1 = α2 = 1/2 (exact)
in two and three dimensions.

Although the optimum may in some cases be of the same
form with the continuous and discrete Green operators, there
are other cases such as with the AS and̃AS schemes, for
which the optimal forms look strongly dissimilar. Moreover,
comparing columns two and three of the Table for the con-
trastσ2/σ1 = 2× 103 indicates that the optima found some-
what depend on the microstructure.

The behaviors gathered in the Table are supported by Figs.
6 and 7, which presents plots of our 2D and 3D data, and
the corresponding fitting curves. The “primary” and “dual”
schemes are addressed in separate plots. The signs indicated
in the Table cannot be read from the figures where absolute
values are displayed in logarithmic scale. In the 2D Boolean
model the data for the primary schemes and for their dual
are numerically quite close in this mode of representation,
so that the left and right plots superimpose almost exactly.
Interestingly, the plots reveal the unique non-trivial behavior
of the discrete schemes̃AL and ÃLD in the low-contrast re-
gion 0.1 ≤ σ2/σ1 ≤ 10, where they behave as

√
σ2/σ1 even

though the linear behavior reported in Tab. (1) takes place at
higher contrasts. On the other hand, the continuous schemes
AL and ALD essentially behave as a square root for all con-
trasts (up to a small corrective term in 2D cases). As already
noticed in the discussion of the Table, the discrete 3D “ac-
celerated” schemẽAS with its intriguing asymptotic behav-
ior (constant on both sides of the contrast range) stands as an
outlier. For it no fit has been attempted. We emphasize that
in all cases examined with the “accelerated” schemes, the
optimal square-root estimate (11) —exact in scheme AS—
yields poor convergence when applied to schemeÃS.

We also investigated the sensitivity to the choice ofσ0 in
the “direct” discrete schemes. In the 2D Boolean model and
for the discrete schemẽDS the choiceσ0 = 0.50(σ1 + σ2)
proves optimal, which matches the exact result relative to
scheme DS. However, with̃DS nearly optimal 2D results are
also obtained with choicesσ0 < (σ1 + σ2)/2. By contrast,
in 3D the number of iterations may be extremely sensitive
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Figure 6: 2D Boolean models. Absolute value of the normalized
optimal conductivity|σ0/σ1| vs.σ2/σ1 (top), and optimal resistiv-
ity |ρ0/ρ1| vs.ρ2/ρ1 (bottom), for the schemes indicated. Symbols:
FFT results. Solid: numerical fits (see Tab. 1).

to the choice ofσ0. Figure (8) illustrates this. It represents
the number of iterations vs.σ0 for the schemẽDS in the 3D
Boolean model, with contrastσ2/σ1 = 10−5. No conver-
gence is observed forσ0 < 0.5(σ1 + σ2), and the optimal
choice is aboutσ0 ≈ 0.53σ1.

6.5. 2D and 3D Boolean media: convergence properties

This Section examines convergence performance for the 2D
and 3D Boolean models, expressed by the number of itera-
tionsN as a function of the contrast ratior = σ2/σ1. Figure
(9) illustrates the performance of the various FFT schemes
considered, in calculations optimized by using the reference
conductivity or resistivity discussed in the previous section.
Schemes usingG0 are represented by filled symbols and
the+ marker, whereas discrete schemes usingG̃0 are rep-
resented by empty symbols and the×marker.

