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Highly entangled quantum networks cluster states lie
at the heart of recent approaches to quantum computing
[1, 2]. Yet, the current approach for constructing opti-
cal quantum networks does so one node at a time [3–5],
which lacks scalability. Here we demonstrate the single-
step fabrication of a multimode quantum network from
the parametric downconversion of femtosecond frequency
combs. Ultrafast pulse shaping [6] is employed to char-
acterize the comb’s spectral entanglement [7]. Each of
the 511 possible bipartitions among ten spectral regions
is shown to be entangled; furthermore, an eigenmode
decomposition reveals that eight independent quantum
channels [8] (qumodes) are subsumed within the comb.
This multicolor entanglement imports the classical con-
cept of wavelength-division multiplexing (WDM) to the
quantum domain by playing upon frequency entangle-
ment as a means to elevate quantum channel capacity.
The quantum frequency comb is easily addressable, ro-
bust with respect to decoherence, and scalable, which
renders it a unique tool for quantum information.

Theoretical Description The use of photonic architec-
tures to realize quantum networks is appealing since pho-
tons are immune from environmental disturbances, read-
ily manipulated with classical tools, and subject to high
efficiency detection [10, 11]. We consider here the cre-
ation of nonclassical, continuous variable states with an
optical parametric oscillator (OPO), in which a pump
photon of frequency 2ω0 splits into a pair of lower energy
photons subject to energy conservation and the cavity
resonance condition. The generation of a photon pair ini-
tiates a nonclassical correlation between the cavity modes
ω−p and ωp, where ωp = ω0 + p · ωFSR and ωFSR is
the cavity free spectral range. Given a sufficiently large
phase-matching bandwidth, a frequency comb emerges
from the cavity with all of the resonant photon pairs in-
dependently entangled [12]. The inclusion of additional
pump photons of frequencies 2ω0 + p′ · ωFSR opens the
possibility for richer frequency correlations beyond purely
symmetric pair creation. Femtosecond pulse trains con-
tain upwards of ∼ 105 individual frequency modes, and
the simultaneous injection of all these modes into a non-
linear optical element induces an intricate network of
both symmetric and asymmetric frequency correlations
[13]. To access such states, a synchronously pumped op-
tical parametric oscillator (SPOPO), which consists of
an OPO driven by a femtosecond pulse train with a rep-
etition rate matching the cavity free spectral range, is
exploited and creates correlations governed by the Hamil-

tonian:

Ĥ = ih̄g
∑

m,n
Lm,n â

†
mâ
†
n + h.c., (1)

where g regulates the overall interaction strength and
â†m is the photon creation operator associated with a
mode of frequency ωm. The coupling strength between
modes at frequencies ωm and ωn is dictated by the matrix
Lm,n = fm,n · pm+n, where fm,n is the phase-matching
function [14, 15] and pm,n is the pump spectral amplitude
at frequency ωm + ωn [16].

Frequency Entanglement We experimentally demon-
strate that the photonic state emerging from a SPOPO
pumped below threshold exhibits spectral entanglement
across the breadth of the comb. A femtosecond pulse
train is produced with a mode-locked titanium-sapphire
oscillator delivering ∼ 140fs pulses, and its second har-
monic serves to synchronously pump an OPO as detailed
in Fig. 1. Homodyne detection coupled with ultrafast
pulse shaping is then employed to fully characterize the
quantum properties embedded in the frequency comb.

The quantum correlations generated in the comb are
most easily understood by initially considering only two
discrete frequency bands. For this purpose, amplitude
shaping removes all but the low (red) and high (blue) fre-
quencies of the LO spectrum as seen in Fig. 2. The field
quadrature components x̂ and p̂ of these two bands are
then measured with homodyne detection while the pulse
shaper constructs on-demand entanglement witnesses.
For example, when either frequency band is considered
alone, a quadrature-independent excess noise is observed
(Fig. 2a) as found with a thermal state. The ampli-
tude of the spectral sum, however, is squeezed (Fig. 2b),
which is indicative of a strong intra-comb nonclassical fre-
quency correlation. A π-phase shift is then applied to the
red frequency band with the pulse shaper, which reveals
that the phase of the spectral difference is also squeezed
(Fig. 2c). With these two measurements, the Duan in-

separability criterion [17] 〈(x̂R + x̂B)
2〉+ 〈(p̂R − p̂B)

