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Abstract

The aim of the present work is to propose a new micro-mechamodel in the con-
text of the deductive approach used to derive interface tsodais model, based on a
previous study introduced previously by A. Rekik and F. Lef#i, 32], is used to re-
produce the damage in masonry by combining structural aissdyyd homogenization
methods. The focal point of this method is to assume theexngstof a third material,
called interphase, which is a mixture of the two principahstituents of masonry,
brick and mortar, and that is the interface between thens fiénw element presents a
low thickness, a low stiffness and a given damage ratio. Taehanical problem of
masonry, initially a 3D problem, is solved numerically asix@oblem using finite
element methods. The properties of the interface bricktanaonaterial are obtained
using three essentials steps. First of all, an exact homsaten of a laminates is
used to define a first homogeneous equivalent medium named HEAter, the as-
sumption of damaged material is taken into account by usiaggeneral framework
given by M. Kachanov [13, 24, 35, 36] to evaluate the glob&laweour of the dam-
aged HEM-1 defining thus a second equivalent homogeneousimetbted HEM-2.
The last step consists in using an asymptotic analysis igearwhich is performed
to model HEM-2 as an interface or a joint. The properties & jhint are deduced
from those of the HEM-2 material as proposed in former pafirs5, 17, 34]. Par-
ticularly, through the second homogenization are takemactount the variability of
microcracks oriented family and simultaneously the opglosure effects (unilat-
eral behaviour). Numerically this interface is modellethrgonnector finite elements.
Numerical results are compared to experimental ones &laila the literature [7].

Keywords: Masonry, interfaces, damage, homogenization, microsraghilateral
effects, asymptotic analysis.
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1 Introduction