We recover known results of linear scalingN ∼ r for the
“direct” schemes DS and DSD, and of square-root scaling
N ∼ r1/2 for the “accelerated” scheme AS [17]. Similar con-
vergence rates are observed for the “augmented-Lagrangian”
schemes AL and ALD, and the “variational” one, VAR. As
a rule, given the FFT method the “primary” scheme always
converges better than the “dual” one whenr < 1, while the
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Figure 7: 3D Boolean models. Absolute value of the normalized
optimal conductivity|σ0/σ1| vs.σ2/σ1 (top), and optimal resistiv-
ity |ρ0/ρ1| vs.ρ2/ρ1 (bottom), for the schemes indicated. Symbols:
FFT results. Solid: numerical fits (see Tab. 1).
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Figure 8: 3D Boolean model. Number of iterations vs. reference
conductivityσ0 for the direct scheme with discrete Green operator
(D̃S). The contrast ratio isσ2/σ1 = 10−5. The convergence crite-
rion is η ≤ ǫ = 10−8. The valueσ0 = (σ1 + σ2)/2 is represented
by the vertical dotted line. The solid line between data points is a
guide to the eye.

opposite holds whenr > 1. For instance, at very strong con-
trast ratior > 107, the convergence of the dual “augmented-
Lagrangian” scheme ALD is much faster than that of the pri-
mary scheme AL.
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Figure 9: 2D and 3D Boolean models. Number of iterations vs.
contrast for various FFT algorithms. The convergence criterion is
η ≤ ǫ = 10−8. Solid lines between data points are guides to the eye.

As to discrete schemes, they are much more efficient than
their continuum counterparts. For discrete schemesN(r) is
either a bounded or slowly-increasing function ofr, which
shows that using the discrete Green operatorG̃

0 definitely
provides a dramatic improvement of convergence. By opti-
mizing the choice between the “primary” or “dual” versions
of the discrete algorithm at hand depending on whetherr < 1
or r > 1, one can even achieveconvergence in a finite num-
ber of iterationsin the infinite-contrast limit.

Overall, the figure shows that among all schemes the dis-
crete versioñAS of the “accelerated” scheme is the better-
converging one in 2D and 3D.

7. Optimizing the “ direct” scheme with discrete
Green operator

In applications dealing with large microstructures (typically,
multiscale materials) fast and memory-efficient implemen-
tations of FFT methods are required. One common way of
minimizing both CPU speed and memory storage is to re-
compute the Green operator at each iteration. As long as the
Green operator is easy to compute, this strategy is usually
faster than storing a very large tensor field. This is used in
the CraFT [30] and morph-Hom [31] softwares. As an ex-

ample, a low-cost implementation of the “direct” scheme DS
is as follows:

Initialization: setAi(x) ≡ 0.

i. SetAi(x) := [σ(x) − σ0]Ai(x);

ii. SetAi(q) := FFT(Ai(x); q);

iii. Set Ai(q) := G0
i j (q)A j(q) for q , 0 andAi(q = 0) := Ei ;

compute the convergence criterionη;

iv. SetAi(x) := FFT−1(Ai(x); q);

v. If η ≤ ǫ, setEi = Ai and STOP; otherwise GOTO (i).

In this algorithm FFTs are computedin-place. In total, mem-
ory space is allocated for one vector fieldA, plus the mi-
crostructure. VectorA successively stores the polarization
field in the real space [step (i)] and in the Fourier domain
[step (ii)] and the electrical fieldE in the Fourier domain
[step (iii)] and real space [step (iv)].

On the other hand, use of the discrete Green operatorG̃
0

allows for a more efficient implementation of the “direct”
scheme. Consider the rewriting of Eq. (7) as:

φk+1 =
1
σ0∆

div
[
(σ − σ0)(E − gradφk)

]
(21)

whereφk is the periodic part of the potential associated to
Ek, so thatEk − E = −gradφk, and where 1/∆ is, symboli-
cally, the inverse Laplacian. Equation (21) definesφk+1 as a
unique periodic function up to an irrelevant constant. When
k → ∞, φk converges to the potential up to a linear correc-
tion φ∞(x) = Φ(x) − Ei xi . The electrical and current fields
follow fromΦ. In the discrete setting, equivalent to a resistor
network, knowledge of a field on adjacent nodes or bonds is
sufficient to compute its local divergence or gradient. Thus,
the action of applying operatorsdiv andgrad that enter Eq.
(21) can be computed in the real space. This suggests the
following alternative implementation of the discrete direct
scheme (̃DS).