2〉 =
0.94± 0.03 < 2 is fulfilled and indicates that the two fre-
quency bands are indeed entangled. In diagnosing these
correlations, the pulse shaper has assumed the role of
a traditional beam splitter but in a frequency-dependent
fashion. We may also go a step further and infer the x̂ and
p̂ conditional variances with the frequency correlation co-
efficients from Figs. 2b,c. The product of these condi-
tional variances is ∆2xR|B · ∆2pR|B ' 0.58 ± 0.21 < 1,
which also satisfies the more stringent condition for EPR
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FIG. 1: Experimental layout for the creation and characterization of multimode frequency combs. A titanium-sapphire oscillator
produces a 76MHz train of ∼ 140fs pulses centered at 795nm. Its second harmonic synchronously pumps an OPO, which consists
of a 2mm BIBO crystal contained within a ∼ 4m ring cavity. The cavity output is analyzed with homodyne detection, where the
spectral composition of the local oscillator (LO) is manipulated with a 512-element, programmable 2D liquid-crystal modulator
capable of independent amplitude and phase modulation [28]. The spectrum of the LO is divided into ten discrete bands
of equal energy (enumerated on the figure), and the amplitude and phase of each band may be individually addressed. By
varying the relative phase between the shaped LO and the SPOPO output, the x̂ and p̂ quadrature noises of the quantum state
projected onto the LO mode are measured.

FIG. 2: (a) Phase-independent, excess noise of ∼ 3.4dB
is present in both the high (blue) and low (red) frequency
bands. (b) The amplitude of the frequency band sum ex-
hibits ∼ −3.2dB of squeezing. (c) The pulse shaper writes a
π-phase shift between the spectral wings, and the phase of the
difference also shows a squeezing level of ∼ −3.3dB. Hence,
the Duan entanglement criterion is readily verified.

entanglement between the spectral wings of the SPOPO
output [18].

Covariance Matrix Measurement In order to more
aptly characterize the intra-comb entanglement across
the entire spectrum, the LO is divided into ten frequency
bands of equal energy as seen in Fig. 1, and the x̂- and
p̂-quadrature noises for each spectral region and all pos-

sible pairs of regions are determined. The 55 requisite
homodyne measurements are acquired in a period of ap-
proximately thirty minutes, and allow assembly of the
state’s full covariance matrix. We have observed that
cross-correlations of the form 〈x̂ p̂〉 are absent, which per-
mits the covariance matrix to be cast in a block diagonal
form. Fluctuations and correlations departing from the
vacuum level are shown in Fig. 3a for the x̂-quadrature.
A spectrally-dependent distribution of excess noise is ev-
ident (diagonal blue peaks) with the preponderance of
its occurrence in the spectral wings. Concomitantly, the
bulk of the frequency correlation occurs between the two
opposing spectral wings (off-diagonal red peaks).

The inseparability of individual frequency bands from
the conglomerate structure is probed with the positive
partial transpose (PPT) criterion [19], which is applied
to all 511 possible frequency band bipartitions. Every
bipartition is entangled, and the degree of its insepara-
bility is assessed by the magnitude of the corresponding
Heisenberg inequality violation. As seen in Fig. 3b (blue
points), the absence of any partially separable form im-
plies that the SPOPO output constitutes a completely
non-separable, genuine 10-partite state [8]. The bipar-
titions that induce the largest and smallest physicality
violations are of particular interest. Frequency bands di-
ametrically opposed to the central wavelength are the
most strongly entangled (Fig. 3b), whereas the parti-
tion that disconnects the two spectral wings from the
remaining structure is the most weakly entangled. It
is important to realize that in the case of a solitary
pump frequency, all of the partitions possessing a reflec-
tion symmetry about the central wavelength would not
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FIG. 3: (a) Noise correlation matrix, defined as Cx
i,j =

〈xixj〉/
√
〈x2i 〉〈x2j 〉 − δi,j〈x

2
vacuum〉/〈x2i 〉 for the x-quadrature.

It is important to note that the vertical axis is inverted. (b)
EPR (red) and PPT (blue) inseparability criteria for all 511
bipartite combinations of the 10 spectral bands, ordered ac-
cording to increasing EPR values. The black dotted line is
taken to be the entanglement boundary for both tests. All
511 bipartitions possess a PPT value below the boundary,
which indicates complete non-separability for the state. Ad-
ditionally, 115 biparitions satisfy the more stringent criterion
for EPR entanglement.

be entangled (e.g., the largest PPT value in Fig. 3b).
The entanglement of such structures demands asymmet-
ric frequency correlations afforded upon the simultaneous
downconversion of multiple pump frequencies.