Historically, the masonry is considered one of the oldedtimg material although
its mechanical behaviour is still the subject of many reseactivities. It is usually
described as a composite material formed by units (bricktyral stones, marble,
granite, limestone, concrete block, etc.) and joint, wittwithout adhesive compo-
nent (mortar, concrete, clay, etc.), and different bondrayements. Masonry is still
used nowadays to build houses because of its qualitiesexigitr, solidity, durabil-
ity and fire resistance, and its elegant appearance, et cértain that the problems
associated with modelling ancient and modern masonrytsireg are very different.
Physical evidence shows us that ancient masonry is a verypleanmaterial with
three-dimensional internal arrangement, usually unoegad, but which can include
some form of traditional reinforcement. Moreover, theséamals are associated with
complex structural systems, where the separation betweéitectural features and
structural elements is not always clear. However, masomiych is not generally
thought to be a highly technological material, shows higtdynplex behaviour, due
in particular to the interactions between the componentista@ anisotropy induced
by the direction of the joints, which are a source of weaknEssn for simple geome-
tries and far from failure loadings, masonry structuresigkl mechanical response
affected by extreme stiffness contrast between constsyeandomness of contact
points between bricks where unilaterality and CoulomUifsit dominate. The inter-
play between extreme stiffness contrast and randomnesseoante hand and reg-
ularity of the fabric on the other, yields stress distribng within masonry walls
that may present localized stress paths, evidencing steessentrations and stress
relieves. It is classically held that the seismic vulneigbof masonry buildings de-
pends strongly on their resistance to shear forces. It iethee of great interest to
model and test the shear responses of building componebjescéed to loading of
this kind, especially cyclic loading. These responses lggrerally been character-
ized by a peak load, loss of rigidity and energy dissipatibmsummarize consider-
ably, two methods of modelling masonry structures have lbsex so far. The first
method involves macroscopic models, in which the wall isuas=d to be a single
structural element characterized by a non linear respohg@ \it is exposed to shear
forces [5, 11, 23, 26, 27, 29, 33]. In continuum macro-modbeicks, mortar and
brick-mortar interfaces are smoothed out into an homogemeontinuum, the aver-
age properties of which are identified at the level of the tirents, taking their ge-
ometric arrangement into account [20, 22]. This technigygarticularly indicated in
global modelization of unreinforced masonry structureslmch the very low tensile
strength of the material renders the use of non-linear ¢atige behaviour more ob-
vious. This is particularly true in the assessment of exgssitructures and in seismic
analysis. To describe the inelastic behaviour of struttaesonry, some authors have
combined homogenization techniques with a continuum demagchanics approach
[2, 38]. Onthe other hand, some models of micro-analysisaldiave been developed
for predicting the evolution of damage into interface begwéwo initially bonded de-
formable bodies [7, 9, 16, 18, 24, 25, 30, 35]. Two main maadgkhpproaches used for
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this purpose are phenomenological modelling and deductodelling. In the first ap-
proach, the thickness of the interface is taken to be zerdhranchechanical properties
are obtained from physical considerations and experin{eatsfor example [3, 8—10]
and references therein). The second approach consistsunifigg on the thin layers
materials at the micro-mechanical level, which are usuzlied the interphase. Sev-
eral authors [1, 14, 15, 17, 19, 21, 28] have establishedthigainterface elements
reflect the main interactions occurring between bricks awodtan For this reason,
various studies have been presented for modelling the bmivaef interfaces with
zero thickness and predicting their failure modes. Somdiet6], for example, ex-
pressed the constitutive law at the interface in terms ofamirtraction and the relative
displacements of two surfaces interacting at the joint. ff&aeture of the joint and the
subsequent sliding are associated with the interface gedition. Method based on
limit analysis combined with a homogenization technique slaown [5] to be a pow-
erful structural analysis tool, giving accurate collapssdictions. The brittle damage
model developed in [2, 28] involves an elementary cell cosepoof units, mortar
and a finite number of fractures at the interfaces. In thisepag multi-level model
for interfaces based on homogenization and asymptotiaitgeols is presented. This
model is based on a previous study proposed by A. Rekik anddor.[31, 32]. The
first part of this paper gives an accurate version of the nrecabmodelling approach
used. The multi-level approach used is described. Thisoagprtakes into account
the mechanical characteristics of the mortar and bricksptiesence of micro-cracks
and the thickness of the interface into. In the second pagtntimerical procedure
used and implemented using a finite element software progranesented and some
numerical examples are given and compared with experirheata [7, 11].

2 An accurateversion of the Rekik-L ebon modél 31, 37

Masonry units have generally been discretized using coantinelements, whereas
joints have been modelled in the form of weakness planesgusterface elements.
The main limitation of this approach is the fact that the riatéions between joints
and brick units cannot be satisfactorily described. Thetrodginal feature of this
kind of model is that it includes a third material insertetiAmen the units and mortar,
which accounts for the noticeable differences generalistieng between the mechan-
ical properties of bricks and mortar. In order to model iftee damage to masonry
structures, the present method based on homogenizationdbeasymptotic tech-
niques and finite element methods was developed. The maa steolved in this
method will be described below. Most studies on masonrycgiras have dealt with
only two materials: brick and mortar. In the present worksiassumed the exis-
tence of a third material: the brick/mortar interface, whis considered as a mixture
of brick and mortar with a crack densip. To obtain the effective properties of the
damaged intermediate material, three steps are perforiiest it is calculated the
exact effective properties of the crack-free material ggiamogenization techniques
for laminate composites, for the sake of simplicity it is smiered to have the same

3



volume fraction for both constituents, and thus define alicshogeneous equivalent
medium, which will be referred below as HEM-1. In the secotgpsit is assigned a
proper crack densitp to the previous material. To model the macroscopic behaviou
of the cracked material HEM-1, it is used the Kachanov moddlthen it is defined a
new homogeneous equivalent medium HEM-2. Finally, in otddre sandwiched be-
tween the brick and mortar, this material is given a smatikthess, and its mechanical
behaviour is derived using asymptotic techniques to stafhfthe micro to the macro
level. With this interface law, the masonry structure pesblcan be solved using finite
element methods.