Initialization: setA(x) ≡ 0.

i. At each pointx, setA(x) := div P(x) where
Pi(x) = [σ(x) − σ0][E − grad A(x)]; computeη1 as
defined in (18);

ii. SetA(q) := FFT{A(x); q};

iii. Set A(q) := − A(q)
σ0|k(q)|2 for q , 0 andA(q = 0) := 0

otherwise;

iv. SetA(x) := FFT−1{A(q); x};

v. If η1 < ǫ set E = E − grad A, J = σE and STOP;
otherwise GOTO (i).

This algorithm exactly implements thẽDS scheme. However
only a scalar field, rather than a vector field, is now allocated
in memory. Step (i) is carried out in the real space by means
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of finite differences whereas the Laplacian inversion in step
(iii) is computed in the Fourier domain. The fieldA succes-
sively stores the divergence of the polarization fielddiv P in
the real space [step (i)] and Fourier domain [step (ii)] and,
later on, the periodic part of the potentialφ in the Fourier
domain [step (iii)] and in the real space [step (iv)]. Multi-
threading parallelization in step (i) necessitates some care as
this step is non-local. Nevertheless, this new implementation
reduces the number of FFTs per iteration from 4 (in 2D) or
6 (in 3D) down to 2. Furthermore, the amount of storage is
also reduced by a factord (Ld floats instead ofdLd), if we
neglect the storage required for the microstructure.

The total CPU time spent using “direct”, “augmented-
Lagrangian” and “accelerated” schemes is plotted in
Fig. (10) as a function of contrast, the scheme (D̃S) being
implemented as outlined above. These tests were carried
out with convergence criterionη < 10−8, on the previously-
considered 3D Boolean microstructure discretized on a grid
of sizeL = 256 (16.8 million points). Computations were
performed in double precision, on a 12-core Intel Xeon ma-
chine, each core running at 2.90 GHz with 5800 bogomips
and 15360 Kb of L2 cache. Best performance is achieved for
theD̃S scheme whenσ2/σ1 < 1, and with the “accelerated”
schemẽAS whenσ2/σ1 > 1. Using these optimal schemes
at infinite contrast, convergence is completed in 29 seconds
for insulating inclusions, and in 53 seconds for infinitely-
conducting inclusions. This strategy has been implemented
in the multithreaded Fortran codemorph-hom developed at
Mines ParisTech [31].
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Figure 10: CPU time vs. contrast ratioσ2/σ1 for various FFT
algorithms, on the 3D Boolean microstructure. The convergence
criterion isη ≤ ǫ with ǫ = 10−8.

8. Conclusion

Use of a modified Green operator in FFT-based schemes
has been advocated, in the context of the electrical response
of heterogeneous conducting media. The modification con-
sists in making the operator consistent with the underlying
voxel grid, which requires only a very simple adaptation of

previously-existing algorithms, but leads to two major im-
provements.

First, employing the modified operator leads to much
more accurate local fields, particularly in highly-conducting
or insulating inclusions, and in the vicinity of interfaces.
Second, the convergence rate is found to be much faster
compared with previous methods, in particular for highly-
contrasted media. Quite remarkably the “direct” scheme
—usually considered to be the worst-converging one— im-
proves tremendously, as far as CPU time is concerned, by
formulating the problem in terms of iterations on the electro-
static potential rather than on the electric field. However,use
of the modified Green operator requires carefully adjusting
the reference conductivityσ0, since the latter has a strong
influence on the convergence properties. Approximate ex-
pressions forσ0 have been derived numerically, and studied,
for the Boolean models of microstructure considered in this
work.

That using “discrete” versions of Green operators leads
to promising methods has already been noticed [14, 26].
Demonstrating that dramatic speed-up improvements follow,
the present work strongly supports this view. Based on previ-
ous experience [26], it is expected that the above conclusions
carry over to continuum mechanics.
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