As before, it is likewise possible to consider EPR en-
tanglement for each of these bipartitions. Upon doing so,
115 frequency bipartitions turn out to additionally sat-
isfy the more stringent condition for EPR entanglement
as presented in Fig. 3b (red points). Analogous to the
PPT criterion, the bipartition that displays the strongest
EPR entanglement corresponds to bisecting the spectrum
at the central wavelength.

Modal Decomposition While germane for quantum in-
formation processing, the multipartite entangled nature
of the comb is an extrinsic characteristic as it depends
upon a user-specified allocation of individual frequency
bands. For example, although a single mode squeezed
beam theoretically acquires multipartite character by
simply dividing it with a beamsplitter, the state remains
intrinsically monomode [20]. An alternative theoreti-
cal description of the state is gleaned upon diagonaliz-
ing the interaction matrix Lm,n to reveal a frequency-
decorrelated modal representation [16, 21]. The ensuing
basis of “supermodes” Ŝk, which are linear combinations
of the original, single frequency modes, permits rewriting
the total Hamiltonian as a sum of single-mode squeezing
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FIG. 4: (Amplitude spectra and corresponding squeezing
values and quadratures for the leading six experimental su-
permodes retrieved from the covariance matrix. The stick
spectra represent the experimentally measured orthonormal
vectors from which the spectral form of the supermodes is
constructed. The black trace is the approximate theoretical
Hermite-Gauss form for the supermodes, where the appro-
priate spectral width is determined from the SPOPO above-
threshold spectrum.

Hamiltonians independently acting on each supermode:

Ĥ = ih̄g
∑

k
Λk Ŝ

† 2
k + h.c., (2)

where Λk is the eigenvalue associated with the super-
mode Ŝk. The eigenspectrum specifies the number of
non-vacuum qumodes contained in the SPOPO output
and their associated degree of nonclassicality. Thus, the
quantum comb is equivalently analyzed either as an en-
tangled state in the multipartite basis exemplified by
Fig. 3a, or as a set of uncorrelated squeezed states in
a multimode basis [22].

A set of orthonormal experimental supermodes is ex-
tracted from the measured covariance matrix and reveals
that 8 squeezed modes are contained within the conglom-
erate comb structure (see annexe). The spectral compo-
sition and squeezing level for the leading six modes are
shown in Fig. 4. The squeezing quadrature (x̂ or p̂) is ob-
served to alternate between successive modes, which is in
agreement with theory [16]. Consequently, the SPOPO
functions as an in situ optical network consisting of an
assembly of independent OPOs and phase shifters.

The spectral composition of each experimental mode
also displays generally good agreement with Hermite-
Gauss polynomial forms, which approximate the pre-
dicted supermode structure [16]. The spectral width ∆λk
of these supermodes Ŝk, however, increases with mode
index k as in ∆λk =

√
2k + 1 ·∆λ0, and the diminished
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overlap with the LO in the spectral wings becomes ap-
parent with each progressive mode. The inability to re-
solve high-order modes with the fixed bandwidth of the
LO accounts for the decrease in observed squeezing lev-
els. The present observation of 8 squeezed modes does
not represent an inherent upper limit to the dimension-
ality of comb states, and with the adoption of broader
bandwidth LO pulses, comb states possessing as many
as ∼ 100 significantly squeezed modes are expected [16].

In order to corroborate these modes, the retrieved
structures of the leading four modes in Fig. 4 are writ-
ten directly onto the pulse shaper. Squeezing is observed
for each of these orthogonal modes, albeit in alternating
quadratures. Finally, it is worth noting that while the
experimental supermodes of Fig. 4 are represented in the
frequency domain, they are equivalently described in the
temporal domain. Hence, the entanglement across the
entire frequency breadth of the comb visible in Fig. 3a
implies a concomitant creation of temporally entangled
structures within the ultrafast pulse [23].

Discussion The ability to independently control the
amplitude and phase of each LO spectral element opens
the possibility of constructing a basis change that em-
ulates an arbitrary linear optical network [24]. As
such, the quantum noise can be measured in any ba-
sis, and we can imagine discovering a basis of pulse
shapes that infers the presence of cluster states [25]. Ad-
ditional calculations indicate that cluster states are in-
deed subsumed within the ultrafast quantum comb, and
spectrally-resolved homodyne detection will enable their
experimental manipulation.