The following overall scheme (Fig.1) describes the prilesunderlying the proposed
model:

Brick
1st Step
| > Mixture 1
Homogenization
MOI’tar /
2nd Step
— > Mixture 2
€ Homogenization
e Mixture 1 + Crack
1
Brick Brick
o ‘H ‘H ‘ ‘H ‘H mmmmmmm
Interface
R §\ sisadiasaanni [—> b ————— 4
Mixture 2 = Asymptotic =
Vi—r—r expansions
Mortar Mortar

Figure 1:Principle of the proposed model

2.1 Undamaged stratified composite homogenization

Itis proposed first to obtain the mechanical properties®fib interphase material by
homogenizing those of brick and mortar. Both constituergsasumed to be isotropic
and linear elastic materials. In the compliance form, themstitutive law reads:

4 ¢
¢ ¢_1+Vvt o Vv oos
i :Slzjkl Ok = gz 9 —gakde 1)

whereS, E¢ and v¢ are respectively the compliance tensor, the Young’s madulu
and the Poisson ratio of phage({ = b for the brick, { = m for the mortar). The
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macroscopic behaviour law of the laminate brick/mortadsea

e=:0 where £= > flel = > 0 of (2)
{=b,m {=b,m

wheref¢ denotes the volume fractions of phafsands_0 is the effective fourth-order

compliance tensor of the homogeneous equivalent craeknfi@erial supposed to be
transversely isotropic . According to the modified Voigtatain, the macroscopic law
(2) reads:

&1 St Sz Shss 0 0 0 o1
€22 S22 S Shss 0 0 0 022
€33 | | Shizs Shzs Sjzss O 0 0 Os3
V2es 0 0 0 By, _ O 0 V2053
v2eis 0 0 0 0 X33 _ _ 0 V2013
V2er 0 0 0 0 0 11— o V201,

3)
The five independent coefficients of the compliance tefBare determined by
applying three independent loads. The same results mayupel fio [4], where the
macroscopic law of the laminate is given in the stiffnessf@® = (50) -t
For the sake of simplicity the model is developed assumiagtane stress hypothesis
in directione, on the effective material, so that the 3D problem is reducea 2D

problem in the(e, e3) plane.

2.2 Homogenization of the micro-cracked composite

In this section, the material HEM-1 is assumed to containréitrary distribution
of rectilinear cracks located on the plaf®, e3) in a representative area= Lgé,
wherelg is the bed mortar length ardis the thickness of the micro-cracked HEM-2
material. Kachanov et al. [24, 35] provided an accurate@ppration of the effective
behaviour of such a material for open cracks; the averagstrin a solid withN
families of microcracks can be written in the form:

£=S:0=(+A9):0 (4)

whereS_(resp.S_O) is the effective compliance of the cracked (resp. craek)fmaterial
and

_ 1 N
ASijn =55 > B+ Bjn + BinnInf + By 10%)% (5)
k=1

in which 2K andn¥) are mean length and normal of tk8 family of cracks andA

is the area of the representative 2D-domain.

The second rank symmetric ten®®K) can be called the crack compliance tensor of
thek!" family of cracks, which depends on the anisotropy of theimirgaterial [36]:

B® = (C(1-D)e;®e; +C(1+D)es®@e3) (6)
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where

)
(czf\/E?Jr £ L Vi, 2 z
4 e \Cs B JEOE)
\/E— =5 (7)
D— 1 3
\ E?+4/ES

ED, ES, v9; and G}, are the effective elastic engineering constants of thekefrae
material HEM-1. These constants are easily derived fronetteetive elastic compli-
ancess’ as follows:

r 1
E) = S

11_11

Ed= .
@3 (8)
YO _ 1133
13 %
111
0 __
| BT,

We note in (7) the dependence of the sigibadn the anisotropy ratiEf/Eg.
We consider here a single family of microcracks normal teciones with mean
length 2. Substituting (7) and (8) into (6), we obtain the change aset compliance:

ASjh = %p[(%@es)ith + (e3®&3)iIBjn +Bin(e3® &)1 +Bi(e3®&3)jn]  (9)

wherep = 1/Az(|)2 is the proper scalar crack density parameter in 2D case The
compliance of the cracked material HEM-2 is thus given by:

Si111= §111
Ss333= Siaaa+20C(1+D)
S1133= S123 (10)

1
Si313= Sara+ 5PC(1-D)

The elastic constan@ andD are given by (7). The engineering constaBisEs, Vi3
andGgq3 of the cracked material HEM-2 are given by relations sintitaf10) thus:

(( E; =EY
0
1+2pC(1+D)E?
_,0
Vi3 = Vi3

Es
(11)

_ Gis
1+2pC(1-D)GY,

Gi3
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2.3 Third step: asymptotic analysis and interface law

In this section, it is considered a thin joint composed ofriregterial defined above,
which is sandwiched between brick and mortar. Since thd jeithin and soft, it

is natural to use asymptotic techniques, to study the limabjem (by tending the
thickness to zero) and to replace the joint by an interfasedafined along the limit
surface. It is takerg to denote the thickness of the joint, which is assumed to be
constant ané&to denote the limit surface of the joint (a line in 2D), coperding to

a thickness equal to zero (see fig. 2). We t&ki denote the elasticity tensor of the
joint and limg;ji /€ = Gjji . The limits are assumed to exist. We tdKeo denote the

Figure 2:the principle of the asymptotic techniques i2-® case

jump alongS. We obtain B
0% = Cigiz [

Itis found an interface law which links the stress vectohwjump in the displace-
ment via a diagonal matrix. It is important to remark thastisia simplified choice
to reduce the continuous model of interface material to gokmmechanistic model
obtained considering springs in the normal and tangenitiettion. In this case, the
termsCy andCsy in this matrix (corresponding to the normal and the tangésfirings
stiffnesses) are given by

_ _ G
Cn = C3333(8 — 0) where Ci3333= %’) ( )
~ 12

Cr =Ci313(e - 0) where Ciziz= Cle
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Using expressions (12) and writing the crack density scalahe form: p =
12/ Lo, whereLg denotes the joint length, it can be established that the aloamd
tangential joint stiffnesses read:

Cy—__ 0
N:
2C(1+D)12
. (Ij;) ) (13)
T~ 2C(1-D)I2

Note that the choice of HEM-1 is quite irrelevant becausestirae function€y and
Ct can be obtained with various combinations of HEM-1 and niat@arameters.
The present model takes the evolution of the micro-crack atcount by taking a

Figure 3:Function describing the evolution of the crack half lengtthwespect to the
applied shear stress

variable crack half lengthdepending on the load. For the sake of simplicity, it is first
assumed that the half lengtllepends only on the predominant tangential strdsg
neglecting its dependence on the normal stress. For itsigmo) it is assumed that
remains constant= . until a certain valua; of the shear stress has been reached.
From this value, the crack half lengtlevolves linearly with respect to the shear stress
T up to a second value of the crack lendgglreached at the maximum shear stress
valuety. It is experimentally proved that this evolution law canwetely model the
response of a quasi-brittle non-confined masonry structulpgected to a shear load.
Fig. 3 describes the evolution of the half crack length webpect to the shear stress
T. The first step (wheré is constant) corresponds to a stable state of the interface
material in which crack propagation occurs. The second(8tbprel evolves linearly
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as a function of the shear stresincludes the crack propagation, which leads to the
failure of the interface.

The values of the shear stresggand 1y, are fixed in advance, based on experimen-
tal 'stress-displacement’ diagrams obtained on variousomies subjected to shear
conditions. The values of the crack evolution law paranseferandl,) result from
the minimization of the difference between the numerical arperimental 'stress-
displacement’ diagrams.

3 Numerical modelling

In this section, some numerical results are illustrated atwlief review of the ex-
periments which validate this damage model is done. The gaah is to evaluate
the strain and damage distribution in the unreinforced amhgthened masonry pan-
els which are submitted to a predominant shear load, takitmaccount the non-
linear behaviour of the material. It is known from the laliorg experiences that this
strongly non-linear shear behaviour of the masonry is rggalerned by phenomena
that occur at the brick/mortar interface.

3.1 An outline on experimental validations

The local behaviour of the interfaces at mode | and mode ¢kdr@ of brick masonry
bed joints, which are typical quasi-brittle interfaces hasn studied by various labo-
ratory experiments [11].

In the following, the capability of the proposed interfaamstitutive model in repre-
senting the behaviour of the brick/mortar joints underad#ht load conditions is vali-
date by experimental results obtained by F. Fouchal et BIThe experimental device
(Fig. 4) was designed to study on the local scale the sheavimir of a simple as-
sembly consisting of two and three full or hollow bricks (2héhx 200mmx 50 mm)
connected by a mortar joint ¥Amthick. The samples were subjected to a monotonous
increasing load up to failure.

Figure 4:a) Experimental device involving two bricks, b) Experina¢device involv-
ing three bricks



The following findings were obtained :

e occurrence of two kinds of fracture processes, the fractareoccur along the
interface or it can begin along the interface and then it pgagpes into the mortar
joint;

e the variations in the shear stresses show that the stressrtoation develops
in the regions containing the discontinuities

e rigid elastic behaviour up to the failure, followed by frant sliding behaviour;
¢ the behaviour of full bricks was fragile beyond the limitsigth;
¢ the behaviour of hollow bricks was quasi-fragile beyondlifmét strength;

¢ hollow brick samples showed great dispersion, mainly dugéonon uniform
distribution of the mortar spikes and local defects in thenponents of the
bricks;

e samples consisting of two and three bricks showed similaaweur, so the
choice of basic cell therefore has no effect on the locakscal

3.2 Numerical processing

For the first numerical processes and in according to exgerisris chosen to study a
simple model: a triplet of three full bricks bounded by twontaojoints. The geomet-
rical and mechanical properties of the sample are totalagireement with those used
in Fouchal’'s experiments (Tab.1). The boundary conditemesgiven in Fig. 5. The
finite element method is used to perform the spatial discagtin. In the subsequent
modelling study, only the interface’s behaviour will thiene be of importance and
not the basic components used. The principal goal of the mede analyze inter-
face’s stiffness degradation caused by microcracks. Towbegh a model as simple
as possible brick and mortar are assumed to be linear elastropic materials. A
plane stress modelling is pursued using a regular mesh ofhfmade quadrangular el-
ements having two degree of freedom per nodes, four Gausgration points and
lagrangian polynomials as shape functions in displacerioemtulation. This classi-
cal mesh choice is used both for brick and mortar elementsbifiek/mortar interface
elements quadrangular finite elements are chosen alsor Miekelling is made ex-
plicit below.

Let us briefly recall the weak formulation of a standard étgstoblem, having the
following form :

/QAe(u).e(v) dQ — | Clul.[vjdl's = /vadQ + /Fl s.vdlf;  (14)

s
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Young’s moduli (MPa) of full brick 9438

Poisson ratio of full brick 0.13
Young’s moduli (MPa) of mortar 4000
Poisson ratio of mortar 0.3

Table 1: Mechanical properties of the three-fold masonnstituents

LI

brick

brick brick

Jeuow
Jeyjow

Figure 5:Initial geometrical configuration and loading conditiomaposed

wheref andsdenote the volume and the surface forces, respectivelg,part of the
boundarydQ. A is the fourth order elasticity tensor, a@ds the symmetric stiffness
matrix depending on the damage:

G O
C = (15)
0 Cn
Writing the displacement jumju] = N J[u], the discretization of the surface term is
obtained as follows:

/FSC[U].[V] dre — ;g /Sega[v] NEC N S[u] dx = Szeg /Sega[v]v sudx  (16)

A linear interpolation is performed (Fig. 6.a), takirgo denote the abscissa associ-
ated with the segment of lengthV€' is the order (& 8) elementary matrix associated
with the length of the segmeht .

h_ h
Ve':/de:/NtCNdx (17)
0 0
After proceeding to the assembly of the matrix, we then oldta linear system where

K andV are the rigidity matrix and the matrix associated with themdge interface,
respectively.

Kou —Va[u = F (18)

11



Figure 6:a) Displacement jump, b) Quadrangular element at the iatsf

An incremental explicit algorithms is used to solve the Iqguablem. Due to the
contact conditions, a fairly small step increment is cho3dre mesh consists of 665
Q4 finite elements for the whole domain and of 76 Q4 finite eles&r brick/mortar
interfaces (Fig. 7). The loading on the middle brick rangesf0 to 53 KN.

16

14F

12

10F

Figure 7:Meshing detail

The main goal of computation consists in determining thigngts values of the
interfacesCy andCy. The values of the load parameté&sandF, (or stresses. and
Ty) are determined from the experimental "load-displacefnantves [7]. The values
of the lengthd. andl, are chosen so that the numerical global response matches the
experimental "stress-strain” (or "stress-displacempgditigram satisfactorily.

The rigidity of the assembly depends mainly on the interfstiffness as expected.
Since the problem is highly non linear, even small pertuonatin the stiffness coef-
ficients can greatly affect the numerical responses. In.RBgs 9 stiffnesse€y and
Ct degradation with respect to load increments and with redpethie micro-crack
lengthl evolution are plotted.

The analysis of the shear stressgg distribution map (Fig. 11) reveals that the
stress concentration develops in the regions containiaglibcontinuities, or more
specifically, at the interface level. Moreover, Figs. 10wliloe evolution of the jump
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16

12

0.8

0.6
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+ Ct
o Cn

10 20 30
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Figure 8:Variation of the overall elastic coefficientgy@nd G with respect to load

incrementation

3
c, [KNmd

Cy

18

16

12

0.8

0.6

Il
4.2
micro-crack length [m]

L
4.4 4.6

Figure 9: Variation of the overall elastic coefficientgy@Gnd G- as function of the

crack length

in the tangential displacements depending on the sheassgeéncreasing values at
interface. When the vyield is reached, it is observed a sudtiange of the global
stiffness which predicts the degradation of the mechaipicgerties and the failure.

It is possible to conclude that the future failure of the leipmodel occurs in
brick/mortar interface zone by the excess of the strain lwéipaof this interphase,
which agrees with the experimentally observed failure mode
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Figure 11:Shear stresses at final loading step

4 Conclusions

An accurate version of the multi-scale model proposed by ékilRand F. Lebon
[31, 32] itis presented here. It is successfully used to Rteuhe experimental tests
in which failure occurred at the brick/mortar interfacegaeted in [7], which provided
the coefficients required to model the interface, namelystifiness parameters and
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the length of the micro-cracks. The model is sensitive teehgharacteristics but the
results obtained are in line with the experimental data.nftee practical point of
view, an optimization routine is needed to systematicadliedmine the values of the
parameters describing the evolution of the crack lengths ea will be applied to
more complex masonry structures in a future study.

It is proposed in the future to enrich this model with a morenptete homoge-
nization technique, in particular the one performed by Cdéscu and H. Welemane
[12, 37]. Their work is devoted to a continuum micromechasbased investigation
of the anisotropic multi-linear response of orthotropictenals containing microc-
racks. This response is often a very complex combinationwvof gpecific features
of such deteriorating phenomenon. First, the orientedraaitimicrocracks induces
an evolution of the material symmetry. Secondly, a changberelastic response of
the material is expected, based on opening-closure maxksrstate with respect to
loading situations. Their procedure leads to the propdsalobosed-form expression
of the macroscopic free energy corresponding to two dinogrdinitially orthotropic
materials weakened by arbitrarily oriented microcracksewys.