In conclusion, we have demonstrated ultrafast fre-
quency combs to be a practical, compact source of mas-
sively entangled quantum states. The ability to create
top-down multipartite entanglement amongst thousands
of frequencies with a single nonlinear interaction provides
an unprecedented capability. Additional nodes may then
be incorporated into the quantum network by simply in-
creasing the number of frequencies participating in the
nonlinear interaction, which does not require an expan-
sion of the optical setup. High dimensional quantum ob-
jects provide a means to elevate photonic channel capaci-
ties and thereby multiplex the transmission and process-
ing of information. The network of quantum channels
present in the ultrafast comb should find numerous ap-
plications in quantum metrology and measurement-based
quantum computing. Immediate applications involve
spectrally-resolved homodyne detection of the quantum
comb [26] as a means for implementing quantum mea-
surement protocols and ultraprecise temporal metrology
beyond the Heisenberg limit [27]. Consequently, highly
multimode photonic sources are expected to become a
valuable source for realizing cluster states and facilitating
fundamental studies of quantum information processing.
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FIG. 5: Noise trace observed with an unshaped LO pulse
shape. The state exhibits squeezing and anti-squeezing values
of −5.9dB and 7.8dB, respectively.

ANNEXE

The laser source is a titanium-sapphire mode-locked
oscillator delivering ∼ 140fs pulses (∆λ ' 6nm FWHM)
centered at 795nm with a repetition rate of 76MHz. Its
second harmonic at 397nm serves to synchronously pump
an OPO, which consists of a 2mm BIBO crystal contained
within a 4m long ring cavity exhibiting a finesse of 27 and
escape efficiency of 95%. In this configuration, the OPO
reaches its threshold at a mean pump power of ∼ 75mW.
Below threshold and in the absence of a seed, the device
generates squeezed vacuum with a squeezing level of ∼
−6dB (corrected) when projected onto the unshaped LO
as seen in Fig. 5.

In order to lock the cavity length to the inter-pulse
spacing, a near-infrared beam is phase-modulated at
1.7MHz with an electro-optic modulator (EOM) and in-
jected into the cavity in a direction counter-propagating
to the pump and seed. Locking of the cavity is then
accomplished with a Pound-Drever-Hall strategy.

Frequency correlations of the state are investigated
with homodyne detection where the local oscillator pulse
form is manipulated with a pulse shaper. The 4f -
configuration shaper is constructed in a reflective geome-
try with a programmable 512 x 512-element liquid-crystal
modulator in the Fourier plane. Application of a pe-
riodic spatial grating to the spatial light modulator in-
duces diffraction of the spectrally-dispersed light. The
amplitude and phase of the diffracted spectrum are in-
dependently controlled by the groove depth and position
of the spatial grating, respectively [28].

The OPO output is projected by the homodyne detec-
tion technique onto the spectrally filtered LO pulse shape
to assess the quadrature noise content of the correspond-
ing spectral region. Light detection is performed with
silicon photodiodes (∼ 90% detection efficiency, 100MHz
detection bandwidth), and the noise level of the squeezed
vacuum is examined at 1MHz. The homodyne visibility
is 92%. The cumulative loss of the system is taken to be
∼ 25% and the measured signals are corrected accord-
ingly.
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FIG. 6: Noise correlation matrix defined as Cp
i,j =

〈pipj〉/
√
〈p2i 〉〈p2j 〉− δi,j〈p

2
i 〉vac/〈p2i 〉 for the p̂ quadrature. The

diagonal displays excess noise while the off-diagonal elements
demonstrate quantum correlations among disparate spectral
regions.

The optical spectrum of the local oscillator is divided
into ten frequency bands of equal energy as seen in Fig. 1
of the main text, and spectral holes between the individ-
ual regions are imposed to ensure the absence of any spec-
tral overlap. Importantly, the supplemental loss incurred
from including these gaps is not accounted for when cor-
recting the noise levels. The x̂ quadrature is defined as
the field quadrature of lowest noise for the unshaped LO
pulse. The noise dependence on LO phase is then exam-
ined for all 55 possible pulse shapes and compared to that
of the unshaped LO reference. Each individual trace is
observed to follow the phase dependence of the reference,
which confirms that the lowest noise level for every spec-
tral combination is present in the x̂ quadrature, i.e., there
is no rotation of the squeezing ellipse between successive
measurements.

The noise content of both the x̂- and p̂-quadratures
for each spectral region and all possible pairs of regions
are measured as shown in Fig. 8. The individual covari-
ance elements are constructed according to the following
equation:

〈xixj〉 =

[
〈(xi + xj)

2〉 − Pi

Pi + Pj
〈x2i 〉 −

Pj

Pi + Pj
〈x2j 〉

]
× Pi + Pj

2
√
PiPj

, (3)

where Pi and Pj are the optical powers of frequency
bands i and j, respectively, which are measured with the
homodyne photodiodes.