In a future study, it is planned to implement and validate #mriched model
with a software suite for finite element analysis and compaitged engineering like
ABAQUS.

References

[1] R. Abdelmoula, M. Coutris, and J.J. Marigo. Asymptotehavior of an elastic

thin layer. Comptes Rendus De L Academie Des Sciences Serie li Fascicule

B-Mecanique Physique Astronom826(4):237-242, 1998.

[2] G. Alfano, E. Sacco, Combining interface damage andifncin a cohesive-
zone model, International Journal for Numerical Method€mgineering, 68
542-582, (2006).

[3] E. Bonetti and M. Fremond. Analytical results on a modai flamaging in
domains and interfaceEsaim-Control Optimisation and Calculus of Variations
17(4):955-974, 2011.

[4] C. Boutin. Microstructural effects in elastic compesit International Journal
of Solids and Structure83(7):1023-1051, 1996.

[5] P. De Buhan and G. De Felice. A homogenization approactinéoultimate
strength of brick masonry.Journal of the Mechanics and Physics of Salids
45(7):1085-1104, 1997.

[6] G. Del Piero and M. Raous. A unified model for adhesiveriaiges with dam-

age, viscosity, and frictiorEuropean Journal of Mechanics a-Solj@9(4):496—
507, 2010.

15



[7] F. Fouchal, F. Lebon, and I. Titeux. Contribution to thedelling of interfaces in
masonry constructionConstruction and Building Materia)]23(6):2428—-2441,
2009.

[8] F. Freddi and M. Fremond. Damage in domains and intesfadecoupled pre-
dictive theory. Journal of Mechanics of Materials and Structurdg7):1205—
1233, 2006.

[9] M. Fremond. Adhesion of solidsJournal De Mecanique Theorique Et Ap-
pliguee 6(3):383-407, 1987.

[10] M. Fremond and B. Nedjar. Damage, gradient of damagep&andiple of virtual
power. International Journal of Solids and Structure®3(8):1083-1103, 1996.

[11] A. Gabor, A. Bennani, E. Jacquelin, and F. Lebon. Madglapproaches of the
in-plane shear behaviour of unreinforced and frp strenggienasonry panels.
Composite Structure34(3):277-288, 2006.

[12] C. Goidescu, H. Welemane, D. Kondo, and C. Gruescu. dgiercks clo-
sure effects in initially orthotropic materialE£uropean Journal of Mechanics
- A/Solids 37:172-184, 2013.

[13] M. Kachanov. Elastic solids with many cracks and relgteoblems.Advances
in Applied Mechanics, Vol 3B0:259-445, 1994.

[14] F. Lebon and R. Rizzoni. Asymptotic analysis of a thiriemface: The
case involving similar rigidity. International Journal of Engineering Science
48(5):473-486, 2010.

[15] F. Lebon and R. Rizzoni. Asymptotic behavior of a harih inear elastic in-
terphase: An energy approachmternational Journal of Solids and Structures
48:441-449, 2011.

[16] F. Lebon, R. Rizzoni, and S. Ronel-Idrissi. Asymptaitalysis of some non-
linear soft thin layersComputers & Structure82(23-26):1929-1938, 2004.

[17] F. Lebon and F. Zaittouni. Asymptotic modelling of irfeeces taking contact
conditions into account: Asymptotic expansions and nucaéimplementation.
International Journal of Engineering Sciene:111-127, 2010.

[18] S.G. Lekhnitsky.Theory of elasticity of an anisotropic elastic bodylir Pub-
lishers, 1961.

[19] H. R. Lotfi and P. B. Shing. Interface model applied tocfrae of masonry
structuresJournal of Structural Engineering-Asc&20(1):63—-80, 1994.