Data Analysis. Noise fluctuations and correlations
departing from the vacuum level for the p̂-quadrature are
represented in Fig. 6. Similar to the x̂ quadrature, the
vast majority of both the excess noise (diagonal peaks)
and correlation (off-diagonal peaks) are localized in the

TABLE I: Squeezing values and uncertainties (linear scale) for
the modes retrieved from the twenty dimensional covariance
matrix. Eight modes are clearly non-classical while a ninth
mode is not included in a conservative estimate.

Mode Squeezing Level Anti-Squeezing Level

1 0.38± 0.07 3.86± 0.12

2 0.48± 0.06 3.62± 0.07

3 0.58± 0.07 2.74± 0.10

4 0.74± 0.06 1.96± 0.06

5 0.83± 0.05 1.41± 0.06

6 0.90± 0.03 1.17± 0.04

7 0.93± 0.03 1.11± 0.03

8 0.95± 0.02 1.06± 0.03

9 0.97± 0.02 1.03± 0.03

10 0.98± 0.02 1.00± 0.02

spectral wings. As opposed to the x̂ quadrature, however,
the correlations within the p̂ quadrature are positive.

The purity P, which is an intrinsic property of the
state, is accessible from the covariance matrix with the
relation P = 1/

√
det(C), where C is the full covariance

matrix of the state [29]. This relationship reveals that
P ' 0.45±0.09. The full covariance matrix is then eigen-
decomposed, where it is observed that although the indi-
vidual x̂ and p̂ block eigenvectors are very similar, they
are not identical. In general, two matrices are simultane-
ously diagonalizeable only if they commute. For instance,
the commutator of the x̂ and p̂ covariance matrices for
two-mode squeezed vacuum is zero even in the presence
of spectrally-uniform loss, and a single eigenvector set
perfectly decorrelates both quadratures. The introduc-
tion of a spectrally-dependent loss, however, spoils the
commutation of the x̂ and p̂ blocks, and the magnitude
of a commutator element is directly proportional to the
spectral asymmetry of the loss. The output coupler of
the SPOPO does not have a perfectly flat transmission
window over the bandwidth of the pulse, and the magni-
tude of the commutator elements is largest in the spectral
wings. Consequently, this asymmetry explains the fact
that it is not possible to perfectly remove both the x̂ and
p̂ correlation with a single basis change.

Yet, the commutator elements have a small magnitude.
Therefore, as a means of generating a mode set that effi-
ciently removes the correlation of the original frequency
bands, the ten most noise-robust eigenmodes (see sta-
tistical sampling procedure detailed below) are selected
from the total eigenvector set. These vectors, which are
drawn from both the x̂ and p̂ blocks, are orthogonalized
with a Gram-Schmidt procedure, and the covariance ma-
trix is subsequently re-expressed in this basis. The result-
ing matrix is nearly diagonal and contains the squeezing
values for each orthogonalized mode on its diagonal.

The error level associated with each of these squeez-
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ing values is subsequently estimated with a stochastic
method. The data underlying every trace of Fig. 8 is
collected for twenty seconds in order to accrue statistics
about the individual squeezing and anti-squeezing values.
The noise value for a given trace is then drawn from a nor-
mal distribution with a mean provided by the red (green)
line, which represents the average of all identified peaks
(valleys), and a variance specified by the variance of the
peak (valley) amplitudes. After randomly sampling from
these 110 normal distributions, the corresponding covari-
ance matrix is constructed in the appropriate manner. A
collection of 104 individual matrices is assembled, and the
Gram-Schmidt orthogonalization procedure is repeated
for every matrix, which provides both a squeezing spec-
trum and orthonormal mode set. The mean squeezing
spectrum from this procedure is shown in Fig. 7 and
the individual noise levels are detailed in Table I. Like-
wise, the average mode structures corresponding to the
six highest squeezing values are shown in Fig. 4 of the
main text.

The mean spectrum is generally noise-robust and re-
veals that eight modes are statistically distinct from the
vacuum level. Although a ninth mode may also be con-
sidered to exhibit non-classicality, its uncertainty is at
the vacuum level, and is therefore not included in a con-
servative estimate.
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FIG. 8: Squeezing traces for determination of the ten frequency band covariance matrix. The traces are sequentially arranged
according to the index scheme {i, j}, which indicates that the pulse shaper selects frequency bands i and j (e.g., {1,1},
{1,2},...,{1,10},{2,2},{2,3},...). In each trace, the black line represents the vacuum level while the green and red lines indicate
the average squeezing and anti-squeezing levels, respectively. The LO phase is depicted with arbitrary units.