[20] P. B. Lourenco, R. deBorst, and J. G. Rots. A plane stsefiening plasticity
model for orthotropic materialsinternational Journal for Numerical Methods
in Engineering40(21):4033-4057, 1997.

16



[21] P. B. Lourenco and J. G. Rots. Multisurface interfacedeidor analysis of
masonry structuresJournal of Engineering Mechanics-Asc3(7):660—-668,
1997.

[22] P. B. Lourenco, J. G. Rots, and J. Blaauwendraad. Caomtmmodel for ma-
sonry: Parameter estimation and validatidournal of Structural Engineering-
Asce 124(6):642—-652, 1998.

[23] R. Luciano and E. Sacco. Homogenization technique amoegdje model for old
masonry materiallnternational Journal of Solids and Structure!(24):3191—
3208, 1997.

[24] C. Mauge and M. Kachanov. Effective elastic propertéan anisotropic ma-
terial with arbitrarily oriented interacting crackdournal of the Mechanics and
Physics of Solids42(4):561-584, 1994.

[25] V. Monchiet, C. Gruescu, O. Cazacu, and D. Kondo. A mmoechanical ap-
proach of crack-induced damage in orthotropic media: Ajapion to a brittle
matrix composite Engineering Fracture Mechanic83:40-53, 2012.

[26] D.V. Oliveiraand P.B. Lourenco. Implementation antidation of a constitutive
model for the cyclic behaviour of interface elemen®omputers & Structures
82(17-19):1451-1461, 2004.

[27] L. Pela, M. Cervera, and P. Roca. Continuum damage miodedrthotropic
materials: Application to masonryComputer Methods in Applied Mechanics
and Engineering200(9-12):917-930, 2011.

[28] C. Pelissou and F. Lebon. Asymptotic modeling of qua#ite interfacesCom-
puters & Structures87(19-20):1216-1223, 2009.

[29] R. D. Quinteros, S. Oller, and L. G. Nallim. Nonlinearrhogenization tech-
niques to solve masonry structures proble@smposite Structure94(2):724—
730, 2012.

[30] M. Raous, L. Cangemi, and M. Cocu. A consistent modelptiag adhesion,
friction, and unilateral contactComputer Methods in Applied Mechanics and
Engineering 177:383-399, 1999.

[31] A. Rekik and F. Lebon. Identification of the representatrack length evolution
in a multi-level interface model for quasi-brittle masoninyternational Journal
of Solids and Structured¢7:3011-3021, 2010.

[32] A. Rekik and F. Lebon. Homogenization methods for if#ee modeling in
damaged masonnAdvances in Engineering Softwarb:35-42, 2012.

[33] E. Sacco. A nonlinear homogenization procedure forooke masonry.Euro-
pean Journal of Mechanics a-Solid&8(2):209-222, 2009.

17



[34] E. Sacco and F. Lebon. A damage-friction interface nhatbrived from
micromechanical approach.nternational Journal of Solids and Structures
49:3666-3680, 2012.

[35] I. Tsukrov and M. Kachanov. Anisotropic material withbdrarily oriented
cracks and elliptical holes: Effective elastic modulnternational Journal of
Fracture, 92(1):L9-L14, 1998.

[36] I. Tsukrov and M. Kuchanov. Effective moduli of an artispic material with
elliptical holes of arbitrary orientational distributiorinternational Journal of
Solids and Structure87(41):5919-5941, 2000.

[37] H. Welemane and C. Goidescu. Isotropic brittle damaug unilateral effect.
Comptes Rendus@tanique338:271-276, 2010.

[38] Q. Z. Zhu, D. Kondo, and J. F. Shao. Homogenization-tamealysis of
anisotropic damage in brittle materials with unilater&ef and interactions be-
tween microcrackdnternational Journal for Numerical and Analytical Methed
in Geomechani¢33(6):749-772, 2009.

18





